TWI361010B - Color correction method and color correcting integ - Google Patents

Color correction method and color correcting integ Download PDF

Info

Publication number
TWI361010B
TWI361010B TW97125145A TW97125145A TWI361010B TW I361010 B TWI361010 B TW I361010B TW 97125145 A TW97125145 A TW 97125145A TW 97125145 A TW97125145 A TW 97125145A TW I361010 B TWI361010 B TW I361010B
Authority
TW
Taiwan
Prior art keywords
color
values
value
primary colors
primary
Prior art date
Application number
TW97125145A
Other languages
Chinese (zh)
Other versions
TW201004371A (en
Inventor
Jyun Sian Li
Chih Chang Lai
Original Assignee
Wintek Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wintek Corp filed Critical Wintek Corp
Priority to TW97125145A priority Critical patent/TWI361010B/en
Priority to US12/494,505 priority patent/US8279235B2/en
Publication of TW201004371A publication Critical patent/TW201004371A/en
Application granted granted Critical
Publication of TWI361010B publication Critical patent/TWI361010B/en

Links

Landscapes

  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Description

13610101361010

r Ir I

TW4536PA 九、發明說明: 【發明所屬之技術領域】 • 本發明是有關於一種色彩校正方法與具有色彩校正 . 功能之整合型晶片,且特別是有關於一種可應用於顯示器 或投影機之色彩校正方法與具有色彩校正功能之整合型 晶片。 【先前技術】 • 目前,各式顯示技術已臻成熟,尤其是顯示器或投影 機等裝置更已廣泛為市場所使用。如何更為忠實地呈現影 像色彩尤其是許多製造廠商的發展重點之一。 然而,受限於裝置的特性,同樣的影像在不同裝置上 呈現的效果並不見得相同。以顯示器為例,傳統上,當顯 示器接收到影像資料時,是直接將影像資料的灰階訊號儲 存在顯示器的隨機存取記憶體(random-access memory, RAM )中,並依據迦瑪(Gamma )電壓對應到相對應的電 ® 壓輸出。由於此方式並沒有考慮到接收的影像訊號與顯示 器的色域是否相同,致使所顯示影像產生偏差的現象。 舉例來說,如果一影像是依據sRGB標準色域定義所 產生的影像,每個畫素的灰階資料是希望人眼接收到的 X、Y、Z刺激值是在sRGB色域範圍中的某一點,但由於 顯示器本身的色域大小或是純紅、純綠與純藍色三個頂點 與sRGB色域不一樣,所以當影像資料直接輸入到顯示器 上,人眼將接收到不同的X、Y、Z刺激值,因而產生前 ^ΟΙϋΙΟTW4536PA IX. Description of the Invention: [Technical Field] The present invention relates to a color correction method and an integrated wafer having a color correction function, and more particularly to a color correction applicable to a display or a projector Method and integrated wafer with color correction function. [Prior Art] • At present, various display technologies have matured, especially devices such as monitors or projectors have been widely used in the market. How to more faithfully present image color is one of the development priorities of many manufacturers. However, due to the nature of the device, the same images are not necessarily identical on different devices. In the case of a display, conventionally, when the display receives image data, the grayscale signal of the image data is directly stored in a random-access memory (RAM) of the display, and is based on Gamma (Gamma). The voltage corresponds to the corresponding voltage output. Since this method does not take into account whether the received image signal is the same as the color gamut of the display, the displayed image is deviated. For example, if an image is an image generated according to the sRGB standard color gamut definition, the grayscale data of each pixel is such that the X, Y, and Z stimulus values received by the human eye are in the sRGB color gamut. One point, but because the color gamut of the display itself or the three vertices of pure red, pure green and pure blue are not the same as the sRGB color gamut, when the image data is directly input to the display, the human eye will receive a different X, Y, Z stimulus value, thus producing the front ^ΟΙϋΙΟ

TW4536PA 述之影像偏差問題。 【發明内容】 本發明係有關於一種色彩校正方法與具有色彩校正 功能之整合型晶片,其根據一待校正裝置之特性調整影像 貝料’使影像資料在調整後能夠如實地讓人眼感受到原本 影像所要呈現的效果。 本發明提出一種色彩校正方法,其包括步驟:將一影 ,資料之三原色灰階值轉換成一色彩空間之特徵值;根據 °亥色彩空間定義之標準白光之座標位置與該特徵值於該 空間定義之座標位置之關係以及該三原色灰階值去 1戶该特徵值’以產生一調整後特徵值;量測一待校正裝 置於各別顯示三原色時之三個特徵值;根據該待校正裝置 之5亥二個特徵值與一色彩空間變換式,將該調整後特徵值 轉換成二原色調整後亮度值;以及,量測該待校正裝置於 各別顯不二原色時之迦瑪特性曲線,並將量測到的三原色 各別^迦瑪特性曲線模型化,以產生該三原色各別之新的 灰ρ自-冗度關係’藉此以獲得該三原色調整後亮度 三原色調整後灰階值。 了應之 +赞明另提出一種具色彩校正功能之整合复 !:括—儲存單元、—暫存單元以及-色彩校正單元。_ 二:入一待校正裝置於各別顯示三原色時所量:: 用乂冩入該待杈正裝置於各別顯示三原 7 1361010 1. *TW4536PA describes the image deviation problem. SUMMARY OF THE INVENTION The present invention relates to a color correction method and an integrated wafer having a color correction function, which adjusts image bedding according to the characteristics of a device to be calibrated, so that the image data can be faithfully perceived after adjustment. The effect of the original image. The invention provides a color correction method, which comprises the steps of: converting a three-primary gray scale value of a shadow and a data into a feature value of a color space; defining a coordinate position of the white light according to the color space defined by the color space and defining the feature value in the space The relationship between the coordinate positions and the three primary color grayscale values to the one feature value to generate an adjusted feature value; the three feature values of the device to be corrected to display the three primary colors respectively; according to the device to be corrected 5 eifa two eigenvalues and a color space transformation formula, converting the adjusted eigenvalues into two primary color adjusted brightness values; and measuring the gamma characteristic curve of the to-be-corrected device in each of the distinct primary colors, And measuring the measured three primary colors, the Gamma characteristic curve, to generate a new gray ρ self-duplicity relationship of the three primary colors, thereby obtaining the adjusted gray primary value of the three primary colors after the adjustment of the three primary colors. It should be + praised to propose an integrated complex with color correction function:: storage unit, - temporary storage unit and - color correction unit. _ 2: The amount of the correcting device to be displayed in the three primary colors:: Use the device to be inserted into the display device to display the original three originals 7 1361010 1. *

TW4536PA 色時所量測之迦瑪特性曲線。色彩校正單元用以接收一影 像資料,並根據該影像資料之影像格式於儲存單元取得該 • 影像資料之轉換特徵值資料,藉此將該影像資料之三原色 . 灰階值轉換成一色彩空間之特徵值。色彩校正單元並用以 根據此色彩空間定義之一標準白光之座標位置與該特徵 值於此色彩空間定義之座標位置之關係以及該三原色灰 階值去調整特徵值,以產生一調整後特徵值。色彩校正單 元更用以根據該待校正裝置於各別顯示三原色時所量測 • 之三個特徵值與一色彩空間變換式,將該調整後特徵值轉 換成三原色調整後亮度值。色彩校正單元並將所量測之該 待校正裝置之三原色各別之迦瑪特性曲線模型化,以產生 三原色各別之新的灰階-亮度關係,藉此以獲得該三原色調 整後亮度值對應之三原色調整後灰階值。 為讓本發明之上述内容能更明顯易懂,下文特舉較佳 實施例,並配合所附圖式,作詳細說明如下: *【實施方式】 實施例一 請參照第1圖,其繪示依照本發明實施例一的色彩校 正方法之流程圖。此色彩校正方法包括步驟S11至S15。 由步驟S11開始,先將一影像資料之三原色(紅、綠、藍 色)灰階值轉換成一色彩空間之特徵值。接著,如步驟S12 所示,根據該色彩空間定義之標準白光之座標位置與該特 徵值於該色彩空間定義之座標位置之關係以及該三原色 8 1361010The gamma characteristic curve measured by the TW4536PA color. The color correction unit is configured to receive an image data, and obtain the converted feature value data of the image data according to the image format of the image data, thereby converting the three primary colors of the image data into a color space. value. The color correction unit is further configured to adjust the feature value according to the relationship between the coordinate position of the standard white light and the coordinate position defined by the feature value in the color space and the gray level value of the three primary colors to generate an adjusted feature value. The color correction unit is further configured to convert the adjusted feature value into the three primary color adjusted brightness values according to the three feature values measured by the to-be-corrected device when displaying the three primary colors respectively and a color space conversion formula. The color correction unit models each of the measured gamma characteristic curves of the three primary colors of the device to be corrected to generate a new gray-scale relationship of the three primary colors, thereby obtaining the brightness values corresponding to the three primary colors. The three primary colors are adjusted after the grayscale value. In order to make the above-mentioned contents of the present invention more comprehensible, the following detailed description of the preferred embodiments and the accompanying drawings will be described in detail as follows: * [Embodiment] For the first embodiment, please refer to FIG. A flowchart of a color correction method according to Embodiment 1 of the present invention. This color correction method includes steps S11 to S15. Starting from step S11, the grayscale values of the three primary colors (red, green, and blue) of an image data are first converted into the feature values of a color space. Then, as shown in step S12, the relationship between the coordinate position of the standard white light defined by the color space and the coordinate position defined by the feature value in the color space and the three primary colors 8 1361010

TW4536PATW4536PA

灰階值去調整該特徵值,以產生一調整後特徵值。然後, 見步驟S13,量測一待校正裝置於各別顯示三原色時之三 個特徵值。接著,如步驟S14所示,根據該待校正裝置之 該三個特徵值與一色彩空間變換式,將該調整後特徵值轉 換成三原色調整後亮度值。然後,如步驟S15所示,量測 該待校正裝置於各別顯示三原色時之迦瑪特性曲線,並將 量測到的三原色各別之迦瑪特性曲線模型化,以產生該二 原色各別之新的灰階-壳度關係,藉此以獲得該三原色調整 後亮度值對應之三原色調整後灰階值。 待校正裝置例如是一顯示器。於此,本實施例並提出 一種具色彩校正功能之整合型晶片,其可為一獨立的晶片 設計,例如是一特殊應用積體電路(Applicati〇n spec丨如 integrated circuit,ASIC )’並可被裝設於顯示器之顯示器晶 片中直接進行色彩校正。具色彩校正功能之整合型曰曰片^ 其電路方塊圖請參照第2A圖,顯示器晶片2 : 圖則請參照第2B圖。如第2A圖所*,整電路= ϋ 一啟;. 里日日片10包 m 〇、一暫存單元120以及一色 儲存早π 110儲存有多筆不同 值資料。暫存單元12〇是藉由__輸人介面特徵 校正^於各別顯示三原色時所量測之=寫入待 ㈣“料校正裝置於各關示三n值’以及 瑪特性曲線。色彩校正單幻3()藉 ^所I測之迦 :::料,並根據該影像資料之影像格式::广接收- 取付該影像資料之轉換特徵值資料,藉此將=;= 9 1361010The grayscale value is used to adjust the feature value to produce an adjusted feature value. Then, referring to step S13, the three feature values of the device to be corrected for displaying the three primary colors are respectively measured. Next, as shown in step S14, the adjusted feature values are converted into the three primary color adjusted luminance values according to the three characteristic values of the to-be-corrected device and a color space conversion formula. Then, as shown in step S15, the gamma characteristic curve of the device to be corrected in displaying the three primary colors is measured, and the measured gamma characteristic curves of the three primary colors are modeled to generate the respective two primary colors. The new gray-scale relationship is used to obtain the adjusted grayscale values of the three primary colors corresponding to the adjusted values of the three primary colors. The device to be corrected is for example a display. Herein, the embodiment also provides an integrated wafer with a color correction function, which can be a stand-alone wafer design, for example, a special application integrated circuit (ASIC). Color correction is performed directly on the display wafer mounted on the display. Integrated chip with color correction function ^ Refer to Figure 2A for the circuit block diagram, display chip 2: Please refer to Figure 2B for the plan. As shown in Fig. 2A, the whole circuit = ϋ 一启;. The Japanese film 10 packs m 〇, a temporary storage unit 120, and a color storage π 110 stores a plurality of different value data. The temporary storage unit 12 〇 is measured by the __ input interface feature correction when the three primary colors are displayed separately = written to be (four) "material correction device at each display three n values" and the horse characteristic curve. Color correction Single Magic 3 () by the I measured by the I::: material, and according to the image format of the image data:: Wide Receive - to take the conversion feature value data of the image data, thereby using =; = 9 1361010

TW4536PA 二原色灰階值轉換成 一色彩空間之特徵值。色彩校正單元 盎並用以根據此色彩空間定義之一標準白光之座標位置 二該特徵值於此色彩空間定義之座標位置之關係以及該 :二色,階值去調整特徵值,以產生一調整後特徵值。色 ^枝正,7L 13〇更用以根據該待校正裝置於各別顯示二 時所$剛之三個特徵值與一色彩空間變換式,將該 ^特徵值轉換成三原色調整後m色彩校正“楚 、‘ M產生三原色各別之新的灰階-亮度關係 轉此 以獲得拎_広 "# 階 ^ °Λ 一原色調整後亮度值對應之三原色調整接 值。 Ί天夜 如第2Β圖所示,顯示器晶片20中裝設有整合製曰 之儲存單元11〇、暫存單元12〇及色彩校正 曰片 更包;te —0外, 掃描驅動單元210、一資料驅動單元220、〜 機存取 δ己憶體(random-access memory,RAM) 230、 ^ 瑪(Gamma)電壓源240、一時序產生單元250及〜迦 供^電路260。色彩校正單元13〇根據顯示器特性去和海 的衫像資料會被儲存於顯示器晶片2〇之隨機存取=疋 230 tb 千’然後搭配前述元件顯示色彩校正後之影像。以 附圖詳細說明本實施例之色彩校正方法的各個步驟内容卞 μ 本實施例是以輸入影像資料為SRGB標準定義 。 貝料為例做說明。此影像資料係轉換至CIE XYZ色本$ 間’其中於CIEXYZ色彩空間之特徵值(χ,γ,Ζ)為‘突 眼的二個刺激值,其亦為影像資料的三原色灰階值、人 、尺,G· 1361010The TW4536PA dichromatic gray scale value is converted into a eigenvalue of a color space. The color correction unit is used to adjust the feature value according to the relationship between the coordinate position of the standard white light according to one of the color space definitions and the coordinate position defined by the color value, and the two color and the step value to generate an adjusted value. Eigenvalues. The color is positive, and the 7L 13〇 is used to convert the ^ feature value into the three primary colors adjusted m color correction according to the three feature values and a color space conversion formula of the device to be corrected. Chu, 'M produces the new gray scales of the three primary colors - the brightness relationship is transferred to obtain 拎 _ 広 quot # # # # # Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ As shown, the display wafer 20 is provided with an integrated storage unit 11A, a temporary storage unit 12A, and a color correction chip. In addition to the te0, the scan driving unit 210, a data driving unit 220, and the like Accessing a random-access memory (RAM) 230, a Gamma voltage source 240, a timing generating unit 250, and a TG circuit 260. The color correcting unit 13 去 goes to the sea according to the characteristics of the display The image data of the shirt will be stored in the display wafer 2 random access = 疋 230 tb thousand ' and then the color corrected image will be displayed with the above components. The details of the steps of the color correction method of the embodiment will be described in detail with reference to the accompanying drawings. This embodiment is The input image data is defined by the SRGB standard. The beaker is used as an example. This image data is converted to CIE XYZ colorbook $ between the two eigenvalues (χ, γ, Ζ) in the CIEXYZ color space. Stimulus value, which is also the gray color value of the three primary colors of the image data, person, ruler, G· 1361010

TW4536PA B)顯示於sRGb標準螢幕上,人眼所看到的訊號。 在步驟S11中,將影像資料之三原色灰階值(r,g, B) 轉換成CIEXYZ色彩空間之特徵值(X,γ,Ζ)時,必須先 將三原色灰階值(R,G, Β)轉換成三原色原始亮度值(dR, dG,dB) ’再接著將三原色原始亮度值(dR,dG,dB)轉換 成特徵值(X,Y, Z) 〇色彩校正單元130係依照下列式子 分別將三原色灰階值(R, G, Β)轉換成三原色原始亮度值 (dR, dG, dB ):TW4536PA B) Displayed on the sRGb standard screen, the signal seen by the human eye. In step S11, when the three primary color grayscale values (r, g, B) of the image data are converted into the characteristic values (X, γ, Ζ) of the CIEXYZ color space, the three primary color grayscale values (R, G, Β must be first). Converting to the original color values of the three primary colors (dR, dG, dB) 'and then converting the original primary brightness values (dR, dG, dB) into the feature values (X, Y, Z). The color correction unit 130 is in accordance with the following formula Convert the three primary color grayscale values (R, G, Β) into the original primary luminance values (dR, dG, dB):

dRdR

dGdG

dB 當dB when

RR

MaxMax

彡 0.03928 時,dR ^R/Max grey + 0.055 ,2.4彡 0.03928, dR ^R/Max grey + 0.055 , 2.4

V 當V when

1.055 G (1)1.055 G (1)

Max _ gr ’G/Max_grey +0.055 當Max _ gr ’G/Max_grey +0.055 when

1.055 B1.055 B

Max _ grey R/Max — 12.92 若否,則 ㈣3928時,1逆^^,若否,則 k2.4 (2) 12^92~ ’若否’則Max _ grey R/Max — 12.92 If no, then (4) 3928, 1 inverse ^^, if not, then k2.4 (2) 12^92~ ‘if no’

V B/Max grey+ 0.055 Γ055 ,2.4 (3) 上列式子(1)至(3)中,Max—grey係為該待校正裝置所 能顯示之最大灰階值’以8 bit的裝置為例,其最大灰階值 為255。在第2A圖中,當輸入的影像格式確定為 準所定義的影像格式時,色彩校正單元13〇便可從儲二 元no中獲得上述式子中的各個參數如〇 〇3928、2 4、12 = 1361010VB/Max grey+ 0.055 Γ055 , 2.4 (3) In the above equations (1) to (3), Max-grey is the maximum gray-scale value that can be displayed by the device to be calibrated, taking an 8-bit device as an example. Its maximum grayscale value is 255. In FIG. 2A, when the input image format is determined to be an image format defined by the standard, the color correction unit 13 can obtain each parameter in the above formula from the binary binary no, such as 〇〇3928, 2 4, 12 = 1361010

TW4536PA 等,以計算出三原色原始亮度值(dR,dG,dB)。 接著,係根據下列式子(4)將該三原色原始亮度值(dR, dG, dB)轉換成CIEXYZ色彩空間之特徵值(X,Y, Z):TW4536PA, etc., to calculate the original luminance values (dR, dG, dB) of the three primary colors. Then, the original primary luminance values (dR, dG, dB) of the three primary colors are converted into the characteristic values (X, Y, Z) of the CIEXYZ color space according to the following formula (4):

"X' '0.4124 0.3576 0.1805" 'dR" Y 0.2126 0.7152 0.0722 dG Z 0.0193 0.1192 0.9505 dB 藉由上述之矩陣計算去獲得三原色灰階值(R,G,B) 所對應之特徵值(X, Y,Z)後,如步驟S12所示,藉由適 • 當調整特徵值(X,Υ, Ζ)以產生一調整後特徵值(X’,Υ’, Ζ’)。此步驟的目的是在增加影像的色彩飽和度,以提高 影像顯示在顯示器上的鮮豔度。 於步驟S12中,色彩校正單元130是先根據標準白光 之座標位置與特徵值(Χ,Υ,Ζ)於色彩空間定義之座標位 置去決定一色彩增豔方向。接著,根據三原色灰階值(R, G,B)中之最大值與最小值之差值去決定一色彩增豔係數 k。然後,根據標準白光之座標位置、特徵值(X,Y,Z) * 於色彩空間定義之座標位置、色彩增豔方向以及色彩增豔 係數k以將特徵值(X,Y, Z)轉換為調整後特徵值(X’,Y’, Z’)。以下附圖說明。 請參照第3圖,其繪示影像資料於CIE1931色度圖上 調整之示意圖。於第3圖中,標準白光之座標為(xs,ys), 特徵值(X,Y, Z)於CIEXYZ色彩空間定義之座標為(xin, yin),而假定色彩增盤後之座標為(X’,y’)。座標(xin, yin) 係根據下列式子(5)、(6)求得: 12 (5)1361010"X' '0.4124 0.3576 0.1805"'dR" Y 0.2126 0.7152 0.0722 dG Z 0.0193 0.1192 0.9505 dB The eigenvalue corresponding to the gray value (R, G, B) of the three primary colors is obtained by the above matrix calculation (X, After Y, Z), as shown in step S12, an adjusted feature value (X', Υ ', Ζ ') is generated by adjusting the feature value (X, Υ, Ζ). The purpose of this step is to increase the color saturation of the image to improve the vividness of the image displayed on the display. In step S12, the color correction unit 130 first determines a color brightening direction according to the coordinate position of the standard white light and the feature value (Χ, Υ, Ζ) at the coordinate position defined by the color space. Next, a color enhancement coefficient k is determined according to the difference between the maximum value and the minimum value of the three primary color gray scale values (R, G, B). Then, according to the coordinate position of the standard white light, the characteristic value (X, Y, Z) * the coordinate position defined by the color space, the color brightening direction, and the color brightening coefficient k to convert the feature value (X, Y, Z) into Adjusted feature values (X', Y', Z'). The following figures illustrate. Please refer to Figure 3, which shows the adjustment of image data on the CIE1931 chromaticity diagram. In Figure 3, the coordinates of the standard white light are (xs, ys), and the coordinates of the eigenvalues (X, Y, Z) defined in the CIEXYZ color space are (xin, yin), and the coordinates after the assumed color increase are ( X', y'). The coordinates (xin, yin) are obtained according to the following equations (5) and (6): 12 (5) 1361010

TW4536PATW4536PA

. X χιη =-. X χιη =-

X + Y + Z (6)X + Y + Z (6)

. Y yin =-Y yin =-

X + Y + Z 其中,為使色彩能往正確的方向增盤,即由(XS, ys )往(xin, yin )之方向增數,需加入兩組條件: 當 xin> XS,貝1J X'之 XS,若否,貝|J X’<XS (7) 當 yin>ys,則 y’》ys,若否,則 y’<ys (8)X + Y + Z In order to increase the color in the correct direction, that is, from (XS, ys) to (xin, yin), you need to add two sets of conditions: When xin> XS, Bay 1J X 'XS, if no, Bay|J X'<XS (7) When yin>ys, then y'"ys, if not, then y'<ys (8)

通過座標(xs,ys)與(xin, yin)之直線方程式為: (9) y'-ys _ yin - ys x'-xs xin - xs 另外,令(xs,ys )與(x’,y’)兩點距離為(xs, ys )與(xin, yin)兩點距離之k倍(即為色彩增豔係數): 7(x'-xs)2 + (y'-ys)2 = k x - xs)2 + (yin - ys)2 (10) '其中,色彩增豔係數k是根據三原色灰階值(R,G,B)中 φ 孓最大值與最小值之差值去決定,此差值實際上可視為一 影像晝素之色彩純度值。當差值越大,代表影像晝素之色 彩純度值越大,影像晝素於呈現時傾向於一特定色彩之比 例越大,此時可做比較小程度的色彩增豔,即採用一較小 的k值。另一方面,當差值越小,代表此影像畫素之色彩 純度值越小,因此可做較大程度的色彩增豔,取一較大的 k值。較佳地,可將計算出來差值(或色彩純度值)區分 為多個級別,每個級別之間以門限值做區分,並對應一個 色彩增豔係數k,以表1為例作說明: 13 13610101 . TW4536PA 表1 門限值 色彩增豔係數k 門限值 色彩增豔係數k 150 1 72 1.325 144 1.025 66 1.35 138 1.05 60 1.375 132 1.075 54 1.4 126 1.1 48 1.425 120 1.125 42 1.45 114 1.15 36 1.475 108 1.175 30 1.5 102. 1.2 24 1.525 96 1.225 18 1.55 90 1.25 12 1.575 84 1.275 其餘門限值 1.6 78 1.3 •舉例來說’若一影像畫素之灰階值為( 200, 20, 20),最大 灰階值與最小灰階值之差值為180,其大於門限值150, 由表1可得色彩增数係數k為1,因此此影像畫素可不做 色彩增豔處理。若另一影像畫素之灰階值為(15〇,14〇, 145) ’其最大灰階值與最小灰階值之差值為1〇,由表1可 知色彩增豔係數k為16,此影像畫素因而有較大的色彩 增豔程度。色彩增豔係數k決定後,即可代入式子(10)中。 , 之後,將上述式子(7)至(1〇)聯立,即可求得色彩增豔 後之座標(X’,y,),而調整後特徵值(χ,,γ,,各別為: 1361010 * iThe straight line equation through the coordinates (xs, ys) and (xin, yin) is: (9) y'-ys _ yin - ys x'-xs xin - xs In addition, let (xs, ys ) and (x', y ') The two-point distance is k times the distance between (xs, ys) and (xin, yin) (ie, the color enhancement coefficient): 7(x'-xs)2 + (y'-ys)2 = kx - xs)2 + (yin - ys)2 (10) 'where the color enhancement coefficient k is determined according to the difference between the maximum value and the minimum value of φ 孓 in the three primary color gray scale values (R, G, B). The difference can actually be regarded as the color purity value of an image element. When the difference is larger, the color purity value representing the image element is larger, and the image is more inclined to be a certain color when presenting. At this time, a relatively small degree of color enhancement can be performed, that is, a smaller one is adopted. The k value. On the other hand, the smaller the difference, the smaller the color purity value representing the image pixel, so a larger degree of color enhancement can be made, taking a larger k value. Preferably, the calculated difference value (or color purity value) can be divided into multiple levels, each level is distinguished by a threshold value, and corresponds to a color brightening coefficient k, which is illustrated by taking Table 1 as an example: 13 13610101 . TW4536PA Table 1 Threshold Color Brightness Coefficient k Threshold Color Brightness Coefficient k 150 1 72 1.325 144 1.025 66 1.35 138 1.05 60 1.375 132 1.075 54 1.4 126 1.1 48 1.425 120 1.125 42 1.45 114 1.15 36 1.475 108 1.175 30 1.5 102. 1.2 24 1.525 96 1.225 18 1.55 90 1.25 12 1.575 84 1.275 Remaining thresholds 1.6 78 1.3 • For example, if the grayscale value of an image pixel is (200, 20, 20), the maximum grayscale value The difference from the minimum grayscale value is 180, which is greater than the threshold value of 150. The color enhancement coefficient k obtained by Table 1 is 1, so the image pixel can be processed without color enhancement. If the grayscale value of another image pixel is (15〇, 14〇, 145) 'the difference between the maximum grayscale value and the minimum grayscale value is 1〇, as shown in Table 1, the color enhancement coefficient k is 16, This image pixel thus has a greater degree of color enhancement. After the color enhancement coefficient k is determined, it can be substituted into the equation (10). Then, by combining the above equations (7) to (1〇), the coordinates (X', y,) after color enhancement can be obtained, and the adjusted feature values (χ, γ, and respectively) For: 1361010 * i

TW4536PA X,=x,x(Y/y,), Y,=Y, Z,=(l-x,-y,)x(Y/y,) (11)TW4536PA X,=x,x(Y/y,), Y,=Y, Z,=(l-x,-y,)x(Y/y,) (11)

.為證明本實施例之色彩校正方法的確能有效提升影 像的色彩飽和度,以輸入六個測試點,其灰階值分別為 (192, 80, 80)、( 192, 192, 80)、( 96, 192, 96)、( 96, 192, 192)、( 128, 128, 192)及(192, 128, 192),其測試結果請 參照第4圖。第4圖中,點Pr、Pg、Pb、Pw分別為sRGB • 標準定義的紅、綠、藍、白色的CIE 1931座標位置,PI 至P6為輸入的六個測試點,ΡΓ至P6’則為P1至P6經過 色彩增豔步驟處理後之座標點。由第4圖可觀察到,六個 測試點的座標皆能往色彩飽和度較高的位置移動。 接著進入步驟S13,量測該待校正裝置於各別顯示三 原色時之三個特徵值(Xr, Yr, Zr)、(Xg,Yg,Zg)、(Xb, Yb, Zb),其中,(Xr,Yr,Zr)是於驅使待校正裝置顯示純紅色 時,由色度計所量測之特徵值,(Xg, Yg,Zg)為待校正裝 * 置顯示純綠色時所量測之特徵值,(Xb, Yb,Zb)則為待校 正裝置顯示純藍色時所量測之特徵值,這些特徵值是於量 測後由輸入介面140 (見第2A圖)傳送至暫存單元120, 並暫存於暫存單元120中,較佳地,暫存單元120具有九 個暫存器,分別用以儲存Xr、Xg、Xb、Yr、Yg、Yb、Zr、 Zg及Zb之數值。由光線之加法性,可得到調整後特徵值 (X’,Υ’,Z’)轉換至三原色調整後亮度值(dR,,dG’,dB’) 之關係。 15 1361010In order to prove that the color correction method of the embodiment can effectively improve the color saturation of the image, six test points are input, and the gray scale values are (192, 80, 80), (192, 192, 80), ( 96, 192, 96), (96, 192, 192), (128, 128, 192) and (192, 128, 192). For the test results, please refer to Figure 4. In Fig. 4, the points Pr, Pg, Pb, and Pw are respectively sRGB • CIE 1931 coordinate positions of red, green, blue, and white defined by the standard, PI to P6 are the six test points input, and ΡΓ to P6' is P1 to P6 are coordinate points processed by the color enhancement step. As can be seen from Figure 4, the coordinates of the six test points can be moved to a position with a higher color saturation. Then, proceeding to step S13, measuring three characteristic values (Xr, Yr, Zr), (Xg, Yg, Zg), (Xb, Yb, Zb) of the device to be corrected in displaying the three primary colors respectively, wherein (Xr , Yr, Zr) is the characteristic value measured by the colorimeter when the device to be calibrated is displayed in pure red, and (Xg, Yg, Zg) is the characteristic value measured when the device to be corrected is displayed in pure green. (Xb, Yb, Zb) is the characteristic value measured when the device to be corrected displays pure blue. The characteristic values are transmitted to the temporary storage unit 120 by the input interface 140 (see FIG. 2A) after the measurement. And temporarily stored in the temporary storage unit 120, preferably, the temporary storage unit 120 has nine temporary registers for storing values of Xr, Xg, Xb, Yr, Yg, Yb, Zr, Zg and Zb. The relationship between the adjusted eigenvalues (X', Υ', Z') and the luminance values (dR, dG', dB') after the adjustment of the three primary colors can be obtained by the addition of light. 15 1361010

TW4536PA 本實施例雖然是以待校正裝置為一顯示器做說明,然 而亦可應用於一投影機之色彩校正。舉例來說,此步驟可 為量測投影機投射於布幕上之紅、綠、藍色各別之特徵 ^值,再根據此投影機之特性進行調整,使投影機所投出的 影像具有校正與色彩增盤的效果。 於接下來的步驟S14中,由於待校正裝置之三個特徵 值(Xr,Yr, Zr)、(Xg, Yg, Zg)、(Xb, Yb,Zb)已知,根據 一色彩空間變換式,色彩校正單元130可將調整後特徵值 • (X,,Y,,Z,)轉換成三原色調整後亮度值(dR,,dG,, dB’)。此色彩空間變換式係為: dR'" 'Xr Xg Xb— -1 _xr dG, 二 Yr Yg Yb Y' dB, Zr Zg Zb Z' 藉由式子(12)之矩陣運算,可求取出三原色調整後亮 度值(dR’,dG’,dB’)。然後,便是將三原色調整後亮度值 (dR,,dG,,dB’)轉換成三原色調整後灰階值(R,,G,, B’),如步驟S15所示。 於步驟S15中,是先量測待校正裝置於各別顯示三原 色時之迦瑪特性曲線,並將量測到的三原色各別之迦瑪特 性曲線模型化,以產生該三原色各別之新的灰階-亮度關 係,進而獲得三原色調整後亮度值對應之三原色調整後灰 階值。以紅色為例,請參照第5圖,其繪示待校正裝置於 顯示紅色時所量測到與模型化後之灰階與亮度關係圖,其 中橫軸R’為灰階值(範圍取0至1 ),縱轴dR’為亮度值。 '1361010 « tTW4536PA This embodiment is described as a display to be corrected, but can also be applied to color correction of a projector. For example, this step can measure the characteristic values of the red, green, and blue colors projected on the screen by the projector, and then adjust according to the characteristics of the projector, so that the image projected by the projector has Correction and color enhancement effects. In the next step S14, since the three characteristic values (Xr, Yr, Zr), (Xg, Yg, Zg), (Xb, Yb, Zb) of the device to be corrected are known, according to a color space conversion formula, The color correction unit 130 can convert the adjusted feature value (X, Y, Z,) into the three primary color adjusted brightness values (dR,, dG,, dB'). This color space transformation is: dR'" 'Xr Xg Xb— -1 _xr dG, two Yr Yg Yb Y' dB, Zr Zg Zb Z' can be extracted by the matrix operation of equation (12) Adjusted brightness value (dR', dG', dB'). Then, the three primary color adjusted luminance values (dR, dG, dB') are converted into the three primary color adjusted grayscale values (R, G, B') as shown in step S15. In step S15, the gamma characteristic curve of the three primary colors to be corrected is first measured, and the measured gamma characteristic curves of the three primary colors are modeled to generate new ones of the three primary colors. The gray-scale relationship is obtained, and the adjusted grayscale values of the three primary colors corresponding to the luminance values after the adjustment of the three primary colors are obtained. Taking red as an example, please refer to FIG. 5, which shows the relationship between the gray scale and the brightness measured by the device to be corrected when the red color is displayed, wherein the horizontal axis R′ is a gray scale value (the range is 0). To 1), the vertical axis dR' is a luminance value. '1361010 « t

TW4536PA 於第5圖中,例如是取17個量測點,並以波茲曼函式 (Boltzmann function )對這17個量測點所構成之紅色 • Gamma特性曲線模型化,藉此以產生新的灰階-亮度關 係。綠色與藍色之Gamma特性曲線亦可依此方式模型化。 以波茲曼函式將Gamma特性曲線模型化之公式如下表示: dR,: 一 “2,γ '+ ^2,r (13) 1 + e(R’一 x〇,r )/χ 丨,r dG': _ Alg-A2g + A2,g (14) _ J + e(G'-x〇,g)/xi.g dB、 _ A 1>b - A 2,b + A 2,b (15) ~ γ + e(B'-xo,b)^i.b 式子(13)至(15)中的係數A!、A2、x〇與Xl皆為使用波 茲曼函式對Gamma特性曲線模型化時所得到的係數。因 而,由灰階值R’對亮度值dR’之關係,可得某一灰階值R 的訊號輸入後,經校正後的訊號值R’。同理,可由相同方 法求得灰階值G、B校正後之訊號值G’、B’。 • 傳統上,當一顯示器晶片接收到影像資料的灰階值(R, G,B)訊號時,是直接將訊號儲存在晶片内的RAM,並依 據Gamma電壓源對應到相對應的電壓輸出,且電壓為驅 動每一個畫素之電壓,然而此方式並沒有考慮到接收的(R, G, B)訊號與顯示器的色域是否相同。舉例來說,如果(R, G,B)是依據sRGB標準色域定義所產生的影像,每個R、 G、B畫素的灰階資料是希望人眼接收到的X、Y、Z刺激 值是在sRGB色域範圍中的某一點,但由於顯示器本身的 色域大小或是純色的R、G、B三個頂點與sRGB不一樣, 17 1361010In Figure 5, for example, TW4536PA takes 17 measurement points and models the red • Gamma characteristic curve formed by the 17 measurement points by Boltzmann function to generate new Grayscale - brightness relationship. The green and blue Gamma characteristic curves can also be modeled in this way. The formula for modeling the Gamma characteristic curve by the Boltzmann function is expressed as follows: dR,: a "2, γ '+ ^2, r (13) 1 + e(R'-x〇, r )/χ 丨, r dG': _ Alg-A2g + A2,g (14) _ J + e(G'-x〇,g)/xi.g dB, _ A 1>b - A 2,b + A 2,b ( 15) ~ γ + e(B'-xo,b)^ib The coefficients A!, A2, x〇 and Xl in equations (13) to (15) are all using the Bozman function to the Gamma characteristic curve model. The coefficient obtained when the voltage is obtained. Therefore, the relationship between the gray value R' and the brightness value dR' can be obtained after the signal of a certain gray level value R is input, and the corrected signal value R'. Similarly, the same The method obtains the corrected signal values G', B' of the grayscale values G, B. • Traditionally, when a display chip receives the grayscale value (R, G, B) signal of the image data, it directly signals the signal. The RAM stored in the chip corresponds to the corresponding voltage output according to the Gamma voltage source, and the voltage is the voltage for driving each pixel, but this method does not take into account the received (R, G, B) signal and display. Whether the color gamut is the same. For example, if (R, G, B) is based on the sRGB standard The color gamut defines the image produced. The grayscale data of each R, G, and B pixels is that the X, Y, and Z stimulus values received by the human eye are at a certain point in the sRGB color gamut, but due to the display itself. The color gamut size or the solid color R, G, B three vertices are not the same as sRGB, 17 1361010

TW4536PA 所以當(R, G,B)訊號直接輸入到顯示器上,人眼將接收 到不同的X、Y、Z刺激值。 是以,本實施例所提出之色彩校正方法與具有色彩校 正功能之整合型晶片10中,色彩校正單元130是先將接 收到的影像資料其灰階值(R, G,B)訊號轉換成(X,Y, Z) 訊號,再依據待校正裝置(如一顯示器或是一投影機)的 特性去轉換並進行色彩飽和度之調整,以得到校正後的灰 階值(R’,G’,B’)訊號,並將之儲存於顯示器晶片20内 • 的RAM 230中然後顯示,即可獲得想讓人眼看到的(Χ,Υ, Ζ)訊號,亦可解決影像偏差的問題。 雖然本實施例是以sRGB標準定義之影像資料轉換至 CIE XYZ色彩空間做說明,然而實際上亦可輸入Adobe RGB標準定義之影像資料或是其他標準所定義之影像資 料,並使之轉換至CIE XYZ色彩空間,再依循上述步驟進 行影像色彩的校正調整。 •實施例二 請參照第6圖,其繪示依照本發明實施例二的色彩校 正方法之流程圖。實施例二之色彩校正方法是用於設定一 待校正裝置,其例如是一顯示器之Gamma特性曲線,包 括步驟S61至S67。步驟S61是先根據待校正裝置之特性 與一目標Gamma值,於待校正裝置中設定三原色各別之 初始Gamma特性曲線。請參照第7 A至7C圖,其分別繪 示待校正裝置於校正前後紅、綠、藍色的灰階對電壓(G-V ) 1361010 » »TW4536PA So when the (R, G, B) signal is directly input to the display, the human eye will receive different X, Y, Z stimulus values. Therefore, in the color correction method and the integrated wafer 10 having the color correction function, the color correction unit 130 first converts the grayscale value (R, G, B) signals of the received image data into (X, Y, Z) signal, according to the characteristics of the device to be calibrated (such as a display or a projector) to convert and adjust the color saturation to obtain the corrected grayscale value (R', G', The B') signal is stored in the RAM 230 of the display chip 20 and then displayed, and the desired (Χ, Υ, Ζ) signal can be obtained, and the image deviation problem can also be solved. Although the embodiment converts the image data defined by the sRGB standard into the CIE XYZ color space for illustration, in practice, the image data defined by the Adobe RGB standard or the image data defined by other standards may be input and converted to CIE. In the XYZ color space, follow the above steps to adjust the image color. Embodiment 2 Please refer to FIG. 6, which is a flow chart of a color correction method according to Embodiment 2 of the present invention. The color correction method of the second embodiment is for setting a device to be corrected, which is, for example, a Gamma characteristic curve of a display, and includes steps S61 to S67. In step S61, the initial gamma characteristic curves of the three primary colors are set in the device to be corrected according to the characteristics of the device to be corrected and a target gamma value. Please refer to Figures 7A to 7C, which respectively show the gray-to-voltage (G-V) of the red, green and blue before and after correction of the device to be calibrated. 1361010 » »

TW4536PA 之曲線圖。根據待校正裝置的特性與預計顯示的Gamma 特性曲線(一般目標的Gamma值為2.2 )所得之紅、綠、 藍色G-V曲線,即為紅、綠、藍色各別之目標曲線,於後 續步驟中,待校正裝置便是依照這些目標曲線做顯示。 接著,如步驟S62所示,量測此待校正裝置於各別顯 示三原色時的三個特徵值,如顯示紅色時所量測之特徵值 (Xr, Yr, Zr)、顯示綠色時所量測(Xg, Yg,Zg)、顯示藍 色時所量測(Xb,Yb, Zb)。此步驟與實施例一的步驟S13 鲁相同,在此不再贅述。 然後,如步驟S63所示,將一調整用之影像資料之三 原色(紅、綠、藍色)灰階值(R, G, B)轉換成一色彩空 間之特徵值,如CIEXYZ色彩空間之特徵值(X,Y,Z)。 接著如步驟S64所示,根據該色彩空間定義之標準白光之 座標位置與該特徵值(Χ,Υ,Ζ)於該色彩空間定義之座標 位置之關係以及該三原色灰階值(R,G, Β)去調整該特徵 值(X,Υ,Ζ),以產生一調整後特徵值(X’,Υ’,Ζ’)。步驟 鲁 S64主要用以調整影像之色彩飽和度,且由於步驟S63與 S64與實施例一之步驟S11與S12相同,在此亦不再贅述。 然後,如步驟S65所示,根據待校正裝置之該三個特 徵值(Xr,Yr,Zr)、(Xg, Yg, Zg)、(Xb, Yb,Zb)與一色彩 空間變換式,如實施例一中的式子(12),將該調整後特徵 值(X’,Y’,Z’)轉換成三原色調整後亮度值(dR’,dG’, dB ’)。接著,如步驟S66所示,量測待校正裝置於各別顯 示三原色時之迦瑪特性曲線,並將量測到的三原色各別之 1361010A graph of the TW4536PA. According to the characteristics of the device to be calibrated and the expected gamma characteristic curve (the gamma value of the general target is 2.2), the red, green, and blue GV curves are the target curves of red, green, and blue, respectively. The device to be calibrated is displayed in accordance with these target curves. Next, as shown in step S62, the three feature values of the three primary colors displayed by the device to be corrected are measured, such as the characteristic values (Xr, Yr, Zr) measured when the red color is displayed, and the measurement is performed when the green color is displayed. (Xg, Yg, Zg), measured when blue is displayed (Xb, Yb, Zb). This step is the same as step S13 of the first embodiment, and details are not described herein again. Then, as shown in step S63, the three primary color (red, green, blue) grayscale values (R, G, B) of the image data for adjustment are converted into feature values of a color space, such as the feature values of the CIEXYZ color space. (X, Y, Z). Then, as shown in step S64, the coordinate position of the standard white light defined by the color space and the relationship between the feature value (Χ, Υ, Ζ) at the coordinate position defined by the color space and the gray level values of the three primary colors (R, G, Β) Adjust the feature value (X, Υ, Ζ) to produce an adjusted feature value (X', Υ ', Ζ '). Step S64 is mainly used to adjust the color saturation of the image, and steps S63 and S64 are the same as steps S11 and S12 of the first embodiment, and are not described herein again. Then, as shown in step S65, according to the three characteristic values (Xr, Yr, Zr), (Xg, Yg, Zg), (Xb, Yb, Zb) of the device to be corrected, and a color space conversion formula, as implemented In the formula (12) in the first example, the adjusted feature value (X', Y', Z') is converted into the three primary color adjusted brightness values (dR', dG', dB'). Next, as shown in step S66, the gamma characteristic curve of the device to be calibrated in displaying the three primary colors is measured, and the measured three primary colors are respectively 1361010.

TW4536PA 迦瑪特性曲線模型化,以產生該三原色各別之新的灰階-亮度關係。 由於步驟S65及S66與實施例一之步驟S14及S15 相同,在此不再贅述。於三原色各別之新的灰階-亮度關係 產生後,便可得知紅、綠、藍色各別色彩校正後之G-V曲 線,如第7A至7C圖所示。以第7C圖為例,校正後之藍 色G-V曲線在較高灰階區域會被拉昇至更高灰階,可將待 校正裝置的色域往藍色的方向校正,使其更接近sRGB所 ® 定義的色域。 接著,如步驟S67所示,根據三原色各別之新的灰階 -亮度關係去重新設定待校正裝置之三原色各別之迦瑪特 性曲線。將校正後的Gamma特性曲線直接設定到待校正 裝置中以後,當輸入新的影像灰階訊號(Rin, Gin, Bin) 時,透過新的R、G、B Gamma特性曲線產生的電壓驅動 顯示時,已經具有色彩校正的功能,因而可獲得影像(Rin, Gin, Bin)實際上想讓人眼所看到的X、Y、Z訊號。 * 綜上所述,雖然本發明已以較佳實施例揭露如上,然 其並非用以限定本發明。本發明所屬技術領域中具有通常 知識者,在不脫離本發明之精神和範圍内,當可作各種之 更動與潤飾。因此,本發明之保護範圍當視後附之申請專 利範圍所界定者為準。 20 1361010The TW4536PA gamma characteristic curve is modeled to produce a new gray-light relationship for each of the three primary colors. The steps S65 and S66 are the same as the steps S14 and S15 of the first embodiment, and are not described herein again. After the new gray-scale relationship of the three primary colors is generated, the G-V curves of the respective color corrections of red, green and blue can be known, as shown in Figures 7A to 7C. Taking the 7C picture as an example, the corrected blue GV curve will be pulled up to a higher gray level in the higher gray level region, and the color gamut of the device to be corrected can be corrected to the blue direction to make it closer to sRGB. The color gamut defined by ®. Next, as shown in step S67, the respective Gamma characteristics of the three primary colors of the device to be corrected are reset according to the respective gray-intensity relationship of the three primary colors. After the corrected Gamma characteristic curve is directly set in the device to be corrected, when a new image gray-scale signal (Rin, Gin, Bin) is input, the voltage generated by the new R, G, B Gamma characteristic curve is driven to display. It already has the function of color correction, so the X, Y, and Z signals that the image (Rin, Gin, Bin) actually wants to see are visible. In the above, although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. 20 1361010

TW4536PA 【圖式簡單說明】 第1圖繪示依照本發明實施例一的色彩校正方法之 流程圖。 第2A圖繪示實施例一具色彩校正功能之整合型晶片 之電路方塊圖。 第2B圖繪示實施例一的顯示器晶片之電路方塊圖。 第3圖繪示影像資料於CIE1931色度圖上調整之示意 圖。 # 第4圖繪示以六個測試點經色彩增豔步驟處理後之 測試結果圖。 第5圖繪示待校正裝置於顯示紅色時所量測到與模 型化後之灰階與亮度關係圖。 第6圖繪示依照本發明實施例二的色彩校正方法之 流程圖。 第7A至7C圖分別繪示待校正裝置於校正前後紅、 綠、藍色的灰階對電壓(G-V)之曲線圖。 【主要元件符號說明】 10 :整合型晶片 20 :顯示器晶片 ' 110 :儲存單元 120 :暫存單元 130 :色彩校正單元 210:掃瞄驅動單元 21 1361010TW4536PA [Simplified Schematic Description] Fig. 1 is a flow chart showing a color correction method according to a first embodiment of the present invention. Fig. 2A is a circuit block diagram showing an integrated wafer with a color correction function of the embodiment. FIG. 2B is a circuit block diagram of the display chip of the first embodiment. Figure 3 is a schematic diagram showing the adjustment of image data on the CIE1931 chromaticity diagram. # Figure 4 shows the test results after the six test points have been processed by the color enhancement step. Figure 5 is a diagram showing the relationship between the gray scale and the brightness measured by the device to be corrected when it is displayed in red. Figure 6 is a flow chart showing a color correction method according to a second embodiment of the present invention. 7A to 7C are graphs showing the gray scale versus voltage (G-V) of the red, green and blue before and after the correction of the device to be corrected. [Main component symbol description] 10: Integrated wafer 20: Display wafer '110: Storage unit 120: Temporary memory unit 130: Color correction unit 210: Scanning driving unit 21 1361010

TW4536PA 220 :資料驅動單元 230 :隨機存取單元 240 :迦瑪電壓源 250 :時序產生單元 260 :電源供應電路 22TW4536PA 220: data driving unit 230: random access unit 240: gamma voltage source 250: timing generating unit 260: power supply circuit 22

Claims (1)

1361010 . h TW4536PA 十、申請專利範圍: 1. 一種色彩校正方法,包括: (a) 將一影像資料之三原色灰階值(R,G,B)轉換成一 色彩空間之特徵值(Cx, Cy,Cz); (b) 根據該色彩空間定義之一標準白光之座標位置與 該特徵值(Cx,Cy, Cz)於該色彩空間定義之座標位置之 關係以及該三原色灰階值(R,G,B)去調整該特徵值(Cx, Cy,Cz),以產生一調整後特徵值(Cx’,Cy,,cz’); 鲁 (c)量測一待校正裝置於各別顯示三原色時之三個特 徵值(Cxr, Cyr, Czr)、(Cxg,Cyg,Czg)及(Cxb, Cyb, Czb); (d) 根據該待校正裝置之該三個特徵值(Cxr, Cyr, Czr )、( Cxg,Cyg,Czg )及(Cxb,Cyb,Czb )與一色彩空 間變換式,將該調整後特徵值(Cx,,Cy’,Cz’)轉換成三 原色調整後亮度值(dR’,dG’,dB,);以及 (e) 量測該待校正裝置於各別顯示三原色時之迦瑪 鲁 (gamma)特性曲線,並將量測到的三原色各別之迦瑪特 性曲線模型化,以產生該三原色各別之新的灰階-亮度關 係’藉此以獲得該三原色調整後亮度值(dR,,dG’,dB’) 對應之三原色調整後灰階值(R’,G’,B,)。 2.如申請專利範圍第1項所述之色彩校正方法,其 中該步驟(a)包括: (al)將該三原色灰階值(R,G,B)轉換成三原色原始 亮度值·( dR,dG,dB );以及 23 1361010 TW4536PA (a2)將該三原色原始亮度值(dR, dG,dB)轉換成該特 徵值(Cx,Cy, Cz)。 3.如申請專利範圍第2項所述之色彩校正方法,其 中該影像資料係以sRGB標準定義之影像資料,該色彩空 間係一 CIE XYZ色彩空間,該特徵值(Cx, Cy, Cz)係為 (X,Y, Z),於該步驟(al)中: dR 當 -< 0.03928 時 Max _ grey dR_ R/Max_grey _ 12.92 若否,則 R/Max _ grey + 0.055 1.055 2.4 當 G Max S0.03928 時,dG ^ ,若否,則 dG G/Max _ grey + 0.055 , 1.055 , 當——-——< 0.03928 時,dB = B’Max =.Fey,若否,則 ® Max _ grey 寸 12.92 右^ dB _〔B/Max _grey + 0.055 γ4 L055 > 其中,Max_grey係為該待校正裝置所能顯示之最大 灰階值。 4.如申請專利範圍第3項所述之色彩校正方法,其 中於該步驟(a2)中,係根據下列式子將該三原色原始亮度 值(dR, dG,dB)轉換成該特徵值(X, Y,Z): ~x' "0.4124 0.3576 0.1805" ~dR" Y — 0.2126 0.7152 0.0722 dG ο Z 0.0193 0.1192 0.9505 dB 24 1361010 TW4536PA 5. 如申請專利範圍第1項所述之色彩校正方法,其 中該步驟(b)包括: • (bl)根據該標準白光之座標位置與該特徵值(Cx,Cy, _ Cz)於該色彩空間定義之座標位置去決定一色彩增豔方 向; (b2)根據該三原色灰階值(R, G, B)中之最大值與最 小值之差值去決定一色彩增豔係數;以及 (b3)根據該標準白光之座標位置、該特徵值(Cx, Cy, • Cz)於該色彩空間定義之座標位置、該色彩增豔方向以及 該色彩增豔係數以調整該特徵值(Cx, Cy, Cz)為該調整 後特徵值(Cx,,Cy’,Cz’)。 6. 如申請專利範圍第5項所述之色彩校正方法,其 中該影像資料係以sRGB標準定義之影像資料,該色彩空 間係一 CIE XYZ色彩空間,該特徵值(Cx,Cy,Cz)係為 (X,Y, Z),於該步驟(bl)中,該標準白光之座標(xs, ys), 該特徵值(X,Y, Z)於該色彩空間定義之座標(xin, yin), ® 而色彩增盤後之座標(x’,y’),座標(xin, yin)係根據下 列式子求得: xin yin X X + Y + Z Y X + Y + Z 當xin之xs,則x’2xs,若否,貝丨J x’<xs ;以及 當 yin2ys,則 y'之 ys,若否,則 y’<ys。 7.如申請專利範圍第6項所述之色彩校正方法,其 中於步驟(b3)中,根據該色彩增豔係數k、通過座標(xs, ys) 25 1361010 TW4536PA 與(xin, yin)之直線方程式 y'-ys _ yin - ys — , x'-xs xin - xs 以及令(xs, ys)與(x’,y’)兩點距離為(xs, ys)與(xin, yin)兩點距離之k倍 -^/(x'-xs)2 + (y'-ys)2 = k x ^/(xin - xs)2 + (yin - ys)2 , 可求得該色彩增豔後之座標(x’,y’),而該調整後特徵值 (Cx,,Cy,,Cz,)各另ij 為: • Cx,=x,x(Y/y,), Cy,=Y, Cz,=(l-x,-y,)x(Y/y,)。 8. 如申請專利範圍第5項所述之色彩校正方法,其 中於該步驟(b2)中,當該三原色灰階值(R, G, B)之最大 值與最小值之差值越小,則該色彩增豔係數越大。 9. 如申請專利範圍第8項所述之色彩校正方法,其 中該三原色灰階值(R, G,B)之最大值與最小值之差值具 • 有複數個級別,對應不同的級別,該色彩增豔係數係不相 同。 10. 如申請專利範圍第1項所述之色彩校正方法,其 中於該步驟(d)中,將該調整後特徵值(Cx’,Cy’,Cz’)轉 換成該三原色調整後亮度值(dR’,dG’,dB’)之該色彩空 間變換式係為: 26 1361010 TW4536PA dK Cxr Cxg Cxb -1 ~Cxr dG' — Cyr Cyg Cyb cy dB% Czr Czg Czb Cz, _ 11.如申請專利範圍第1項所述之色彩校正方法,其 中於該步驟(e)中,係以一波兹曼函式(Boltzmann function ) 對該量測到的三原色各別之迦瑪特性曲線模型化,藉此以 產生該三原色各別之新的灰階-亮度關係。 12. 如申請專利範圍第1項所述之色彩校正方法,於 籲該步驟(c)之前更包括步驟: (f) 根據該待校正裝置之特性以及一目標迦瑪值,於該 待校正裝置中設定該三原色各別之初始迦瑪特性曲線。 13. 如申請專利範圍第11項所述之色彩校正方法, 於該步驟(e)之後更包括: (g) 根據該三原色各別之新的灰階-亮度關係去重新設 定該待校正裝置之三原色各別之迦瑪特性曲線。 14. 一種具色彩校正功能之整合型晶片,包括: * 一儲存單元,儲存有複數筆不同影像格式之轉換特徵 值資料; 一暫存單元,用以寫入一待校正裝置於各別顯示三原 色時所量測之三個特徵值(Cxr,Cyr,Czr )、( Cxg,Cyg, Czg)及(Cxb, Cyb, Czb),以及用以寫入該待校正裝置於 各別顯示三原色時所量測之迦瑪特性曲線;以及 一色彩校正單元,用以接收一影像資料,並根據該影 像資料之影像格式於該儲存單元取得該影像資料之轉換 27 1361010 TW4536PA 特徵值資料,藉此將該影像資料之三原色灰階值(R,G,B ) 轉換成一色彩空間之特徵值(Cx,Cy,Cz),該色彩校正單 - 元並用以根據該色彩空間定義之一標準白光之座標位置 -與該特徵值(Cx, Cy,Cz)於該色彩空間定義之座標位置 之關係以及該三原色灰階值(R, G,B)去調整該特徵值(Cx, Cy,Cz),以產生一調整後特徵值(Cx,,Cy’,Cz,),該色彩 校正單元更用以根據該三個特徵值(Cxr, Cyr, Czr)、(Cxg, Cyg,Czg )及(Cxb,Cyb,Czb )與一色彩空間變換式,將 • 該調整後特徵值(Cx,,Cy’,Cz’)轉換成三原色調整後亮 度值(dR’,dG’,dB’)’該色彩校正單元並將所量測之該待 校正裝置之三原色各別之迦瑪特性曲線模型化,以產生該 三原色各別之新的灰階-亮度關係,藉此以獲得該三原色調 整後亮度值(dR’,dG’,dB’)對應之三原色調整後灰階值 (R,,G,,B,)。 15.如申請專利範圍第14項所述之整合型晶片,其1361010 . h TW4536PA X. Patent Application Range: 1. A color correction method, comprising: (a) converting the three primary color grayscale values (R, G, B) of an image data into characteristic values of a color space (Cx, Cy, (b) according to one of the definitions of the color space, the coordinate position of the white light and the relationship between the feature value (Cx, Cy, Cz) at the coordinate position defined by the color space and the gray level values of the three primary colors (R, G, B) to adjust the characteristic value (Cx, Cy, Cz) to generate an adjusted feature value (Cx', Cy, cz'); Lu (c) to measure a device to be corrected when displaying the three primary colors respectively Three eigenvalues (Cxr, Cyr, Czr), (Cxg, Cyg, Czg) and (Cxb, Cyb, Czb); (d) according to the three characteristic values (Cxr, Cyr, Czr) of the device to be corrected, (Cxg, Cyg, Czg) and (Cxb, Cyb, Czb) and a color space transform, converting the adjusted feature values (Cx, Cy', Cz') into three primary colors adjusted brightness values (dR', dG ', dB,); and (e) measuring the gamma characteristic of the device to be calibrated when displaying the three primary colors respectively And modeling the measured gamma characteristic curves of the three primary colors to generate a new gray-light relationship of the three primary colors to obtain the adjusted values of the three primary colors (dR, dG', dB') Corresponds to the adjusted grayscale values of the three primary colors (R', G', B,). 2. The color correction method according to claim 1, wherein the step (a) comprises: (al) converting the three primary color grayscale values (R, G, B) into three primary color original luminance values (dR, dG, dB); and 23 1361010 TW4536PA (a2) convert the original primary luminance values (dR, dG, dB) into the characteristic values (Cx, Cy, Cz). 3. The color correction method according to claim 2, wherein the image data is image data defined by the sRGB standard, the color space is a CIE XYZ color space, and the feature value (Cx, Cy, Cz) is For (X, Y, Z), in this step (al): dR when -< 0.03928 Max _ grey dR_ R/Max_grey _ 12.92 If no, then R/Max _ grey + 0.055 1.055 2.4 When G Max S0 .03928, dG ^ , if not, then dG G/Max _ grey + 0.055 , 1.055 , when ——————< 0.03928, dB = B'Max =.Fey, if not, then ® Max _ grey Inch 12.92 Right ^ dB _ [B/Max _grey + 0.055 γ4 L055 > where Max_grey is the maximum gray scale value that can be displayed by the device to be calibrated. 4. The color correction method according to claim 3, wherein in the step (a2), the original primary luminance values (dR, dG, dB) of the three primary colors are converted into the characteristic values according to the following formula (X) , Y, Z): ~x' "0.4124 0.3576 0.1805"~dR" Y — 0.2126 0.7152 0.0722 dG ο Z 0.0193 0.1192 0.9505 dB 24 1361010 TW4536PA 5. The color correction method as described in claim 1 of the patent scope, Wherein step (b) comprises: • (bl) determining a color brightening direction according to the coordinate position of the standard white light and the characteristic value (Cx, Cy, _Cz) at a coordinate position defined by the color space; (b2) Determining a color brightening coefficient according to a difference between a maximum value and a minimum value of the three primary color grayscale values (R, G, B); and (b3) a coordinate position of the white light according to the standard, the characteristic value (Cx, Cy , • Cz) the coordinate position defined by the color space, the color brightening direction, and the color enhancement coefficient to adjust the feature value (Cx, Cy, Cz) to the adjusted feature value (Cx,, Cy', Cz '). 6. The color correction method according to claim 5, wherein the image data is image data defined by the sRGB standard, the color space is a CIE XYZ color space, and the feature value (Cx, Cy, Cz) is For (X, Y, Z), in the step (bl), the coordinate of the standard white light (xs, ys), the characteristic value (X, Y, Z) is defined in the coordinate space of the color space (xin, yin) , ® and the coordinates (x', y') after the color increase, the coordinates (xin, yin) are obtained according to the following formula: xin yin XX + Y + ZYX + Y + Z When xin xs, then x' 2xs, if not, Bellow J x'<xs; and when yin2ys, then y's ys, if not, then y'<ys. 7. The color correction method according to claim 6, wherein in the step (b3), according to the color enhancement coefficient k, a straight line passing through the coordinates (xs, ys) 25 1361010 TW4536PA and (xin, yin) The equations y'-ys _ yin - ys — , x'-xs xin - xs and the distance between (xs, ys) and (x', y') are (xs, ys) and (xin, yin) The distance k is -^/(x'-xs)2 + (y'-ys)2 = kx ^/(xin - xs)2 + (yin - ys)2 , and the coordinates of the color enhancement can be obtained. (x', y'), and the adjusted eigenvalues (Cx,, Cy, Cz,) are each ij: • Cx, =x, x(Y/y,), Cy,=Y, Cz, =(lx,-y,)x(Y/y,). 8. The color correction method according to claim 5, wherein in the step (b2), when the difference between the maximum value and the minimum value of the three primary color grayscale values (R, G, B) is smaller, Then the color enhancement coefficient is larger. 9. The color correction method according to claim 8, wherein the difference between the maximum value and the minimum value of the three primary color grayscale values (R, G, B) has a plurality of levels corresponding to different levels. The color enhancement coefficient is different. 10. The color correction method according to claim 1, wherein in the step (d), the adjusted characteristic value (Cx', Cy', Cz') is converted into the adjusted brightness value of the three primary colors ( The color space transformation of dR', dG', dB') is: 26 1361010 TW4536PA dK Cxr Cxg Cxb -1 ~Cxr dG' — Cyr Cyg Cyb cy dB% Czr Czg Czb Cz, _ 11. The color correction method according to Item 1, wherein in the step (e), the gamma characteristic curves of the three primary colors measured by the measured quantity are modeled by a Boltzmann function, thereby To generate a new gray-light relationship of the three primary colors. 12. The color correction method according to claim 1, wherein the step (c) further comprises the step of: (f) determining the device to be calibrated according to the characteristics of the device to be calibrated and a target gamma value. The initial gamma characteristic curves of the three primary colors are set. 13. The color correction method according to claim 11, wherein after the step (e), the method further comprises: (g) resetting the device to be calibrated according to each new gray-light relationship of the three primary colors The gamma characteristic curves of the three primary colors. 14. An integrated wafer with color correction function, comprising: * a storage unit storing a plurality of converted feature value data of different image formats; a temporary storage unit for writing a device to be corrected for displaying the three primary colors respectively The three characteristic values (Cxr, Cyr, Czr), (Cxg, Cyg, Czg) and (Cxb, Cyb, Czb) measured at the time, and the amount used to write the device to be corrected to display the three primary colors respectively a gamma characteristic curve; and a color correction unit for receiving an image data, and acquiring, according to the image format of the image data, the image data conversion 27 1361010 TW4536PA eigenvalue data, thereby using the image The three primary color grayscale values (R, G, B) of the data are converted into characteristic values (Cx, Cy, Cz) of a color space, and the color correction unit is used to determine the coordinate position of the standard white light according to one of the color space definitions - and The relationship between the feature values (Cx, Cy, Cz) at the coordinate position defined by the color space and the three primary color grayscale values (R, G, B) to adjust the feature value (Cx, Cy, Cz) to generate an adjustment After special a value (Cx,, Cy', Cz,), the color correction unit is further configured to use the three characteristic values (Cxr, Cyr, Czr), (Cxg, Cyg, Czg), and (Cxb, Cyb, Czb) and one The color space conversion type converts the adjusted eigenvalues (Cx,, Cy', Cz') into three primary color adjusted brightness values (dR', dG', dB') 'the color correction unit and measures the same The gamma characteristic curves of the three primary colors of the device to be calibrated are modeled to generate a new gray-scale relationship of the three primary colors, thereby obtaining the adjusted values of the three primary colors (dR', dG', dB' Corresponding to the adjusted primary grayscale values (R, G, B,). 15. The integrated wafer of claim 14, wherein 中色彩校正單元用以將該三原色灰階值(R, G, B)轉換成 三原色原始亮度值(dR,dG, dB),並用以將該三原色原始 亮度值(dR,dG,dB)轉換成該特徵值(Cx,Cy,Cz)。 16.如申請專利範圍第15項所述之整合型晶片,其 中該影像資料係以sRGB標準定義之影像資料,該色彩空 間係一 CIE XYZ色彩空間,該特徵值(Cx, Cy,Cz)係為 (X, Y,Z),該色彩校正單元用以根據下列式子計算出該 三原色原始亮度值(dR, dG,dB): 當 R Max _ grey S 0.03928 時,dR = R/Max _ grey 12.92 若否,則 28 1361010 TW4536PA dR dG dB R/Max _ grey + 0.055 .2.4 當 1.055 G Max _ grey <0.03928 時,dG = G/M:X -㈣,若否,則 12.92 V G/Max _ grey + 0.055 L055 2.4 當…B— ·928 時,dB = _B/Max —grey Max _ grey ’ B/Max — grey + 0.05 5、 12.92 否,則 2.4 1.055 y 其中,Max_grey係為該待校正裝置所能顯示之最大 灰階值。 17.如申請專利範圍第16項所述之整合型晶片,其 中該色彩校正單元係用以根據下列式子將該三原色原始 亮度值(dR, dG, dB)轉換成該特徵值(X, Y, Z): X— '0.4124 0.3576 0.1805' dR' Y — 0.2126 0.7152 0.0722 dG Z 0.0193 0.1192 0.9505 dB 18.如申請專利範圍第14項所述之整合型晶片,其 中該色彩校正單元係用以根據該標準白光之座標位置與 該特徵值(Cx,Cy, Cz)於該色彩空間定義之座標位置去 決定一色彩增豔方向; 該色彩校正單元並用以根據該三原色灰階值(R, G, B)中之最大值與最小值之差值去決定一色彩增豔係數; 該色彩校正單元更用以根據該標準白光之座標位 29 1361010 TW4536PA 置、該特徵值(Cx,Cy,Cz)於該色彩空間定義之座標位 置、該色彩增豔方向以及該色彩增豔係數以調整該特徵值 (Cx, Cy, Cz)為該調整後特徵值(Cx’,Cy’,Cz’)。 Φ 19.如申請專利範圍第18項所述之整合型晶片,其 中該影像資料係以sRGB標準定義之影像資料,該色彩空 間係一 CIE XYZ色彩空間,該特徵值(Cx, Cy, Cz)係為 (X,Y, Z),該標準白光之座標(xs,ys),該特徵值(X,Y, Ζ )於該色彩空間定義之座標(xin, yin ),而色彩增盤後之 座標(X’,y’),該色彩校正單元係用以根據下列式子求得 座標(xin, yin ): xin . X . Y yin X + Y + Z X + Y + Z 當 xin2xs,則 x’2xs,若否,貝,J x’<xs ;以及 當 yinSys,則 ys,若否,則 y’<ys。 20.如申請專利範圍第19項所述之整合型晶片,其 中該色彩校正單元用以根據該色彩增豔係數k、通過座標 (xs, ys)與(xin,yin)之直線方程式 y'-ys _ yin-ys — , x'-xs xin - xs 以及令(xs, ys )與(x’,y’)兩點距離為(xs, ys )與(xin, yin )兩點距離之.k倍 ^(x'-xs)2 + (y'-ys)2 = k x ^/(xin - xs)2 + (yin - ys)2, 求得該色彩增豔後之座標(x’,y’),而該調整後特徵值(Cx’, Cy’,Cz’)各別為: Cx,=x,x(Y/y,), 30 1361010 TW4536PA Cy,=Y, Cz’=(l-x,-y,)x(Y/y’)。 - 21.如申請專利範圍第18項所述之整合型晶片,其 _ 中當該三原色灰階值(R, G, B)之最大值與最小值之差值 越小,則該色彩增豔係數越大。 22. 如申請專利範圍第21項所述之整合型晶片,其 中該三原色灰階值(R,G, B)之最大值與最小值之差值具 有複數個級別,而對應不同的級別,該色彩增豔係數係不 參相同。 23. 如申請專利範圍第14項所述之整合型晶片,其 中該色彩校正單元用以將該調整後特徵值(Cx’,Cy’,Cz’) 轉換成該三原色調整後亮度值(dR’,dG’,dB’)之該色彩 空間變換式係為: dRr Cxr Cxg Cxb -1 ~Cxr dG' — Cyr Cyg Cyb cy dB' Czr Czg Czb Czf 24. 如申請專利範圍第14項所述之整合型晶片,其 中該色彩校正單元係以一波茲曼函式(Boltzmann function )對該量測到的三原色各別之迦瑪特性曲線模型 化,藉此以產生該三原色各別之新的灰階-亮度關係。 25. 如申請專利範圍第14項所述之整合型晶片,其 中該色彩校正單元更用以根據該三原色各別之新的灰階-亮度關係去重新設定該待校正裝置之三原色各別之迦瑪 特性曲線。 31 1361010 TW4536PA 26.如申請專利範圍第14項所述之整合型晶片,其 中該待校正裝置係一顯示器或一投影機。The medium color correction unit is configured to convert the three primary color grayscale values (R, G, B) into three primary color original luminance values (dR, dG, dB), and convert the original primary luminance values (dR, dG, dB) into The characteristic value (Cx, Cy, Cz). 16. The integrated wafer of claim 15 wherein the image data is image data defined by the sRGB standard, the color space being a CIE XYZ color space, the feature value (Cx, Cy, Cz) For (X, Y, Z), the color correction unit is configured to calculate the original primary brightness values (dR, dG, dB) according to the following formula: when R Max _ grey S 0.03928, dR = R/Max _ grey 12.92 If no, then 28 1361010 TW4536PA dR dG dB R/Max _ grey + 0.055 .2.4 when 1.055 G Max _ grey < 0.03928, dG = G/M: X - (d), if not, then 12.92 VG/Max _ Grey + 0.055 L055 2.4 When...B—·928, dB = _B/Max —grey Max _ grey ' B/Max — grey + 0.05 5, 12.92 No, then 2.4 1.055 y where Max_grey is the device to be calibrated The maximum grayscale value that can be displayed. 17. The integrated wafer of claim 16, wherein the color correction unit is configured to convert the original primary luminance values (dR, dG, dB) into the characteristic values (X, Y) according to the following formula: , Z): X - '0.4124 0.3576 0.1805' dR' Y - 0.2126 0.7152 0.0722 dG Z 0.0193 0.1192 0.9505 dB 18. The integrated wafer of claim 14, wherein the color correction unit is used according to the The coordinate position of the standard white light and the characteristic value (Cx, Cy, Cz) at a coordinate position defined by the color space determine a color brightening direction; the color correcting unit is used to determine the gray level value according to the three primary colors (R, G, B) The difference between the maximum value and the minimum value determines a color enhancement coefficient; the color correction unit is further configured to set the characteristic value (Cx, Cy, Cz) according to the standard white light coordinate position 29 1361010 TW4536PA The coordinate position defined by the color space, the color brightening direction, and the color enhancement coefficient are adjusted to adjust the feature value (Cx, Cy, Cz) to the adjusted feature value (Cx', Cy', Cz'). Φ 19. The integrated wafer of claim 18, wherein the image data is image data defined by the sRGB standard, the color space is a CIE XYZ color space, and the feature value (Cx, Cy, Cz) The system is (X, Y, Z), the coordinate of the standard white light (xs, ys), the characteristic value (X, Y, Ζ) is defined in the color space (xin, yin), and after the color is added The coordinate (X', y'), the color correction unit is used to find the coordinates (xin, yin) according to the following formula: xin . X . Y yin X + Y + ZX + Y + Z When xin2xs, then x' 2xs, if no, Bay, J x '<xs; and when yinSys, then ys, if not, then y'<ys. 20. The integrated wafer of claim 19, wherein the color correction unit is configured to pass a linear equation y'- based on the color enhancement coefficient k, the coordinates (xs, ys) and (xin, yin). Ys _ yin-ys — , x'-xs xin - xs and let (xs, ys ) and (x', y') be separated by two points (xs, ys ) and (xin, yin ). Times ^(x'-xs)2 + (y'-ys)2 = kx ^/(xin - xs)2 + (yin - ys)2, find the coordinates after the color enhancement (x', y' ), and the adjusted eigenvalues (Cx', Cy', Cz') are: Cx, = x, x (Y/y,), 30 1361010 TW4536PA Cy, =Y, Cz'=(lx,- y,)x(Y/y'). - 21. The integrated wafer according to claim 18, wherein the smaller the difference between the maximum value and the minimum value of the three primary color gray scale values (R, G, B), the color is brightened The larger the coefficient. 22. The integrated wafer of claim 21, wherein the difference between the maximum value and the minimum value of the three primary color gray scale values (R, G, B) has a plurality of levels, and corresponding to different levels, The color enhancement coefficient is not the same. 23. The integrated wafer of claim 14, wherein the color correction unit is configured to convert the adjusted feature values (Cx', Cy', Cz') into the adjusted values of the three primary colors (dR' , the color space transformation of dG', dB') is: dRr Cxr Cxg Cxb -1 ~ Cxr dG' - Cyr Cyg Cyb cy dB' Czr Czg Czb Czf 24. Integration as described in claim 14 a type of wafer, wherein the color correction unit models a respective gamma characteristic curve of the three primary colors measured by a Boltzmann function, thereby generating a new gray scale of the three primary colors. - Brightness relationship. 25. The integrated wafer of claim 14, wherein the color correction unit is further configured to reset the respective three primary colors of the device to be corrected according to the respective gray-light relationship of the three primary colors. Ma characteristic curve. The integrated wafer of claim 14, wherein the device to be calibrated is a display or a projector. 3232
TW97125145A 2008-07-03 2008-07-03 Color correction method and color correcting integ TWI361010B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW97125145A TWI361010B (en) 2008-07-03 2008-07-03 Color correction method and color correcting integ
US12/494,505 US8279235B2 (en) 2008-07-03 2009-06-30 Color correction method and color correcting integrated chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97125145A TWI361010B (en) 2008-07-03 2008-07-03 Color correction method and color correcting integ

Publications (2)

Publication Number Publication Date
TW201004371A TW201004371A (en) 2010-01-16
TWI361010B true TWI361010B (en) 2012-03-21

Family

ID=44825863

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97125145A TWI361010B (en) 2008-07-03 2008-07-03 Color correction method and color correcting integ

Country Status (1)

Country Link
TW (1) TWI361010B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9462243B2 (en) 2013-12-23 2016-10-04 Au Optronics Corp. Method for controlling operations of RGBW display based on human factor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111091789B (en) * 2018-10-23 2022-05-31 纬联电子科技(中山)有限公司 Display device and color correction method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9462243B2 (en) 2013-12-23 2016-10-04 Au Optronics Corp. Method for controlling operations of RGBW display based on human factor

Also Published As

Publication number Publication date
TW201004371A (en) 2010-01-16

Similar Documents

Publication Publication Date Title
KR102446033B1 (en) Method of converting color gamut and display device employing the same
JP3719424B2 (en) Image processing system, projector, image processing method, program, and information storage medium
CN101635858B (en) Color correction method and integrated chip using same
JP2017203946A (en) Chromatic adjustment method, chromatic adjustment device, display driver and display system
TWI339533B (en) Color correction method and apparatus of display apparatus
US20060250412A1 (en) Method and apparatus for improved color correction
RU2014136061A (en) METHOD AND DEVICE FOR TRANSFORMING IMAGE DATA
KR101990956B1 (en) Device for converting color gamut and method thereof
WO2013086740A1 (en) Color adjustment device, color adjustment method, and display
US8279235B2 (en) Color correction method and color correcting integrated chip
JP2008096548A (en) Display device
CN112992059B (en) Method and related device for adjusting Gamma of OLED display screen
JP2011107703A (en) Method and device for managing color
US10255883B2 (en) Image processing apparatus, method for controlling the same, display apparatus, and storage medium
JP5387713B2 (en) Image adjustment apparatus, image adjustment system, and program
WO2018214655A1 (en) Image processing method, image processing device and medical imaging device
JP2017049319A (en) Display device, method for controlling display device, and program
JP2018137633A (en) White balance adjustment method, method of manufacturing display unit having white balance adjusted, white balance adjustment device, and display unit
CN107274857B (en) Method for adjusting output image of display and display system
TWI361010B (en) Color correction method and color correcting integ
JP2010256899A (en) Calibration system and method for calibrating display
JP5664261B2 (en) Image processing apparatus and image processing program
JP6976150B2 (en) Correction data generation device, display device, correction data generation method and program
JP6548516B2 (en) IMAGE DISPLAY DEVICE, IMAGE PROCESSING DEVICE, CONTROL METHOD OF IMAGE DISPLAY DEVICE, AND CONTROL METHOD OF IMAGE PROCESSING DEVICE
TW202018693A (en) Method for adjusting uniformity of image color tones and system thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees