Ι36Ό671 丨100年日修正销 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種濾光片,特別涉及一種紅外截止濾光片 以及悚用該紅外截止濾光片之鏡頭模組β 【先前技術】 [0002] 一般而言,數位相機、攝像機等取像裝置均包括用於攝 取光線之鏡頭模組,鏡頭模組之光學性此影響著成像畫 面之品質。鏡頭模組通常包括透鏡或者透鏡組以及影像 感測元件。透鏡或者透鏡組用於接收外界物體等發出之 光線,並將光線匯聚到影像感測元件上。影像感測元件 可以為CCD或者CMOS等半導體元件,用於將光訊號轉換成 電訊號,以供後續之電路處理。 [〇〇〇3] 由於光電效應,CCD或者CMOS等半導體元件不僅可以感應 可見光,也可以感應位於紅外波段(波長大於760nm)之 光線,使感應光之波段得到延伸,而原先相片黑色之部 分因此會偏紅,產生色偏現象。故而,現有之鏡頭模組 通常會在CCD或者CMOS之入射光路上設置一片紅外截止濾 光片’該紅外截止濾光片可以濾除紅外波段之光線,而 讓可見光透過,從而產生正常色彩之影像。 [0004]惟,先前之紅外截止濾光片一般由多層高低折射率材料 之薄膜堆疊而成,紅外光透過該多層膜時會發生光學干 涉相消。當光線以不同角度入射到該多層膜時,由於光 程差不一樣,使得截止光譜向短波方向偏移,從而造成 部分可見光被過濾,從而透過鏡頭模組所成之晝面,其 在中心與邊緣區域之色彩表現出較大之差異。 096144512 表單编號A0101 第3頁/共14頁 1003449329-0 1360671 100年12月05日核正替換頁 【發明内容】 [0005] 有鑒於此,有必要提供一種可有效抑制短波偏移之紅外 截止濾光片。 [0006] 還有必要提供一種使成像畫面具有較小色彩表現差異之 鏡頭模組。 [0007] —種紅外截止濾光片,包括基體層,第一膜堆,第二膜 堆及第三膜堆,第一膜堆,第二膜堆和第三膜堆依次形 成於基體層之上。第一膜堆,第二膜堆和第三膜堆分別 由高折射率材料和低折射率材料交替形成。第一膜堆, 第二膜堆和第三膜堆具有不同之光學厚度。 [0008] 一種鏡頭模組,從物方一側到像方一側依次包括透鏡組 : ,紅外截止濾光片和影像感測器件。紅外截止濾光片, 包括基體層,第一膜堆,第二膜堆及第三膜堆,第一膜 堆,第二膜堆和第三膜堆依次形成於基體層之上。第一 膜堆,第二膜堆和第三膜堆分別由高折射率材料和低折 射率材料交替形成。第一膜堆,第二膜堆和第三膜堆具 有不同之光學厚度。 [0009] 相對於先前之紅外戴止濾光片,藉由三種不同光學厚度 薄膜堆疊成之膜堆結構可有效抑制短波偏移,使可見光 有效透過紅外截止渡光片。 [0010] 相對於一般之鏡頭模組,藉由三種不同光學厚度薄膜堆 疊成之膜堆結構可有效抑制短波偏移,使不同角度入射 之光線透過鏡頭模組後,其成像晝面具有較小之色彩表 現差異。 096144512 表單编號A0101 第4頁/共14頁 1003449329-0 1360671 100年.12月的日修正替换頁 【實施方式】 [0011] 如圖1所示,鏡頭模組20可以用於數位相機,攝影機等成 像裝置中。鏡頭模組20從物方一側到像方一側依次包括 透鏡組200、紅外截止濾光片300和影像感測器件400。 透鏡組200可以包括單一透鏡元件,也邛以包括若干透鏡 元件,例如,透鏡元件202、204及206。透鏡組2〇〇用於 接收外界入射之光線,並可修正各種像差、色差等。各 透鏡元件202 ' 204 ' 206之間之位置也町加以調節,以 改變鏡頭之光學變焦參數。紅外截止滤光片300用於過濾 透過透鏡組200後之光線中位於紅外波段之光線,而使其 他波段之光線透過,以消除紅外光對影像感測器件400之 干擾。影像感測器件400可以為CCD或者CMOS等半導體元 件’用於接收從紅外截止濾光片入射過來之光線,並將 光訊號轉換成電訊號,以供後續之電路處理。 [0012] 如圖2所示’紅外截止濾光片300包括基底層310、第一膜 堆320、第二膜堆340及第三膜堆360 »基底層310為透明 材料,例如K9玻璃等。第一膜堆32〇、第二膜堆340及第 三膜堆360依次形成於基底層31〇之上。第一膜堆320、 第二膜堆340及第三膜堆360均由高折射率係數之材料和 低折射率係數之材料交替形成,其中,高折射率係數之 材料可以為15.¾ ’ ’ 7^@等,低折射率係數 之材料可以為沒.^等。第一膜堆320包括交替排列之高 折射率膜層322和低折射率膜層324 ;第二膜堆340包括 交替排列之高折射率膜層342和低折射率膜層344 ;第三 膜堆360包括交替排列之高折射率臈層362和低折射率膜 096144512 表單編號 A0101 第 5 頁/共 14 頁 1003449329-0 1360671 層364Ι36Ό671 丨100年日修销六, invention description: [Technical Field of the Invention] [0001] The present invention relates to a filter, and more particularly to an infrared cut filter and a lens mold using the infrared cut filter Group β [Prior Art] [0002] In general, image capturing devices such as digital cameras and video cameras include a lens module for taking light, and the optical properties of the lens module affect the quality of the image. The lens module typically includes a lens or lens group and an image sensing element. A lens or lens group is used to receive light from an external object or the like and to converge the light onto the image sensing element. The image sensing component can be a semiconductor component such as a CCD or a CMOS for converting an optical signal into an electrical signal for subsequent circuit processing. [〇〇〇3] Due to the photoelectric effect, semiconductor components such as CCD or CMOS can not only sense visible light, but also sense light in the infrared band (wavelength greater than 760 nm), so that the band of the induced light is extended, and the original portion of the photo black is thus It will be reddish and produce a color shift phenomenon. Therefore, the existing lens module usually has an infrared cut filter disposed on the incident light path of the CCD or CMOS. The infrared cut filter can filter the light in the infrared band and allow visible light to pass through, thereby generating a normal color image. . [0004] However, the prior infrared cut filter is generally formed by stacking a plurality of thin films of high and low refractive index materials, and optical interference cancellation occurs when infrared light is transmitted through the multilayer film. When light is incident on the multilayer film at different angles, the optical path difference is different, so that the cutoff spectrum is shifted to the short-wave direction, thereby causing part of the visible light to be filtered, thereby passing through the lens module, which is at the center and The color of the edge area shows a large difference. 096144512 Form No. A0101 Page 3 of 14 1003449329-0 1360671 December 5, 2005 Nuclear Replacement Page [Invention] [0005] In view of this, it is necessary to provide an infrared cutoff that can effectively suppress short-wave offset. Filter. It is also necessary to provide a lens module that allows imaging images to have a small difference in color performance. [0007] An infrared cut filter, comprising a base layer, a first film stack, a second film stack and a third film stack, the first film stack, the second film stack and the third film stack are sequentially formed on the base layer on. The first film stack, the second film stack and the third film stack are alternately formed of a high refractive index material and a low refractive index material, respectively. The first stack, the second stack and the third stack have different optical thicknesses. [0008] A lens module includes a lens group from the object side to the image side: an infrared cut filter and an image sensing device. The infrared cut filter comprises a base layer, a first stack, a second stack and a third stack, and the first stack, the second stack and the third stack are sequentially formed on the base layer. The first stack, the second stack, and the third stack are alternately formed of a high refractive index material and a low refractive index material, respectively. The first stack, the second stack and the third stack have different optical thicknesses. [0009] Compared with the prior infrared wear filter, a stack structure formed by stacking three different optical thickness films can effectively suppress short-wave migration and effectively transmit visible light through the infrared cut-off ferro-path. [0010] Compared with a general lens module, a stack structure formed by stacking three different optical thickness films can effectively suppress short-wave migration, and the incident pupil light is transmitted through the lens module at different angles. The difference in color performance. 096144512 Form No. A0101 Page 4 / Total 14 Page 1003449329-0 1360671 100-Day. December Correction Replacement Page [Embodiment] [0011] As shown in FIG. 1, the lens module 20 can be used for a digital camera, a camera. In an imaging device. The lens module 20 includes a lens group 200, an infrared cut filter 300, and an image sensing device 400 in order from the object side to the image side. Lens set 200 can include a single lens element, also including a plurality of lens elements, such as lens elements 202, 204, and 206. The lens group 2 is for receiving light incident from the outside, and can correct various aberrations, chromatic aberrations, and the like. The position between each lens element 202 ' 204 ' 206 is also adjusted to change the optical zoom parameter of the lens. The infrared cut filter 300 is used to filter the light in the infrared band of the light passing through the lens group 200, and the light of other bands is transmitted to eliminate the interference of the infrared light on the image sensing device 400. The image sensing device 400 can be a semiconductor element such as a CCD or a CMOS for receiving light incident from the infrared cut filter and converting the optical signal into an electrical signal for subsequent circuit processing. [0012] As shown in FIG. 2, the infrared cut filter 300 includes a base layer 310, a first film stack 320, a second film stack 340, and a third film stack 360. The base layer 310 is a transparent material such as K9 glass or the like. The first film stack 32, the second film stack 340, and the third film stack 360 are sequentially formed over the base layer 31. The first film stack 320, the second film stack 340, and the third film stack 360 are alternately formed of a material having a high refractive index coefficient and a material having a low refractive index coefficient, wherein the material having a high refractive index coefficient may be 15.3⁄4' 7^@等, the material of low refractive index coefficient can be no. ^ and so on. The first film stack 320 includes alternating high refractive index film layers 322 and low refractive index film layers 324; the second film stack 340 includes alternating high refractive index film layers 342 and low refractive index film layers 344; 360 includes alternating high refractive index 臈 layer 362 and low refractive index film 096144512 Form No. A0101 Page 5 of 14 1003449329-0 1360671 Layer 364
[0013] 在本實施方式中,以設計波長A〇 = 760nm設計優化各個膜 堆之光學厚度和膜之層數。單一層高折射率係數之材料 和低折射率係數之材料形成一個複合層,如複合層323、 343、363。第一膜堆320包括[^個複合層323(1. 2H 0. 6L) ’ N/6-8。第二膜堆340包括\個複合層 343(1. 1H 1. 1L),N2 = 6〜8。第三膜堆360包括\個複合 層363(1. 3H 1. 3L),Nq = 7〜9。其中,Η表示厚度為λ / 6 0 4之高折射率薄膜,L表示厚度為λ/8低折射率薄膜, 1. 2Η代表1. 2倍之厚度之λ Q/4高折射率薄膜。 [0014] 請參閱圖3,紅外截止濾光片300之透射光譜示意圖,其 橫軸表示波長,縱軸表示透過率,即透過濾光片之光線 能量與入射光線能量之比值。由圖可知,70Onm以外之向 長波方向變化之光線透過該濾光片300時,透過率接近〇% ,即該濾光片3 0 0基本吸收掉位於紅外波段之光線。而 700nm以内之向短波方向變化之光線透過該濾光片3〇〇時 ,其透過率在一較小之波長範圍内迅速變化為1〇〇%,即 s亥渡光片300基本可完全透過可見部分之光線。 [0015] 請一併參閱圖4和表1,圖4為紅外截止濾光片300對於不 同角度入射之光線產生之短波偏移與一般之紅外截止濾 光’片之對比示意圖’其中橫軸表示光線入射角度.,縱轴 表示波長。表1表示圖4所示之不同入射角度所對應之波 長。 [0016] 表1本實施方式和先前之紅外戴止濾光片短波偏移對比 096144512 表單编號A0101 第6頁/共14頁 1003449329-0 [0017]1360671 100年.12月0立日 入射角 一般之紅外戴止據 光片 本發明之紅外戴止 濾光片300 0度 650nm 650nm 10度 647nm 648nm 20度 637.5nm 642.5nm 30度 623nm 634nm 以光線透過率為50%時作為參照,當入射I度為〇度時,~~ 本實施方式之紅外截止遽光片300與一趣之紅外截止遽光 片對應之波長均為650nm °當入射角度為1〇度時一般之 紅外截止濾光片對應之波長為647nra,本實施方气之红外 截止滤光片300對應之波長為648nra ’印短波偏移較小。 當入射角度為20度時’一般之紅外截止濾光片對應之波 長為637. 5nm ’本實施方式之紅外截止據光片·對應之 波長為642. 5mn,可見在入射角為20度時,紅外截止遽 光片300相對-般之紅外截止遽光波偏移效果較 為明顯。進一步,當入射角度為30度時,一般之紅外截 止濾光片對應之波長為623nm,本實施方式之紅外截止慮 光片300對應之波長為634nm。在此入射角度下,紅外截 止渡光片3DG比-般之紅外截止遽光片更加抑制短波偏移 ,從而不會導致所需要之可見光部分光線被截止掉。 [0018] 此外,本實施方式之紅外截止濾光片300對不同角度入射 之光線,例如從10度變換到30度,在透過率為5〇%時所對 應之波長變化量為648nm-634nm=14nm。而一般之紅外 截止遽光片則對應之波長變化量為647mn-623nm = 24nm ’所以透過鏡頭模組2〇成像後之畫面在不同區域所表現 096144512 表單编號A0101 第7頁/共14頁 1003449329-0 1360671 100年.12月拈日核正替换頁 出來之色彩差異較小,提升了成像之品質。 【圖式簡單說明】 [0019] 圖1所示為包括若干光學元件之鏡頭模組之示意圖,其中 鏡頭模組包括紅外截止濾光片。 [0020] 圖2所示為圖1中紅外截止濾光片之膜層結構示意圖。 [0021] 圖3所示為圖1中紅外截止濾光片之透射光譜示意圖。 [0022] 圖4所示為本發明紅外截止濾光片與現有紅外截止濾光片 對不同入射角度光線之波長偏移對比示意圖。 【主要元件符號說明】 [0023] 鏡頭模組:20 [0024] 第二膜堆:340 [0025] 透鏡組:200 [0026] 第三膜堆:360 [0027] 紅外截止濾光片:300 [0028] 複合層:323、343、363 [0029] 影像感測器件:400 [0030] 高折射率材料:322、342、362 [0031] 基體層:310 [0032] 低折射率材料:324、344、364 [0033] 第一膜堆:320 096144512 表單编號A0101 第8頁/共14頁 1003449329-0[0013] In the present embodiment, the optical thickness of each of the film stacks and the number of layers of the film are optimized at a design wavelength of A 〇 = 760 nm. A single layer of high refractive index material and a low refractive index material form a composite layer, such as composite layers 323, 343, 363. The first film stack 320 includes [^ composite layers 323 (1.2H 0. 6L) 'N/6-8. The second film stack 340 includes \ composite layers 343 (1.1H 1. 1L), N2 = 6-8. The third film stack 360 includes a composite layer 363 (1.3H 1. 3L), Nq = 7 to 9. Wherein, Η represents a high refractive index film having a thickness of λ / 604, L represents a low refractive index film having a thickness of λ/8, and 1. 2 Η represents a λ Q/4 high refractive index film having a thickness of 1.2 times. Referring to FIG. 3, a schematic diagram of the transmission spectrum of the infrared cut filter 300, wherein the horizontal axis represents the wavelength, and the vertical axis represents the transmittance, that is, the ratio of the light energy transmitted through the filter to the incident light energy. As can be seen from the figure, when the light that changes in the long-wave direction other than 70 Onm passes through the filter 300, the transmittance is close to 〇%, that is, the filter 300 absorbs the light in the infrared band. When the light that changes in the short-wave direction within 700 nm passes through the filter 3, the transmittance rapidly changes to 1% in a small wavelength range, that is, the s-wave light 300 is substantially completely transparent. The visible part of the light. [0015] Please refer to FIG. 4 and Table 1 together. FIG. 4 is a schematic diagram of the short-wavelength shift of the infrared cut filter 300 for light incident at different angles and the general infrared cut filter 'sheet. The angle of incidence of light. The vertical axis represents the wavelength. Table 1 shows the wavelengths corresponding to the different incident angles shown in Fig. 4. [0016] Table 1 This embodiment and the previous infrared wear filter short wave offset contrast 096144512 Form No. A0101 Page 6 / 14 pages 1003449329-0 [0017] 1306671 100 years. December 0 day angle of incidence Infrared wear stop light film of the present invention 300 ° 650nm 650nm 10 degrees 647nm 648nm 20 degrees 637.5nm 642.5nm 30 degrees 623nm 634nm When the light transmittance is 50% as a reference, when incident I When the degree is 〇, ~~ The wavelength of the infrared cut-off illuminating sheet 300 of the present embodiment corresponds to a wavelength of 650 nm for an interesting infrared cut-off ray sheet. When the incident angle is 1 〇, the general infrared cut filter corresponds to The wavelength is 647 nra, and the infrared cut filter 300 of the present embodiment corresponds to a wavelength of 648 nra 'the short-wave offset is small. When the incident angle is 20 degrees, the wavelength of the infrared cutoff filter of the present embodiment is 637. 5 nm. The wavelength of the infrared cutoff light according to the embodiment is 642.5 nm, and it can be seen that when the incident angle is 20 degrees, The infrared cut-off calender 300 has a relatively obvious effect on the shift of the infrared cutoff light wave. Further, when the incident angle is 30 degrees, the wavelength of the general infrared cut filter corresponds to 623 nm, and the wavelength of the infrared cut filter 300 of the present embodiment corresponds to 634 nm. At this angle of incidence, the infrared intercepting light-emitting sheet 3DG suppresses the short-wave shift more than the general-purpose infrared-cutting light-emitting sheet, so that the required portion of the visible light is not cut off. [0018] In addition, the infrared cut filter 300 of the present embodiment converts light incident at different angles, for example, from 10 degrees to 30 degrees, and the wavelength variation corresponding to the transmittance of 5〇% is 648 nm-634 nm= 14nm. In general, the infrared cut-off illuminator corresponds to a wavelength change of 647mn-623nm = 24nm 'so the image after imaging through the lens module 2〇 is displayed in different areas 096144512 Form No. A0101 Page 7 / Total 14 Page 1003449329 -0 1360671 The difference in color between the replacement pages of the 100th and the 12th of December is small, which improves the quality of imaging. BRIEF DESCRIPTION OF THE DRAWINGS [0019] FIG. 1 is a schematic diagram of a lens module including a plurality of optical elements, wherein the lens module includes an infrared cut filter. 2 is a schematic view showing the structure of a film of the infrared cut filter of FIG. 1. [0021] FIG. 3 is a schematic view showing the transmission spectrum of the infrared cut filter of FIG. 1. [0022] FIG. 4 is a schematic view showing the comparison of the wavelength shift of the infrared cut filter of the present invention and the existing infrared cut filter for light of different incident angles. [Main component symbol description] [0023] Lens module: 20 [0024] Second film stack: 340 [0025] Lens group: 200 [0026] Third film stack: 360 [0027] Infrared cut filter: 300 [ 0028] composite layer: 323, 343, 363 [0029] image sensing device: 400 [0030] high refractive index material: 322, 342, 362 [0031] base layer: 310 [0032] low refractive index material: 324, 344 364 [0033] First Membrane: 320 096144512 Form No. A0101 Page 8 of 14 1003449329-0