TWI359121B - Optical glass, preform for precision press molding - Google Patents

Optical glass, preform for precision press molding Download PDF

Info

Publication number
TWI359121B
TWI359121B TW96109669A TW96109669A TWI359121B TW I359121 B TWI359121 B TW I359121B TW 96109669 A TW96109669 A TW 96109669A TW 96109669 A TW96109669 A TW 96109669A TW I359121 B TWI359121 B TW I359121B
Authority
TW
Taiwan
Prior art keywords
glass
range
content
temperature
press molding
Prior art date
Application number
TW96109669A
Other languages
Chinese (zh)
Other versions
TW200800831A (en
Inventor
Yoshiko Kasuga
Yasuhiro Fujiwara
Xuelu Zou
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006082667A external-priority patent/JP4847769B2/en
Application filed by Hoya Corp filed Critical Hoya Corp
Priority claimed from TH701001307A external-priority patent/TH45579B/en
Publication of TW200800831A publication Critical patent/TW200800831A/en
Application granted granted Critical
Publication of TWI359121B publication Critical patent/TWI359121B/en

Links

Description

1359121 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種光學玻璃,其具有呈大於或等於 1. 65之折射率(nd)與大於或等於50之阿貝數(Abbe mimbeO (nu)d)形式之光學常數;有關一種該玻璃所組 成的精密加壓成型用之預成型物;一種製造該預成型物的 方法;及一種製造包含該玻璃的光學元件之方法。 【先前技術】 數位攝影機與裝設攝影機的行動電話之到來已導致採 用光學系統的裝置中高度集成和高功能性的快速進展。^ 此同枯,對於高精密度、低重量、緊密的光學系統之需求 已正升高中。 於最近數年内,為了滿足此等需求,採用非球狀透鏡 的光學設計正逐增地轉移成為主流。因此,為了穩定且經 濟地提供大量的採用高度功能性玻璃,經由加壓成型而不 用研磨或拋光步驟直接成型出光學功能表面的精密加壓成 !技術(也稱為模製光學成型技術)已經吸引注意。對於適 °用於精密加壓成型’具有低溫軟化性冑_光學玻璃之 需求正每年遞增著。此等玻璃包括具有大於或等於i 65 之1射率⑹)與大於或等於5G之阿貝數咖㈣ Π盘之向折射率和低色散性玻璃。具有低溫軟化性質的高 ”和低色散性玻璃之例子經記載於 2, 616, 958號之中。 〜矛 於製造光學元件諸如經由精密加虔成型透鏡的過程 51359121 IX. Description of the Invention: [Technical Field] The present invention relates to an optical glass having an index of refraction (nd) greater than or equal to 1.65 and an Abbe number greater than or equal to 50 (Abbe mimbeO (nu) d) an optical constant of the form; a preform for precision press molding composed of the glass; a method of producing the preform; and a method of manufacturing an optical element comprising the glass. [Prior Art] The advent of digital cameras and mobile phones equipped with cameras has led to rapid progress in high integration and high functionality in devices employing optical systems. ^ This same, the demand for high-precision, low-weight, compact optical systems is rising. In recent years, in order to meet these demands, the optical design using non-spherical lenses is gradually shifting to the mainstream. Therefore, in order to stably and economically provide a large number of precision pressurization techniques (also referred to as molded optical molding techniques) that directly form an optical functional surface by press molding without a grinding or polishing step using highly functional glass Attract attention. The demand for optical pressure glass with low temperature softening is increasing every year. These glasses include a refractive index and a low-dispersion glass having an Abe (6) greater than or equal to i 65 and an Abbe number greater than or equal to 5 G. Examples of high- and low-dispersion glass having low-temperature softening properties are described in No. 2,616,958. - Spears are used in the manufacture of optical components such as precision twisted lenses.

S 319107 1359121 I ’在該玻魅精密加壓成型之時,有時候在該加慶成型 _ t的冷卻過程内會發生損壞。此等損壞由細紋㈤z則 ^痕(咖king)構成。此在上面提及的該高折射率和低 色散性玻璃中特別顯著,並危及產率。 '冑清勢下,本案發明人具有-項目標以提供經由 壓成型以高生產率製造包含高折射率和低色散性玻 ' 璃的光學元件之手段。 馨擊 本案發明人精心地研究上面所述細紋和裂痕的肇因且 現下面所述: 少於精密加壓成型中,在該玻璃於加塵模具中麼成所欲 形狀之後,將該玻璃維持在該加壓模具内,該模具保持密 、使得該玻璃表面保留該模具表面所轉移的形狀同時予 ,以冷卻到該玻璃不會變形的溫度範圍。於此時,該表面附 ^的該玻璃部分會迅速冷卻’但是該玻璃的中心、部份則慢 慢地冷卻。如此,即使在靠近該表面的該玻璃已經達到低 、於該破璃轉變溫度以下的溫度之後,在該中心處的通度仍 然是高於該玻璃轉變溫度。當本案發明人探討與易於發生 細紋和裂痕的傳統玻璃相關的膨脹性質之時,彼等聲現在 該玻璃轉變温度之上與之下的該線性熱膨脹係數比顯著地 南於不易於發生細紋和裂痕的玻璃之線性熱膨脹係數。亦 J於此等玻璃中,當靠近該表面的溫度低於該玻璃轉變 :度且在該中心的溫度高於該玻璃轉變溫度之時,該中心 部份有比該表面附近的部份遠較為大的收縮。此現象係發 生於該玻璃被封閉在加壓模具内之時,而在喪失經歷該塑 319107 6 1359121 性變形的能力之玻璃内產生大應力。卷 之時,即使在產生應力之時,也不會;:損壞的=牢: ^上面所述光學常數範圍内的高折射率和低色散性玻璃所 具相當弱的該結構被認為會導致細紋和裂痕。 ‘因此之故,當本㈣明人_此等發料行進一步研 -究之時,他們發現經由將傳統高折射率和低色散性玻璃在 -該玻璃轉變溫度之上和之下的膨脹係數之間的該差里減小 可以在該冷卻步射減低在靠近該麵表面處與在心處 之間的收縮程度差異,藉此抑制細紋和裂痕。本發明即以 此基礎設計出。 本案發明人提供-種在精密加壓成型中不會損壞的光 •學玻璃,一種由該玻璃所組成的精密加壓成型用之預成型 •物;及_種由該玻璃所組成的光學元件。 另外,本案發明人促成以高生產率在不損壞該玻璃之 下製造光學元件。 儀^【發明内容】 本發明係有關用於精密加壓成型之光學玻璃,其具有 大於或等於1. 65之折射率與大於或等於5〇之阿貝數以汕合 number) (nu)d),使得 α(Μρ/]3)1/α(3^^)2 之比例 小於17,其中將在從該玻璃轉變溫度(Tg)到該弛垂溫度 (Ts)的溫度範圍内,表現出相對於該溫度差值 △ (MX7M)T(此處表或更小的固定值)的該 最大玻璃伸長量差值之該溫度表為T1,將在從T1-56C到 T1 + 5°C範圍内的該平均線性膨脹係數表為“冲al,且將在 319107 7 1359121 從該玻璃轉變溫度(Tg)-16(rc到該玻璃轉變溫产 ag)-i4(rC範圍内的該平均線性膨脹係數表=地卜 纟發月it 〃有關種包含該玻璃的精密加壓成型用 之預成型物;-種製造該預成型物的方法;及一種製造由 該玻璃所組成的光學元件之方法。 •' 錢明的其他示範具體實例和優點可以經由閱覽本揭 • 示内容和所附圖式獲得確定。 【實施方式】 所以’下面較佳特定具體實例要理解為僅為閣述性, 而絕不在任何方面對本揭示的其餘部分給予限制。於此方 面,無意顯示出比對本發明的基本了解所需者更詳細之本 .發明結構細部,配合圖式所作的說明部份即可使熟諸此技 蟄者明白如何在實作上體現本發明的數種形式。 以下更詳細地說明本發明。 [光學玻璃] 、I發明光學玻璃為-種用於精密加壓成型之光學玻 璃,其具有大於或等於1.65之折射率(nd)與大於或等於 5〇之阿貝數(以nu)d),使得α⑴咖)1/α (抑加)2之 比例小於17’其中將在從該玻璃轉變溫度㈤到該弛垂溫 度(Ts)的溫度範圍内,表現出相對於該溫度差值 △ (/^XM)T(此處△ (/)似以打表示1 〇c或更小的固定值) 的該最大玻璃伸長量差值之該溫度以τ]表示,將在從 Tl-5 C到T1+5°C範圍内的該平均線性膨脹係數以 表不,且將在從該玻璃轉變溫度(Tg)_16(rc到該玻璃轉變 ( 8 319107 1359121 益度(Tg)-140°C範圍内的該平均線性膨脹係數以aip/?a2 表示。 該比例a (aip/?a)2為在高於該玻璃轉變 •溫度的膨脹係數與低於該玻璃轉變溫度的膨脹係數之間的 -差異之指標。如上文中所敘述者,於本發明中,在高折射 ’率和低色散性玻璃内,減低在高於該玻璃轉變溫度的膨脹 係數與低於該玻璃轉變溫度的膨脹係數之間的該差異可以 _•減低在冷卻中在該玻璃表面與在該玻璃内部之間的收縮量 差異’藉此抑制細紋和裂痕。 以下說明比例 a(aJp/ja)l/a(aJp/ja)2。 熱膨脹係數a7p/jal為將在從該玻璃轉變溫度(Tg)到 -該弛垂溫度(Ts)的溫度範圍内,表現出相對於該溫度差值 灿(此處/)£X7Mt表示或更小的固定值)的該最大玻 璃伸長量差值之該溫度以T1表示時,在n-5°C到Τ1+5·χ 範圍内的該平均線性膨脹係數;其為代表在從該玻璃轉變 __溫度(Tg)到該弛垂溫度(Ts)的溫度範圍(高於玻璃轉變溫 度)内的該線性膨服係數之值。 平均線性膨脹係數為從低於該玻璃轉變溫度 (Tg)下160°C的溫度(Tg-160°C)到低於該玻璃轉變溫度 (Tg)下140°C的溫度(Tg-14(TC)範圍内的平均線性膨脹S 319107 1359121 I ‘In the case of this glass-like precision press molding, sometimes damage occurs during the cooling process of this addition. These damages are made up of fine lines (five) z. This is particularly remarkable in the above-mentioned high refractive index and low dispersion glass, and the yield is jeopardized. Under the circumstance, the inventors of the present invention have an object to provide a means for producing an optical element comprising a high refractive index and a low dispersion glass by high pressure production through compression molding. The inventor of the present invention carefully studied the causes of the fine lines and cracks described above and now described below: Less than precision press molding, after the glass is formed into a desired shape in the dusting mold, the glass is Maintained in the pressurizing mold, the mold is kept dense so that the glass surface retains the shape transferred by the surface of the mold while being cooled to a temperature range in which the glass does not deform. At this point, the portion of the glass attached to the surface will cool rapidly' but the center and portion of the glass cool slowly. Thus, even after the glass near the surface has reached a temperature below the glass transition temperature, the flux at the center is still above the glass transition temperature. When the inventor of the present invention explores the swelling properties associated with conventional glass which is prone to fine lines and cracks, the linear thermal expansion coefficient ratios above and below the glass transition temperature are significantly souther than those which are less prone to fine lines. And the linear thermal expansion coefficient of the cracked glass. Also in this glass, when the temperature near the surface is lower than the glass transition: degree and the temperature of the center is higher than the glass transition temperature, the central portion is farther than the portion near the surface. Big contraction. This phenomenon occurs when the glass is enclosed in a pressurizing mold, and a large stress is generated in the glass which loses the ability to undergo the deformation of the plastic 319107 6 1359121. At the time of the coil, even when stress is generated, it does not;: Damage = firmly: ^ The structure of the high refractive index and the low dispersion glass which are relatively weak in the optical constant range described above is considered to cause fine Grains and cracks. 'Therefore, when this (four) Ming people _ these hairdressing lines further research, they found that through the traditional high refractive index and low dispersion glass above and below the glass transition temperature expansion coefficient The reduction between the differences can reduce the difference in the degree of contraction between the surface near the surface and the center of the heart during the cooling step, thereby suppressing fine lines and cracks. The present invention has been designed on the basis of this. The inventor of the present invention provides an optical glass which is not damaged in precision press molding, a preformed product for precision press molding composed of the glass, and an optical component composed of the glass. . In addition, the inventors of the present invention have contributed to the manufacture of optical elements at high productivity without damaging the glass. The invention relates to an optical glass for precision press molding, which has a refractive index greater than or equal to 1.65 and an Abbe number greater than or equal to 5 汕 to match number) (nu)d ) such that the ratio of α(Μρ/]3)1/α(3^^)2 is less than 17, which will be expressed in the temperature range from the glass transition temperature (Tg) to the relaxation temperature (Ts) The temperature table for this maximum glass elongation difference relative to the temperature difference Δ (MX7M)T (here the table or smaller fixed value) is T1 and will range from T1-56C to T1 + 5°C. The average linear expansion coefficient within the table is "rushed alt and will be from 319107 7 1359121 from the glass transition temperature (Tg) - 16 (rc to the glass transition temperature yield ag) - i4 (the average linear expansion in the rC range Coefficient table = 地 纟 it it 〃 〃 〃 〃 〃 〃 〃 〃 〃 〃 〃 〃 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密Other exemplary embodiments and advantages of Qian Ming can be determined by reading the contents of the disclosure and the drawings. Therefore, the following specific examples are to be understood as merely illustrative, and in no way limit the remainder of the disclosure. In this regard, it is not intended to show more detail than those required for a basic understanding of the invention. The invention will be described in detail in conjunction with the description of the drawings, and it will be apparent to those skilled in the art how to practice several embodiments of the invention. The invention will be described in more detail below. [Optical Glass] I Invented Optical Glass is an optical glass for precision press molding having a refractive index (nd) greater than or equal to 1.65 and an Abbe number (in nu) d of greater than or equal to 5 ,, such that α(1) coffee The ratio of 1/α (suppressed) 2 is less than 17', which will exhibit a difference Δ (/^XM) with respect to the temperature range from the glass transition temperature (f) to the sag temperature (Ts). The temperature at which T (where Δ (/) appears to represent a fixed value of 1 〇c or less) is expressed as τ] and will be from Tl-5 C to T1+5°. The average linear expansion coefficient in the range C is not shown and will be converted from the glass Degree (Tg)_16 (rc to the glass transition (8 319107 1359121 benefit (Tg) - 140 ° C. The average linear expansion coefficient is expressed as aip /? a2. The ratio a (aip /? a) 2 is An index of the difference between the expansion coefficient higher than the glass transition temperature and the expansion coefficient lower than the glass transition temperature. As described above, in the present invention, in the high refractive 'rate and low dispersion glass Internally, reducing the difference between the expansion coefficient above the glass transition temperature and the expansion coefficient below the glass transition temperature can reduce the difference in shrinkage between the glass surface and the interior of the glass during cooling. 'This suppresses fine lines and cracks. The ratio a(aJp/ja)l/a(aJp/ja)2 will be described below. The coefficient of thermal expansion a7p/jal is expressed in the temperature range from the glass transition temperature (Tg) to the sag temperature (Ts), which is expressed relative to the temperature difference (here /) £X7Mt expressed or smaller The fixed value of the maximum glass elongation difference is expressed by T1, the average linear expansion coefficient in the range of n-5 ° C to Τ 1 + 5 · ;; which is representative of the transition from the glass _ The value of the linear expansion factor in the temperature range (Tg) to the sag temperature (Ts). The average linear expansion coefficient is from a temperature lower than the glass transition temperature (Tg) of 160 ° C (Tg - 160 ° C) to a temperature lower than the glass transition temperature (Tg) 140 ° C (Tg-14 (TC) Average linear expansion in the range

係數;其為代表在低於該玻璃轉變溫度(Tg)下的溫度之線 性膨脹係數之值。 V 該玻璃轉變溫度(Tg)和該弛垂溫度(Ts)為可以Coefficient; which is the value representing the linear expansion coefficient at a temperature below the glass transition temperature (Tg). V The glass transition temperature (Tg) and the relaxation temperature (Ts) are

Rigaku Denki K.K.製造的熱機械分析儀在1〇克荷重及, 319107 9 1359121 例如’ 4°G/分鐘的溫度增加速率下測量之值。其熱膨服係 數、a;p如2)可從使用此裝置得到的該熱機械分析 結果計算出。 .於本發明光學玻璃中的該比例aip/?al/a^/?a2係低於 ‘17田此值超過17之時,在該玻璃表面與内部之間的該收 .縮量差異會在冷卻步驟中增加,而可能造成細紋和裂痕。 .該比例Wp/^l/a;p/3a2合宜地為16 5或更低,較佳者16 •或更低且又更佳者,15或更低。在該玻璃轉變溫度之上 和之下的該膨脹係數之間的差異愈小,該細紋和裂痕的抑 制作用愈佳。不過,就該玻璃的性質而論曰仏如丨要大於 p/?a 2就η用tm點,該比例a jphal /a Jpha 2的下限值 .可視為1 · 01。就達到滿足上面所述各項性質的玻璃而言, -比例3功/^1/34如2合宜地為2.5或更高者。 提高aip/jal的典型成分為匕⑴和Ca0。降低a/p/?al 的典型成分為Si〇2和LhO。從影響該a;p/jal的觀點來看, 塌_ Law和GchO3的影響落於在一方面為聊或⑽至另一方 面為Si〇4 Li2〇之間。例如,⑽或⑽可以使用以〇2 或LiA予以置換以降低a1,而另一方向的取代可以 用來增加Wp/jal。該ayp如1的改變量可藉由此等取代的 里予以控制。也可以採用相同的方式以B2〇3或Ca〇取代 La2〇3和Gd2〇3或以La2〇3和Gd2〇3取代Bz〇3或Ca〇,以及以The thermomechanical analyzer manufactured by Rigaku Denki K.K. is measured at a temperature increase rate of 1 gram load and 319107 9 1359121, for example, '4 °G/min. The coefficient of thermal expansion, a; p, such as 2), can be calculated from the results of the thermomechanical analysis obtained using the apparatus. When the ratio aip/?al/a^/?a2 in the optical glass of the present invention is lower than the value of the 1717 field, the difference between the shrinkage and the shrinkage between the surface and the inside of the glass will be Increases in the cooling step, which may cause fine lines and cracks. The ratio Wp/^l/a; p/3a2 is suitably 16 5 or lower, preferably 16 • or lower and more preferably 15 or lower. The smaller the difference between the expansion coefficients above and below the glass transition temperature, the better the suppression of the fine lines and cracks. However, as far as the properties of the glass are concerned, for example, 丨 is greater than p/?a 2, and η is used for the tm point, and the lower limit of the ratio a jphal /a Jpha 2 can be regarded as 1 · 01. In the case of a glass which satisfies the properties described above, the ratio of 3 work / ^ 1 / 34 is suitably 2.5 or higher. The typical components that improve aip/jal are 匕(1) and Ca0. The typical components that reduce a/p/?al are Si〇2 and LhO. From the point of view of influencing the a;p/jal, the effects of Collapse_ Law and GchO3 fall between Si聊4 Li2〇 on the one hand or (10) to the other. For example, (10) or (10) may be replaced with 〇2 or LiA to reduce a1, and substitutions in the other direction may be used to increase Wp/jal. The amount of change in the ayp such as 1 can be controlled by this substitution. It is also possible to replace La2〇3 and Gd2〇3 with B2〇3 or Ca〇 or Bz〇3 or Ca〇 with La2〇3 and Gd2〇3 in the same manner, and

Si〇2* Li2〇 取代 La.和 Gd2〇3 或以 La2〇3 和 Gd2〇3 取代 Si〇2 或 Li2〇。 a7p/^2可以經由增加該玻璃中具有大離子半徑的該 319107 10 丄划121 以升高’且經由增加具有小離子半徑的該 降低。例如,有關二價陽離子成分:該Si〇2* Li2〇 replaces La. and Gd2〇3 or replaces Si〇2 or Li2〇 with La2〇3 and Gd2〇3. A7p/^2 can be raised by increasing the 319107 10 121 121 having a large ionic radius in the glass' and by increasing the decrease with a small ionic radius. For example, regarding divalent cation components:

Ba的離子半徑〉該Sr的離早、丄r 離子τ瓜〉該Ca的離子半徑〉該Mg 的維子半徑〉該Zn的離子丰取τ ^ τ . • 卞牛心·。u和Li的該離子半徑大 於 Ca。Ca 的離子本;0. , λ., « 二;B*si的離子半徑。因此之故, 此等元素彼此取代可以用來控制aip/^2。 • i述㈣方法可以在本發明巾組合絲將該比例 肇_ 如2保持低於17〇不過,從控制比例 a⑽al〜咖2的觀點來看,_al具有比a他2更大的 影響,且經由上述取代所達到的該改變程度對於 2 口較為大。因此,該比例叫乃以/叫触合宜地係經由 L您切注意且控制aw31予以控制。舉例而言,的 •範圍宜於從5〇χ1〇-6至200χ10-νγ,且a;灿a2的範圍宜於 從 50χ1(Γ7 至 20〇xl〇—7/°c。 由於本發明光學玻璃係用於精密加壓成型,因此其玻 %璃轉變溫度宜於低於或等於63(rc。不過,於低於4〇〇:c 的玻璃轉變溫度下,有時候會變得難以評估Wβ。另 外,在加壓成型過程中,於該預成型物表面上形成含碳塗 層以幫助玻璃延伸時,也會有堵塞的風險。如此,玻璃轉 變溫度宜於為450至63(TC,較佳者450至620 °C。 再者’本發明光學玻璃宜於具有低於或等於67〇 °c, 較佳者490至66(TC,更佳者500至64(TC,且又甚至更佳 者,530至630°C的弛垂溫度。當該光學玻璃具有低玻璃 轉變溫度和弛垂溫度,就可以在加壓成型中降低該玻璃加 319107 11 1359121 熱溫度。其結果為加熱和冷卻該玻璃所需的時間為之縮短 且可增進在加壓成型產品製造的產量。由於可以降低該加 壓成型的加熱溫度,因此該加壓成型模具的使用壽命可以 延長。 本發明光學玻璃具有1. 65或更大之折射率(nd)與50 或更大之阿貝數(nud)。本發明玻璃的該折射率和阿貝數之 該上限值^又有χ到特別的限制。不過,在對於該高品質預 成型物的形成具有重要性之適合加壓成型的低溫軟化性質 和玻璃穩定性之考慮中,宜於具有18或更小之折射率(nd) 及/或60或更大之阿貝數(nud)。 接著要說明合宜的本發明組成物。 本發明光學玻璃可包含呈該B2〇3、Si〇2、La2〇3、驗金 屬氧化物、和二價金屬氧化物形式之玻璃成分。 以下§兄明個別的玻璃成分。除非有不同的特定敘述。 否則含量和組合含量係表莫耳百分比,且含量和組合含量 的比例係表莫耳比例。 B2〇3和Si〇2、皆為玻璃網絡形成用之成分。為了強化 該玻璃的結構且減少細紋和裂痕,該Si()2含量對該㈣3含 量的比例⑽2/B2〇3)宜於為〇1至〇9〇。當該折射率(nd) 為1.65至1.70之時,可將相對於該聊的s池含量增加 以強化該玻璃的結構。如此,Si〇2/祕宜於超過Q 5但是 不要超過G.9G’較佳者超過G 5但是不要超過 者超過0.5但是不要超過〇 · 文住 、u. 8又更佳者為從0. 55至0. 75 、辄圍’ X更佳者從〇55至〇7的範圍。當該折射率⑽ 319107 12 U59121 超過1.70之時,Sl〇2/B2〇3宜於為〇 5,較佳者〇 ^ 至0. 4,以維持所欲性質。 ⑽為一種賦予玻璃高折射率且用於增加該玻璃的 化學耐久性之成分。 以與該La2〇3相同的方式發揮功能之Gd2〇3、γ2〇3、和 Yb2〇3可作為選用成分摻加人。該U2()3與至少—種選自The ionic radius of Ba > the early s of the Sr, the irradiance of the 丄r ion, the ionic radius of the Ca > the radius of the dimension of the Mg > the ion of the Zn is τ ^ τ. • The yak heart. The ionic radius of u and Li is greater than Ca. Ion of Ca; 0. , λ., « II; ionic radius of B*si. For this reason, the substitution of these elements with each other can be used to control aip/^2. • The method described in (4) may be such that the ratio 肇 _ _ 2 is kept below 17 在 in the towel composite of the present invention. However, from the viewpoint of controlling the ratio a (10) a 〜 咖 2, _al has a greater influence than a 2 , and The degree of this change achieved by the above substitution is relatively large for two ports. Therefore, the ratio is called / it is appropriate to control and control aw31 via L. For example, the range is preferably from 5〇χ1〇-6 to 200χ10-νγ, and a; the range of can a2 is preferably from 50χ1 (Γ7 to 20〇xl〇-7/°c. Due to the optical glass of the present invention It is used for precision press molding, so its glass transition temperature is preferably lower than or equal to 63 (rc. However, at a glass transition temperature lower than 4 〇〇:c, it sometimes becomes difficult to evaluate Wβ. In addition, during the press molding process, a carbon-containing coating is formed on the surface of the preform to help the glass to stretch, and there is also a risk of clogging. Thus, the glass transition temperature is preferably from 450 to 63 (TC, preferably. 450 to 620 ° C. Further, the optical glass of the present invention preferably has a lower than or equal to 67 ° C, preferably 490 to 66 (TC, more preferably 500 to 64 (TC, and even better) a sag temperature of 530 to 630 ° C. When the optical glass has a low glass transition temperature and a sag temperature, the glass may be heated to a temperature of 319107 11 1359121 in press molding. The result is heating and cooling the glass. The time required is shortened and the yield in the manufacture of press-formed products can be increased. The heating temperature of the press molding can be extended, so that the life of the press molding die can be extended. The optical glass of the present invention has a refractive index (nd) of 1.65 or more and an Abbe number (nud) of 50 or more. The upper limit of the refractive index and the Abbe number of the inventive glass is particularly limited. However, the low temperature softening property and glass suitable for press molding are important for the formation of the high quality preform. For stability considerations, it is preferred to have a refractive index (nd) of 18 or less and/or an Abbe number (nud) of 60 or more. Next, a suitable composition of the present invention will be described. The optical glass of the present invention may comprise It is a glass component in the form of B2〇3, Si〇2, La2〇3, metal oxide, and divalent metal oxide. The following § brothers clarify the individual glass components. Unless there are different specific descriptions, the content and combination The content is the percentage of Momo, and the ratio of the content to the combined content is the molar ratio. B2〇3 and Si〇2 are all components for forming a glass network. In order to strengthen the structure of the glass and reduce fine lines and cracks, The Si()2 content is (4) 3 The ratio of the amount (10) 2 / B2 〇 3) is preferably from 〇 1 to 〇 9 〇. When the refractive index (nd) is from 1.65 to 1.70, the content of the s pool relative to the sol can be increased to strengthen the structure of the glass. So, Si〇2/ secret should be more than Q 5 but not more than G.9G' is better than G 5 but not more than 0.5 but not more than 〇· 文住, u. 8 and better from 0 55 to 0.75, the range of X is better from 〇55 to 〇7. When the refractive index (10) 319107 12 U59121 exceeds 1.70, S1〇2/B2〇3 is preferably 〇5, The best 〇 ^ to 0.4 to maintain the desired nature. (10) is a component which imparts a high refractive index to glass and is used to increase the chemical durability of the glass. Gd2〇3, γ2〇3, and Yb2〇3 which function in the same manner as the La2〇3 can be added as an optional component. The U2()3 and at least one selected from

Gd2〇3、Υ—、和Yb2〇3中的氧化物之摻加係增加該玻璃的高 溫穩地性所適宜者。 鹼金屬氧化物係用於賦予低溫軟化性質。於彼等之 令’該U相加人可料低溫軟化性質同時提高該玻璃的 折射率力此方面,Ll2〇具有比其他驗金屬氧化物更大的 效用’只要其不經摻加到過量而因此對去玻化 (devitrification)抗性或化學耐久性的損失,就可促成該 所欲折射率和低溫軟化性質之獲得。The addition of oxides in Gd2〇3, Υ-, and Yb2〇3 is suitable for increasing the high temperature stability of the glass. Alkali metal oxides are used to impart low temperature softening properties. In this respect, the U-phase adds a low-temperature softening property while increasing the refractive index of the glass. In this respect, Ll2〇 has a greater utility than other metal oxides as long as it is not added to the excess. Thus, the loss of devitrification resistance or chemical durability can contribute to the desired refractive index and low temperature softening properties.

可賦予低溫軟化性質同時提高該玻璃的折射率的 Zn〇 ’與用來調整光學常數的MgO、Ca0、Sr0、和_,可 做為二價金屬氧化物之形式加入。 於本發明此等組成物中,足以加入可以視需要加入作 為’且清劑的Sb2G3以得到同時達到上述諸性f的組成物。諸 各別成分的含量宜於落在下述範圍之内。 匕〇3和SiQ2兩者都是網絡形祕成分。為了增加該玻 璃的穩定性該兩成份的組合量(Si()2獅3)宜於為5〇至 72% ’較佳者5〇至7〇%,更佳者5〇至68%,且又更佳者, 5〇至65%。該呂1〇2對b2〇3的含量比例(Si〇2+B2〇3)宜於維持 319107 13 1359121 成上面所述者以促使該玻璃熔融體的該流出黏度更適人於 預成型物的該模塑且改進化學耐久性同時強化玻璃結^,' 減低該黏度相對於溫度的變化,解決該玻璃裂痕的問題及 維持低溫軟化性質。 該Si〇2的含量係與該Β2〇3含量組合同時也基於對該 -Β2〇3含量的比例而定義者。不過,當該折射率(nd)為/65 - 至丨.70之時,該Sl〇2的含量宜於為15至30%,較佳者18 __至30% ’更佳者18至27%,且又更佳者,19至25%β當該 折射率(nd)超過1.70之時,該Si〇2的含量宜於為4至μ 18% ’較佳者5至16% ’且更佳者,6至15%。 該Β2〇3的含篁也是與該si 〇2含量組合同時也基於對該 Si〇2含量的比例而定義者。不過,當該折射率(nd)為1. 65 至丨.70之時,該B2〇3的含量宜於為25至45%,較佳者30 至40%,且更佳者32至37%。當該折射率(nd)超過丨.7〇 之時’該B2〇3的含量宜於為38至6 8%,較佳者42至65%, 4且更佳者,44至62%。 與其他驗金屬氧化物比較之下,Li2〇可更高地增加該 折射率且更降低該玻璃轉變溫度而不損及化學耐久性,藉 此增進該玻璃的炼化性質。不過,在以過多的量導入之時, 此等效應就難以達成。另外’在以過多的量導入之時,會 減低該玻璃的去玻化抗性,變成難以從外流的玻璃熔融體 直接模塑成高品質的預成型物,且會使耐候性 (weatherability)惡化。因此之故,當該折射率(nd)為 1. 65至1. 70之時,該LizO的含量宜於保持在5至20%, J4 319107 1359121 較佳者6至18%,且更佳者,9至18%。當該折射率(nd)超 過1. 70之時,該LhO的含量宜於為1至14%,較佳者2 至12%,且更佳者,3至11%。 除了 Li2〇之外’可以加入Na2〇和K2〇做為驗金屬氧化 物。不過’在慮及上面所述Li2〇的效應之時,不論該折射 - 率為何’該Li2〇含量對Li2〇、Na2〇、和K2〇的組合含量R,2〇 • 之比例(Li2〇/R,2〇)宜於為〇. 8至1,較佳者為j。 為了維持該玻璃的穩定性和化學耐久性,不論該折射 率為何,該R 2〇含量對S i 〇2和B2O3的組合含量之比例 (R’ 2〇/ (Si〇4B2〇3))宜於為低於〇. 3,較佳者為低於〇. 29。Zn〇' which imparts a low-temperature softening property while increasing the refractive index of the glass and MgO, Ca0, Sr0, and _ for adjusting the optical constant can be added as a divalent metal oxide. In the compositions of the present invention, it is sufficient to add Sb2G3 which can be added as a 'and a clear agent as needed to obtain a composition which simultaneously achieves the above-mentioned properties f. The content of each component is preferably within the range described below. Both 匕〇3 and SiQ2 are network-shaped secret components. In order to increase the stability of the glass, the combined amount of the two components (Si() 2 lion 3) is preferably 5 〇 to 72% 'better 5 〇 to 7 〇 %, more preferably 5 〇 to 68%, and Even better, 5〇 to 65%. The ratio of the content of b1〇3 to b2〇3 (Si〇2+B2〇3) is preferably maintained at 319107 13 1359121 as described above to promote the outflow viscosity of the glass melt to be more suitable for the preform. The molding and improved chemical durability simultaneously strengthen the glass bond, 'reducing the change in viscosity with respect to temperature, solving the problem of the glass crack and maintaining the low temperature softening property. The content of the Si 〇 2 is combined with the Β 2 〇 3 content and is also defined based on the ratio of the Β 2 〇 3 content. However, when the refractive index (nd) is from /65 to 丨.70, the content of the S1〇2 is preferably 15 to 30%, preferably 18 __ to 30% 'better 18 to 27 %, and more preferably, 19 to 25% β When the refractive index (nd) exceeds 1.70, the content of the Si〇2 is preferably 4 to μ18% 'better 5 to 16%' and more Good, 6 to 15%. The cerium-containing cerium is also defined in combination with the si 〇 2 content and also based on the ratio of the Si 〇 2 content. However, when the refractive index (nd) is from 1.65 to 丨.70, the content of the B2〇3 is preferably from 25 to 45%, preferably from 30 to 40%, and more preferably from 32 to 37%. . When the refractive index (nd) exceeds 丨.7〇, the content of the B2〇3 is preferably 38 to 6 8%, preferably 42 to 65%, 4 and more preferably 44 to 62%. In contrast to other metal oxides, Li2〇 can increase the refractive index more and lower the glass transition temperature without compromising chemical durability, thereby enhancing the refining properties of the glass. However, these effects are difficult to achieve when introduced in excessive quantities. In addition, when introduced in an excessive amount, the devitrification resistance of the glass is reduced, and it becomes difficult to directly mold the glass melt from the outflow into a high-quality preform, and the weatherability is deteriorated. . Therefore, when the refractive index (nd) is from 1.65 to 1.70, the content of the LizO is preferably maintained at 5 to 20%, preferably J4 319107 1359121 is 6 to 18%, and more preferably , 9 to 18%. When the refractive index (nd) exceeds 1.70, the LhO content is preferably from 1 to 14%, preferably from 2 to 12%, and more preferably from 3 to 11%. In addition to Li2〇, Na2〇 and K2〇 can be added as metal oxides. However, 'when considering the effect of Li2〇 described above, regardless of the refractive index, the ratio of the Li2〇 content to the combined content of Li2〇, Na2〇, and K2〇R, 2〇• (Li2〇/ R, 2 〇) is preferably 〇. 8 to 1, preferably j. In order to maintain the stability and chemical durability of the glass, regardless of the refractive index, the ratio of the R 2 〇 content to the combined content of S i 〇 2 and B 2 O 3 (R′ 2〇/(Si〇4B2〇3)) is preferably Y is less than 〇. 3, preferably less than 〇. 29.

La2〇3具有提高該折射率和增加化學耐久性與耐候性 之效用而不會降低該玻璃的穩定性或增加色散性。因此, 其且於作為本發明玻璃的必要成分。在以過小的量加入之 時,此等效用不會達到。在以過大的量加入之時,玻璃穩 定性會減低,該玻璃轉變溫度提高,該高品質預成型物^ %模塑和精密加壓成型兩者都會變得困難,且色散會增加。 因此之故,該Laz〇3含量宜於為〇. 5至22%,較佳者!至 5%。當該折射率(nd)為165至17〇之時,該丄心〇3含量 宜^為2至10,較佳者3至10%。當該折射率(nd)超過17〇 之時,U2〇3含量宜於為5至15,較佳者6至14%。 。θ Gd203可用為選用成分。以與該La2〇3的相同方式,其 可提高該折射率而不會損及玻璃的穩定性或低色散性質, 二::加:學耐久性與耐候性。特別者’在與一起採 之時,其可進—步增加針對去玻化的該玻璃穩定性。不 319107 15 過在過里採用之時,其會降低該玻璃的穩定性, 玻璃鞋#、 - 概又,且使得預成型物的模塑和精密加壓成型- 得困難。 叹主文 -口 θ ^〇3也可用為選用成分。以與該Gd2〇3的相同方式,其 可提间該折射率而不會損及玻璃的穩定性或低色散性質, •且可1加化學耐久性與财候性。特別者,在與La2〇3 —起採 .用之時可進一步增加針對去玻化的該玻璃穩定性。不 鑛過’在過篁採用之時,其會降低該玻璃的穩定性,提高該 f璃轉變溫度,且使得預成型物的模塑和精密加壓成型變^ 得困難。La2〇3 has the effect of increasing the refractive index and increasing chemical durability and weather resistance without lowering the stability of the glass or increasing the dispersion. Therefore, it is an essential component of the glass of the present invention. This equivalent is not achieved when added in too small amounts. When added in an excessive amount, the glass stability is lowered, the glass transition temperature is increased, and both of the high-quality preforms and the precision press molding become difficult, and the dispersion is increased. Therefore, the Laz〇3 content is preferably 〇. 5 to 22%, preferably! To 5%. When the refractive index (nd) is from 165 to 17 Torr, the content of the 〇3 is preferably from 2 to 10, preferably from 3 to 10%. When the refractive index (nd) exceeds 17 Torr, the U2 〇 3 content is preferably from 5 to 15, more preferably from 6 to 14%. . θ Gd203 can be used as an optional component. In the same manner as the La2?3, it can increase the refractive index without impairing the stability or low dispersion property of the glass. Second: Addition: durability and weather resistance. In particular, when it is taken together, it can further increase the stability of the glass for devitrification. No 319107 15 When used in the past, it will reduce the stability of the glass, and it is difficult to mold and precision press the preform. Sigh the main text - mouth θ ^ 〇 3 can also be used as an optional ingredient. In the same manner as the Gd2〇3, the refractive index can be raised without impairing the stability or low dispersion property of the glass, and can be chemically durable and economical. In particular, it is possible to further increase the stability of the glass for devitrification when used in combination with La2〇3. When it is used, it will lower the stability of the glass, increase the temperature of the glass transition, and make molding and precision press forming of the preform difficult.

Yb2〇3也可用為選用成分。以與該Gd2〇3和Υ2〇3相同的 •方式,其可提高該折射率而不會損及玻璃的穩定性或低色 .散性質,且可增加化學耐久性與财候性。特別者’在與La2〇3 起才木用之時,其可進一步增加針對去玻化的該玻璃穩定 ,不過,在過篁採用之時,其會降低玻璃的穩定性,提 •南該玻璃轉變溫度,且使得預成型物的模塑和精密加壓成 型變得困難。 如此,該GdW、Y2〇3、Yb2〇3和“他等成分的組合使 用可增加針對去玻璃質化的該玻璃穩定性且有效地促成從 玻璃熔融體直接模塑成該高品質預成型物。因此,該 GchO3、Y4、和几2〇3的組合含量宜於為大於或等於以。不 過,在此組合含量為過大之時,該玻璃穩定性會減低和該 玻璃轉變溫度會提高。因此,該Gd2〇3、γ2〇3、和化2〇3的組 合含量之上限值宜於為15%。當該折射率(1^)為丨託至 319107 16 1359121 1. 70之時,該Gd2〇3、Υ2〇3、和Yb2〇3的組合含量宜於為1 至10%,較佳者1至6%。當該折射率(nd)超過1. 7〇之時, 宜於為3至14%且較佳者為4至12%的範圍。於Gd2〇3、Y2〇3、 和Yb2〇3等成分之中,成分Gd2〇3和LA有利於獲得該上述 效用。因此’當該折射率(nd)為1.65至1.70之時,該Gd2〇3 - 和Y2〇3的組合含量宜於為1至10%,較佳者1至6%,且該 • 當折射率(nd)超過1. 70之時,宜於為3至14%,較佳者為 4至12%。該Gd2〇3、Υ2〇3、和Yb2〇3的組合含量對La2〇3含量 的比例((Gd2〇3+Y2〇3+Yb2〇3)/La2〇3)宜於保持在 〇· 3 至 1. 5 的 範圍之内以增加不管該折射率的玻璃穩定性。 當該折射率(nd)為丨.邸至1· 70之時,該GchCh的含量 宜於落在從〇至8%’較佳者〇至6%的範圍之内。當該折射 率(nd)超過1.70之時,該Gd2〇3的含量宜於落在從〇至 12%,較佳者1至12%,且更佳者,1至1〇%的範圍之内。 +當該折射率(nd)為1.65至1.70之時’ Υ2〇3的含量宜 、於洛在從0至5V較佳者〇.;[至3%,更佳者,〇. i至2. 5% 的範圍之内。當該折射率(nd)超過17〇之時,LA的含量 宜於落在從〇. 1至6%,較佳者0. 5至6%,且又更佳者,〇 5 至5%的範圍之内。 ’ 不官該折射率為何,Ybz〇3的含量宜於落在從〇至5〇/〇, 較佳者〇至3%的範圍之内,特別較佳者為根本不推加。Yb2〇3 can also be used as an optional ingredient. In the same manner as the Gd2〇3 and Υ2〇3, it can increase the refractive index without impairing the stability or low color of the glass, and can increase chemical durability and finance. In particular, 'when it is used with La2〇3, it can further increase the stability of the glass for devitrification. However, when it is used, it will lower the stability of the glass. The temperature is changed and molding and precision press forming of the preform become difficult. Thus, the combined use of GdW, Y2〇3, Yb2〇3 and "these components can increase the stability of the glass for devitrification and effectively promote direct molding from the glass melt into the high quality preform. Therefore, the combined content of the GchO3, Y4, and several 2〇3 is preferably greater than or equal to. However, when the content of the combination is too large, the stability of the glass is lowered and the glass transition temperature is increased. The upper limit of the combined content of Gd2〇3, γ2〇3, and 2〇3 is preferably 15%. When the refractive index (1^) is from 319107 16 1359121 1.70, The combination of Gd2〇3, Υ2〇3, and Yb2〇3 is preferably from 1 to 10%, preferably from 1 to 6%. When the refractive index (nd) exceeds 1. 7〇, it is preferably 3 It is in the range of 14% and preferably 4 to 12%. Among the components such as Gd2〇3, Y2〇3, and Yb2〇3, the components Gd2〇3 and LA are favorable for obtaining the above utility. When the refractive index (nd) is from 1.65 to 1.70, the combined content of the Gd2〇3 - and Y2〇3 is preferably from 1 to 10%, preferably from 1 to 6%, and the refractive index (nd) exceeds 1. 70 o'clock It is preferably from 3 to 14%, preferably from 4 to 12%. The ratio of the combined content of Gd2〇3, Υ2〇3, and Yb2〇3 to the content of La2〇3 ((Gd2〇3+Y2〇3+) Yb2〇3)/La2〇3) is preferably kept within the range of 〇·3 to 1.5 to increase the stability of the glass regardless of the refractive index. When the refractive index (nd) is 丨.邸 to 1.70 At the time, the content of the GchCh is preferably within a range from 〇 to 8% 'better 〇 to 6%. When the refractive index (nd) exceeds 1.70, the content of the Gd2 〇 3 is suitable for falling. From 〇 to 12%, preferably from 1 to 12%, and more preferably from 1 to 1%. + When the refractive index (nd) is from 1.65 to 1.70, the content of Υ2〇3 Preferably, Yulu is from 0 to 5V, preferably [to 3%, more preferably, 〇. i to 2.5%. When the refractive index (nd) exceeds 17〇, The content of LA is preferably in the range of from 1 to 6%, preferably from 0.5 to 6%, and even more preferably from 5 to 5%. 'What is the refractive index, Ybz The content of 〇3 is preferably within a range from 〇 to 5〇/〇, preferably from 〇 to 3%, and particularly preferably not at all.

ZnO為降低該炫點,液相溫度和玻璃轉變溫度;增加 該玻璃的化學耐久性與耐候性;及提高該折射率之成分。 其宜於採用作為本發明玻璃的必要成分。ZnO比其他的二 319107 17 1359121 價成分可遠更佳地增強該玻璃的耐候性。於此相異者,Ba0 -雖然可提高該折射率,不過其會損及該玻璃的耐候性。因 此’ ZnO可用需求量加入以取代_。為了經由摻加如 達到紋的效應,當該折射率(nd)為165至i Μ之時, ZnO的用量宜於為5至_,較佳者6至鹰,且更佳者, -7至20%。當折射率(ml)超過1.70之時,Zn〇的含量宜於 為1至18%,較佳者2至16%,且更佳者,3至14%。ZnO is used to lower the sap point, liquidus temperature and glass transition temperature; increase the chemical durability and weather resistance of the glass; and increase the composition of the refractive index. It is preferably employed as an essential component of the glass of the present invention. ZnO is much better than other two 319107 17 1359121 valence components to enhance the weatherability of the glass. In this case, Ba0 - although the refractive index can be increased, it will impair the weather resistance of the glass. Therefore, ZnO can be added in demand to replace _. In order to achieve the effect of the grain by doping, when the refractive index (nd) is 165 to i ,, the amount of ZnO is preferably 5 to _, preferably 6 to eagle, and more preferably -7 to 20%. When the refractive index (ml) exceeds 1.70, the content of Zn〇 is preferably from 1 to 18%, preferably from 2 to 16%, and more preferably from 3 to 14%.

MgQ、⑽、SrG、和_都是用來調整光學常數。該 CaO的含1宜於為〇至m以達到所欲目標,不論折射率為 何。該CaO與训2和β2〇3 一起使用來降低該玻璃轉變溫 度。因此,CaO的摻加量宜於為1%或更大,較佳者為j至 .14%的⑽含量。此外,當該折射率⑽為165至 .之時,沒有適當地將二價成分’包括Zn〇,與鹼土金 化物摻合,會變得難以達到具有良好耐候性的玻璃。因此, ZnO的含量對MgO、Ca0、Sr0、和Ba〇的該組合含量r〇之 ^該比例(副/RO)宜於為0. 5 $更大。較佳的Zn〇/R〇比值為 0. 5至4、甚至更為佳者為ο』至3。 θ不論該折射率為何,Mg0、Ca〇、Sr〇、和以〇的該組合 含量宜於為1至14%,較佳者2至14%以調整光學常數及降 低該玻璃轉變溫度。 不論該折射率為何,宜於留意該掺入Mg0、Ca0、Si*0、 和BaO以同時降低該玻璃轉變溫度且達到良好的对候性。 如上文中所敘述者’於以適當量加入之時,⑽係用來降 低該玻璃轉變溫度。由於該Ba〇的摻入會損及耐候性,因 319107 18 1359121 此’⑽含量請含量的該比例(CaO/RO)宜於為0.5至j, 二於^ I 8至卜另外Ba〇含量對R〇含量的該比例(Ba0/R0) 且於為0至〇· 2,特別較佳者為〇。 如上面所敘述者,雖然Ba〇可提高該折射率不過其 也會減低該玻璃的耐候性’·亦即’削弱化學耐性。於本發 明中,不論該折射率為何,可以控制Ba〇含量對呈、MgQ, (10), SrG, and _ are all used to adjust optical constants. The CaO content of 1 is preferably from 〇 to m to achieve the desired target regardless of the refractive index. This CaO is used in conjunction with Training 2 and β2〇3 to lower the glass transition temperature. Therefore, the amount of CaO added is preferably 1% or more, preferably from (1) to (14). Further, when the refractive index (10) is 165 to Å, the divalent component 'including Zn ruthenium is not appropriately blended with the alkaline earth metal compound, and it becomes difficult to attain a glass having good weather resistance. 5的以上。 The ZnO content of MgO, Ca0, Sr0, and Ba 〇 of the combined content of r 〇 ^ the ratio (sub / RO) is preferably 0. 5 $ greater. A preferred Zn〇/R〇 ratio is from 0.5 to 4, and even more preferably from ο” to 3. Regardless of the refractive index, the combination of Mg0, Ca〇, Sr〇, and ytterbium is preferably from 1 to 14%, preferably from 2 to 14%, to adjust the optical constant and lower the glass transition temperature. Regardless of the refractive index, it is desirable to pay attention to the incorporation of MgO, Ca0, Si*0, and BaO to simultaneously lower the glass transition temperature and achieve good pairability. As described above, when added in an appropriate amount, (10) is used to lower the glass transition temperature. Since the incorporation of Ba〇 will impair the weatherability, the ratio (CaO/RO) of the content of 319107 18 1359121 is preferably 0.5 to j, and 2 to 8 8 to The ratio (Ba0/R0) of the R〇 content is from 0 to 〇·2, and particularly preferably 〇. As described above, although Ba 〇 can increase the refractive index, it also reduces the weather resistance of the glass, i.e., weakens chemical resistance. In the present invention, regardless of the refractive index, the Ba〇 content can be controlled to be

Gd2〇3、Y2〇3、和Yb2〇3等形式的可提高該折射率之其他成分 的組合含量之比例以達到所欲折射率,甚至不要加入 BaO旦。亦即’可以省去Ba〇。於有加入之時,宜於將該㈣ 的量減少使得LazO3、Gch〇3、Y2〇3、和Yb2〇s的該組合含量對 該 BaO 的含里之該比例((La2〇3+Gd2〇3+Y2〇3+Yb2〇3)/BaO)為The ratio of the combined content of other components in the form of Gd2〇3, Y2〇3, and Yb2〇3 which can increase the refractive index is such that the desired refractive index is achieved, and even BaO denier is not added. That is, you can save Ba〇. When it is added, it is preferable to reduce the amount of (4) such that the combined content of LazO3, Gch〇3, Y2〇3, and Yb2〇s is the ratio of the content of the BaO ((La2〇3+Gd2〇) 3+Y2〇3+Yb2〇3)/BaO) is

1 〇或更大者。以此方式可以達到同時擁有所欲光學性質和 良好化學耐性之光學玻璃。在有加入BaO之時,該比例 ((La2〇3+Gd2〇3+Y2〇3+Yb2〇3)/BaO)宜於為 11 或更大者,較佳 者12或更大者’更佳者15或更大者’且又更佳者,18或 更大者。1 〇 or greater. In this way, an optical glass having both the desired optical properties and good chemical resistance can be achieved. When BaO is added, the ratio ((La2〇3+Gd2〇3+Y2〇3+Yb2〇3)/BaO) is preferably 11 or greater, and preferably 12 or greater is better. 15 or greater 'and better, 18 or greater.

Sb2〇3為作為澄清劑的選用添加劑。由於在1%或更低^時 即可達到充足的效用,因此其含量宜於為〇至1%,較佳者 〇至0.06%。該過量的Sb2〇3之添加會在精密加壓成型中將 該加壓成型模具的模塑表面氧化,負面地影響該加壓成型 模具和類似者之使用壽命,且因而從該精密加壓成型的觀 點來看係不宜者。 A12〇3具有增強該玻璃的耐用性和耐候姓之效用且可 作為選用成分加入。不過,於超過5%的含量之下,該玻璃 319107 19 1359121 轉變脈度會急遽提高且會有使光學常數落於所欲範圍之外 的,。險%此,0至5%的Ah〇3含量係合宜者,較佳者為〔 至3%且甚至較佳者為0至2%。 • ㈣2可作為選用成分加人以增加該玻翻财候性且調 整鮮常數。不過,當其含量超過5%之時,會有使光學常 -數落於所欲範圍之外的風險且會使低溫軟化性質亞化。因 •此之故,不論該折射率為何,於本發 _ _的含量宜於為。至5%,較佳者。·㈣。璃中Sb2〇3 is an optional additive as a fining agent. Since sufficient effect can be attained at 1% or less, the content is preferably from 〇 to 1%, preferably from 〇 to 0.06%. The addition of the excess Sb2〇3 oxidizes the molding surface of the press molding die in precision press molding, adversely affecting the service life of the press molding die and the like, and thus from the precision press molding The point of view is not suitable. A12〇3 has the effect of enhancing the durability and weather resistance of the glass and can be added as an optional ingredient. However, at temperatures above 5%, the glass 319107 19 1359121 transition pulse will increase sharply and will cause the optical constant to fall outside the desired range. % of the risk, 0 to 5% of the Ah 〇 3 content is suitable, preferably [to 3% and even better, 0 to 2%. • (4) 2 can be used as an optional component to increase the viability of the glass and adjust the fresh constant. However, when the content exceeds 5%, there is a risk that the optical constant number falls outside the desired range and the low temperature softening property is sub-ized. For this reason, regardless of the refractive index, the content of the present invention is preferably. To 5%, preferably. · (4). In the glass

Ta2〇。w〇3、心〇5、Ti〇2、P2〇5和F可以摻加到不會喪 失本發明的目標之程度。不過,在考慮起始物的成本’對 該玻璃所具各種性質的影響,與生產率之下,此等化合物 •的杉加都必須加以控制。Ta2〇5、W〇3、Nb2〇5、Ti〇2、P2〇5和 & 、、且a 3里且於為低於5%、較佳者低於2%、更佳者低 於,且又更佳者,低於〇.5%,最佳者為根本不摻加。於 此等之♦,宜於不加,因為其會造成難以從玻璃熔融 儀b體直接模塑成高品質的預成型物。 仗對於環境的負面影響來看,要避免加入Pb、Cr、Cd、 A^^Th、和Te。Pb於慣例上係用為光學玻璃的主要成分以 提咼折射率,不過,除了上面所述問題之外,其傾向於會 在非氧化性氣體環境中被精密加壓成型所還原。此會造成 該沉澱出的金屬鉛附著在該加壓成型模具的模塑表面上, 因而減低該加壓成型產品的表面精密度之問題。杬2〇3也在 慣用上加入作為澄清劑。不過,除了上面所述問題之外, 其會引起諸如將加壓成型模具的模塑表面氧化,藉此縮短Ta2〇. W〇3, palpitations 5, Ti〇2, P2〇5 and F can be incorporated to the extent that the objectives of the present invention are not lost. However, considering the cost of the starting material's influence on the various properties of the glass, and the productivity, these compounds must be controlled. Ta2〇5, W〇3, Nb2〇5, Ti〇2, P2〇5, and &, and a3 is less than 5%, preferably less than 2%, and more preferably less than, And even better, below 〇.5%, the best is not mixed at all. Therefore, it is preferable not to add because it causes difficulty in directly molding a high-quality preform from the glass melter b body.来看 For the negative impact of the environment, avoid adding Pb, Cr, Cd, A^^Th, and Te. Pb is conventionally used as a main component of optical glass to improve the refractive index, but in addition to the problems described above, it tends to be reduced by precision press molding in a non-oxidizing gas environment. This causes the precipitated metallic lead to adhere to the molding surface of the press molding die, thereby reducing the problem of the surface precision of the press-formed product.杬2〇3 is also conventionally added as a clarifying agent. However, in addition to the problems described above, it causes oxidation of the molding surface such as a press molding die, thereby shortening

(S 319107 20 1359121 該換具的使用哥命諸問題’且因此應該不摻加。 ,纟發明光·^玻璃可以經由加熱和熔化玻璃起始材料而 製造出。所採用的玻璃起始材辑可以呈適當的碳酸踏類、 .石肖酸鹽類、氧化物類、和類似者諸形式。將此等起始材料 以預定的比例稱取且混合而得到摻合起始材料。然後將該 -起始材料放置於業經加熱到例如,i,謂至13⑽ .化爐内。接著將該起始材料炫化、澄清、授摔、和句化得 到不含氣泡和未溶解物的均勻玻㈣融體。將該玻璃溶 ••體模塑且逐漸冷卻而得到本案發明的光學玻璃。 [精进加壓成型用的預成型物及精密加塵成型用的預成型 物之製造方法] ' - 帛著要說明本發明精密加壓成型用的該預成型物及該 •精密加壓成型用的預成型物之製造方法。該精密加璧成^ 所用的預成型物可稱為“精密加壓成型用預成型物,,或簡 稱為“預成型物,,。預成型物為在重量上等於精密加璧二 、里物件的模塑玻璃構件。該預成型物係經模塑成為對應於 精密加壓成型物件所具形狀之形狀。其例子為球體形^和 迴旋椭球體。該預成型物係經加熱到可促成精密加壓成型 用之黏度且施以精密加壓成型。 本發明精密加壓成型所用的預成型物係由上面所說明 過的本發明光學玻璃所構成。本發明預成型物的表面可以 視需要加裝一薄的脫模臈。經由精密加壓成型此等預成型 物可以用高生產率製造出具有所欲光學常數之光學元件。 另外,如上面所敘述者,可以調整該玻璃組成以增加該玻(S 319107 20 1359121 The use of the converter is problematic and therefore should not be added.) The invention of the glass can be produced by heating and melting the glass starting material. It may be in the form of a suitable carbonic acid step, a sulphate, an oxide, and the like. These starting materials are weighed and mixed in a predetermined ratio to obtain a blended starting material. - the starting material is placed in a furnace, for example, i, to 13 (10). The starting material is then dashed, clarified, dropped, and sentenced to give a uniform glass without bubbles and undissolved matter (4) The glass of the present invention is molded and gradually cooled to obtain the optical glass of the present invention. [Preform for fine press molding and method for producing a preform for precision dusting molding] ' - 帛The preform for precision press molding of the present invention and the method for producing the preform for precision press molding are described. The preform used for precision press forming can be referred to as "precision press molding". Preform, or simply The preform, the preform is a molded glass member that is equal in weight to the precision twisted two-in-one article. The preform is molded into a shape corresponding to the shape of the precision press-formed article. Examples are a spherical shape and a convoluted spheroid. The preform is heated to a viscosity which facilitates precision press molding and is subjected to precision press molding. The preform used in the precision press molding of the present invention is The optical glass of the present invention is constructed. The surface of the preform of the present invention may be provided with a thin release blunt as needed. The preforms can be molded with high precision to produce desired optical constants with high productivity. An optical component. Alternatively, as described above, the glass composition can be adjusted to increase the glass

319107 21 1359121 璃在面溫範圍内的穩定性及增加在外流時的該玻璃溶融體 之黏度。如此’在將流出一管的玻璃熔融體分離所得玻璃 膏球(glass gob)冷卻的程序中,該模塑預成型物之方法可 提供促成以高生產率製造該高品質預成型物。 本發明也有關一種精密加壓成型所用的預成型物之製 - 造方法,包括:(1)決定玻璃組成以賦予該玻璃大於或等於 • 1· 65之折射率(nd)與大於或等於50之阿貝數(nud),及達 到小於17之alp/?al/aip/7a2比例,其中將在從該玻璃轉變 ••溫度(Tg)到該弛垂溫度(Ts)的溫度範圍内,表現出相對於 該溫度差值(此處表示1。C或更小的固定值) 的該最大玻璃伸長量差值之該溫度以T1表示,將在從 H-5°C到T1 +5°C範圍内的該平均線性膨脹係數以沒功肋 1表示,且將在從該玻璃轉變溫度(Tg)_16(rc到該玻璃轉 變溫度(Tg)-140°C範圍内的平均線性膨脹係數以a切“ 2 表示,及(2)經由使用具有經如此決定的該組成之玻璃製造 4精密加壓成型所用的預成型物。 如上面所敘述者,採用低於Π的a7p/3al/a7p/3a2比例 可促成在南折射率和低色散性玻璃中的精密加壓成型之過 程中減少或防止細紋和裂痕。於本發明製造精密加壓成型 所用的預成型物之該方法中,係採用其組成經決定成使得 比例小於17以促成在精密加壓成型中以高 生產率且/又有、”曰紋和裂痕的精密加壓成型之玻璃來製造精 密加壓成型所用的預成型物。經如此製造出的精密加壓成 型所用的該預成型物可以用來以高生產率製造由具有㈣ 319107 22 1359121 光學常數的高折射率和低色散性玻璃所構成之光學元件。 該aip/jal/a7p/ja2比例係以上面所敘述的控制方法達成 的。於本發明製造精密加壓成型所用的預成型物之方法 .中,可以將此等控制方法適當地組合以定出產生小於丄7 的aip/2al/ajp/7a2比例之玻璃組成。 該預成型物可以經由一種包括下列步驟的方法予以製 造··造成玻璃熔融體從管道流出,分離出玻璃膏球,及將 該玻璃熔融體膏球冷卻以形成一精密加壓成型所用的預成 型物(後文中稱為方法Γ );以及經由一種包括下列步 驟的方法予以製造:從玻璃熔融體產生模塑玻璃體且予以 切割或切片;研磨;及將該模塑玻璃體拋光(後文中稱為 “方法2”)。 μ319107 21 1359121 The stability of the glass over the surface temperature range and the viscosity of the glass melt in the outflow. Thus, in the procedure of cooling a glass gob which separates a glass melt from a tube, the method of molding the preform can provide for the manufacture of the high quality preform at high productivity. The present invention also relates to a method of making a preform for precision press molding, comprising: (1) determining a glass composition to impart a refractive index (nd) greater than or equal to 1.65 to greater than or equal to 50. The Abbe number (nud), and a ratio of apl/?al/aip/7a2 of less than 17, which will be expressed over the temperature range from the glass transition temperature (Tg) to the sag temperature (Ts) The temperature of the difference in the maximum glass elongation relative to the temperature difference (here, a fixed value of 1. C or less) is expressed as T1 and will be from H-5 ° C to T1 + 5 ° C. The average linear expansion coefficient in the range is represented by the rib 1 and will average the coefficient of linear expansion from the glass transition temperature (Tg) _16 (rc to the glass transition temperature (Tg) - 140 ° C. Cut "2", and (2) a preform used for precision press molding using a glass having the composition thus determined. As described above, a7p/3al/a7p/3a2 below Π is used. The ratio can contribute to the reduction or prevention of precision press molding in the south and low dispersion glass Patterns and cracks. In the method of the present invention for producing a preform for precision press molding, the composition is determined such that the ratio is less than 17 to promote high productivity and/or presence in precision press molding. Fine-formed glass of crepe and crack to produce a preform for precision press molding. The preform used for precision press molding thus produced can be used for high-productivity manufacturing with (4) 319107 22 1359121 Optical element composed of high refractive index and low dispersion glass of optical constant. The aip/jal/a7p/ja2 ratio is achieved by the control method described above. Preform for the manufacture of precision press molding according to the present invention. In the method of the method, these control methods may be appropriately combined to determine a glass composition which produces an aip/2al/ajp/7a2 ratio of less than 丄 7. The preform may be produced by a method comprising the following steps: · causing the glass melt to flow out of the pipe, separating the glass paste balls, and cooling the glass melt paste balls to form a preform for precision press molding ( It is referred to herein as a method; and is produced by a method comprising the steps of: molding a glass body from a glass melt and cutting or slicing; grinding; and polishing the molded glass body (hereinafter referred to as "method 2" ) μ

方法1的一個特定例子為下述製造方法:藉此以從外 流的玻璃㈣體流分離出預定重量的玻璃㈣體膏球且冷 卻該玻璃膏球等步驟模塑具有預定重量的預成型物。此方 法的優點在於不需要諸如切割、研磨、和撤光等機械加卫。 經機械加工的預成型物在機械加工之前需要退火以使該域 璃變形減低到不會發生損壞之程度。然而,上面所述方法 不需要退火以防止損壞。另外,其可給出具有光華表面的 預成型物°於此方法中’從賦予㈣、乾淨表面的觀點央 看,宜於在經由施加風壓Μ漂浮之_形成該預成型來 物也且於不含有切割標言志,稱為剪切標誌者。剪切幸 係在外流玻㈣融體被葉片切割之時產生的。當剪= 透過模塑精密加Μ成型產品的該階段保留下來之時,= 319107 23 1359121 到結束時即變成缺陷。因此,宜於在預成型階段就消除剪 切標誌。不會產生剪切標誌的分離玻璃熔融體之方法包括 使玻璃熔融體從外流管滴落下來,及支撐從外流管流出來 的玻璃熔融體流之前端且於促成具有預定重量的玻璃熔融 體膏球分離出之時機移除此支撐體(稱為“滴_切法 (drop-cut method)”)。於滴-切法令,該玻璃係在介於該 .玻璃熔融體流之前端與外流管的尖部之間形成的束縮處 (consti^iction)分開,產生具有預定重量的玻璃熔融體膏 球。接著,將所得該玻璃熔融體膏球模塑成仍在軟化狀態 下適合加壓成型之形狀。 於方法2中,係使玻璃熔融體流到一個澆鑄模子内以 杈塑-包含上面所述光學玻璃的模塑玻璃構件,及將該模 塑玻璃構件機械加工以製造成具有預定重量的預成型物。 該玻璃宜於在機械加工之前經由退火處理以完全移除殘留 變形。 [光學元件和製造光學元件的方法] 本發明光學70件係由上面所述本發明光學玻璃所構 成。本發明光學元件的特徵在於具有與構成該光學元件的 本發明光學玻璃相时式的高折射率和低色散性。 本發明光學元件的例子為各種透鏡諸如球體透鏡、非 球體透鏡、和微透鏡;繞射光拇;帶有繞射光桃的透鏡; 透鏡陣列;和稜鏡。此等光學元件宜於經由將本發明預成 型物加熱 '軟化、和精密加壓成型而獲得。 於該光學元件上可以加裝光學薄膜諸如抗反射膜、完 319107 24 1359121 全反射膜、部份反射膜。及具有光譜性質的薄膜。 接者說明製造光學元件的方法。 於本發明製造光學元件的方法中, 物或以本發明方法將本發明預成型 个、月方法衣造預成型物的方法所製成 ^所用的預成型物予以加熱且使用製造光學轉戶/ = 精密加壓成型模具予以精密加壓成型。 的 該精密加壓成型法,也稱為模製光學成型法,係 _^明所屬技術領域中已經熟知者。 ’、x 可以透射、折射、繞射、或反射光線的光學元件之任 何表面都稱為光學功能表面。於透鏡的例子中,透鏡表面 諸=非球面透鏡的非球面與球面透鏡的球面兩者都對應於 ,光學功能表面。於精密加壓成型中,該精密加壓成型模具 的扠塑表面係經精確地轉移到該玻璃以經由加壓成型形成 光學功能表面。亦即,為了完成光學功能表面,不需要機 械加工諸如研磨或拋光。A specific example of the method 1 is a production method in which a preform having a predetermined weight is molded by separating a predetermined weight of the glass (tetra) body paste ball from the outflowing glass (tetra) body stream and cooling the glass paste ball or the like. The advantage of this method is that it does not require mechanical reinforcement such as cutting, grinding, and light removal. The machined preform needs to be annealed prior to machining to reduce the deformation of the domain to the point where damage does not occur. However, the method described above does not require annealing to prevent damage. In addition, it can give a preform having a brilliance surface. In this method, from the viewpoint of imparting (four), a clean surface, it is preferable to form the preformed object by floating under the application of wind pressure. Does not contain cutting marks, called cut marks. Shearing occurs when the outer flow glass (4) melt is cut by the blade. When the shear = is retained by this stage of the molded precision twisted molded product, = 319107 23 1359121 becomes a defect at the end. Therefore, it is preferable to eliminate the cutting mark at the preforming stage. A method of separating a glass melt that does not produce a shear mark comprises dropping a glass melt from an outer tube, and supporting a front end of the glass melt flowing out of the outer tube and contributing to a glass melt paste having a predetermined weight This support is removed at the timing of the ball separation (referred to as the "drop-cut method"). In the drop-cutting process, the glass is separated by a constriction formed between the front end of the flow of the glass melt and the tip of the outer flow tube to produce a glass melt paste ball having a predetermined weight. . Next, the obtained glass melt paste ball was molded into a shape which was suitable for press molding while still being softened. In the method 2, the glass melt is flowed into a casting mold to mold the molded glass member including the optical glass described above, and the molded glass member is machined to be formed into a preform having a predetermined weight. Things. The glass is preferably subjected to an annealing treatment prior to machining to completely remove residual deformation. [Optical element and method of manufacturing the optical element] The optical 70 of the present invention is composed of the optical glass of the present invention described above. The optical element of the present invention is characterized by having a high refractive index and a low dispersion property in the form of the optical glass of the present invention constituting the optical element. Examples of the optical element of the present invention are various lenses such as a spherical lens, an aspheric lens, and a microlens; a diffractive optical thumb; a lens with a diffractive peach; a lens array; These optical elements are preferably obtained by heating & softening and precision press molding the preform of the present invention. An optical film such as an anti-reflection film, a total reflection film of 319107 24 1359121, and a partially reflective film may be attached to the optical element. And films with spectral properties. The method of manufacturing an optical component is described. In the method for producing an optical element of the present invention, the preform used in the method of pre-forming a preformed method of the present invention by the method of the present invention is heated and used to manufacture an optical transfer/ = Precision press forming dies are precision pressed. This precision press molding method, also referred to as a molded optical molding method, is well known in the art. Any surface of an optical element that x can transmit, refract, diffract, or reflect light is referred to as an optically functional surface. In the example of the lens, both the aspherical surface of the lens surface = the aspheric surface of the aspherical lens and the spherical surface of the spherical lens correspond to the optically functional surface. In precision press molding, the forged plastic surface of the precision press molding die is precisely transferred to the glass to form an optically functional surface via press molding. That is, in order to complete the optically functional surface, no mechanical processing such as grinding or polishing is required.

因此之故’本發明製造光學元件的方法適合用來製造 諸如透鏡、透鏡陣列、繞射光柵、和棱鏡等光學元件,且 最適合用來以高度生產率製造非球面透鏡。 本發明製造光學元件的方法可以促成具有上述光學性 質的該光學元件之製造且容許上述該玻璃組成的之調整以 賦予預成型物低溫加工性質,藉此促成在相當低的溫度下 進·行該玻璃的加壓成型。如此,對於該加壓成型模具的模 塑表面上之負荷為之減低且可因而延長該加壓成型模具 (或在該模塑表面上有加裝脫模膜之時的脫模膜)的使用壽 25 319107Therefore, the method of manufacturing an optical element of the present invention is suitable for fabricating optical elements such as lenses, lens arrays, diffraction gratings, and prisms, and is most suitable for manufacturing aspherical lenses with high productivity. The method of making an optical component of the present invention can facilitate the fabrication of the optical component having the optical properties described above and permit adjustment of the glass composition described above to impart low temperature processing properties to the preform, thereby facilitating the entry at relatively low temperatures. Press molding of glass. Thus, the load on the molding surface of the press molding die is reduced and the use of the press molding film (or the release film when the release film is attached to the molding surface) can be extended. Shou 25 319107

丄 J 定性,促射整增進構成·型物的該破璃所具穩 的去破化^ 地在再加熱和加好財防止該玻璃 步驟“ίπ_ ㈣化玻制獲得該最後產品的整個該 .步驟系列可以用高生產率來執行。 .-2知的加壓成型模具可以採用於精密加愿成型,諸如 ,=諸如碳切的㈣、超硬材料或不軸所製成的 膜可么二八有使用脫㈣塗覆的模塑表面。所使用的脫模 、=3碳膜、貴金屬合金膜、或類似者。加壓成型模具 裝二者上杈和下模,且於需要時,還有一鼓形模 於此等之中’為了在加壓成型中有效地減少或防止 對玻璃模塑物件的損壞’宜於使用由碳化石夕或超硬合金所 構成的加壓成型模具(特別是由不含黏合劑的超硬合金所 製成者’諸如由WC所製成的加職型模具。也宜於在模具 的模塑表面加上呈含碳膜形式的脫模膜。 精密加磨成型宜於在模塑過程中使用非氧化性氣體環 •境來進行以保持該加壓成型模具的模塑表面於良好狀態之 下。較佳的非氡化性氣體的例子為氮氣及氮氣和氫氣的混 合物。特別者’在採用具有加上呈含碳膜形式的脫模膜之 板塑表面之加壓成型模具之時以及在採用由碳化石夕構成的 加壓成型扠具之時,有需要在此等非氧化性氣體環境中進 行精密加壓成型。 其次要說明特別適合製造本發明光學元件的方法所用 於精密加壓成型法。 (精密加壓成型方法1) 319107 26 1359121 於此方法中’將預成型物導到該加壓成型模具内,將 該加壓成型模具和該預成型物兩者都加熱,且進行精密加 C成型(後文稱為“精密加壓成型法1”)。 • 於精狯加壓成型法1之中,宜於將該加壓成型模具和 預成1物兩者都加熱到構成該預成型物的玻璃展現出 1 〇至10 dPa · s的黏度以進行精密加壓成型。 • η該精密加壓成型物件宜於在冷卻到該玻璃展現出 • io12dpa^s或更大者’較佳者1〇UdPa· s或更大者且更 仫者10 dPa · s或更大者的黏度之溫度之時,從該加壓成 型模具中取出。 在此等條件之下,該加壓成型模具的模塑表面之形狀 可以精確地轉移到玻璃且可以在沒有變形之下取出該精密 加壓成型物件。 (精密加壓成型方法2) 此方法的特徵在於將業經加熱到一溫度的預成型物導 ~到業經預熱到另一溫度的加壓成型模具内,且精密加壓成 型該預成型物(後文稱為“精密加壓成型法2”)。此方法 可以用來在將該預成型物導到該加壓成型模具内之前將該 預成t物預熱’错此縮短週期時間且促成具有良好表面精 確度且不含表面缺陷的光學元件之製造。 該加壓成型模具要預熱到的溫度宜於低於該預成型物 預熱的溫度。此種預熱可以使加熱該加壓成型模具的溫度 保持低值’由此減低對該加壓成型模具的耗損與毁壞。 於精密加壓成型方法2中,宜於將該預成型物預熱到 27 319107 1359121 構成該預成型物的該玻璃展現出1〇9dPa · S或更低者,較 佳者109dPa · s的黏度。 另外,宜於在該預成型物浮製之時予以預熱;較佳將 預熱進行到構成該預成型物的該玻璃展現出1〇5·5至1〇9丄J Qualitative, tempering and tempering enhances the composition of the glazed material to stabilize the devitrification. The ground is reheated and the good fortune is prevented. The glass step "ίπ_ (4) glass is obtained by obtaining the final product. The series of steps can be performed with high productivity. The known pressure forming mold can be used for precision forming, such as = for example, carbon cutting (four), super hard material or non-axis film can be used. There is a mold surface to be coated with a (four) coating, a demolding, a =3 carbon film, a noble metal alloy film, or the like used. The press molding die is provided with both the upper and lower molds, and if necessary, there is also a In the drum mold, etc., in order to effectively reduce or prevent damage to the glass molded article in press molding, it is preferable to use a press molding die composed of carbon carbide or superalloy (especially A mold made of a superhard alloy without a binder, such as an additive mold made of WC. It is also suitable to add a release film in the form of a carbon-containing film on the molding surface of the mold. It is advisable to use a non-oxidizing gas ring during the molding process. The molding surface of the press molding die is maintained in a good condition. An example of a preferred non-deuterated gas is nitrogen and a mixture of nitrogen and hydrogen. In particular, the use of a carbon-containing film is added. At the time of press molding of the mold surface of the mold film and the use of a press-formed fork made of carbon carbide, it is necessary to perform precision press molding in such a non-oxidizing gas environment. A method which is particularly suitable for producing the optical element of the present invention is used for precision press molding. (Precision Press Forming Method 1) 319107 26 1359121 In this method, 'the preform is introduced into the press molding die, and the pressurization is performed. Both the molding die and the preform are heated, and precision C molding (hereinafter referred to as "precision molding method 1") is performed. • In the fine press molding method 1, it is preferable to add Both the press molding die and the preform are heated to the glass constituting the preform to exhibit a viscosity of 1 〇 to 10 dPa·s for precision press molding. η The precision press molded article is suitable for cooling To the glass Exhibiting from the press molding die when the temperature of the viscosity of io12dpa^s or larger is better than 1% UdPa·s or larger and more preferably 10 dPa·s or more Under these conditions, the shape of the molding surface of the press molding die can be accurately transferred to the glass and the precision press molded article can be taken out without deformation. (Precision Pressing Method 2) This method It is characterized in that a preform heated to a temperature is guided into a press molding mold which is preheated to another temperature, and the preform is precisely pressed (hereinafter referred to as "precision press molding" 2"). This method can be used to preheat the pre-formed material before it is introduced into the press-forming mold. This shortens the cycle time and contributes to good surface accuracy and no surface defects. The manufacture of optical components. The temperature at which the press molding die is to be preheated is preferably lower than the temperature at which the preform is preheated. Such preheating can keep the temperature of heating the press molding die low, thereby reducing wear and tear on the press molding die. In the precision press molding method 2, it is preferred to preheat the preform to 27 319107 1359121. The glass constituting the preform exhibits a viscosity of 1 〇 9 dPa · S or less, preferably 109 dPa · s. . Further, it is preferred to preheat the preform at the time of floating; preferably, the preheating is carried out until the glass constituting the preform exhibits 1〇5·5 to 1〇9

Pa· S,更佳者大於或等於105.5但是低於1〇gdPa· s的黏 • 度。 . 該玻璃的冷卻宜於與加壓起始同時地或在加壓之中開 始。 _ 該加壓成型模具的溫度宜調整到低於該預成型物的預 熱溫度。於該玻璃展現出1〇9至1〇12dPa· s的黏度之溫度 作為衡量標準即足夠所用。 ' 12於此方法中,宜於在加壓成型後冷卻到該玻璃展示出 10 dPa’s或更大的黏度之後’從該模具取出該加壓成型 物件。 將精在加壓成型所得該光學元件從該加壓成型模具取 、出且視需要予以逐漸冷卻1該模塑物件為光學物件諸如 透鏡之時,可以視需要在其表面上塗覆光學薄膜。 【實施方式】 以下面透過實施例進一步說明本發明。不過,本發明 不限於實施例中所顯示的形式。 复造光學玻璃 表1提供實施例i至18與比較實施例i和2之該玻璃Pa· S, preferably greater than or equal to 105.5 but less than 1〇gdPa·s. The cooling of the glass is preferably started simultaneously with the initiation of pressurization or under pressure. The temperature of the press molding die should be adjusted to be lower than the preheating temperature of the preform. The temperature at which the glass exhibits a viscosity of from 1 〇 9 to 1 〇 12 dPa·s is sufficient as a measure. In this method, it is preferred to take out the press-formed article from the mold after cooling after press molding until the glass exhibits a viscosity of 10 dPa's or more. The optical member obtained by press molding is taken out from the press molding die and gradually cooled as needed. When the molded article is an optical article such as a lens, an optical film may be coated on the surface as needed. [Embodiment] The present invention will be further described below by way of examples. However, the invention is not limited to the form shown in the embodiment. Reconstituted optical glass Table 1 provides the glasses of Examples i to 18 and Comparative Examples i and 2

、、且成。其中使用多種变士 @ P ., 子應的氧化物、氫氧化物、碳酸鹽、 和硝酸鹽作為每一種此 種此4玻璃所用的不同成分之起始材 319107 28 1359121 料。稱取諸起始材料以在玻璃化,充分地混合,給到鉑坩 •堝中,在電爐中於1,200至1,30(TC的溫度範圍熔化,經 由攪拌勻化,澄清,及在經預熱到適當溫度的金屬模具内 之後產生表1中提供的該組成。將該洗鑄玻璃冷卻 到該玻璃轉變溫度之後,直接導到退火爐内,於該處將其 -直接冷卻到室溫。各種光學玻璃因此而得到。 * 採用下述諸程序來測定實施例14該光學破璃的該玻 癱^璃轉變溫度(Tg)、弛垂溫度(Ts)和比例。 其它光學玻璃的該玻璃轉變溫度(Tg)、弛垂溫度(Ts)和 a/phal/a〗p/ja2比例都是以相似方式獲得。彼等的值都提 供於表2之中。 , 丨·採用熱機械分析儀。將1〇克固定重量的施加在圓柱 形玻璃樣品的縱軸方向上,該玻璃樣品係業經充分地退 火,且尺寸為20毫米長度及5毫米直徑且以4°c/分鐘的 固定速率加熱該玻璃樣品。以15秒的間隔重複地測量該樣 %品的伸長量。據此,測量係以1°C的間隔(/^L7MT=rc)進 行。圖1中所顯示的該TMA曲線係從該測量結果經由將該 樣品的伸長TMA量標繪在Y-軸上(圖】中左側的垂直軸)且 將《亥咖度標繪在χ_軸上而得者。圖i中所顯示的 曲線係經由將該樣品每1 °c溫度差值的伸長量 變化標繪在Y-軸上(圖丨中右側的垂直軸)且將該溫度標繪 在X_轴上而得者。亦即,Ρ£Χ7ΜΤΜΑ係對應於每rc溫度差 值的該TMA差值。此處,“該樣品伸長量,,為圓柱形玻璃 樣品的高度之伸長量。溫度差值為1°C或更小的固 319107 29 1359121 定正值,如上面所敘述者。在將定為丨、之時可 以得到具有足夠精確度的測量。 · 。2·在1中所得該^從DTMA曲線上找出WI7MTMA(該樣 伸長量的差值)達到最大值時的溫度T1。 3.基於TMA曲線,根據光學玻璃工業協會(the〇ptical -Glass Industry Ass〇ciati〇n)的標準測定出該玻璃轉變溫 度Tg且得到TMA達到最大值之處的該溫度ts。 0^ 攸在2中所付之T1和TMA曲線得到該樣品在τ 1 _ 5。c 和 T1+5 C 的伸長量:TMA(T卜5)和 TMA(T1+5)。 5. 攸在3中所得之該Tg和TMA曲線定出該樣品在 Tg-160 C 和 Tg-140°C 的伸長量:TMA(Tg_16〇)和 TMA (Tg-140)。 6. 按下式計算在從該玻璃轉變溫度(Tg)到該弛垂溫度 (Ts)的溫度範圍内的該平均線性膨脹係數之典型值 : 34/^1(/γ) = {ΤΜΑ(τ1+5)_ΤΜΑ(τ卜5)}/樣品長度 ♦ "5。0(-5。〇}。 7. 按下式計算低於Tg的該平均線性膨脹係數之典型 it alpha2 ·· ΜρΛ32(/γ) = {ΤΜΑ(τ§—14(rc)_TMA(Tg—16〇。〇}/樣品長度 /{140 C (-160 C) }。“樣品長度”意指樣品在25。(;的長 度’其為20毫米。And, and into. Among them, a variety of var. @P., oxides, hydroxides, carbonates, and nitrates are used as starting materials for the different components of each of these 4 glasses 319107 28 1359121. Weigh the starting materials to vitrify, mix thoroughly, feed them into a platinum crucible, melt in an electric furnace at 1,200 to 1,30 (temperature range of TC, homogenize by stirring, clarify, and After preheating into a metal mold of appropriate temperature, the composition provided in Table 1 is produced. After cooling the cast glass to the glass transition temperature, it is directed to the annealing furnace where it is cooled directly to the chamber. Various optical glasses were thus obtained. * The following procedures were used to determine the glass transition temperature (Tg), relaxation temperature (Ts) and ratio of the optically broken glass of Example 14. The glass transition temperature (Tg), the sag temperature (Ts), and the a/phal/a ratio p/ja2 ratios are all obtained in a similar manner. Their values are provided in Table 2. 丨· Thermomechanical analysis A fixed weight of 1 gram was applied to the longitudinal axis of the cylindrical glass sample, which was sufficiently annealed and sized to a length of 20 mm and a diameter of 5 mm and at a fixed rate of 4 ° C/min. The glass sample was heated and repeatedly measured at 15 second intervals According to this, the measurement is performed at an interval of 1 ° C (/^L7MT = rc). The TMA curve shown in Fig. 1 is from the measurement result by the amount of elongation TMA of the sample. Plotted on the Y-axis (the vertical axis on the left side of the graph) and the plot is plotted on the χ_axis. The curve shown in Figure i is based on the temperature of the sample per 1 °c. The change in the elongation of the difference is plotted on the Y-axis (the vertical axis on the right side in Figure )) and the temperature is plotted on the X_ axis. That is, the Χ7Χ corresponds to the temperature difference per rc. The TMA difference of the value. Here, "the elongation of the sample is the elongation of the height of the cylindrical glass sample. The temperature difference is 1 ° C or less, and the solid value is 319107 29 1359121, as shown above. The narrator can obtain a measurement with sufficient accuracy when it is set to 丨. · 2· The γ7MAMA (the difference in elongation) reaches the maximum value from the DTMA curve obtained in 1. Temperature T1. 3. Based on the TMA curve, determined according to the standard of the 〇ptical-Glass Industry Ass〇ciati〇n The glass transition temperature Tg and the temperature at which TMA reaches a maximum value ts. 0^ T The T1 and TMA curves paid in 2 give the elongation of the sample at τ 1 _ 5 .c and T1+5 C: TMA (Tb 5) and TMA (T1+5) 5. The Tg and TMA curves obtained in 定3 determine the elongation of the sample at Tg-160 C and Tg-140 °C: TMA (Tg_16〇 And TMA (Tg-140) 6. Calculate the typical value of the average linear expansion coefficient in the temperature range from the glass transition temperature (Tg) to the sag temperature (Ts) as follows: 34/^1 (/γ) = {ΤΜΑ(τ1+5)_ΤΜΑ(τ卜5)}/sample length ♦ "5.0 (-5. 〇}. 7. Calculate the typical it alpha2 of the average linear expansion coefficient below Tg as follows: · ΜρΛ32(/γ) = {ΤΜΑ(τ§—14(rc)_TMA(Tg—16〇.〇}/sample length/ {140 C (-160 C) }. "Sample length" means that the sample is at 25 (the length of the '' is 20 mm.

8. 從所得 alphal 和 alpha2 的值計算 alphal/alphaZ 比例。8. Calculate the alphal/alphaZ scale from the values of the resulting alphal and alpha2.

以下面所述方法測量實施例1至18與比較實施例J 319107 30 1359121 和2的該光學玻璃之折射率(nd)、阿貝數(nud)、與比重 結果給於表2中。 (1) 折射率(nd)和阿貝數(nud) 以30°C/小時的逐漸冷卻速率測量所得光學玻璃。 (2) 比重 以阿基米德法(Archimedes’ method)計算。The refractive index (nd), Abbe number (nud), and specific gravity of the optical glasses of Examples 1 to 18 and Comparative Examples J 319107 30 1359121 and 2 were measured in the following manner and are shown in Table 2. (1) Refractive index (nd) and Abbe's number (nud) The obtained optical glass was measured at a gradual cooling rate of 30 ° C / hour. (2) Specific gravity Calculated by the Archimedes method.

31 319107 1359121 [表1]31 319107 1359121 [Table 1]

7π o g g o g O g g § g g g g g g g g g g g o —1 o o o g g 〇 g g ο — o g g O ο 〇 ο ψ O o —' § C3 Hj CO » T1»— s g csi s g CO g 另· ·«— s CO f _ s cri 一 T '- o CO s g 〇> g od g cx> S g s CO 3 o co S o* g CO g CO o CO w— g CO o 04 ir—* g CO T.— o CO » § CO ▼ 一 s oi g GO* CO s GO g y g o « ο o LT> g < g 寸 8 O’ g g o o g g g g g Ο o g g 〇 g o g g 3 § 〇> o o <=> o* c> 〇> OO <r> G> c=> 〇> <=> o' C> C> 〇· o' g LT3 CVl €〇 g LO o lo o LO s cri s CO g LO O LO o LO ο ixi g g LO g 对 s 寸· s to o 〇· S csi g 〇 g g C=> cC oi 1— LO g o o 〇 g S g g g g s g g g g g 0 g g <=> C> c> CD <=> G> o' 〇i o* cri c> c> <=> o’ ci <=> 〇· O’ CD <r> S OO 〇> s OJ s cvi s oi g csi g cvi s csi s g csi s g s a g 〇> g cri § CNJ o g o* s csi g o* en g. CO CO 〇»' s T琴 s s S » s s 子•丨· s —1 s g Cft g s CO g CO g cvj g cvl ° 丨 __ o g CO § vp S <P CO g 对 g 甘 o CO g CO s g s CO s CO s CO S esi o u> CO s LT? S LO μ s r-* g CO g 〇* s €vi ES g CO 8 C£> g o g s o g O g s s s g s g CO* 兮 CO· CO OO LO <〇 LO CO 寸 o « 〇> od CO τ 一 T— ,一 cd 〇> c? g 1 g « _ g g — s g g g g 臂· g t~ g o' 3 c> g o g d g Ο g 〇· g 〇* g c=> g o _<SJ IXj> g g 〇 g g g g g g g o g s g ο o s g CNI g CO CO CNJ ▼— 丨·— T αο co_ V t — CO s s o S g s S o o o 〇 s g g s ο g § g 一* g to CO ✓ lt» CO tri CO uS CO LO CO 艺· 含 ή c0 CO s s' CO eg s CNi LO 〇> IX> Cp CN σ> o Csj "T· CO 寸 ID CO 卜 CO ώ ώ CM CO to CO 卜 Q〇 -T— ώ • o 2 ι2 ώ ώ ώ ώ ώ ώ CL E Q. 〇 319107 32 1359121 [表2] <〇 LT> %7π oggog O gg § gggggggggggo —1 ooogg 〇gg ο — ogg O ο 〇ο ψ O o —' § C3 Hj CO » T1»— sg csi sg CO g another··«— s CO f _ s cri a T ' - o CO sg 〇> g od g cx> S gs CO 3 o co S o* g CO g CO o CO w — g CO o 04 ir—* g CO T.— o CO » § CO ▼ one s oi g GO* CO s GO gygo « ο o LT> g < g inch 8 O' ggooggggg Ο ogg 〇gogg 3 § 〇> oo <=> o* c>〇> OO <r>G>c=>〇><=> o' C>C> 〇· o' g LT3 CVl €〇g LO o lo o LO s cri s CO g LO O LO o LO ο ixi gg LO g s寸· s to o 〇· S csi g 〇gg C=> cC oi 1— LO goo 〇g S ggggsggggg 0 gg <=>C>c> CD <=>G> o' 〇io* Cri c>c><=> o' ci <=> 〇· O' CD <r> S OO 〇> s OJ s cvi s oi g csi g cvi s csi sg csi sgsag 〇> g cri § CNJ ogo* s csi go* en g. CO CO 〇»' s T ss S » ss sub • 丨 · s — 1 sg Cft gs CO g CO g cvj g cvl ° 丨__ og CO § vp S <P CO g to g 甘o CO g CO sgs CO s CO s CO S esi o u> CO s LT? S LO μ s r -* g CO g 〇* s €vi ES g CO 8 C£> gogsog O gsssgsg CO* 兮CO· CO OO LO <〇LO CO inch o « 〇> od CO τ a T- , a cd 〇 > c? g 1 g « _ gg — sgggg arm · gt~ go' 3 c> gogdg Ο g 〇· g 〇* gc=> go _<SJ IXj> gg 〇gggggggogsg ο osg CNI g CO CO CNJ ▼ — 丨·— T αο co_ V t — CO sso S gs S ooo 〇sggs ο g § g a * g to CO ✓ lt» CO tri CO uS CO LO CO 艺 · ή c0 CO ss' CO eg s CNi LO 〇>IX> Cp CN σ> o Csj "T· CO 寸 ID CO 卜 CO ώ CM CM CO to CO 卜Q〇-T— ώ • o 2 ι2 ώ ώ ώ ώ ώ ώ CL E Q. 〇319107 32 1359121 [Table 2] <〇LT> %

SiSi

Si 5 § oo oo s s sSi 5 § oo oo s s s

CO oo CO i co CO coCO oo CO i co CO co

CO tr> CSJ CO 〇> 〇> 〇> 〇> CN| 〇> CN| cva <〇 co CNi CNi tr> co oo oo 〇>CO tr> CSJ CO 〇>〇>〇>〇> CN| 〇> CN| cva <〇 co CNi CNi tr> co oo oo 〇>

CO ir> CNI CNJ 〇> LO ir> o。) Si iCO ir> CNI CNJ 〇> LO ir> o. Si i

【9S s[9S s

65S 6Z9 叫 叫 lil 叫 TIT TIT liT lil OJ 3i 寸s65S 6Z9 is called lil called TIT TIT liT lil OJ 3i inch s

OS sOS s

61S s IOO8S 叫 nr 1ST "1ST IS" 1ΪΓ Nl lil lil HI Ίίί p/i61S s IOO8S is called nr 1ST "1ST IS" 1ΪΓ Nl lil lil HI Ίίί p/i

9SS ss9SS ss

USUS

OCNISOCNIS

81S ss81S ss

COCOK ss oevllsl 59 95 Is.ts ssl 06SI SCOI9 05 ^.s ^.K ozlsl a -s pu 1.- 1--COCOK ss oevllsl 59 95 Is.ts ssl 06SI SCOI9 05 ^.s ^.K ozlsl a -s pu 1.- 1--

In 1- 3S, lIn 1- 3S, l

SSI 1-- _9-l s scolz _ 浜699 i 1·- s§.l 93ΙΠ 1-11ΙΠ 0,1 ncolln xt>s6^oedtoSSI 1-- _9-l s scolz _ 浜699 i 1·- s§.l 93ΙΠ 1-11ΙΠ 0,1 ncolln xt>s6^oedto

9S9S

Is ore con 69 ·ε 5 zsrI 61.「 5 5 15 0Ξ 06 _ss s s zre LolrcolIs ore con 69 ·ε 5 zsrI 61." 5 5 15 0Ξ 06 _ss s s zre Lolrcol

rxLU CJ.X3 COX3 寸.X3 S.X3rxLU CJ.X3 COX3 inch.X3 S.X3

toxLUtoxLU

orxluj 6.X3 COIXLUI ii l?l ΤΓ 1- Ιώι l-I ιώι ώι ώι 130.IE00I1 t.xIXJI.duJOoI ools 卜 ΓΧΙ3 33 319107 1359121 製造加壓成型所用的預成帮物 使對應於實施例1至18與比較實施例1和2的經澄清 且勻化之玻璃熔融體以固定速率從鉑合金製造的管子流 •出,該管子經調整到在使該玻璃可以穩定地流動而不會去 玻化的溫度範圍内之溫度。以滴法或滴_切法分離出具有目 -標預成型物所具重量之玻璃熔融體膏球。然後以接納模具 .接納該玻璃熔融體膏球,該模具在其底部具有氣體吹孔, 氣體可透過該氣體吹孔吹出,且在該玻璃熔融體膏球漂浮 之k模塑出精岔加壓成型所用的預成型物。該玻璃溶融體 的分斷間隔係經調整且設定以得到直徑為2至丨〇毫米的球 面玻璃預成型物和直徑為5至25毫米的扁圓球體預成型 物。 I造光學元# Γ非破面读锫、 將上述方法所得該預成型物使用圖2中所顯示的壓機 予以精密加壓成型以獲得非球面透鏡。特定言之,將預成 4型物4放置在構成加壓成型模具的下模2與上模〗之間, 該於石英管11的内部用氮氣環境逆填充,且將加熱器12 打開以加熱該石英管U的内部。將該加壓成型模具的内部 調定到被模塑的玻璃展現出1〇8至1〇1GdPa. s的黏度之溫 度。在維持於此溫度之同時,將壓力棒丨3降下,下壓到上 模1之上以疋,缩已經放置在該加塵成型模具内的該預成型 物。壓縮中所用的該塵力為8Mpa且壓縮時間為30秒鐘。 於圖2♦之中’套筒式模具3,也稱為鼓形模具,決定上模i ”下松2之該相對配置,實行限制該玻璃散開的功能。一 319107 34 1359121 支撐棒9用來承受壓力棒13所施加的該壓力。一加壓成型 模具固持器ίο用來固持住該加壓成型模具。一熱電偶14 用來監測該下模2的溫度。於壓縮之後,釋放掉在壓縮中 .所採用的該壓力。將經過加壓成型所得該模塑玻璃物件逐 漸冷卻到該玻璃展現出l〇i2dPa. s或更大的黏度之溫度, 同時仍然與下模2和上模1接觸,且接著迅速冷卻到室溫。 .之後,從該加壓成型模具取出該模塑玻璃物件,得到非球 面透鏡。 於採用實施例1至18的該玻璃之時,於精密加壓成型 過程中在該玻璃上幾乎沒有觀察到損壞。特別者,對於實 施例1至1卜13、14、和16至18,具有15或更低的 .如1“4如2比例之該玻璃,沒有觀察到損壞。於此相 異者’於將比較實施例1和2的該玻璃精密加壓成型之中, h系觀察到對該玻璃的損壞。 如從此等結果清楚可知者,實施例丨至18的該玻璃全 4部都具有所欲光學性質以及良好的可成型性,可促成使用 加壓成型模具進行精密加壓成型而不會對玻璃造成損壞。 本發明提供具有適合於精密加壓成型所需的光學常數 之光學玻璃。從本發明光學玻璃可以用高生產率製造出精 密加壓成型所用的預成型物。本發明進一步提供由此有高 生產率的光學玻璃所構成的光學元件。 雖然本發明已經就其某些型式顯著詳細地說明過,不 過也可能有其他型式,且所顯示的型式之變更、排列和等 效物’為熟諳此技藝者在閱讀本說明書及研究該等圖式之 319107 35 1359121 可以使用多種方H 的各種特徵 有使用2 之目的’且於不限制本發明之下, . ]某皂街语。所以,任何後附申請專利範圍都不為 .本"所包含的較佳型式之說明所限制,且應該包二 本發^真正旨意和範圍㈣所有此等變更、排料物。 =此已經完全說明過本發明之後,熟諳此技蔽者都 ::發明方法可以使用寬廣且等效範圍的條件、配 實例 參數來實施而不違離本發明範圍或其任何具體 本文中引述的所有專利和公開都以彼等的全文以引用 方式完全地納入本文。任何公開的引述都是 ::期前的揭示且不應視為承認此等公開為先前技= 二本發明不具#資格憑#先前創作比此等公開 【圖式簡單說明】 x生Orxluj 6.X3 COIXLUI ii l?l ΤΓ 1- Ιώι lI ιώι ώι ώι 130.IE00I1 t.xIXJI.duJOoI ools ΓΧΙ3 33 319107 1359121 The pre-forms used in the manufacture of press molding are made corresponding to Examples 1 to 18 The clarified and homogenized glass melts of Comparative Examples 1 and 2 were flowed out from a tube made of a platinum alloy at a fixed rate, and the tube was adjusted to a temperature at which the glass could flow stably without devitrification. The temperature within the range. The glass melt paste ball having the weight of the target preform is separated by a drop method or a drop-cut method. Then, the glass melt paste ball is received by receiving the mold, the mold has a gas blow hole at the bottom thereof, the gas can be blown through the gas blow hole, and the fine melt pressure is molded in the float of the glass melt paste ball. A preform used for molding. The breaking interval of the glass melt is adjusted and set to obtain a spherical glass preform having a diameter of 2 to 丨〇 mm and a spheroidal preform having a diameter of 5 to 25 mm. I made an optical element. The non-broken surface was read, and the preform obtained by the above method was subjected to precision press molding using a press shown in Fig. 2 to obtain an aspherical lens. Specifically, the pre-form 4 is placed between the lower mold 2 and the upper mold constituting the press molding mold, and the inside of the quartz tube 11 is reversely filled with a nitrogen atmosphere, and the heater 12 is turned on to heat. The inside of the quartz tube U. The inside of the press molding die was set to a temperature at which the molded glass exhibited a viscosity of 1 〇 8 to 1 〇 1 GdPa.s. While maintaining this temperature, the pressure bar 3 is lowered and pressed down onto the upper mold 1 to shrink the preform which has been placed in the dust-molding mold. The dust used in the compression was 8 MPa and the compression time was 30 seconds. In Figure 2♦, the 'sleeve mold 3, also called the drum mold, determines the relative configuration of the upper mold i ” lower loose 2, and performs the function of limiting the spread of the glass. A 319107 34 1359121 support rod 9 is used to withstand The pressure applied by the pressure bar 13. A press molding mold holder ίο is used to hold the press molding die. A thermocouple 14 is used to monitor the temperature of the lower mold 2. After compression, it is released in compression. The pressure used. The molded glass article obtained by pressure molding is gradually cooled to a temperature at which the glass exhibits a viscosity of 10 μPa·s or more while still being in contact with the lower mold 2 and the upper mold 1 . And then rapidly cooled to room temperature. Thereafter, the molded glass article was taken out from the press molding die to obtain an aspherical lens. When the glass of Examples 1 to 18 was used, in the precision press molding process Little damage was observed on the glass. In particular, for Examples 1 to 1 13, 14, and 16 to 18, there was 15 or less. For example, 1 "4 such as 2 ratio of the glass, no damage was observed. . In this case, in the glass precision press molding of Comparative Examples 1 and 2, damage to the glass was observed in h. As is clear from these results, all of the glass portions of Examples 丨 to 18 have desired optical properties and good formability, which can facilitate precision press molding using a press molding die without causing glass. damage. The present invention provides an optical glass having an optical constant suitable for precision press molding. From the optical glass of the present invention, a preform for precision press molding can be produced with high productivity. The present invention further provides an optical element composed of optical glass having high productivity. Although the present invention has been described in some detail in detail, it is possible that other types, and variations, permutations, and equivalents of the type shown may be read by those skilled in the art and in the study of the drawings. 319107 35 1359121 can use a variety of features of the various aspects of H have the purpose of using 2 'and without limiting the invention, . . . a soap street language. Therefore, the scope of any attached patent application is not limited to the description of the preferred version included in this " and should include both the true meaning and the scope (4) all such changes and discharges. = Having fully described the present invention, it will be apparent to those skilled in the art that: the inventive method can be carried out using a broad and equivalent range of conditions, with example parameters, without departing from the scope of the invention or any specific reference thereto. All patents and publications are hereby incorporated by reference in their entirety in their entirety in their entirety. Any public quotes are :: pre-exposures and should not be construed as recognizing such disclosures as prior art. = 2 inventions are not qualified. #Previous creations are disclosed than such [simplified illustrations] x

戈明太IS中’要以圖式中所顯示的非限制性具體實例來 δ兄明本發明,其中: 圖1為實施例1的玻璃之TMA曲線和mmMA曲線 圖2為精密加壓成型模具的示意圖。 主 要元件符號說明】 2 4 10 12 I 上模 3 套筒式模具 9 支標棒 II 石英管 下模 預成型物 加壓成型模具固持器 加熱器 319107 36 1359121 熱電偶 13 壓力棒 14In the Gemingtai IS, the present invention will be described by way of non-limiting specific examples shown in the drawings, wherein: FIG. 1 is a TMA curve and an mmMA curve of the glass of Example 1. FIG. 2 is a precision press molding die. schematic diagram. Main component symbol description] 2 4 10 12 I Upper mold 3 Sleeve mold 9 Support rod II Quartz tube Lower mold Preform Pressing mold holder Heater 319107 36 1359121 Thermocouple 13 Pressure rod 14

% 37 319107% 37 319107

Claims (1)

13591211359121 、申請專利範圍: 1 月丨之曰修正本 第96109669號專利申請案 100年8月12日修正替換頁 一種精密加壓成型所用的預成型物之製造方法,其包 括:(1)決定該玻璃組成以賦予玻璃大於或等於165 之折射率(nd)與大於或等於50之阿貝數(y d),及作為 指標之a 之比例小於17 ,其中 將在從玻璃轉變溫度(Tg)到弛垂溫度(Ts)的溫度範圍 内’表現出相對於溫度差值d 此處j T表示 1C或更小的固定值)的最大玻璃伸長量差值之溫度以 Τ1表示,將在從Τ1-5Χ:到T1+5°C範圍内的平均線性膨 脹係數以表示,且將在從該玻璃轉變溫度(Tg) _160°C到該玻璃轉變溫度(Tg)_14(rc範圍内的平均線 性膨脹係數以表示;及(2)經由使用具有經如此 決定的該組成之玻璃製造精密加壓成型所用的預成型 物。 .如申請專利範圍第1項所述之精密加壓成型所用的預 • 成型物之製造方法,其中,係使用玻璃製作精密加壓成 型所用的預成型物,而該玻璃係具有測定前述比例而得 之測定值未達17之組成者。 如申明專利範圍第1項或第2項所述之精密加壓成型所 用的預成型物之製造方法,其中,前述折射率在丨的 至1.70之範圍,且 刖述組成含有Si〇2、Βζ〇3、La2〇3及Gd2〇3作為必要 成分,Si(h及B2〇3之合計含量在5〇至72莫耳%之範 圍,si〇2含量對於㈣含量之比例(Si〇2/ B2〇3)以莫耳 319107修正版 38 第96109669號專利申請案 100年8月12日修正替換^ 比表示為超過〇· 5且在0.90以下,1^〇3含量在4. 87 至10莫耳%之範圍’ Gd2〇3含量在3.30至8莫耳%之 範圍。 4.如申請專利範圍第1項或第2項所述之精密加壓成型所 用的預成型物之製造方法’其中’前述折射率超過 1. 70,且 前述組成含有s i 〇2、B2O3、La2〇3及Gd2〇3作為必要 成分’ Si〇2含量在11至18莫耳%之範圍,La2〇3含量 在5至15莫耳%之範圍’ Gd2〇3含量在1至12莫耳% 之範圍’ Si〇2及B2〇3之合計含量在50至72莫耳%之範 圍’ Si〇2含量相對於匕〇3含量之比例(SiOV B2〇3)以莫 耳比表示在0. 1至0. 90之範圍。 5. —種光學玻璃’其係使用於精密加壓成型且折射率(nd) 在1. 65至1. 70之範圍且阿貝數(w d)為50以上之光學 玻璃,其中, 將在從玻璃轉變溫度(Tg)到弛垂溫度(TS)的溫度 範圍内,表現出相對於溫度差值Z1T(此處表示rc 或更小的固定值)的最大玻璃伸長量差值之溫度以T1 表示’將在從T1 -5°C到T1 +5°C範圍内的平均線性膨脹 係數以α 1表示,且將在從該玻璃轉變溫度(Tg ) -16 0 °C 到該玻璃轉變溫度(Tg)-140°C範圍内的平均線性膨脹 係數以α2表示,其(α1/α2)比率未達17,且 含有Si〇2、Β2Ο3、La2〇3及Gd2〇3作為必要成分,si〇2 及B2〇3之合計含量在50至72莫耳%之範圍,si 〇2含量 39 319107修正版 第96109669號專利申請案 100年8月12日修正替換頁 相對於B2〇3含量之比例(Si〇2/B2〇3)以莫耳比表示為超 過0.5且在〇·9〇以下,La2〇3含量在4.87至10莫耳% 之範圍’ Gd2(h含量在3. 30至8莫耳%之範圍者。 一種光學玻璃’其係使用於精密加壓成型而折射率(nd) 超過1.70且阿貝數(yd)為50以上之光學玻璃,其中, 將在從玻璃轉變溫度(Tg)到弛垂溫度(Ts)的溫度 範圍内,表現出相對於溫度差值4 T (此處J T表示1 °c 或更小的固定值)的最大玻璃伸長量差值之溫度以T1 表示,將在從Tl-5°c到Tl + 5°c範圍内的平均線性膨脹 係數以α 1表示,且將在從該玻璃轉變溫度(Tg)_16〇t>c 到該玻璃轉變溫度(Tg) —14〇°c範圍内的平均線性膨脹 係數以α 2表示,其(α 1 / α 2 )比率小於17,且 含有Si〇2、b2〇3、La2〇3及Gd2〇3作為必要成分,Si〇2 含量在11至18莫耳%之範圍,La"3含量在5至15莫 耳%之範圍,GdzO3含量在1至12莫耳%之範圍,Si〇2 及匕〇3之合計含量在50至72莫耳%之範圍,Si〇2含量 對於B2〇3含量之比例(Si〇2/B2〇3)以莫耳 〇·90之範圍。 仕.1主 2精密加壓成型用之預成型物,其為由申請專利範圍 項或第6項所述之光學玻璃所構成者。 :種光學元件’其為由申請專利範圍第5項或第6項所 述之光學玻璃所構成者。 、 學元件之方法,其包括加熱申請專利範圍第 員之預成型物;及使用精密加壓成型模具將該經加熱 319107修正版 40 第96109669號專利申請案 100年8月12曰修正替換頁 1359121 的預成型物予以精密加壓成型之方法。 10. —種製造光學元件之方法,其包括加熱以申請專利範圍 第1項至第4項中任一項所述之製造方法製成的預成型 物;及使用精密加壓成型模具將該經加熱的預成型物予 以精密加壓成型之方法。Patent Application No.: PCT Patent Application No. 96109669, the entire disclosure of which is incorporated herein by reference. The composition is such that the refractive index (nd) of the glass is greater than or equal to 165 and the Abbe number (yd) greater than or equal to 50, and the ratio of a as an index is less than 17, wherein the transition temperature (Tg) from glass to sagging The temperature of the temperature (Ts) within the temperature range 'expresses the difference in temperature d relative to the temperature difference d where j T represents a fixed value of 1 C or less) is expressed as Τ1 and will be from Τ1-5: The average linear expansion coefficient in the range of T1 + 5 ° C is expressed, and will be expressed from the glass transition temperature (Tg) _160 ° C to the glass transition temperature (Tg) _ 14 (average linear expansion coefficient in the range of rc) And (2) manufacturing a preform for precision press molding by using the glass having the composition thus determined. The manufacture of a pre-formed product for precision press molding as described in claim 1 Method, wherein A preform for precision press molding using glass, and the glass has a composition having a measured value of less than 17. The precision described in claim 1 or 2 A method for producing a preform for press molding, wherein the refractive index is in the range of 丨 to 1.70, and the composition includes Si〇2, Βζ〇3, La2〇3, and Gd2〇3 as essential components, Si (The total content of h and B2〇3 is in the range of 5〇 to 72mol%, and the ratio of si〇2 content to (iv) content (Si〇2/B2〇3) is patented by Moer 319107 Rev. 38 No. 96109669 On August 12, 100, the corrected replacement ratio is expressed as more than 〇·5 and below 0.90, and the content of 1^〇3 is in the range of 4.87 to 10% by mole. The content of Gd2〇3 is 3.30 to 8 mol%. 4. The method of manufacturing a preform for precision press molding as described in claim 1 or 2, wherein the aforementioned refractive index exceeds 1.70, and the aforementioned composition contains si 〇2. B2O3, La2〇3 and Gd2〇3 as essential components 'Si〇2 content is 11 to 18 mol% Range, La2〇3 content in the range of 5 to 15 mol% 'Gd2〇3 content in the range of 1 to 12 mol% 'the total content of Si〇2 and B2〇3 is in the range of 50 to 72 mol%' The ratio of the Si〇2 content to the 匕〇3 content (SiOV B2〇3) is expressed in the range of 0.1 to 0.90 in terms of molar ratio. 5. The optical glass is used for precision press molding and An optical glass having a refractive index (nd) in the range of 1.65 to 1.70 and an Abbe number (wd) of 50 or more, wherein the temperature range from the glass transition temperature (Tg) to the sag temperature (TS) Inside, the temperature exhibiting a difference in maximum glass elongation relative to the temperature difference Z1T (here, a fixed value of rc or less) is expressed as T1 'will range from T1 -5 ° C to T1 + 5 ° C The average linear expansion coefficient within is expressed by α 1 and the average linear expansion coefficient in the range from the glass transition temperature (Tg ) -16 0 ° C to the glass transition temperature (Tg) - 140 ° C is represented by α 2 , Its (α1/α2) ratio is less than 17, and contains Si〇2, Β2Ο3, La2〇3, and Gd2〇3 as essential components, and the total content of si〇2 and B2〇3 is 50 to 72 m. % range, si 〇2 content 39 319107 Revised version 96109669 Patent application August 12, 100 Revision ratio of replacement page to B2〇3 content (Si〇2/B2〇3) expressed in molar ratio Above 0.5 and below 〇·9〇, the content of La2〇3 is in the range of 4.87 to 10 mol% 'Gd2 (h content is in the range of 3.30 to 8 mol%). An optical glass used for precision pressure molding of an optical glass having a refractive index (nd) exceeding 1.70 and an Abbe number (yd) of 50 or more, wherein the glass transition temperature (Tg) to the sag temperature ( In the temperature range of Ts), the temperature exhibiting a difference in maximum glass elongation relative to the temperature difference 4 T (where JT represents a fixed value of 1 °c or less) is expressed as T1 and will be from Tl-5. The average linear expansion coefficient in the range of °c to Tl + 5°c is expressed by α 1 and will range from the glass transition temperature (Tg)_16〇t>c to the glass transition temperature (Tg) -14〇°c. The average linear expansion coefficient is represented by α 2 , the ratio of (α 1 / α 2 ) is less than 17, and contains Si〇2, b2〇3, La2〇3, and Gd2〇3 as essential components, and the Si〇2 content is 11 To the range of 18% by mole, the La"3 content is in the range of 5 to 15 mol%, the GdzO3 content is in the range of 1 to 12 mol%, and the total content of Si〇2 and 匕〇3 is 50 to 72 mol. In the range of %, the ratio of Si〇2 content to B2〇3 content (Si〇2/B2〇3) is in the range of Mo莫90.仕.1 Main 2 Preform for precision press molding, which is composed of the optical glass described in the scope of claim or item 6. The optical element is a member of the optical glass described in claim 5 or 6. And a method for learning a component, which comprises heating a preform of a patent application scope; and using a precision press molding die to heat the 319107 revision 40. Patent application No. 96109669, revised August 10, pp. 1359121 The preform is subjected to a precision press molding method. 10. A method of manufacturing an optical component, comprising: heating a preform produced by the manufacturing method according to any one of claims 1 to 4; and using a precision press molding die The heated preform is subjected to a precision press molding method. 41 319107修正版41 319107 revision
TW96109669A 2006-03-24 2007-03-21 Optical glass, preform for precision press molding TWI359121B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006082667A JP4847769B2 (en) 2006-03-24 2006-03-24 Optical glass, precision press-molding preform and manufacturing method thereof, optical element and manufacturing method thereof
US11/723,468 US7745361B2 (en) 2006-03-24 2007-03-20 Optical glass, preform for precision press molding and method of manufacturing thereof, optical element and method of manufacturing thereof
TH701001307A TH45579B (en) 2007-03-22 Optical glasses, preforms for precision press casting and methods for manufacturing such types of glasses, optical components and methods for manufacturing optical components.
KR20070028428A KR101478831B1 (en) 2006-03-24 2007-03-23 Optical Glass, Preform for Precision Press Molding and Method of Manufacturing Thereof, Optical Element and Method of Manufacturing Thereof
CN2007100900734A CN101063719B (en) 2006-03-24 2007-03-26 Optical glass, preform for precision press molding and method of manufacturing thereof, optical element and method of manufacturing thereof

Publications (2)

Publication Number Publication Date
TW200800831A TW200800831A (en) 2008-01-01
TWI359121B true TWI359121B (en) 2012-03-01

Family

ID=44774200

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96109669A TWI359121B (en) 2006-03-24 2007-03-21 Optical glass, preform for precision press molding

Country Status (1)

Country Link
TW (1) TWI359121B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5836994B2 (en) * 2013-03-28 2015-12-24 株式会社永田製作所 Lens polishing equipment

Also Published As

Publication number Publication date
TW200800831A (en) 2008-01-01

Similar Documents

Publication Publication Date Title
JP4847769B2 (en) Optical glass, precision press-molding preform and manufacturing method thereof, optical element and manufacturing method thereof
JP4140775B2 (en) Optical glass, precision press-molding preform and manufacturing method thereof, and optical element and manufacturing method thereof
JP4124749B2 (en) Optical glass, precision press-molding preform and manufacturing method thereof, optical element and manufacturing method thereof
US7491667B2 (en) Optical glass, precision press-molding preform, process for producing the preform, optical element and process for producing the optical element
US7700507B2 (en) Optical glass, preform for precision press-molding, process for the production of the preform, optical element, and process for the production of the element
TWI401225B (en) Optical galss, precision press-molding and process for the production thereof, and optical element and process for the production thereof
US7930901B2 (en) Optical glass, precision press-molding preform, optical element and processes for production of these
US7598189B2 (en) Phosphate optical glass, preform for precision press molding and manufacturing method of the same, optical element and manufacturing method of the same
KR101306473B1 (en) Optical glass, precision press molding preform and manufacturing method of the same, optical element and manufacturing method of the same
JP5358888B2 (en) Optical glass and optical element
US20090288450A1 (en) Optical glass, precision press-molding preform, process for producing the preform, optical element and process for producing the element
JP5986938B2 (en) Optical glass, glass material for precision press molding, optical element and manufacturing method thereof
JP5916934B1 (en) Optical glass, precision press-molding preform, and optical element
JP4003874B2 (en) Optical glass, press-molding preforms and optical components
TWI359121B (en) Optical glass, preform for precision press molding
JP4563934B2 (en) Optical glass for precision mold press molding
JP2008120677A (en) Optical glass, preform for precision press molding and its manufacturing method, optical element and its manufacturing method
JP7132589B2 (en) Optical glass, preforms for precision press molding, and optical elements
JP2006321717A (en) Optical glass, preform for press forming and optical parts

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees