TWI358899B - Infrared power-saving circuit - Google Patents

Infrared power-saving circuit Download PDF

Info

Publication number
TWI358899B
TWI358899B TW95148535A TW95148535A TWI358899B TW I358899 B TWI358899 B TW I358899B TW 95148535 A TW95148535 A TW 95148535A TW 95148535 A TW95148535 A TW 95148535A TW I358899 B TWI358899 B TW I358899B
Authority
TW
Taiwan
Prior art keywords
circuit
infrared
power supply
switching power
transistor
Prior art date
Application number
TW95148535A
Other languages
Chinese (zh)
Other versions
TW200828799A (en
Inventor
Shih Fang Wong
Tsung Jen Chuang
Lin-Kun Ding
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW95148535A priority Critical patent/TWI358899B/en
Publication of TW200828799A publication Critical patent/TW200828799A/en
Application granted granted Critical
Publication of TWI358899B publication Critical patent/TWI358899B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Description

[0001} 發明說明: 【發明所屬之技術領域】 本發明涉及一種節能電路,特 別涉及一種紅外節能電路 [0002] 【先前技術】 目前,各種電子設備之廣泛係 ^ ^ ^ 用,使電能消耗量日益増 加。尤其在一些公共場合配置 照明設備,其消耗 如何節約電能、提高電器壽命 成為節能技術亟待解決之課題。 的電能更為顯著。因此, [0003] 如圖1所示’一種s知之紅外節能電路9〇〇包括電源電路 91和依次電性連接之紅外感測器92、紅外訊號處理電路 93、驅動電路94、繼電器95及負載96。其中,紅外訊號 處理電路93還包括轉換電路931和放大電路932。電源電 路91分別輸出工作電壓給該紅外訊號處理電路93、驅動 電路94和負載96。 [0004] 紅外感測器92感測到紅外線時,輸出電流訊號給轉換電 路931。該轉換電路931將該電流訊號轉換成電壓訊號。 放大電路932接收該電壓訊號,並對其作線性放大。驅動 電路94接收該經放大後的電壓訊號,產生一高電平驅動 訊號。該高電平驅動訊號使繼電器95閉合,負栽96得以 加電工作。 [0005] 當沒有紅外線被感測到時,紅外感測器92無感應電流輸 .出,轉換電路931和放大電路932均無電壓訊號輪出,此 時,驅動電路94產生一低電平驅動訊號。該低電平驅動 訊號使繼電器95斷開,負載96斷電。 095148535 表單編號A0101 第3頁/共22頁. 1003432094-0 1358899 100年ll·月21日核正裔換百 [0006] 綜上所述,傳統之紅外節能電路900藉由感測紅外線之有 無,以利用繼電器95來控制負載96加電或斷電,從而實· 現節能之目的。然而,一般之繼電器95主要依靠電磁作 用力以機械接觸方式維持電路之開啟和閉合,長期工作 容易出現接觸不良,或者接觸粘接造成電路損壞。故採 用此種節能電路存在可靠性不高之問題。 【發明内容】 [0007] 有鑒於此,有必要提供一種提高電路可靠性之紅外節能 電路。 [0008] —種紅外節能電路,包括總電源輸入電路、紅外感應控 制電路和開關電源控制電路,該總電源輸入電路用於提 供直流電。該紅外感應控制電路直接與總電源輸入電路 電性連接,該開關電源控制電路直接與總電源輸入電路 電性連接。該紅外感應控制電路和該開關電源控制電路 電性相連,該紅外感應控制電路用於攝取紅外線,輸出 控制訊號。該紅外感應控制電路包括依次電性連接之紅 外感測組件,放大電路,延時電路和驅動電路。該開關 電源控制電路用於提供直流工作電壓,包括電性相連之 自激振盛電路,正回饋電路和取樣穩壓電路。紅外感應 控制電路控制開關電源控制電路之動作,當有紅外線被 攝入時,控制訊號使開關電源正常工作,當沒有紅外線 輸入時,控制訊號使開關電源停止工作。 [0009] 上述紅外感應控制電路藉由感測紅外線之有無,依养與 開關電源控制電路電性連接的驅動電路,驅動開關電源 控制電路的開啟和閉合,以實現節能之目的。此外,該 095148535 表單编號A0101 第4頁/共22頁 1003432094-0 1358899 " I 100年11月21日按正替换頁 紅外節能電路採用電驅動控制方式,而非機械接觸方式 維持開關電源控制電路之開啟和閉合,有利於提高電路 之可靠性。 【實施方式】 [0010] 以下藉由具體實施例配合所附圖式之詳細說明,當更易 瞭解本發明之目的、技術内容、特點及其所達成之功效 〇 [0011] 如圖2所示,一較佳實施方式揭示之紅外節能電路100包 括總電源輸入電路200、紅外感應控制電路300、開關電 源控制電路400。總電源輸入電路200分別和紅外感應控 制電路300、開關電源控制電路400電性相連。紅外節能 電路100主要藉由紅外感應控制電路300感測紅外線,以 控制開關電源控制電路400輸出電源,從而實現節能之目 ,的。該紅外節能電路100可應用於照明設備、監控設備等 之電源電路中。 [0012] 總電源輸入電路200用於從交流電網上接收交流電,並對 該交流電進行變壓、整流、濾波等處理,以產生直流電 。該直流電分別供給紅外感應控制電路300和開關電源控 制電路400。 [0013] 紅外感應控制電路300用於感測紅外線,並對該紅外線進 行内部處理,以輸出相應之控制訊號S301。 [0014] 開關電源控制電路400—方面甩於接收總電源輸入電路 200供給之直流電,並輸出一路或多路穩壓工作電源;另 一方面用於接收紅外線控制電路300輸出之控制訊號S301 095148535 表單編號A0101 第5頁/共22頁 1003432094-0 [0015] _ [ϊοο年.1; j 21曰核正 稭以改艾開關電源控制電路彻之電源輸出狀態。 如圖2所不,該紅外感應控制電路300包括輔助供電電路 311和依次電性連接之紅外感應組件犯、放大電路Μ 3 、延時電路314、驅動電路315。 [0016] $助供電電路311用於接收總電源輸入電路⑽供給之直 机電’並分別向紅外感應組件312、放大電路313、延時 電路314及驅動電路315輸出直流電。 [0017] 紅外感應組件312用於攝取紅外線,並將一定強度之红外 線轉變成電流訊號。放大電路313用於接收該電流訊號, 將電流訊號轉變成Μ訊號,並對其進行線性放大。延 、 時電路314用於接收該放大後之電壓訊號,將該電壓訊號 延遲一預定之時間,輪出延時電訊號給驅動電路315。驅 動電路31 5用於接收該延時電訊號,並依此輸出紅外感應 控制訊號S301。該紅外感應控制訊號S3〇1用於改變開關 電源控制電路4〇〇的電源輸出狀態。 [0018] 圖2所示之紅外感應控制電路3〇〇中,紅外感應組件^以、 放大電路313、延時電路314為互相獨立之功能模組。各 功能模組分別達成之功能也當可由一獨立之模組來實現 ’如單片集成1C晶片。 [0019] 開關電源控制電路4〇〇包括主開關電源電路41 0、自激振 盪電路411、正回饋電路412及取樣穩壓電路413。自激 振盪電路411分別和主開關電源供電電路410、正回饋電 路412、取樣穩壓電路413電性連接。其中正回饋電路 412還與主開關電源電路41〇電性相連’取樣穩壓電路 095148535 表單編號A0101 第6頁/共22頁 1003432094-0 I35S899 " 1100年:11.月21日核正_頁 41 3還與主開關電源電路41 0電性相連。開關電源控制電 路400主要根據紅外感應控制電路300輸出之控制訊號 S301,控制電源之輸出狀態。 [0020] 主開關電源供電電路410用於接收總電源輸入電路200供 給之直流電,輸出一路或多路穩壓直流電。自激振盪電 路411一方面可產生開關脈衝訊號,使主開關電源供電電 路410輸出穩壓直流電;另一方面可在紅外感應控制電路 300輸出之控制訊號S301作用下停止自激振盪,使開關電 源供電電路410不輸出穩壓直流電。正回饋電路412用於 提供能使自激振盪電路411迅速起振之回饋訊號。取樣穩 • 壓電路41*3用於感測輸出穩壓直流電之電壓值變化,送出 負回饋訊號給自激振盪電路411,使該主開關電源供電電 路410在自激振盪電路411之控制下輸出穩定之直流電壓 〇 [0021] 如圖3所示,一較佳方式揭示之驅動電路315包括輸入端 301和輸出端302 〇輸入端301用於接收延時電路314輸出 之延時電訊號,輸出端302用於輸出控制訊號S301給開關 電源控制電路400。 , [0022] 輸入端301和輸出端302之間具有級連之第一電晶體Q1和 第二電晶體Q2。其中,第一電晶體Q1之基極(Base)與 輸入端301電性相連,其射極(Emitter)接地,其集極 (Collector)藉由一電阻器R1與直流電壓源Vcc電性相 連。第二電晶體Q2之基極一方面與第一電晶體Q1之集極 電性相連,另一方面與電容器C1之一端相連。該電容器 C1之另一端接地。此外,第二電晶體Q2之射極接地,其 095148535 表單編號A0101 第7頁/共22頁 1003432094-0 1358899 100年.11月21日梭正替换百 集極藉由一電阻器R2與輸出端302電性相連。 [0023] 當輸入端301輸入之延時電訊號為向電平時^第·一電晶體 Q1導通。第一電晶體Q1集-射極壓降近似為零,使第二電 晶體Q2之基極位於低電平,導致第二電晶體Q2截斷。此 時,輸出端302輸出之控制訊號S301為尚阻狀態。 [0024] 當輸入端301輸入之延時電訊號為低電平時,第一電晶體 Q1截斷,第二電晶體Q2導通,從而導致電阻器R1接地。 此時,輸出端302輸出之控制訊號S301為低電平狀態。 [0025] 如圖4所示,一較佳實施方式揭示之開關電源控制電路 400之具體電路配置如下: [0026] 開關電源控制電路400具有第一輸入端401、第二輸入端 402及輸出端403。第一輸入端401用於輸入圖2所示之總 電源輸入電路200輸出之直流電。第二輸入端402用於輸 入圖3所示之輸出端302輸出之控制訊號S301。輸出端 403用於輸出穩壓直流電。 [0027] 主開關電源電路41 0主要包括變壓器T1之初級線圈繞組P1 、次級線圈繞組S1、整流二極體D4、電冬器C7、C8及電 感器L1。整流二極體D4之陽極(Anode)與次級線圈繞 組S1之端子S11電性相接,其陰極(Cathode)經由電容 器C7接地。電容器C7串聯電感器L1後與電容器C8並聯。 電容器C8之正端與輸出端403電性相連。電容器C7提供一 次濾波和平滑功能,電感器L1用於限制在初始啟動期間 濾波電容器C8之初始衝擊電流達到最大值。電容器C8提 供二次濾波功能,以使輸出端403輸出額定之直流電壓。 095148535 表單编號A0101 第8頁/共22頁 1003432094-0 ^^8.899 [0028] [ΐ^ 11.月21日修正_頁 自激振盈電路411為-種脈衝調寬式自激振盡電路,其主 要包括第三電晶體Q3、電阻器R4、r5、⑽及電容器㈡、 C4。该第三電晶體Q3較佳的為一開關型電晶體。第三電 晶體Q3之基極和第二輸入端4〇2電性相連。第三電晶體叩 之集極分別和初級線圈繞組P1之端子pi2電性相連。第三 電晶體Q3之射極一方面電性連接並聯之電阻器“、電容 器C4.’另一方面經由電阻器R6接地。第三電晶體Q3之集 極和射極之間並聯有串性連接之電容器㈡和電阻器R4。 [0029] 正回饋電路412主要包括變壓ΡΤ1之正回饋線圈p2、電阻 器R7、R8 ' R9、電容器C5、C6 '二極體〇2、⑽及第四電 晶體Q4。正回饋線圈P2一方面經由串性連接之電阻器尺8 、二極體D3、電容器C6接地,另一方面經由串性連接之 電容器C5、電阻器R7與第四電晶體q4之集極電性相連。 其中電容器C5之兩端並聯有二極體D2。第四電晶體Q4之 基極經由電阻器R9與電容器C6之正端電性相連,其射極 接地。 [0030] 取樣穩壓電路413包括電阻器1?1〇、丨11、1^2、1?13、電 容器C9、光發射管UlA、光接收管U1B及基準電壓發生器 VI。電阻器R11與R12串接後接地。電阻器r10經由串性 連接之光發射管Ul A、基準電壓發生器VI接地,其中光發 射管U1A之陰極與基準電壓發生器VI之陰極電性相連。基 準電壓發生器VI之參考端與rii和R12之間之節點相連。 光發射管Ul A之陰極和基準電壓發生器VI之參考端之間串 性連接電阻器R13和電容器C9。光接收管U1B並聯於電阻 器R9之間。 095148535 表單編號A0101 第9頁/共22頁 1003432094-0 1358899 100年ll j 21日梭正替換頁 [0031] 此外,主開關電源電路41 0還包括電阻器R2、啟動電阻器 R3、電容器C2和二極體D1。啟動電阻器R3串接於輸入端 401和第三電晶體Q3之基極之間。電阻器R2並聯電容器 C2後與二極體D1串接於第三電晶體Q3之集極。 [0032] 具有上述配置之開關電源控制電路400主要根據第三電晶 體Q3導通和截斷之狀態切換,控制變壓器T1中磁能之儲 存與釋放,從而實現穩定之直流電壓輸出。 [0033] 首先,第三電晶體Q3導通,使變壓器T1儲存磁能之過程 如下: [0034] 輸入端401存在直流電壓輸入時,即藉由啟動電阻器R3將 啟動電流加到第三電晶體Q3之基極,使第三電晶體Q3導 通。第三電晶體Q3導通後,其集極即有電流流過。根據 電感器中之電流不能突變之原理,第三電晶體Q3集極之 電流流經初級線圈繞組P1時,產生P11正、P12負之感應 電動勢(Electromotive Force) p。由於線圈繞組 之間存在互感,次級線圈繞組S1產生S11負、S12正之感 應電動勢 > ,正回饋線圈繞組P2產生P21正、P22負之 感應電動勢 [0035] 由感應電動勢產生之感應電壓之極性使整流二極體 D4截斷,於是變壓器T1便開始儲存磁能。由感應電動勢· i產生之感應電壓一方面經由電阻器R8、二極體D3、 095148535 號 A0101 第10頁/共22頁 1003432094-0 I35S899 ' | lOQ年.11月Z1日梭正脊換頁 電阻器R9加到Q4之基極,使第四電晶體Q4基-射極順向偏 置,另一方面藉由電容器C2和電阻器R4加到第三電晶體 Q3之基極。當電容器C5兩端之充電電壓使二極體D2正嚮 導通時,流經二極體D2和電阻器R7之電流使第三電晶體 Q3之基極電流增大,第三電晶體Q3進一步導通。於是第 三電晶體Q3在正回饋過程之作用下,迅速進入飽和狀態 [0036] 其次,第三電晶體Q3截斷,使變壓器釋放磁能之過程如 下: [0037] 第三電晶體Q3飽和時,其集-射極間之飽和電流在電阻器 R6產生壓降,該壓降藉由電阻器R5分壓後加到第四電晶 體Q4之基極,使第四電晶體Q4導通。因第四電晶體Q4集 極電流之分流作用,使第三電晶體Q3之基極電流減小, 第三電晶體Q3將截斷。第三電晶體Q3截斷導致其集極電 摩升高,此時經由緩衝器C 3、R 4產生一脈衝電流。該脈 衝電流經由電阻器R5流向第四電晶體Q4,使第四電晶體 Q4進一步導通,則第三電晶體Q3將進一步截斷。 [0038] 此外,第三電晶體Q3退出飽和狀態時,其集-射極内阻逐 漸增大,導致集極電流進一步下降。根據電感器中之電 流不能突變之原理,此時,初級線圈繞組P1、次級線圈 繞組S1和正回饋線圈繞組P2分別產生反方向之感應電動 勢[0001] Description of the Invention: [Technical Field] The present invention relates to an energy-saving circuit, and more particularly to an infrared energy-saving circuit [0002] [Prior Art] At present, various electronic devices are widely used to make electric energy consumption Increasingly. Especially in some public places, lighting equipment, how to save energy and improve the life of electrical appliances has become an urgent issue for energy-saving technologies. The power is more significant. Therefore, as shown in FIG. 1 , an infrared energy-saving circuit 9 includes a power supply circuit 91 and an infrared sensor 92, an infrared signal processing circuit 93, a drive circuit 94, a relay 95, and a load. 96. The infrared signal processing circuit 93 further includes a conversion circuit 931 and an amplification circuit 932. The power supply circuit 91 outputs an operating voltage to the infrared signal processing circuit 93, the driving circuit 94, and the load 96, respectively. When the infrared sensor 92 senses infrared rays, the current signal is output to the conversion circuit 931. The conversion circuit 931 converts the current signal into a voltage signal. The amplifying circuit 932 receives the voltage signal and linearly amplifies it. The driving circuit 94 receives the amplified voltage signal to generate a high level driving signal. This high level drive signal causes relay 95 to close and load 96 to be energized. [0005] When no infrared ray is sensed, the infrared sensor 92 has no induced current output, and neither the conversion circuit 931 nor the amplification circuit 932 is rotated by the voltage signal. At this time, the drive circuit 94 generates a low level drive. Signal. This low level drive signal causes relay 95 to open and load 96 to be powered down. 095148535 Form No. A0101 Page 3 of 22. 1003432094-0 1358899 100 years ll. 21st nucleus for a hundred years [0006] In summary, the traditional infrared energy-saving circuit 900 by sensing the presence or absence of infrared rays, The relay 95 is used to control the load 96 to be powered or de-energized, thereby realizing the purpose of energy saving. However, the general relay 95 mainly relies on electromagnetic force to maintain the opening and closing of the circuit by mechanical contact, and the long-term work is prone to poor contact, or the contact damage causes circuit damage. Therefore, the use of such an energy-saving circuit has a problem of low reliability. SUMMARY OF THE INVENTION [0007] In view of the above, it is necessary to provide an infrared energy-saving circuit that improves circuit reliability. [0008] An infrared energy-saving circuit includes a total power input circuit, an infrared sensing control circuit, and a switching power supply control circuit, and the total power input circuit is used to provide direct current. The infrared sensing control circuit is directly electrically connected to the total power input circuit, and the switching power supply control circuit is directly electrically connected to the total power input circuit. The infrared sensing control circuit is electrically connected to the switching power supply control circuit, and the infrared sensing control circuit is configured to take infrared rays and output a control signal. The infrared sensing control circuit comprises an infrared sensing component, an amplifying circuit, a delay circuit and a driving circuit which are electrically connected in sequence. The switching power supply control circuit is used to provide a DC operating voltage, including an electrically connected self-excited oscillator circuit, a positive feedback circuit and a sampling regulator circuit. The infrared sensing control circuit controls the operation of the switching power supply control circuit. When infrared rays are taken in, the control signal makes the switching power supply work normally. When there is no infrared input, the control signal stops the switching power supply. [0009] The infrared sensing control circuit drives the switching power supply control circuit to open and close by driving the driving circuit electrically connected to the switching power supply control circuit by sensing the presence or absence of infrared rays to achieve energy saving. In addition, the 095148535 form number A0101 page 4 / total 22 pages 1003432094-0 1358899 " I November 21, 100 according to the positive replacement page infrared energy-saving circuit using electric drive control mode, rather than mechanical contact to maintain switching power supply control The opening and closing of the circuit helps to improve the reliability of the circuit. [Embodiment] Hereinafter, the specific purpose, technical contents, features, and effects achieved by the present invention will be more readily understood by the detailed description of the specific embodiments. FIG. The infrared energy-saving circuit 100 disclosed in a preferred embodiment includes a total power input circuit 200, an infrared sensing control circuit 300, and a switching power supply control circuit 400. The total power input circuit 200 is electrically connected to the infrared inductive control circuit 300 and the switching power supply control circuit 400, respectively. The infrared energy-saving circuit 100 mainly senses infrared rays by the infrared sensing control circuit 300 to control the output power of the switching power supply control circuit 400, thereby achieving energy saving. The infrared energy saving circuit 100 can be applied to a power supply circuit of a lighting device, a monitoring device, or the like. [0012] The total power input circuit 200 is configured to receive AC power from the AC power grid, and perform voltage transformation, rectification, filtering, and the like on the AC power to generate DC power. The direct current is supplied to the infrared sensing control circuit 300 and the switching power supply control circuit 400, respectively. [0013] The infrared sensing control circuit 300 is configured to sense infrared rays and perform internal processing on the infrared rays to output a corresponding control signal S301. [0014] The switching power supply control circuit 400 is configured to receive the DC power supplied from the total power input circuit 200 and output one or more regulated operating power supplies; and on the other hand, to receive the control signal output from the infrared control circuit 300. S301 095148535 Form No. A0101 Page 5 of 22 Page 1003432094-0 [0015] _ [ϊοο年.1; j 21曰 正 秸 以 改 改 改 改 改 改 改 改 改 改 改 改 改 改 改 改 改 改 改 改 改 改 改 改 改 改 改 改 改 改 改As shown in FIG. 2, the infrared sensing control circuit 300 includes an auxiliary power supply circuit 311 and an infrared sensing component constituting an electrical connection, an amplifying circuit Μ3, a delay circuit 314, and a driving circuit 315. [0016] The auxiliary power supply circuit 311 is configured to receive the direct current supplied by the total power input circuit (10) and output direct current to the infrared sensing component 312, the amplifying circuit 313, the delay circuit 314, and the driving circuit 315, respectively. [0017] The infrared sensing component 312 is configured to take infrared rays and convert a certain intensity of infrared rays into current signals. The amplifying circuit 313 is configured to receive the current signal, convert the current signal into a chirp signal, and linearly amplify the current signal. The delay circuit 314 is configured to receive the amplified voltage signal, delay the voltage signal for a predetermined time, and rotate the delay signal to the driving circuit 315. The driving circuit 315 is configured to receive the delayed electrical signal and output an infrared sensing control signal S301 accordingly. The infrared sensing control signal S3〇1 is used to change the power output state of the switching power supply control circuit 4〇〇. [0018] In the infrared sensing control circuit 3 shown in FIG. 2, the infrared sensing component, the amplifying circuit 313, and the delay circuit 314 are mutually independent functional modules. The functions achieved by each functional module can also be implemented by a separate module, such as a monolithically integrated 1C chip. [0019] The switching power supply control circuit 4 includes a main switching power supply circuit 41 0, a self-excited oscillation circuit 411, a positive feedback circuit 412, and a sampling regulator circuit 413. The self-oscillation circuit 411 is electrically connected to the main switching power supply circuit 410, the positive feedback circuit 412, and the sampling regulator circuit 413, respectively. The positive feedback circuit 412 is also electrically connected to the main switching power supply circuit 41. Sampling voltage regulator circuit 095148535 Form No. A0101 Page 6 / Total 22 pages 1003432094-0 I35S899 " 1100: 11. 21st of the day is revised _ 41 3 is also electrically connected to the main switching power supply circuit 41 0 . The switching power supply control circuit 400 controls the output state of the power supply mainly according to the control signal S301 outputted by the infrared sensing control circuit 300. [0020] The main switching power supply circuit 410 is configured to receive the DC power supplied by the total power input circuit 200, and output one or more regulated DC power. The self-oscillating circuit 411 can generate a switching pulse signal on the one hand, so that the main switching power supply circuit 410 outputs a regulated direct current; on the other hand, the self-excited oscillation can be stopped under the action of the control signal S301 outputted by the infrared sensing control circuit 300, so that the switching power supply The power supply circuit 410 does not output regulated DC power. The positive feedback circuit 412 is used to provide a feedback signal that enables the self-oscillation circuit 411 to rapidly oscillate. The sampling stabilization circuit 41*3 is configured to sense a voltage value change of the output regulated DC power, and send a negative feedback signal to the self-oscillation circuit 411, so that the main switching power supply circuit 410 is under the control of the self-oscillation circuit 411. Outputting a stable DC voltage 〇 [0021] As shown in FIG. 3, a preferred embodiment of the driving circuit 315 includes an input terminal 301 and an output terminal 302. The input terminal 301 is configured to receive the delay signal outputted by the delay circuit 314. 302 is used to output control signal S301 to switching power supply control circuit 400. [0022] The first transistor Q1 and the second transistor Q2 are cascaded between the input terminal 301 and the output terminal 302. The base of the first transistor Q1 is electrically connected to the input terminal 301, the emitter is grounded, and the collector is electrically connected to the DC voltage source Vcc via a resistor R1. The base of the second transistor Q2 is electrically connected to the collector of the first transistor Q1 on the one hand and to one end of the capacitor C1 on the other hand. The other end of the capacitor C1 is grounded. In addition, the emitter of the second transistor Q2 is grounded, its 095148535 form number A0101 page 7 / total 22 pages 1003432094-0 1358899 100 years. November 21st shuttle is replacing the hundred collector with a resistor R2 and the output 302 is electrically connected. [0023] When the delay signal input to the input terminal 301 is the level, the first transistor Q1 is turned on. The set-emitter voltage drop of the first transistor Q1 is approximately zero, causing the base of the second transistor Q2 to be at a low level, causing the second transistor Q2 to be cut. At this time, the control signal S301 outputted by the output terminal 302 is in a still-resisting state. [0024] When the delay signal input to the input terminal 301 is low level, the first transistor Q1 is cut off, and the second transistor Q2 is turned on, thereby causing the resistor R1 to be grounded. At this time, the control signal S301 outputted by the output terminal 302 is in a low state. [0025] As shown in FIG. 4, a specific circuit configuration of the switching power supply control circuit 400 disclosed in a preferred embodiment is as follows: [0026] The switching power supply control circuit 400 has a first input terminal 401, a second input terminal 402, and an output terminal. 403. The first input terminal 401 is used to input the direct current output from the total power input circuit 200 shown in FIG. The second input 402 is used to input the control signal S301 outputted from the output 302 shown in FIG. Output 403 is used to output regulated DC power. [0027] The main switching power supply circuit 41 0 mainly includes a primary coil winding P1 of the transformer T1, a secondary coil winding S1, a rectifying diode D4, an electric heater C7, C8, and an inductor L1. The anode of the rectifier diode D4 is electrically connected to the terminal S11 of the secondary coil winding S1, and the cathode (Cathode) is grounded via the capacitor C7. Capacitor C7 is connected in series with inductor C8 in series with inductor C1. The positive terminal of the capacitor C8 is electrically connected to the output terminal 403. Capacitor C7 provides a primary filtering and smoothing function, and inductor L1 is used to limit the initial inrush current of filter capacitor C8 to a maximum during initial startup. Capacitor C8 provides a secondary filtering function to cause output 403 to output a nominal DC voltage. 095148535 Form No. A0101 Page 8 of 22 1003432094-0 ^^8.899 [0028] [ΐ^ 11.21月修正 Revision_Page Self-excited Surge Circuit 411 is a kind of pulse width-modulated self-excited vibration circuit It mainly includes a third transistor Q3, resistors R4, r5, (10) and capacitors (2), C4. The third transistor Q3 is preferably a switching transistor. The base of the third transistor Q3 is electrically connected to the second input terminal 4〇2. The collectors of the third transistor 叩 are electrically connected to the terminals pi2 of the primary coil winding P1, respectively. The emitter of the third transistor Q3 is electrically connected to the parallel resistor ", capacitor C4." on the other hand, and is grounded via the resistor R6. The third transistor Q3 has a series connection between the collector and the emitter. The capacitor (2) and the resistor R4. [0029] The positive feedback circuit 412 mainly includes a positive feedback coil p2 of the transformer ΡΤ1, a resistor R7, a R8 'R9, a capacitor C5, a C6 'diode 〇2, (10), and a fourth power. Crystal Q4. The positive feedback coil P2 is grounded via a series connected resistor scale 8, diode D3, capacitor C6 on the one hand, and via a series connected capacitor C5, resistor R7 and fourth transistor q4 on the other hand. The poles of the capacitor C5 are connected in parallel with the diode D2. The base of the fourth transistor Q4 is electrically connected to the positive terminal of the capacitor C6 via the resistor R9, and the emitter is grounded. [0030] The voltage circuit 413 includes resistors 1?1, 丨11, 1^2, 1?13, capacitor C9, light emitting tube U1A, light receiving tube U1B, and reference voltage generator VI. The resistors R11 and R12 are connected in series and grounded. The resistor r10 is connected via the linearly connected light emitting tube U1 A and the reference voltage generator VI. The cathode of the light-emitting tube U1A is electrically connected to the cathode of the reference voltage generator VI. The reference end of the reference voltage generator VI is connected to the node between the rii and the R12. The cathode of the light-emitting tube U1 A and the reference voltage generator A resistor R13 and a capacitor C9 are connected in series between the reference terminals of the VI. The light receiving tube U1B is connected in parallel between the resistors R9. 095148535 Form number A0101 Page 9 of 22 1003432094-0 1358899 100 years ll j 21 day shuttle Positive replacement page [0031] In addition, the main switching power supply circuit 41 0 further includes a resistor R2, a starting resistor R3, a capacitor C2 and a diode D1. The starting resistor R3 is connected in series to the input terminal 401 and the third transistor Q3. Between the bases, the resistor R2 is connected in parallel with the diode D1 in series with the collector of the third transistor Q3. [0032] The switching power supply control circuit 400 having the above configuration is mainly turned on according to the third transistor Q3. The state of the truncated state switches to control the storage and release of magnetic energy in the transformer T1 to achieve a stable DC voltage output. [0033] First, the third transistor Q3 is turned on, so that the process of storing the magnetic energy by the transformer T1 is as follows: [0034] When the 401 has a DC voltage input, the starting current is applied to the base of the third transistor Q3 by the starting resistor R3 to turn on the third transistor Q3. After the third transistor Q3 is turned on, the collector has a current. According to the principle that the current in the inductor cannot be abrupt, when the current of the collector of the third transistor Q3 flows through the primary coil winding P1, an induced electromotive force p of positive and negative P11 is generated. Due to the mutual inductance between the coil windings, the secondary coil winding S1 generates S11 negative, S12 positive induced electromotive force>, and the positive feedback coil winding P2 generates P21 positive and P22 negative induced electromotive force [0035] The induced voltage polarity generated by the induced electromotive force The rectifying diode D4 is cut off, and the transformer T1 starts to store magnetic energy. The induced voltage generated by the induced electromotive force i is via resistor R8, diode D3, 095148535 A0101, page 10/22, page 1003432094-0 I35S899 ' | lOQ year. November Z1 day shuttle ridge replacement resistor R9 is applied to the base of Q4 such that the base-emitter of the fourth transistor Q4 is forward biased, and on the other hand is applied to the base of the third transistor Q3 via capacitor C2 and resistor R4. When the charging voltage across the capacitor C5 causes the diode D2 to conduct forward, the current flowing through the diode D2 and the resistor R7 increases the base current of the third transistor Q3, and the third transistor Q3 is further turned on. . Then, the third transistor Q3 quickly enters the saturation state under the action of the positive feedback process. [0036] Next, the third transistor Q3 is cut off, so that the process of releasing the magnetic energy by the transformer is as follows: [0037] When the third transistor Q3 is saturated, The saturation current between the collector and the emitter generates a voltage drop at the resistor R6, which is divided by the resistor R5 and applied to the base of the fourth transistor Q4 to turn on the fourth transistor Q4. Due to the shunting of the collector current of the fourth transistor Q4, the base current of the third transistor Q3 is decreased, and the third transistor Q3 is cut off. The truncation of the third transistor Q3 causes its collector motor to rise, at which point a pulse current is generated via the buffers C3, R4. The pulse current flows to the fourth transistor Q4 via the resistor R5 to further turn on the fourth transistor Q4, and the third transistor Q3 is further cut off. [0038] Further, when the third transistor Q3 exits the saturation state, its collector-emitter internal resistance gradually increases, causing the collector current to further decrease. According to the principle that the current in the inductor cannot be abrupt, at this time, the primary coil winding P1, the secondary coil winding S1 and the positive feedback coil winding P2 respectively generate the induced electromotive force in the opposite direction.

卜。感應電動勢 卜產生之感應電壓 與電容器C5兩端所充之電壓極性相同,二者迭加到第三 095148535 表單編號A0101 第11頁/共22頁 1003432094-0 1358899 100年.11月21日核正劳換頁 電晶體Q3基極,使第三電晶體Q3進一步截斷。 [0039] 第三電晶體Q3截斷時,由感應電動勢 f產生之感應電 ¢2 壓使整流二極體D4正向導通,變壓器T1便開始釋放磁能 。藉由電容器C6、電感器L1、濾波電容器C7,在輸出端 403產生穩定之直流電壓。當變壓器T1之磁能釋放完時, 電容器C5兩端電壓下降到使第三電晶體Q3又可重新導通 。變壓器T1又開始儲存磁能。因此,開關電源控制電路 400便藉由自激振盪電路411週期性之控制變壓器儲存釋 放磁能,從而實現直流電壓輸出。 [0040] 開關電源控制電路400以如下方式實現穩壓過程: [0041] 當輸出端403電壓過高時,分壓電阻器R12兩端之壓降升 高,從而基準電壓發生器VI之參考端電壓隨之升高。基 準電壓發生器VI參考端和基準端之間之差值電壓使VI輸 出之電流增加,流經U1A的電流增加,.U1A之光通量增加 ,從而光接收管U1B之集極電流增加。由於U1B集極電流 之分流作用,使第三電晶體Q3之基極電流減少,因此第 三電晶體Q3提前退出截斷狀態。於是第三電晶體Q3在一 個週期内之截斷時間減少,經由變壓器T1耦合到次級線 圈繞組S1回路之能量減少,使輸出電壓降低,由此維持 輸出端403輸出穩定之電壓。同理,當輸出端403輸出的 電壓過低時,藉由增加第三電晶體Q3之導通時間,使輸 出之直流電壓維持在穩定狀態。 [0042] 結合開關電源控制電路400之工作原理,紅外節能電路 ‘ 095148535 表單编號A0101 第12頁/共22頁 1003432094-0 1358899 100年.11月21日按正替換頁 100實現節能之過程如下: [0043] 紅外感應組件3 1 2沒有感測到紅外線被攝入時,其無電訊 號輸出。此時,延時電路314輸出低電平延時訊號到第一 電晶體Q1之基極,使第一電晶體Q1截斷,第二電晶體Q2 導通。紅外感應控制電路300之輸出端302輸出低電平訊 號到開關電源控制電路400的第三電晶體Q3之基極,使第 二電晶體Q3截斷’從而自激振盡電路不能起振,開關電 源控制電路400之輸出端403沒有穩定之直流電壓輸出。 也即在沒有紅外線攝入時,紅外節能電路1 00不供給電能 ,以此實現節能之目的。 [0044] 當紅外感應組件312攝取到紅外線時。一定強度之紅外線 訊號經紅外感應元件312被轉換成電流訊號,該電流訊號 並被傳送給放大電路313。放大電路313將電流訊號轉變 成電壓訊號,並進行線性放大。經由延時電路314輸出高 電平延時訊號給驅動、電路315,使第一電晶體Q1管導通, 第二電晶體Q2管截斷。此時,輸出端302相當於在第三電 晶體Q3之基極和射極之間並聯了一個高電阻,該高電阻 對第三電晶體Q3之導通和截斷狀態不產生影響。也即紅 外感應控制電路300有紅外線攝入時,開關電源控制電路 400持續輸出穩定之直流電壓。 [0045] 此外,在實際應用場合,當人體離開照明區域或者監控 區域時,放大電路313無放大訊號送給延時電路,延時電 路延遲一定之時間再輸出低電平訊號給驅動電路315。開 關電源控制電路400在延遲一定之時間後接收到驅動電路 315輸出之控制訊號S301,停止輸出直流電。此延遲之時 095148535 表單編號A0101 第13頁/共22頁 1003432094-0 100年11> 21日核正替換頁 1358899 間可根據紅外節能電路應用之不同場合而預先設定不同 之延遲時間。 [0046] 上述之紅外節能電路,藉由紅外感應組件感測有無紅外 線被攝取,由驅動電路輸出控制訊號給自激振盪電路, 使開關電源控制電路有無穩壓直流電輸出。由此,節約 電能,提高電能之有效利用率。由於驅動電路採用電驅 動控制方式,而非以機械方式維持供電電路之開啟和閉 合,有利於提高電路之可靠性。 [0047] 综上所述,本發明符合發明專利要件,爰依法提出專利 申請。惟,以上該者僅為本發明之較佳實施例,舉凡熟 悉本案技藝之人士,在援依本案創作精神所作之等效修 飾或變化,皆應包含於以下之申請專利範圍内。 【圖式簡單說明】 [0048] 圖1爲傳統的節能電路的原理框圖。 [0049] 圖2爲本發明一較佳實施方式揭示之紅外節能電路的原理 框圖。 [0050] 圖3爲圖2所示之驅動電路之具體電路圖。 [0051] 圖4爲圖2所示的開關電源控制電路的具體電路圖。 【主要元件符號說明】 [0052] 紅外節能電路:100 [0053] 總電源輸入電路:200 [0054] 紅外感應控制電路:300 [0055] 開關電源控制電路:400 095148535 表單编號 A0101 第 14 頁/共 22 頁 1003432094-0 135&899Bu. The induced voltage generated by the induced electromotive force is the same as the voltage charged across the capacitor C5, and the two are superimposed on the third 095148535. Form No. A0101 Page 11 / Total 22 Page 1003432094-0 1358899 100 years. November 21st The page transistor Q3 base is turned on to further cut off the third transistor Q3. [0039] When the third transistor Q3 is cut off, the induced voltage 2 generated by the induced electromotive force f causes the rectifier diode D4 to conduct forward, and the transformer T1 starts to release magnetic energy. A stable DC voltage is generated at the output terminal 403 by the capacitor C6, the inductor L1, and the filter capacitor C7. When the magnetic energy of the transformer T1 is released, the voltage across the capacitor C5 drops so that the third transistor Q3 can be turned back on again. Transformer T1 begins to store magnetic energy again. Therefore, the switching power supply control circuit 400 periodically controls the transformer to store the released magnetic energy by the self-oscillation circuit 411, thereby realizing the DC voltage output. [0040] The switching power supply control circuit 400 implements the voltage stabilization process in the following manner: [0041] When the output terminal 403 voltage is too high, the voltage drop across the voltage dividing resistor R12 rises, so that the reference terminal of the reference voltage generator VI The voltage rises accordingly. The difference voltage between the reference terminal and the reference terminal of the reference voltage generator VI increases the current output from the VI, and the current flowing through the U1A increases, and the luminous flux of the U1A increases, so that the collector current of the light receiving tube U1B increases. Due to the shunting of the U1B collector current, the base current of the third transistor Q3 is reduced, so that the third transistor Q3 is prematurely withdrawn from the off state. Thus, the cut-off time of the third transistor Q3 in one cycle is reduced, and the energy coupled to the loop of the secondary coil winding S1 via the transformer T1 is reduced, so that the output voltage is lowered, thereby maintaining the output terminal 403 outputting a stable voltage. Similarly, when the voltage outputted from the output terminal 403 is too low, the DC voltage of the output is maintained in a stable state by increasing the on-time of the third transistor Q3. [0042] In combination with the working principle of the switching power supply control circuit 400, the infrared energy-saving circuit '095148535 Form No. A0101 Page 12 / Total 22 pages 1003432094-0 1358899 100 years. November 21, according to the replacement page 100 to achieve energy saving process is as follows [0043] When the infrared sensing component 3 1 2 does not sense that infrared rays are taken in, it has no electrical signal output. At this time, the delay circuit 314 outputs a low level delay signal to the base of the first transistor Q1, causing the first transistor Q1 to be cut off and the second transistor Q2 to be turned on. The output terminal 302 of the infrared sensing control circuit 300 outputs a low-level signal to the base of the third transistor Q3 of the switching power supply control circuit 400, so that the second transistor Q3 is cut off, so that the self-excited vibration circuit cannot start, and the switching power supply Output 403 of control circuit 400 has no stable DC voltage output. That is, when there is no infrared absorption, the infrared energy-saving circuit 100 does not supply electric energy, thereby achieving the purpose of energy saving. [0044] When the infrared sensing component 312 picks up infrared rays. The infrared signal of a certain intensity is converted into a current signal by the infrared sensing element 312, and the current signal is transmitted to the amplifying circuit 313. The amplifying circuit 313 converts the current signal into a voltage signal and linearly amplifies it. The high-level delay signal is outputted to the driving circuit 315 via the delay circuit 314, so that the first transistor Q1 is turned on, and the second transistor Q2 is turned off. At this time, the output terminal 302 corresponds to a high resistance connected in parallel between the base and the emitter of the third transistor Q3, and the high resistance does not affect the on and off states of the third transistor Q3. That is, when the infrared sensing control circuit 300 has infrared intake, the switching power supply control circuit 400 continuously outputs a stable DC voltage. In addition, in practical applications, when the human body leaves the illumination area or the monitoring area, the amplifying circuit 313 sends no amplification signal to the delay circuit, and the delay circuit delays for a certain period of time to output a low level signal to the driving circuit 315. The switching power supply control circuit 400 receives the control signal S301 output from the driving circuit 315 after a certain delay, and stops outputting the direct current. When this delay occurs 095148535 Form No. A0101 Page 13 of 22 1003432094-0 100 years 11> 21st nuclear replacement page 1358899 Different delay times can be preset according to different occasions of infrared energy-saving circuit application. [0046] The infrared energy-saving circuit described above senses whether the infrared line is taken up by the infrared sensing component, and the control circuit outputs a control signal to the self-excited oscillation circuit, so that the switching power supply control circuit has a regulated DC output. Thereby, energy is saved and the effective utilization of electric energy is improved. Since the drive circuit adopts an electric drive control mode instead of mechanically maintaining the opening and closing of the power supply circuit, it is advantageous to improve the reliability of the circuit. [0047] In summary, the present invention complies with the requirements of the invention patent, and submits a patent application according to law. However, the above is only a preferred embodiment of the present invention, and those skilled in the art will be able to include the equivalent modifications or variations in the spirit of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS [0048] FIG. 1 is a schematic block diagram of a conventional energy saving circuit. 2 is a schematic block diagram of an infrared energy-saving circuit according to a preferred embodiment of the present invention. 3 is a specific circuit diagram of the driving circuit shown in FIG. 2. 4 is a specific circuit diagram of the switching power supply control circuit shown in FIG. 2. [Main component symbol description] [0052] Infrared energy-saving circuit: 100 [0053] Total power input circuit: 200 [0054] Infrared sensing control circuit: 300 [0055] Switching power supply control circuit: 400 095148535 Form No. A0101 Page 14 / Total 22 pages 1003432094-0 135&899

[0056] 輔助供電電路:311 [0057] 紅外感應組件:312 [0058] 放大電路:313 [0059] 延時電路:314 [0060] 驅動電路:31 5 [0061] 主開關電源供電電路.41 0 [0062] 自激振盪電路:411 [0063] 正回饋電路:412 [0064] 取樣穩壓電路:413 [0065] 第一電晶體:Q1 [0066] 第二電晶體:Q2 [0067] 第三電晶體:Q3 [0068] 第四電晶體:Q4 [0069] 啟動電阻:R3 [0070] 變壓器:T1 [0071] 基準電壓發生器:VI [0072] 光發射管:U1A [0073] 光接收管:U1B 095148535 表單編號A0101 第15頁/共22頁 100年.ii月21日梭正替換頁 1003432094-0[0056] Auxiliary power supply circuit: 311 [0057] Infrared sensing component: 312 [0058] Amplifying circuit: 313 [0059] Delay circuit: 314 [0060] Drive circuit: 31 5 [0061] Main switching power supply circuit. 41 0 [ 0062] Self-oscillation circuit: 411 [0063] Positive feedback circuit: 412 [0064] Sampling regulator circuit: 413 [0065] First transistor: Q1 [0066] Second transistor: Q2 [0067] Third transistor :Q3 [0068] Fourth transistor: Q4 [0069] Starting resistor: R3 [0070] Transformer: T1 [0071] Reference voltage generator: VI [0072] Light emitting tube: U1A [0073] Light receiving tube: U1B 095148535 Form No. A0101 Page 15 / Total 22 pages 100 years. On the 21st of the 21st, the shuttle is replacing page 1003432094-0

Claims (1)

1358899 100年11另21日核正替換頁 七、申請專利範圍: 1 . 一種紅外節能電路,包括總電源輸入電路,該總電源輸入 電路用於提供直流電,其改良在於:該紅外節能電路還包 括紅外感應控制電珞和開關電源控制電路,該紅外感應控 制電路直接與總電源輸入電路電性連接,該開關電源控制 電路直接與總電源輸入電路電性連接,該紅外感應控制電 路和該開關電源控制電路電性相連,該紅外感應控制電路 用於攝取紅外線,並輸出控制訊號,該開關電源控制電路 用於輸出直流電,該紅外感應控制電路控制該開關電源控 制電路之動作,當.紅外感應控制電路沒有攝取到紅外線時 *該紅外感應控制電路輸出控制訊號’該控制訊號使該開 關電源控制電路不輪出直流電;該紅外感應控制電路包括 紅外感應組件、放大電路及延時電路》該紅外感應組件用 , 於攝取紅外線,並將一定強度之紅外線轉換成電流訊號後 輸出;該放大電路與紅外感應組件電性連接,該放大電路 用於將電流訊號轉換成電壓訊號,並對該電壓訊號進行線 性放大;該延時電路分別與放大電路及驅動電路電性連接 ,該延時電路用於接收該經放大後之電壓訊號,對該電壓 訊號進行延時,並輸出延時後之電壓訊號給驅動電路。 2 .如申請專利範圍第1項所述之紅外節能電路,其中該紅外 感應控制電路包括驅動電路,該開關電源控制電路包括自 激振盪電路,該驅動電路和自激振盪電路電性相連,該驅 動電路用於輸出控制訊號給自激振盪電路,該自激振盪電 路用於控制開關電源控制電路之電源輸出狀態。 3 .如申請專利範圍第2項所述之紅外節能電路,其中當紅.外 095148535 表單编號A0101 第16頁/共22頁 1003432094-0 ““ 1100 年11 月21 日 感應控制電路沒有攝取到紅外结. - 、·外線該驅動電路輸出控制 訊號’該控制訊號使自激振盤電路停止振盡,使該開關電 源控制電路不輸出直流電。 如申請專利範圍第1項所述之紅外節能電路,其中該驅動 电路包括第-電晶體和第二電晶體,該第一電晶體之集極 和δ玄第一電晶體之基極電性相連。 如申請專利範圍第4項所述之紅外節能電路,其中該自激 振盈電路包括第三電晶體,該第三電晶體之基極和該第二 電晶體之集極電性相連。 •如申請專利範圍第5項所述之紅外節能電路,其中當紅外 感應控制電路沒有攝取到紅外線時,該第二電晶體輸出低 電平控制訊號,該低電平控制訊號加到該第三電晶體之基 極’使該第三電晶體截斷。 .如申請專利範園第6項所述之紅外節能電路,其中該自激 振盘電路之第三電晶體截斷時,該主開關電源供電電路無 直流電輸出。 .如申請專利範圍第1項所述之紅外節能電路,其中該開關 電源控制電路包括主開關電源供電電路及自激振盪電路, δ玄主開關電源供電電路和該自激振盪電路電性相連,該自 激振盪電路控制該主開關電源供電電路之電源輸出狀態。 如申請專利範圍第8項所述之紅外節能電路,其中該開關 電源控制電路包括取樣穩壓電路,該取樣穩壓電路分別與 該主開關電源供電電路和自激振盪電路電性相連,該取樣 穩壓電路用於使主開關電源供電電路輸出穩壓直流電。 如申請專利範圍第9項所述之紅外節能電路,其中該取樣 穩壓電路為光隔離電壓回饋電路。 1003432094-0 表單编號Α0101 第17頁/共22頁 1358899 ιοί)年.ll·為21日核正替換頁 11 .如申請專利範圍第10項所述之紅外節能電路,其中該取樣 穩壓電路包括基準電壓發生器,藉由設定該基準電壓發生 器之基準電壓值使輸出端輸出穩定的直流電。 12 .如申請專利範圍第1項所述之紅外節能電路,其中該延時 電路對該放大後之電壓訊號延長之時間可根據不同的應用 場合加以設定。 095148535 表單编號A0101 第18頁/共22頁 1003432094-01358899 100 years 11 other 21 days nuclear replacement page VII, the scope of application for patents: 1. An infrared energy-saving circuit, including the total power input circuit, the total power input circuit is used to provide direct current, the improvement is: the infrared energy-saving circuit also includes The infrared induction control circuit and the switching power supply control circuit are electrically connected directly to the total power input circuit, and the switching power supply control circuit is directly electrically connected to the total power input circuit, the infrared induction control circuit and the switching power supply The control circuit is electrically connected, the infrared sensing control circuit is configured to take in infrared rays and output a control signal, the switching power supply control circuit is configured to output direct current, and the infrared sensing control circuit controls the action of the switching power supply control circuit, when the infrared sensing control When the circuit does not ingest infrared rays, the infrared sensing control circuit outputs a control signal 'the control signal causes the switching power supply control circuit not to emit a direct current; the infrared sensing control circuit includes an infrared sensing component, an amplifying circuit, and a delay circuit." the infrared sensing component Use, for ingestion Infrared, and converting a certain intensity of infrared light into a current signal; the amplifying circuit is electrically connected to the infrared sensing component, wherein the amplifying circuit is configured to convert the current signal into a voltage signal, and linearly amplify the voltage signal; The circuit is electrically connected to the amplifying circuit and the driving circuit respectively. The delay circuit is configured to receive the amplified voltage signal, delay the voltage signal, and output the delayed voltage signal to the driving circuit. 2. The infrared energy-saving circuit of claim 1, wherein the infrared sensing control circuit comprises a driving circuit, the switching power supply control circuit comprises a self-oscillating circuit, and the driving circuit is electrically connected to the self-oscillating circuit, The driving circuit is configured to output a control signal to the self-oscillation circuit, and the self-oscillation circuit is configured to control a power output state of the switching power supply control circuit. 3. Infrared energy-saving circuit as described in item 2 of the patent application, in which the red. Outside 095148535 Form No. A0101 Page 16 / Total 22 Page 1003432094-0 "" November 21, 1100 Induction control circuit did not ingest infrared The external control circuit outputs a control signal 'The control signal causes the self-excited disk circuit to stop vibrating, so that the switching power supply control circuit does not output direct current. The infrared energy-saving circuit of claim 1, wherein the driving circuit comprises a first transistor and a second transistor, and the collector of the first transistor is electrically connected to the base of the δ first transistor. . The infrared energy-saving circuit of claim 4, wherein the self-excited oscillation circuit comprises a third transistor, and a base of the third transistor is electrically connected to a collector of the second transistor. The infrared energy-saving circuit according to claim 5, wherein when the infrared sensing control circuit does not capture infrared rays, the second transistor outputs a low-level control signal, and the low-level control signal is added to the third The base of the transistor 'truncates the third transistor. For example, in the infrared energy-saving circuit described in claim 6, wherein the third switching transistor of the self-excited disk circuit is cut off, the main switching power supply circuit has no direct current output. The infrared energy-saving circuit according to claim 1, wherein the switching power supply control circuit comprises a main switching power supply circuit and a self-oscillating circuit, and the δ main switching power supply circuit and the self-oscillating circuit are electrically connected. The self-excited oscillation circuit controls a power output state of the main switching power supply circuit. The infrared energy-saving circuit of claim 8, wherein the switching power supply control circuit comprises a sampling voltage stabilizing circuit, and the sampling voltage stabilizing circuit is electrically connected to the main switching power supply circuit and the self-oscillating circuit respectively, the sampling The voltage stabilizing circuit is used to make the main switching power supply circuit output a regulated direct current. The infrared energy-saving circuit of claim 9, wherein the sampling voltage stabilizing circuit is an optically isolated voltage feedback circuit. 1003432094-0 Form No. Α0101 Page 17 of 22 1358899 ιοί)Year.ll. 21st Nuclear Replacement Page 11. The infrared energy-saving circuit of claim 10, wherein the sampling regulator circuit The reference voltage generator is configured to output a stable direct current to the output terminal by setting a reference voltage value of the reference voltage generator. 12. The infrared energy-saving circuit of claim 1, wherein the time delay of the amplified voltage signal by the delay circuit can be set according to different applications. 095148535 Form No. A0101 Page 18 of 22 1003432094-0
TW95148535A 2006-12-22 2006-12-22 Infrared power-saving circuit TWI358899B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95148535A TWI358899B (en) 2006-12-22 2006-12-22 Infrared power-saving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95148535A TWI358899B (en) 2006-12-22 2006-12-22 Infrared power-saving circuit

Publications (2)

Publication Number Publication Date
TW200828799A TW200828799A (en) 2008-07-01
TWI358899B true TWI358899B (en) 2012-02-21

Family

ID=44817773

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95148535A TWI358899B (en) 2006-12-22 2006-12-22 Infrared power-saving circuit

Country Status (1)

Country Link
TW (1) TWI358899B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI399034B (en) * 2009-12-22 2013-06-11 Hon Hai Prec Ind Co Ltd Cable modem energy-saving circuit

Also Published As

Publication number Publication date
TW200828799A (en) 2008-07-01

Similar Documents

Publication Publication Date Title
CN101202542B (en) Infrared energy saving circuit
TWI326520B (en) Switching power supply circuit
JP2020509738A (en) Oscillation control circuit of ultrasonic atomizing sheet and ultrasonic electronic cigarette
TW201220938A (en) Light source driving circuit, controller and method for controlling brightness of light source
TWM417719U (en) Bisynchronous Resonant Switching DC power supply
TW201122794A (en) Power supply circuit capable of reducing power loss and computer device using the same
JP2011222266A (en) Lighting device and lighting fixture using the same
JP2014503168A (en) Low voltage control power supply circuit and drive control method thereof
TWI358899B (en) Infrared power-saving circuit
TWM361185U (en) Distribute power supply
JP5606877B2 (en) Buck converter
CN103108438B (en) Light source supplying module
JP2004153948A (en) Switching power supplying arrangement
TWM364897U (en) Power supply
CN101222807A (en) Auto-excitation type LED driver
CN203813419U (en) Over-current protection circuit of switch power supply
CN205490213U (en) Switching power supply of electric energy meter
TWI396888B (en) Power supply circuit and control method thereof
JP5440298B2 (en) lighting equipment
WO2015051698A1 (en) Led drive device
TW200950299A (en) Single-stage AC to DC conversion device
TW200950291A (en) Switching power supply circuit
CN104716847A (en) Small-power switching power source circuit and small-power switching power source
TWI384903B (en) A driver circuit for light emitting elements
WO2018214104A1 (en) Led driving circuit and led lighting device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees