TWI358690B - Light emitting diode driver - Google Patents

Light emitting diode driver Download PDF

Info

Publication number
TWI358690B
TWI358690B TW95145939A TW95145939A TWI358690B TW I358690 B TWI358690 B TW I358690B TW 95145939 A TW95145939 A TW 95145939A TW 95145939 A TW95145939 A TW 95145939A TW I358690 B TWI358690 B TW I358690B
Authority
TW
Taiwan
Prior art keywords
voltage
current
source
effect transistor
field effect
Prior art date
Application number
TW95145939A
Other languages
Chinese (zh)
Other versions
TW200826019A (en
Inventor
Yuh Ren Shen
Hung Chi Chu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW95145939A priority Critical patent/TWI358690B/en
Publication of TW200826019A publication Critical patent/TW200826019A/en
Application granted granted Critical
Publication of TWI358690B publication Critical patent/TWI358690B/en

Links

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Description

1358690 v 九、發明說明: 【發明所屬之技術領域】 _ 本發明係有關於一種發光二極體驅動器,尤指一種控制型驅動器 (controllable driver),有關於自動調整驅動電壓以穩定驅動電流之驅動 . 控制技術,可應用於驅動照明用(lighting)以及背光源用(backlight)...等 高功率之發光二極體。 【先前技術】 • 傳統工業界上定電流驅動器係有兩種型式:一種是定電壓方式, 以設定電壓值的方式來限制流過應用體之驅動電流之值;另一種則是 定電流方式,以設定電流源之值的方式來限制驅動電流之值,如第2A 圖所示為定電壓方式(圖中所舉例之應用體為發光二極體),外部輸入 電壓VDD先經由發光二極體控制器210輸出電壓Vled驅動發光二極體 產生電流Iled ;同時,該發光二極體控制器另控制與發光二極體串聯 之電組R上之電壓降Vset,藉由穩定設定電壓Vset之值來穩定電阻R _上流通之電流值(亦為發光二極體上之電流值Iled)。第二種為定電流方 式如第2B圖所示,外部輸入電壓U直接驅動發光二極體產生電流 ;同時’另-外部輸入電壓Vdd經由發光二極體控制器22〇產生 -流通設定電阻Rset上之參考電流,藉由該參考電流來鎖定發光二極 體上之電流值1咖。然而,對於一些較精密的應用_如:高瓦數之 照明用或背光源用發光二極體)而言,發光造成的溫度上升、驅動電壓 的擾動(fluctua㈣以及發光二極體材質屬性的異同都會影響其驅動電 流不能常態性地維持一固定值。 6 1358690 此外’利用一參考電流源(reference current source)透過電流鏡 (current mirror)來箝制(damp)驅動電流亦是一種直接控制電流之方 -法。如第6A圖所示’兩個同樣是1:N比率放大參考電流源lK;f之電流 -鏡611,612疊加-起,可將驅動電流—箝制在NiJ%ef之值。然而, •利用兩個1:N比率之電流鏡所佔之空間實在太大;同時,只箝制驅動 •電流的作法只能應付少量的電流波動,對於應用體可能發生之電性變 化(例如.等效電阻、電流_電壓關係曲線I V curve以及化學與物理特 φ丨生的改支)乃至於對整個驅動器造成電壓需求(voltage desire)之窘迫,傳 統之電流鏡電路並不能應付這樣複雜之狀況。 【發明内容】 ' 本發明之目的係在於提供發光二極體的一種高穩定度之控制型驅 動器與驅動系統。除了定電流的箝制(clamping)技術外,獨特之電壓調 痛器(voltage adjuster)技術將可自動調節應用體之驅動電壓,使應用體 即使在面對可能升高之溫度或突發狀況所造成之電路負荷時,調節後 鲁的驅動電壓亦能穩定驅動所設定之驅動電流值。本發明之驅動系統係 能成功整合上述功能,卻不需佔用太多系統空間,適合應用於各種輕 便裝置中。 又,配合本發明獨特之電壓調節器技術,受使用者介面控制之可 變電壓源(adjustable-voltage source)更加深了本發明之應用範圍;在本 發明中’使用者可以透過控制介面(control interface)控制該可變電壓源 直接選取不同應用體適用之驅動電壓。此外,對於高瓦數之照明用與 背光源用發光二極體等常發生之過熱現象(〇Ver_temperature)與過電流 7 1358690 • (over-current)現象’本發明中亦設置了過熱保護與過電流保護,供以直 接於驅動控制系統防止對應用體嚴重之損傷。 為了月匕使本發明上述的内谷、目的、優點與其他特徵能更明顯易 懂,以下配合圖式與較佳實施例詳細說明本發明。 * 【實施方式】 本發明係一種控制型驅動器(controllable driver)500供以驅動應用 體(aPPliCati〇n)520之高低電位端(Vappl5〇l and Vapp25〇2)間產生穩定驅 鲁動電流Iapp,主要包括:⑻一個直流電源輸入端51〇,供以輸入直流電 壓 V〇 ’(b)—個第一場效電晶體(1st field effect transistor, FET)131,供以 •作為電壓調節器(voltage adjustor)用,其汲源極(drain t〇 s〇urce)之間電 壓差可調節應用體兩端電壓(Vappl-Vapp2) ’以纾解該應用體之電壓需求 (voltage desire)並達到穩定驅動電流‘之效果;⑹一個控制器 (C〇ntr〇Uer)530,供以控制該第一場效電晶體之閘極(gate)電壓;以及⑹ 一個電流控制器(〇111^〇)1^〇1^)140,供以箝制(也1111))驅動電流為設 馨定值。其中,該控制器還可偵測該應用體之電壓變化532以產生負回 饋(feedback)電壓至該第一場效電晶體之閘極,使其汲源極(dfain t〇 source)之間電壓差自動產生補償電壓,以奸解該應用體之電壓需求 (voltage desire)。經由此負回饋迴路,本發明之控制型驅動器可自發性 地維持尚穩定度之驅動電流值’即使在面對大幅電壓源波動、應用體 等效電阻(effectiveresistor)變化等等險峻之客觀與主觀條件下,仍然可 以自動地調節出適當之驅動電壓以配合所設定之驅動電流值。 此外,本發明之控制型驅動器亦可搭配一個可變電壓源 8 1358690 *' (adJustable-vo1邮e source)110,供以接受外部電壓vDD之電源輸入,輸 出可調變之直流電壓V。至該直流電源輸入端;再加上一個控制介面 (eontrol interface)160,使本發明之控制型驅動器能接受使用者指令 (user command)直接控制直流電廢V。之值’如此,驅動電壓能調節的 • 範圍又更加地彈性,應用體能應用之範圍也大大地提昇。 • 同時’為了使本發明之控制型驅動器更加穩定地運作(operation), 可於該第一場效電晶體之閘極電壓連線上534或是該電流控制器上裝 •設過熱保護(〇ver-temperature protection)以及過電流保護(over_current protection),以便於發生過熱與過電流現象時適時地截斷驅動電流或是 .設定電流之上限。而與保護裝置配合之溫度感測器(temperature sensor)552與電流監測器(current monitor)553亦可包括在本發明之控制 型驅動器中。 本發明係一種驅動系統(driving system)驅動一應用體(applicati〇n) 產生穩定驅動電流’該驅動系統主要包括以下六個部份:個直流 _電源輸入端510,供以輸入直流電壓V。;(b)—個應用輸出端(〇mputf〇r appliCati〇n)501,供以連接應用體高電位處且該處電壓為;⑻一 個應用輸入端(input for application)502 ’供以連接應用體低電位處且該 處電壓為Vapp2 ;⑼一個第一場效電晶體fidd effeet 阳7)131,供以作為電壓調節器(voltageadjustor)用;⑹—個第一運算 放大器(1st operation amplifier, OpAmp)132,可偵測該應用體之電壓變 化而產生負回饋電壓至該第一場效電晶體之閘極,使其汲源極(draint〇 source)之間電壓差自動產生補償電壓,以纾解該應用體之電壓需求 9 1358690 .‘ Outage desire)而達到穩定驅動電流Iapp之效果β ;以及⑺一個電流控 制窃(currentcontroller)140 ’供以箝制(damp)驅動電流為設定值。 為達到該電流控制器之目的,可將該電流控制器置於應用體與接 地端之間以輸入驅動電流如第3圖所示(圖中舉例之應用體為發光二極 體組120),其中並包括:⑻一個參考電流源147,供以輸出穩定參考 電流(reference current)Iref;以及φ)一個依1:N比率放大該參考電流^ 之電流鏡㈣的加出^^⑷’供以箝制輸入電流為參考電流^…為 _ 了能精確掌握該1:N放大比率使驅動電流之控制更加精準,如第6b 圖所不,該電流鏡又包括一個第二運算放大器(2nd 〇pAmp)144,其正 •輸入端(positive input)與該參考電流源之輸出端共電位而其輸出端 (output)與該電流鏡之共閘極(c〇mm〇n gate)共電位,並使其負輪入端 (negative input)電壓u與該第一運算放大器132之正輸入端電壓m 等電位(Vset2 = Vsetl),除了能確切掌握箝制之效果,同時,又避免如傳 統之電流鏡設計(見第6A圖)-樣佔去大量系統空間。另外其中之該泉 •考電流源還包括:⑻一個第三運算放大器(3rd 〇pAmp)14i,其正輸二 端輸入-能隙參考電壓(energy gap reference voltage)而其負輸入端與 其輸出端連接形成負回饋電路;⑼—個第二場效電晶體(211(1财)142, ,、閘源極位於該第二運算放大器之負回饋線路上,使其間極與該第: 運算放大器之輸出端連接而其源極與該第三運算放大器之負輪入礙 接,似箝制該第三運算放大器之負輸入端之電壓為固定值,並受該 第=運算放大器之正輸入端之電壓控制;⑹一個電阻&⑽位於該= 運算放大$之負輪人端與接地端之間,供以產生_通職第二場效電 10 !358690 • 晶體之電流Iset3 ;以及(d) —個正載子通道電流鏡(p channel current mirr〇r)143 ’供以接受通過該第二場效電晶體之電流Iset3,並於該正载 -子通道電流鏡之另一端輸出參考電流Ircf。 • 為了使應用體產生之電壓需求(voltagedesire)能及時得以抒解,該 . 第一場效電晶體之源極(source)可與該應用輸出端連接,且其沒極 (drain)與該直流電壓輸入端連接,供以調節直流電壓V。與該應用輸出 端VapPi間之電壓差,而該第一運算放大器(1st operation 鲁OpAmp)之負輸入端可輸入該應用輸入端電壓Vapp2,並於其輸出端輸 出負回饋電壓(negative feedback voltage)至該第一場效電晶體之閘極 (gate);亦可使該第一場效電晶體之汲極與該應用輸入端連接,且其源 極與該第一運算放大器之負輪入端連接,供以調節該應用輸入端Vapp2 與該第一運算放大器之負輸入端之電壓差,並於該第一運算放大器之 輸出端輸出負回饋電壓(negative feedback voltage)至該第一場效電晶體 之閘極’皆可使該第一場效電晶體能自動協調其汲源極(drain to source) 鲁電壓差,供以纾解電壓需求以達到穩定驅動電流之效果。在電路配置 中還而個電谷與該第一場效電晶體之源極(s〇urce)或汲極咏血)連 接後接地’供以調節其源極或汲極之電壓。1358690 v IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a light-emitting diode driver, and more particularly to a controllable driver for automatically adjusting a driving voltage to stabilize a driving current. The control technology can be applied to high-power light-emitting diodes such as lighting and backlighting. [Prior Art] • There are two types of fixed current drivers in the traditional industry: one is a constant voltage method, which limits the value of the driving current flowing through the application body by setting the voltage value; the other is the constant current mode. The value of the drive current is limited by setting the value of the current source. For example, the constant voltage mode is shown in FIG. 2A (the application body shown in the figure is a light-emitting diode), and the external input voltage VDD is first passed through the light-emitting diode. The output voltage Vled of the controller 210 drives the LED to generate the current Iled. At the same time, the LED controller further controls the voltage drop Vset on the group R connected in series with the LED, by stabilizing the value of the set voltage Vset. To stabilize the current value flowing through the resistor R _ (also the current value Iled on the light-emitting diode). The second type is the constant current mode. As shown in FIG. 2B, the external input voltage U directly drives the light-emitting diode to generate a current; and the other-other external input voltage Vdd is generated via the light-emitting diode controller 22〇-flow setting resistor Rset. The reference current is used to lock the current value on the light-emitting diode by the reference current. However, for some more sophisticated applications such as high-wattage illumination or backlighting diodes, the temperature rise caused by illumination, the disturbance of the driving voltage (fluctua (4), and the similarities and differences of the material properties of the LEDs) It will affect the driving current and cannot maintain a fixed value normally. 6 1358690 In addition, using a reference current source to clamp the driving current through the current mirror is also a way to directly control the current. - Method. As shown in Fig. 6A, 'two are also 1:N ratio amplification reference current source lK; f current - mirror 611, 612 superimposed - can drive the current - clamped to the value of NiJ%ef. • The space occupied by two 1:N ratio current mirrors is too large; at the same time, only the clamping drive current can only cope with a small amount of current fluctuations, and electrical changes that may occur to the application (eg, etc.) Effect resistance, current_voltage curve IV curve and chemical and physical special φ twinning), even the voltage demand (voltage desire) of the entire drive, the traditional current mirror It is not possible to cope with such a complicated situation. [ SUMMARY OF THE INVENTION] The object of the present invention is to provide a highly stable control type driver and drive system for a light-emitting diode. In addition to constant current clamping technology, it is unique. The voltage adjuster technology will automatically adjust the driving voltage of the application body, so that the application body can adjust the driving voltage of the Lulu even when facing the circuit load caused by the temperature or sudden situation that may be raised. Stabilizing the drive current value set by the drive. The drive system of the present invention can successfully integrate the above functions without occupying too much system space, and is suitable for use in various portable devices. Moreover, in conjunction with the unique voltage regulator technology of the present invention, The adjustable voltage source controlled by the user interface further deepens the application range of the present invention; in the present invention, the user can control the variable voltage source directly through the control interface to select different applications. The driving voltage applicable to the body. In addition, for high wattage lighting and backlights, etc. Overheating phenomenon (〇Ver_temperature) and overcurrent 7 1358690 • (over-current) phenomenon 'The invention also provides overheat protection and overcurrent protection for direct damage to the application body directly from the drive control system. The present invention is described in detail with reference to the drawings and preferred embodiments. * [Embodiment] The present invention is a control type driver (controllable). The driver)500 is used to generate a stable driving current Iapp between the high and low potential terminals (Vappl5〇l and Vapp25〇2) of the driver application body (aPPliCati〇n) 520, which mainly includes: (8) a DC power input terminal 51〇, for Input DC voltage V〇' (b) - a first field effect transistor (FET) 131 for use as a voltage adjustor, its source (drain t〇s〇 The voltage difference between urce) adjusts the voltage across the application body (Vappl-Vapp2) 'to relieve the voltage requirement of the application and achieve the effect of stabilizing the drive current'; (6) a controller (C〇ntr〇Uer) 530 for controlling the gate voltage of the first field effect transistor; and (6) a current controller (〇111^〇) 1^〇1^) 140 for clamping (also 1111)) The drive current is set to a constant value. The controller can also detect the voltage change 532 of the application body to generate a negative feedback voltage to the gate of the first field effect transistor, and the voltage between the source and the source (dfain t〇source) The difference automatically generates a compensation voltage to exploit the voltage requirements of the application. Through this negative feedback loop, the control driver of the present invention can spontaneously maintain the drive current value of the still stable state, even in the face of large voltage source fluctuations, application of equivalent resistance changes, and the like. Under the condition, the appropriate driving voltage can still be automatically adjusted to match the set driving current value. In addition, the control type driver of the present invention can also be combined with a variable voltage source 8 1358690 *' (adJustable-vo1 e source) 110 for receiving a power supply input of the external voltage vDD, and outputting the adjustable DC voltage V. To the DC power input terminal; plus an eontrol interface 160, the control driver of the present invention can directly control the DC waste V by a user command. The value of 'the drive voltage can be adjusted to a more flexible range, and the range of applications for physical applications is greatly enhanced. • At the same time, in order to make the control driver of the present invention operate more stably, the gate voltage connection line 534 of the first field effect transistor or the current controller may be provided with overheat protection (〇 Ver-temperature protection and over_current protection, so as to timely cut off the drive current or set the upper limit of the current when overheating and overcurrent occur. A temperature sensor 552 and a current monitor 553 that cooperate with the protection device can also be included in the control type driver of the present invention. The invention is a driving system that drives an application body to generate a stable driving current. The driving system mainly comprises the following six parts: a DC power source input terminal 510 for inputting a DC voltage V. (b) an application output (〇mputf〇r appliCati〇n) 501 for connecting the application high potential and the voltage is there; (8) an application input (502) for the connection application The body is at a low potential and the voltage is Vapp2; (9) a first field effect transistor fidd effeet yang 7) 131, which is used as a voltage regulator (6) - a first operational amplifier (1A operation amplifier, OpAmp) 132, detecting a voltage change of the application body to generate a negative feedback voltage to the gate of the first field effect transistor, and automatically generating a compensation voltage between the voltage difference between the source and the drain source (,) The voltage requirement of the application body is 9 1358690. 'Outage desire' to achieve the effect of stabilizing the drive current Iapp β; and (7) a current control controller 140' is used to clamp the drive current to the set value. In order to achieve the purpose of the current controller, the current controller can be placed between the application body and the ground to input the driving current as shown in FIG. 3 (the application body shown in the figure is the LED group 120). The method includes: (8) a reference current source 147 for outputting a reference current Iref; and φ) an output of the current mirror (4) that is amplified by a 1:N ratio ^(4)' The clamped input current is the reference current ^... is _ can accurately grasp the 1:N amplification ratio to make the control of the drive current more precise, as shown in Figure 6b, the current mirror includes a second operational amplifier (2nd 〇pAmp) 144, its positive input is common to the output of the reference current source, and its output is common to the common gate of the current mirror (c〇mm〇n gate), and The negative input voltage u is equal to the positive input voltage m of the first operational amplifier 132 (Vset2 = Vsetl), in addition to accurately grasping the effect of clamping, and avoiding the traditional current mirror design ( See Figure 6A) - Take up a lot of system space. In addition, the spring source includes: (8) a third operational amplifier (3rd 〇pAmp) 14i, which is input to the two-terminal input-energy gap reference voltage and its negative input terminal and its output terminal The connection forms a negative feedback circuit; (9) a second field effect transistor (211 (1) 142, , , the gate source is located on the negative feedback line of the second operational amplifier, and the interpole and the third operational amplifier The output is connected and its source is in negative contact with the third operational amplifier, and the voltage of the negative input terminal of the third operational amplifier is clamped to a fixed value, and is subjected to the voltage of the positive input terminal of the third operational amplifier. (6) A resistor & (10) is located between the negative wheel terminal and the ground terminal of the operation = for the purpose of generating the second field power 10!358690 • the crystal current Iset3; and (d) A positive channel current mirror (p channel current mirr〇r) 143' is supplied to receive the current Iset3 through the second field effect transistor, and a reference current Ircf is outputted at the other end of the positive carrier-subchannel current mirror. • In order to generate electricity from the application The demand (voltagedesire) can be resolved in time. The source of the first effect transistor can be connected to the output of the application, and the drain is connected to the DC voltage input for adjustment. The voltage difference between the DC voltage V and the application output terminal VapPi, and the negative input terminal of the first operational amplifier (1st operation Lu OpAmp) can input the application input terminal voltage Vapp2, and output a negative feedback voltage at the output end thereof ( a negative feedback voltage) to a gate of the first field effect transistor; or a drain of the first field effect transistor may be connected to the application input terminal, and a source thereof and the first operational amplifier a negative wheel terminal connection for adjusting a voltage difference between the application input terminal Vapp2 and a negative input terminal of the first operational amplifier, and outputting a negative feedback voltage to the output end of the first operational amplifier to the first The gate of an effect transistor can enable the first field effect transistor to automatically coordinate its drain to source voltage difference for the purpose of mitigating the voltage demand to achieve a stable driving current. Circuit And also set to the first electrical field effect of the source electrode Valley crystals (s〇urce) or Wing drain blood) is connected to the ground after the 'adjust the voltage supplied to its source or drain it.

為了解決常發生於高瓦數應用體之過熱現象與過電流現象,系統 可裝置溫度感測器(thermaisensor),供以監測系統溫度Tsys,使系統過 熱(Tsys>Tl)時得以截斷驅動電流,並於系統溫度低於安全溫度(I, 後再度啟動驅動電流(如第4A圖箭頭所示);系統亦可裝設驅動電流監 測器(current monitor)於發生過電流現象時直接截_動電流(如第4B 11 1358690 ^ 如第4C圖)’供以直接於驅動系財防止對應用體 貝傷。在本翻之驅動祕中,可直接於該第-場效電晶體之 =電壓連線上说或是該第二運算放大器⑷之輸出端上裝設過熱 保A以及過嶋《,㈣綱η断護以及過電 流保護裝置。 本發明之驅動系統亦可搭配一個可變電壓源峰祿讀喂 source)l 1G ’其包括了 —俯卜部電絲人端供轉受外部賴v㈤之電 源輸入’如第1B圖所示再由—個直流轉直流轉換器①cdc __:) 111祕· _ (V(jltage f响㈣歧錢轉i流轉換器 (^CMX: cxmv’ ’供以外部輸入電壓—進行變壓與整流後輸出直 流電壓v。;再配合一個電壓選取電路112或一個類比開關㈣呢 switch)之數位控制(digitalc〇n_電路,接受外部輸入之電壓選取訊號 113 ’供以選取(switch)適當之電壓迴路(drcuit),並依據所選取之電壓 迴路回饋電壓(feedback voltage)114至外部輸入電壓vDD與輸出電壓 V。間之電路’使得該輪出電壓v。可由該電壓選取減調變。為使該 可變電廢源選取電壓更方便使用’可再配合—健制介面(⑺咖】 interface)160負責接受使用者指令(user c〇mmand)經由一個電壓控制器 551處理使用者指令,輸出該外部輸入之電壓選取訊號至可變電壓源 改變電壓迴路。此外,該直流轉直流轉換器U1或穩壓器或是交流轉 直々IL轉換器’可具有低壓差穩壓功能(l〇w办叩_〇也),供以穩定低輸入 電壓造成之電壓消散現象;其中亦可包括一個或多數個電荷泵浦 (charge pump),供以進行電壓升降。如此’驅動電壓能調節的範圍又 12 1358690 ‘ 更加地彈性’應用體能應用之範圍也大大地提昇。 綜上,依上述所揭示之圖式與說明,本發明可以達到預期之目的, •提供一種高穩定度控制型驅動器與驅動系統,可供產業上之利用。 • 【圖式簡單說明】 第1A圖係為本發明之驅動系統實施例一電路圖(圖中舉例之應用體為 照明用或背光源用發光二極體’此電路圖並不只限於此項應用體)。 第1B圖係為本發明之可變電壓源實施例一電路圖。 •第2A圖係為傳統定電壓驅動系統(先前技術)。 第2B圖係為傳統定電流驅動系統(先前技術)。 第3圖係為本發明之電流控制器實施例一電路圖(圖中舉例之應用體為 照明用或背光源用發光二極體,此電路圖並不只限於此項應用體)。 第4A圖係為本發明之過熱保護操作之驅動電流對應系統溫度變化圖。 第4B圖係為本發明之過電流保護操作之一驅動電流變化圖。 第4C圖係為本發明之過電流保護操作之二驅動電流變化圖。 鲁第5圖係為本發明之控制型驅動器之程序說明圖。 第6A圖係為傳統電流鏡電路(先前技術)。 第6B圖係為本發明之改良後電流鏡電路。 【主要元件符號說明】 110 :可變電壓源 120 :發光二極體組 140 :電流控制器 湖:控制介面(control interface)In order to solve the overheating phenomenon and overcurrent phenomenon that often occur in high wattage applications, the system can be equipped with a temperature sensor (thermaisensor) to monitor the system temperature Tsys, so that the system can be cut off when the system is overheated (Tsys>Tl). And when the system temperature is lower than the safe temperature (I, the drive current is restarted again (as indicated by the arrow in Figure 4A); the system can also be equipped with a current monitor to directly intercept the current when an overcurrent occurs. (eg, 4B 11 1358690 ^ as shown in Figure 4C) 'provided directly to the driver system to prevent damage to the application body. In the driving secret of this turn, it can be directly connected to the voltage field of the first field effect transistor It is said that the output of the second operational amplifier (4) is provided with overheat protection A and over 嶋 ", (4) η 断 断 断 and overcurrent protection device. The drive system of the invention can also be combined with a variable voltage source Feng Lu Read feed source) l 1G 'It includes - the power of the bow is for the external power supply input (as shown in Figure 1B) - DC to DC converter 1cdc __:) 111 secret · _ (V (jltage f ring (four) diversified money to i flow Converter (^CMX: cxmv' 'supplied with external input voltage—transforms and rectifies and outputs DC voltage v.; with a voltage selection circuit 112 or an analog switch (4) switch) digital control (digitalc〇n_ The circuit receives the external input voltage selection signal 113' to switch the appropriate voltage loop (drcuit), and according to the selected voltage loop feedback voltage 114 to the external input voltage vDD and the output voltage V. The circuit 'makes the wheel voltage v. The voltage can be selected and reduced. In order to make the variable electric waste source select the voltage more convenient to use, the re-cooperate interface ((7) coffee interface) 160 is responsible for accepting the user. The command (user c〇mmand) processes the user command via a voltage controller 551, and outputs the voltage input signal of the external input to the variable voltage source to change the voltage loop. In addition, the DC-to-DC converter U1 or the voltage regulator is The AC-to-DC converter can have a low-dropout voltage regulator function (l〇w 叩 〇 〇 ,) for voltage dissipation caused by stable low input voltage; One or more charge pumps are provided for voltage rise and fall. Thus the range of the drive voltage can be adjusted to 12 1358690 'The more flexible' application range is also greatly improved. In summary, according to the above The present invention can achieve the intended purpose, and provides a high stability control type driver and drive system, which can be utilized by the industry. • [Simple description of the drawing] FIG. 1A is the invention Driving circuit embodiment 1 circuit diagram (the application body shown in the figure is a light-emitting diode for illumination or backlight) This circuit diagram is not limited to this application body. Fig. 1B is a circuit diagram of a first embodiment of the variable voltage source of the present invention. • Figure 2A is a conventional constant voltage drive system (prior art). Figure 2B is a conventional constant current drive system (prior art). Fig. 3 is a circuit diagram of a first embodiment of the current controller of the present invention (the application body illustrated in the figure is a light-emitting diode for illumination or backlight, and the circuit diagram is not limited to this application). Fig. 4A is a graph showing the change of the driving current corresponding to the system temperature of the overheat protection operation of the present invention. Fig. 4B is a graph showing a change in driving current of the overcurrent protection operation of the present invention. Fig. 4C is a diagram showing the change of the driving current of the overcurrent protection operation of the present invention. Ludi 5 is a program explanatory diagram of the control type driver of the present invention. Figure 6A is a conventional current mirror circuit (prior art). Figure 6B is a modified current mirror circuit of the present invention. [Main component symbol description] 110 : Variable voltage source 120 : Light-emitting diode group 140 : Current controller Lake: Control interface

Vdd .外卩輸入電壓 V。.直流電壓源輸入端之電壓 13 1358690 _ 131 :第一場效電晶體(1stFET) C :第一場效電晶體汲極(drain)或源極(source)接地前之電容 Vled :發光二極體組之驅動電壓 Iled :發光二極體組之驅動電流 132 :第一運算放大器(lst〇pAmp)Vdd. External input voltage V. The voltage at the input of the DC voltage source is 13 1358690 _ 131 : The first field effect transistor (1stFET) C : The capacitance of the first field effect transistor drain or source before the grounding Vled: the light emitting diode Driving voltage of the body group Iled: driving current of the LED group 132: first operational amplifier (lst〇pAmp)

Vseti .第一運算放大器之正輸入端(positive input)電壓 111 :直流轉直流轉換器(DC-DC converter) | 112 :電壓選取電路 113 .電壓選取訊號 114 :回饋電壓(feedback voltage)Vseti. Positive input voltage of the first operational amplifier 111: DC-DC converter | 112: Voltage selection circuit 113. Voltage selection signal 114: Feedback voltage

Ra :選取電路中電阻1 Rb:選取電路中電阻2 Rc:選取電路中電阻3 Rd:選取電路中電阻4 210、220 :發光二極體驅動器 R:定電壓驅動系統之電阻 Vset :定電壓驅動系統之設定電壓 φ Rset :定電流驅動系統之電阻 141 :第三運算放大器(3fd0pAmp) 142 :第二場效電晶體(2nd FET) 143 :正載子通道電流鏡(p channel current mirror) H4 :第二運算放大器(2nd〇pAmp) 145 :依i:n比率放大參考電流之電流鏡(currentmirror) 146 :參考電流輸入端 147 :參考電流源(reference current source) 1358690 vset3:第三運算放大器之正輸入端電壓 Rset3 :參考電流源之設定電阻 iset3:參考電流源設定電阻之流通電流 iref:參考電流源輸出之參考電流 vset2:第二運算放大器之負輸入端電壓 vseti:第一運算放大器之正輸入端電壓 Tsys :系統溫度 :過熱保護(over-temperature protection)之啟動溫度 T2 :過熱保護之解除溫度 Iapp :應用體(application)之驅動電流 Imax :過電流保護之驅動電流上限值 500 :控制型驅動器 501 :應用輸出端 502 :應用輸入端 510 :直流電源輸入端 520 :應用體(application) 530 :控制器(controller) 534 :閘極電壓開關 532 :負回饋(negative feedback)控制器 551 :電壓控制器 552 :溫度感測器 553 :電流監測器Ra: Select the resistance in the circuit 1 Rb: Select the resistance in the circuit 2 Rc: Select the resistance in the circuit 3 Rd: Select the resistance in the circuit 4 210, 220: Light-emitting diode driver R: Constant voltage drive system resistance Vset: constant voltage drive The set voltage of the system is φ Rset : the resistance of the constant current drive system 141 : the third operational amplifier (3fd0pAmp) 142 : the second field effect transistor (2nd FET) 143 : the positive channel sub-channel current mirror (p channel current mirror) H4 : Second operational amplifier (2nd〇pAmp) 145: Current mirror 146 that amplifies the reference current according to the i:n ratio: Reference current input 147: Reference current source 1358690 vset3: Positive of the third operational amplifier Input terminal voltage Rset3: reference current source setting resistance iset3: reference current source setting resistance current iref: reference current source output reference current vset2: second operational amplifier negative input voltage vseti: positive input of the first operational amplifier Terminal voltage Tsys: System temperature: Over-temperature protection start temperature T2: Over-temperature protection release temperature Iapp: Application drive current Im Ax: drive current upper limit value 500 for overcurrent protection: control type driver 501: application output terminal 502: application input terminal 510: DC power supply input terminal 520: application (application) 530: controller (controller) 534: gate Voltage switch 532: Negative feedback controller 551: Voltage controller 552: Temperature sensor 553: Current monitor

Vappl :應用輸出端之電壓 15 1358690Vappl: voltage at the application output 15 1358690

Vapp2 :應用輸入端之電壓 611、612 :傳統電流鏡Vapp2: voltage at the input of the application 611, 612: conventional current mirror

Claims (1)

B58690 100年9月7日修正替換頁 十、申請專利範圍: 1. 一種發光二極體驅動器(controllable driver),梃以驅動應用體 (application)之高低電位端(Vappi and Vapp2)間產生穩定驅動電流 Iapp ’包括: - (a)—個直流電源輸入端,供以輸入直流電壓V。; (b) —個第一場效電晶體(1stfieldeffecttransistor,FET),供以作為電 壓調節器(voltage adjustor)用,其汲源極(drain to source)之間電 • 壓差可調節應用體兩端電壓(VapprVapp2),以纾解該應用體之電 壓需求(voltage desire)並達到穩定驅動電流iapp之效果; (c) 一個控制器(controller),供以控制該第一場效電晶體之閘極(gate) ' 電壓; ⑷一個控制介面(control interface),供以接受使用者指令(user command)並輸出訊號(signal)至該控制器處理;以及 (e)—個電流控制器(cmTent contr〇iler),供以箝制(clamp)驅動電流 為設定值。 2_如申清專利範圍第1項所述之發光二極體驅動器,其中,該控制器 可偵測該應用體之電壓變化而產生負回饋電壓至該第一場效電晶 體之閘極,使其汲源極(drain to source)之間電壓差自動產生補償電 壓’以纾解該應用體之電廢需求(v〇ltage desire)而達到穩定驅動電 流Iapp之效果。 3.如申請專利範圍帛1項所述之發光二極體驅動器,又包括:一個可 變電壓源(adjustable-voltage s_e),供以接受外部電壓—之電源 17 13.58690 ⑽年9月7日修正替換頁 • 輸入’輸出可調變之直流電壓V。至該直流電源輸入端。 4..如申請專利範圍第丨項所述之發光二極體驅動器,又包括:一種過 熱保護(over-temperature protection)措施,於系統溫度Tsys發生過熱 (over temperature)現象時控制該第一場效電晶體之閘極電壓以截斷 (cut off)驅動電流。 5·如申請專利範圍第1項所述之發光二極體驅動器,又包括:一種過 電流保護(over-current protection)措施,於驅動電流發生過電流(〇ver • Current)現象時控制該第一場效電晶體之閘極電壓以截斷(cut off)驅 動電流。 6·如申請專利範圍第1項所述之發光二極體驅動器,又包括:一種過 熱保護(over-tempemture protection)措施,於系統溫度^發生過熱 (over temperature)現象時控制該電流控制器截斷(cut〇ff)驅動電流。 7. 如申請專利範圍第1項所述之發光二極體驅動器,又包括:一種過 電流保護(over-current protection)措施,於驅動電流發生過電流(〇ver 鲁 current)現象時控制該電流控制器截斷(cut 〇均驅動電流。 8. 如申請專利範圍第1項所述之發光二極體驅動器,又包括:一種過 電流保護(over-current protection)措施,於驅動電流發生過電流(〇ver current)現象時使該電流控制器控制驅動電流不得超出一上限值。 9. 如申請專利賴第3項所述之發光二極體驅動器,又包括:一個電 壓控制器(voltage controller) ’供以改變該可變電壓源輸出直流電壓 V。之值。 10. 如申請專利範圍第1項所述之發光二極體驅動器,又包括:一個溫 18 13.58690 100年9月7日修正替換頁 度感測器(temperature sensor)於系統溫度Tsys發生過熱現象時執行 過熱保護。 11.如申請專利範圍第1項所述之發光二極體驅動器’又包括:一個電 流監測器(current monitor) ’供以監測驅動電流之變化,並於過電流 (over current)現象發生時執行過電流保護(over_currentpr〇teeti(m)。 12·如申請專利範圍第1項所述之發光二極體驅動器,又包括:一個電 容與該第一場效電晶體之源極(source)連接後接地,供以調節其源 極之電壓。 13. 如申請專利範圍第1項所述之發光二極體驅動器,又包括:一個電 容與該第一場效電晶體之汲極(drain)連接後接接地,供以調節其汲 極之電壓。 14. 一種驅動系統(driving system),驅動一應用體(appiicati〇n)產生穩定 驅動電流,包括: (a) —個直流電源輸入端,供以輸入直流電壓v。; (b) —個應用輸出端(0utput for appiicati〇n),供以連接應用體高電位 處且該處電壓為vappl; (c) 一個應用輸入端(input for application),供以連接應用體低奄位 處且該處電壓為Vapp2 ; (d) 一個第一場效電晶體(1st field effect transistor, FET),供以作為電 壓調節器(voltage adjustor)用; (e) 一個第一運算放大器(1st operation amplifier,OpAmp),可4貞測該 應用體之電壓變化而產生負回饋電壓至該第一場效電晶體之 19 13.58690 100年9月7日修正替換頁 閘極,使其没源極((jfajjj t〇 s〇urce)之間電壓差自動產生補償電 壓’以纾解該應用體之電壓需求(v〇ltage desire)而達到穩定驅動 電流Iapp之效果; ⑴一個電流控制器(current contr〇Uer),供以箝制⑹⑽卩)驅動電流為 設定值; (g) 個參考電〃 IL源’供以輸出穩定參考電流(reference current)Imf; 以及 (h) 個依1 .N比率放大該參考電流iref之電流鏡(current , 供以箝制輸入電流為參考電流Iref*N。 15. 如申睛專利範圍第14項所述之驅動系統,又包括:一個第二運算 放大器(2ndOpAmp),其正輸入端(p0Sitive input)與該參考電流源之 輸出端共電位而其輸出端(output)與該電流鏡之共閘極 (common_gate)共電位,並使其負輸入端(negative却也)電壓Vset2 與該第一運算放大器之正輸入端電壓Vseti等電位(Vset2 = Vseti),供 以精確掌握該1:N放大比率使驅動電流之控制更加精準。 16. 如申請專利範圍第14項所述之驅動系統,其中,該參考電流源應 包括: (a) —個第三運算放大器(3rd OpAmp) ’其正輸入端輸入一能隙參考 電壓(energy gap reference voltage)而其負輸入端與其輸出端連 接形成負回饋電路; (b) —個第二場效電晶體(2nd FET),其閘源極位於該第三運算放大 器之負回饋線路上’使其閘極與該第三運算放大器之輸出端連 20 13.58690 100年9月7日修正替換頁 。 接而其源極與該第三運算放大器之負輸入端連接,供以箝制該 第三運算放大器之負輸入端之電壓為固定值,並受該第三運算 放大器之正輸入端之電壓控制; (C)一個電阻RsetS位於該第三運算放大器之負輸入端與接地端之 間’供以產生一通過該第二場效電晶體之電流U ;以及 (①一個正載子通道電流鏡(p channel current mirror),供以接受通過 該第二場效電晶體之電流Iset3,並於該正載子通道電流鏡之另 # 一端輸出參考電流Iref。 17. 如申請專利範圍第14項所述之驅動系統,其中該第一場效電晶體 為金屬氧化物半導體場效電晶體(metal—oxide-semiconductor fieid effect transistor, MOSFET) ° 18. 如申请專利範圍第16項所述之驅動系統,其中該第二場效電晶體 為金屬氧化物半導體場效電晶體(metai-oxide-semiconcjuct〇r field effect transistor,MOSFET)。 鲁19.如申s青專利範圍第14項所述之驅動系統,又包括:一個可變電壓 源(adjustable-voltage source),供以接受外部電壓Vdd之電源輸入, 輸出可調變之直流電壓V。至該直流電源輸入端。 20. 如申請專利範圍第14項所述之驅動系統,又包括:一控制介面 (control interface) ’供以接受使用者指令(user c〇mmand)以變更驅動 系統之各項設定。 21. 如申請專利範圍第14項所述之驅動系統,其中,該第一場效電晶 體之源極(source)係與該應用輸出端連接,且其沒極(加⑻與該直流 21 1358690 100年9月7日修正替換頁 電壓輸入端連接’供以調節直流電壓V。與該應用輸出端Vapy間之 電壓差’而該第一運算放大器(l%perati〇n amp邱er,呵)之負 輸入端係輸入該應用輸入端電壓Vapp2,並於其輸出端輸出負回饋 電廢(negative feedback voltage)至該第一場效電晶體之閘極(gate), 而使該第一場效電晶體自動協調其汲源極(drain t〇 s〇urce)電壓 差,供以纾解電壓需求以達到穩定驅動電流之效果。 22. 如申請專利範圍第14項所述之驅動系統,其中,該第一場效電晶 體之汲極係與該應用輸入端連接,且其源極與該第一運算放大器之 負輸入端連接,供以調節該應用輸入端Vapp2與該第一運算放大器 之負輸入端之電壓差;並於該第-運算放大器之輸出端輸出負回饋 電壓(negative feedback voltage)至該第一場效電晶體之閘極,而使 該第一場效電晶體自動協調其汲源極(draint0S0urce)電壓差,供以 3纾解電壓需求以達到穩定驅動電流之效果。 23. 如申請專利範圍第14項所述之驅動系統,又包括:一個電容與該 第一場效電晶體之源極(source)連接後接地,供以調節其源極之電 壓。 24. 如申請專利範圍第14項所述之驅動系統,又包括:一個電容與該 第一場效電晶體之汲極(drain)連接後接地,供以調節其汲極之電 壓。 25. 如申請專利範圍第14項所述之驅動系統,又包括:一種過熱保護 (over-temperature protection),於系統溫度 Tsys 發生過熱(over temperature)現象時控制該第一場效電晶體之閘極電壓以截斷(cut 22 13.58690 100年9月7日修正替換頁 Off)驅動電流。 一 26.如申請專利範圍第14項所述之驅動系統,又包括:一種過電流保 護(〇ver-Currentprotecti〇n),於驅動電流發生過電流(〇vercurrent)現 象時控制該第一場效電晶體之閘極電屢以截斷(cut〇^驅動電流。 -27.如申請專利範圍第14項所述之驅動系統,又包括:一種過熱保護 • (over_temPerature Pr_ti〇n),於系統溫度 Tsys 發生過熱(〇^ temperature)現象時控制該1:N比率電流鏡之共閑極電壓以截斷㈣ φ off)驅動電流。 28·如申請專利範圍第Η項所述之驅動系統,又包括:一種過電流保 - 護(over-current Protecti〇n)措施,於驅動電流發生過電流(〇ver current)現象時控制該1:N比率電流鏡之共閘極電壓以截斷_ _ 驅動電流。 29. 如申請專利範圍第14項所述之驅動系統,又包括:一種過電流保 護(over-current protecti〇n)措施,於驅動電流發生過電流 # eU1Tent)現树控制該1:N比率電流鏡使驅動電流不得超出二上限 值。 30. 如申請專利範圍第19項所述之驅動系統,又包括:一個電壓控制 器(voltage controller) ’供以控制該可變電慶源改變輸出直流電座 V。之值。 &amp; 31. 如申請專利範圍第14項所述之驅動系統,又包括:—個溫度感測 器(temperature sensor)供以偵測系統溫度Tsys之變化,於系統過熱 (Tsys&gt;T〇時執行過熱保護’並於系統溫度低於安全溫度心叫後 23 13.58690 100年9月7日修正替換頁 再度正常運作驅動電流。 % ,32·如申請專利範圍第14項所述之驅動系統,又包括:一個電流監測 器(current monitor),供以監測驅動電流之變化,並於過電流(〇ver current)現象發生時執行過電流保護(over-瞻ent ρ_ί〇η)。 33.如申請專利範圍第19項所述之驅動系統,其中,該可變電壓源包 括一穩壓器(voltage regulator),供以外部輸入電壓vDD進行變壓與 整流(rectifier)後輸出直流電壓vQ。 • 34.如申請專利範圍第19項所述之驅動系統,其中,該可變電壓源包 括一直流轉直流轉換器(DC-DC converter) ’供以外部輸入電壓Vdd 進行變壓與整流後輸出直流電壓V。。 35.如申凊專利範圍第19項所述之驅動系統,其中,該可變電壓源包 括一父流轉直流轉換器(AC-DC converter),供以外部輸入電壓vDD 進行變壓與整流後輸出直流電壓V。。 36·如申請專利範圍第19項所述之驅動系統,其中,該可變電壓源又 _ 包括一個或多數電荷栗浦(chargepump),供以進行電壓之升降。 37. 如申睛專利範圍第19項所述之驅動系統,其中,該可變電壓源又 包括一電壓選取電路,供以接受電壓訊號並選取(switch)適當之電 壓迴路(circuit),使其回饋電壓(feedback voltage)至外部輸入電壓 Vdd與輸出直流電壓V。之間電路,而改變該可變電壓源輸出之電 壓值V。。 38. 如申請專利範圍第19項所述之驅動系統,其中,該可變電壓源又 包括一類比開關(analog switch)之數位控制(digital control)電路,供 24 1358690 100年9月7日修正替換頁 以接受電壓改變之指令以選取(switch)適當之電壓迴路(circuit),並 使其回饋電壓(feedback voltage)至外部輸入電壓VDD與輪出直流電 壓V。之間電路,而改變該可變電壓源輸出之電壓值V。。 39. 如申請專利範圍第30項所述之驅動系統,其中,該電壓控制器可 用脈波寬度調節訊號(pulse width modulation,PWM)供以使用者 操控該應用體之開關與閃爍形式。 40. 如申請專利範圍第14項所述之驅動系統,係供驅動照明用(lighting) 發光二極體。 41. 如申請專利範圍第14項所述之驅動系統,係供驅動背光源用 (backlight)發光二極體。 42. 如申請專利範圍第19項所述之驅動系統,其中,該可變電壓源具 有低壓差穩壓功能(low drop-out),供以穩定低輸入電壓所造成之消 散現象。B58690 Correction and replacement page on September 7, 100. Patent application scope: 1. A controllable driver that generates a stable drive between the high and low potential terminals (Vappi and Vapp2) of the application application. The current Iapp 'includes: - (a) - a DC power input for the input DC voltage V. (b) A first field effect transistor (FET) for use as a voltage adjustor, with a drain to source between the electrodes and the voltage difference. The terminal voltage (VapprVapp2) is used to relieve the voltage requirement of the application and achieve the effect of stabilizing the driving current iapp; (c) a controller for controlling the gate of the first field effect transistor (gate) 'voltage; (4) a control interface for receiving user commands and outputting signals to the controller; and (e) a current controller (cmTent contr 〇iler), for clamping the drive current to the set value. The illuminating diode driver of claim 1, wherein the controller detects a voltage change of the application body to generate a negative feedback voltage to the gate of the first field effect transistor. The voltage difference between the drain to source is automatically generated to compensate the voltage 'to eliminate the electrical waste requirement of the application body to achieve the effect of stabilizing the driving current Iapp. 3. The light-emitting diode driver as claimed in claim 1, further comprising: a variable voltage source (adjustable-voltage s_e) for receiving an external voltage - the power source 17 13.58690 (10) revised on September 7 Replacement page • Input 'Output adjustable DC voltage V. To the DC power input. 4. The LED driver of claim 2, further comprising: an over-temperature protection measure for controlling the first field when the system temperature Tsys is over temperature The gate voltage of the effect transistor cuts off the drive current. 5. The illuminating diode driver according to claim 1, further comprising: an over-current protection measure for controlling the overcurrent (〇ver • Current) phenomenon of the drive current The gate voltage of an effect transistor cuts off the drive current. 6. The light-emitting diode driver according to claim 1, further comprising: an over-tempem protection protection method for controlling the current controller to be cut off when the system temperature exceeds an over temperature phenomenon. (cut〇ff) drive current. 7. The illuminating diode driver according to claim 1, further comprising: an over-current protection measure for controlling the current when an overcurrent occurs in the driving current (〇ver 鲁 current) The controller is cut off (cut 〇 average drive current. 8. The light-emitting diode driver according to claim 1 of the patent application, further comprising: an over-current protection measure, an overcurrent occurs in the drive current ( 〇ver current) causes the current controller to control the drive current not to exceed an upper limit. 9. The light-emitting diode driver described in claim 3, further comprising: a voltage controller 'Supply to change the value of the output voltage of the variable voltage source V. 10. The light-emitting diode driver according to claim 1 of the patent application, further comprising: a temperature of 18 13.58690, revised on September 7, 100 The temperature sensor performs overheat protection when the system temperature Tsys is overheated. 11. The light emitting diode driver as described in claim 1 Including: a current monitor 'supplied to monitor changes in drive current and overcurrent protection when over current occurs (over_currentpr〇teeti(m). 12) The illuminating diode driver of the present invention further includes: a capacitor connected to a source of the first field effect transistor and grounded to adjust a voltage of the source thereof. The illuminating diode driver of the present invention further includes: a capacitor connected to the drain of the first field effect transistor and grounded to adjust the voltage of the drain thereof. 14. A driving system (driving) System), driving an application (appiicati〇n) to generate a stable drive current, comprising: (a) a DC power input, for input DC voltage v.; (b) an application output (0utput for appiicati〇 n), for connecting the high potential of the application body and the voltage is vappl; (c) an input for application for connecting the low-position of the application body and the voltage at the place is Vapp2; (d) a first field effect a 1st field effect transistor (FET) for use as a voltage regulatoror; (e) a first operational amplifier (OpAmp) that can be used to detect voltage variations in the application. Negative feedback voltage to the first field effect transistor 19 13.58690 On September 7, 100, the replacement page gate was corrected so that it has no source (the voltage difference between (jfajjj t〇s〇urce) automatically generates a compensation voltage' Resolving the voltage requirement of the application (v〇ltage desire) to achieve the effect of stabilizing the driving current Iapp; (1) a current controller (current contr〇Uer) for clamping (6) (10) 卩) driving current as a set value; (g) Reference source IL source 'supplied with output reference current (Imf); and (h) current mirror for amplifying the reference current iref according to the ratio of 1 .N (for the clamped input current as the reference current Iref*) N. 15. The driving system of claim 14, further comprising: a second operational amplifier (2ndOpAmp) having a positive input terminal (p0Sitive input) and a common terminal of the reference current source and an output terminal thereof (output) is common to the common gate of the current mirror (common_gate), and has its negative input terminal (negative) voltage Vset2 and the positive input terminal voltage Vseti of the first operational amplifier (Vset2 = Vseti), To accurately grasp the 1:N amplification ratio, the control of the drive current is more precise. 16. The drive system of claim 14, wherein the reference current source comprises: (a) a third operational amplifier (3rd OpAmp) 'its positive input terminal inputs a bandgap reference voltage (energy) Gap reference voltage) and its negative input terminal is connected to its output terminal to form a negative feedback circuit; (b) a second field effect transistor (2nd FET) whose gate source is located on the negative feedback line of the third operational amplifier' The gate is connected to the output of the third operational amplifier. 13.58690 The replacement page is revised on September 7, 100. The source is connected to the negative input terminal of the third operational amplifier to clamp the voltage of the negative input terminal of the third operational amplifier to a fixed value, and is controlled by the voltage of the positive input terminal of the third operational amplifier; (C) a resistor RsetS is located between the negative input terminal and the ground terminal of the third operational amplifier to provide a current U through the second field effect transistor; and (1 a positive carrier channel current mirror (p) Channel current mirror), for receiving the current Iset3 through the second field effect transistor, and outputting the reference current Iref at the other end of the positive carrier channel current mirror. 17. As described in claim 14 a driving system, wherein the first field effect transistor is a metal-oxide-semiconductor fieid effect transistor (MOSFET), and the driving system according to claim 16, wherein The second field effect transistor is a metal oxide-semiconductor field effect transistor (MOSFET). Lu 19. As described in claim 14 of the patent application scope The dynamic system further includes: an adjustable voltage source for receiving a power input of the external voltage Vdd, and outputting the adjustable DC voltage V to the input end of the DC power source. The drive system of item 14 further includes: a control interface 'for accepting user commands (user c〇mmand) to change various settings of the drive system. 21. For example, claim 14 The driving system, wherein a source of the first field effect transistor is connected to the output of the application, and the pole is non-polarized (plus (8) and the direct current 21 1358690 revised order page on September 7, 100 The voltage input terminal is connected 'to adjust the DC voltage V. The voltage difference between the application output terminal Vapy' and the negative input terminal of the first operational amplifier (1% perati〇n amp Qiu er, oh) is input to the application input Terminal voltage Vapp2, and outputting a negative feedback voltage to the gate of the first field effect transistor at its output, so that the first field effect transistor automatically coordinates its 汲 source ( Drain t〇s〇urce) The differential pressure is provided to relieve the voltage demand to achieve a stable driving current. 22. The driving system according to claim 14, wherein the first field effect transistor has a drain and the application input Connected, and its source is connected to a negative input terminal of the first operational amplifier for adjusting a voltage difference between the application input terminal Vapp2 and a negative input terminal of the first operational amplifier; and at an output end of the first operational amplifier Outputting a negative feedback voltage to the gate of the first field effect transistor, so that the first field effect transistor automatically coordinates its derint source voltage (draint0S0urce) voltage difference for 3纾 solution voltage demand Achieve the effect of stable drive current. 23. The driving system of claim 14, further comprising: a capacitor connected to a source of the first field effect transistor and grounded to adjust a voltage of the source thereof. 24. The drive system of claim 14, further comprising: a capacitor connected to the drain of the first field effect transistor and grounded to adjust the voltage of the drain. 25. The driving system of claim 14, further comprising: an over-temperature protection, controlling the gate of the first field effect transistor when an over temperature phenomenon occurs in the system temperature Tsys The pole voltage is driven by a cut-off (cut 22 13.58690 September 7, 100 correction replacement page Off). A driving system according to claim 14 of the patent application, further comprising: an overcurrent protection (〇ver-Currentprotecti〇n), controlling the first field effect when a driving current overcurrent (〇vercurrent) occurs The gate of the transistor is repeatedly cut off (cut〇^ drive current. -27. The drive system described in claim 14 of the patent scope also includes: an overheat protection • (over_temPerature Pr_ti〇n) at system temperature Tsys When the overheating (〇^temperature) occurs, the common idle voltage of the 1:N ratio current mirror is controlled to cut off the (4) φ off drive current. 28. The drive system of claim 2, further comprising: an over-current protection device that controls the current when a drive current overcurrent occurs (〇ver current) :N ratio current mirror common gate voltage to cut off _ _ drive current. 29. The drive system according to claim 14 of the patent application, further comprising: an over-current protection (over-current protection) method, wherein the driving current overcurrent # eU1Tent) controls the 1:N ratio current The mirror does not allow the drive current to exceed the upper limit. 30. The drive system of claim 19, further comprising: a voltage controller </ RTI> for controlling the variable electric source to change the output DC pedestal V. The value. &amp; 31. The drive system of claim 14 includes: a temperature sensor for detecting a change in system temperature Tsys, which is executed when the system is overheated (Tsys &gt; T〇) Overheat protection 'and after the system temperature is lower than the safe temperature, the heart is called 23 13.58690 On September 7, 100, the replacement page is corrected to operate the drive current again. % , 32 · The drive system described in claim 14 of the patent scope, including : A current monitor that monitors the change in drive current and performs overcurrent protection (over- ent ρ_ί〇η) when an overcurrent (〇ver current) occurs. The driving system of claim 19, wherein the variable voltage source comprises a voltage regulator for outputting a DC voltage vQ after being transformed and rectified by an external input voltage vDD. The drive system of claim 19, wherein the variable voltage source comprises a DC-DC converter, which is supplied with an external input voltage Vdd for voltage transformation and rectification. The drive system of claim 19, wherein the variable voltage source comprises a parent-to-DC converter (AC-DC converter) for changing with an external input voltage vDD The driving voltage system of claim 19, wherein the variable voltage source further comprises one or more charge pumps for voltage supply. 37. The drive system of claim 19, wherein the variable voltage source further comprises a voltage selection circuit for receiving a voltage signal and switching an appropriate voltage circuit. The feedback voltage is applied to the circuit between the external input voltage Vdd and the output DC voltage V, and the voltage value V of the output of the variable voltage source is changed. 38. The driving as described in claim 19 The system, wherein the variable voltage source further comprises an analog switch digital control circuit for 24 1358690 September 7, 100 correction replacement page to accept the voltage change indication Switching the appropriate voltage circuit and applying a feedback voltage to the circuit between the external input voltage VDD and the outgoing DC voltage V, and changing the voltage value of the variable voltage source output V . . 39. The drive system of claim 30, wherein the voltage controller is operative with a pulse width modulation (PWM) for the user to manipulate the switch and flashing form of the application. 40. The drive system of claim 14 is for driving a lighting LED. 41. The drive system of claim 14, wherein the backlight is used to drive a backlight. 42. The drive system of claim 19, wherein the variable voltage source has a low drop-out (low drop-out) for stabilizing the low input voltage. 2525
TW95145939A 2006-12-08 2006-12-08 Light emitting diode driver TWI358690B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95145939A TWI358690B (en) 2006-12-08 2006-12-08 Light emitting diode driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95145939A TWI358690B (en) 2006-12-08 2006-12-08 Light emitting diode driver

Publications (2)

Publication Number Publication Date
TW200826019A TW200826019A (en) 2008-06-16
TWI358690B true TWI358690B (en) 2012-02-21

Family

ID=44772264

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95145939A TWI358690B (en) 2006-12-08 2006-12-08 Light emitting diode driver

Country Status (1)

Country Link
TW (1) TWI358690B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI642326B (en) * 2017-08-18 2018-11-21 大陸商明緯(廣州)電子有限公司 Feedback circuit
TWI666967B (en) * 2018-09-05 2019-07-21 茂達電子股份有限公司 Led driver with brightness control and driving method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI410172B (en) * 2009-04-16 2013-09-21 Chunghwa Picture Tubes Ltd Driving circuit of backlight module
TW201306642A (en) * 2011-07-19 2013-02-01 Starchips Technology Inc Lighting apparatus and driving circuit thereof
TWI508434B (en) * 2013-08-22 2015-11-11 Coretex Technology Corp Amplifier circuit and signal amplifying method thereof
CN104426490A (en) * 2013-08-30 2015-03-18 核芯科技股份有限公司 Amplifier circuit and signal amplifying method
CN104797060B (en) 2015-05-13 2017-11-10 昂宝电子(上海)有限公司 For the temperature controlled system and method in LED illumination system
TWI589188B (en) * 2016-05-30 2017-06-21 松翰科技股份有限公司 Light emitting apparatus and light emitting diode driving circuit thereof
TWI738331B (en) * 2020-05-11 2021-09-01 大陸商北京集創北方科技股份有限公司 OLED display driving circuit and OLED display using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI642326B (en) * 2017-08-18 2018-11-21 大陸商明緯(廣州)電子有限公司 Feedback circuit
TWI666967B (en) * 2018-09-05 2019-07-21 茂達電子股份有限公司 Led driver with brightness control and driving method thereof

Also Published As

Publication number Publication date
TW200826019A (en) 2008-06-16

Similar Documents

Publication Publication Date Title
TWI358690B (en) Light emitting diode driver
US20080174929A1 (en) Light emitting diode driver
US9307604B2 (en) Dimmable LED lamp and dimming method
US10129946B2 (en) High-efficiency, wide dynamic range dimming for solid-state lighting
TW201244527A (en) LED drive circuit
CN100579325C (en) Light emitting diode driver as well as driving system
US7626342B2 (en) High efficiency power controller for solid state lighting
US7034607B2 (en) Switching constant-current power device
WO2015066940A1 (en) Overvoltage protection circuit, led backlight drive circuit and liquid crystal display
TWI468080B (en) LED drive device and method
CN203151378U (en) Power conversion feedback control circuit
TWI511605B (en) Dynamic control of power switching bipolar junction transistor
US9936554B2 (en) Television backlight driving device and the driving method thereof
JP2005160178A5 (en)
TW201117643A (en) LED lamp and LED lamp module
KR101224950B1 (en) A apparatus of smart dimming converter for LED lamp
CN107787605B (en) LED lighting module
KR101260990B1 (en) Dc power supply apparatus
US20130200799A1 (en) High-Voltage AC LED Driver Circuit
CN103137079A (en) Constant current driving device of light-emitting diode (LED) backlight module
CN110994989A (en) Interface circuit
KR20070113478A (en) Apparatus for controlling voltage out of dc-dc converter
CN210579380U (en) Lighting drive circuit and lighting system
KR101241827B1 (en) Power supply circuit
KR20190138010A (en) Converter to control flicker

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees