TWI358528B - Interferometry systems and methods - Google Patents

Interferometry systems and methods Download PDF

Info

Publication number
TWI358528B
TWI358528B TW94108007A TW94108007A TWI358528B TW I358528 B TWI358528 B TW I358528B TW 94108007 A TW94108007 A TW 94108007A TW 94108007 A TW94108007 A TW 94108007A TW I358528 B TWI358528 B TW I358528B
Authority
TW
Taiwan
Prior art keywords
reference surface
main
auxiliary
electromagnetic radiation
test
Prior art date
Application number
TW94108007A
Other languages
Chinese (zh)
Other versions
TW200634288A (en
Inventor
Groot Peter J De
Original Assignee
Zygo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zygo Corp filed Critical Zygo Corp
Priority to TW94108007A priority Critical patent/TWI358528B/en
Publication of TW200634288A publication Critical patent/TW200634288A/en
Application granted granted Critical
Publication of TWI358528B publication Critical patent/TWI358528B/en

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Description

1358528 •、 s 九、發明說明: 【發明所屬之技術領域】 • 本發明有關於一種干涉術系統及方法。 【先前技術】 干涉量測光學技術(interferometric optical technique)已廣泛應用在精密光學元件(precision 〇 p t i c a 1 c 〇 m ρ ο n e n t s)之表面輪廓(s u r f a c e p r 〇 f i 1 e s)的量 籲測。 舉例而言’當進行表面輪廓之量測時,一干涉儀 (interferometer)可對於測試表面(tes1: surface)所反射 之一測試前導波(test wavefront)與一參考表面 (reference surface)所反射之一參考前導波(reference wavefront)進行結合’如此以形成一光學干涉圖案 (optical interference pattern)。於光學干涉圖案之密 籲度輪廓(intensity profile)中之空間變化(spatial variations)是相對於經結合測試前導波與參考前導波之 間的相位差(phas e d i f f er ence s ),此相位差是經由與來考 表面有關之測試表面之輪廓中的變化所造成。相位移干涉 儀(phase-shifting interferometry (PSI))可用以精確決 定相位差(phase differences)與測試表面之對靡輪廊 (corresponding prof i le)。測試表面之表面輪廊量測是相 對於參考表面之表面輪廓,此參考表面是較設為理想(例 如:平坦狀(f 1 a t))或所已知之量測之容許裕产 l〇57-6961-PF;Ahddub 6 1358528 (tol erances)之内。 在P SI的作用下,光學干涉圖案是相對於測試前導波 與參考前導波之間之多相位移中之每一相位移而進行記 錄,如此以產生一連串之光學干涉圖案’並且這些光學干 涉圖案可持續光學干涉(例如:由相長干涉(construct ive) 至相消干涉(destructive interference))之至少一半周期 (half cycle))。這些光學干涉圖案可對於圖案之各空間位 置之連續密度值進行定義,其中,連續密度值包括了位於 _ 相位移(phase-shifts)之一正弦相關(sinus〇idal dependence) ’ 此正弦相關所具有之相位偏置 (phase-offset)是等於經結合之測試前導波與參考前導波 之間且對於空間位置之相位差。在習知數值技術 (numerical techniques)的使用下,經由對於密度值之正 弦相關可擷取出各空間位置之相位偏置,藉此以提供與參 考表面有關之測試表面的輪廓。一般稱此數值技術為相位1358528 •, s IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to an interferometric system and method. [Prior Art] The interferometric optical technique has been widely applied to the surface profile (s u r f a c e p r 〇 f i 1 e s) of a precision optical element (precision 〇 p t i c a 1 c 〇 m ρ e n e n t s). For example, when measuring the surface profile, an interferometer can reflect one of the test wavefront and the reference surface reflected by the test surface (tes1: surface). A reference wavefront is combined 'as such to form an optical interference pattern. The spatial variation in the intensity profile of the optical interference pattern is relative to the phase difference (phas ediff ence s ) between the combined test pre-guided wave and the reference pre-guided wave, the phase difference is Caused by changes in the contour of the test surface associated with the surface to be tested. A phase-shifting interferometry (PSI) can be used to accurately determine the phase differences and the calibration profy of the test surface. The surface rim measurement of the test surface is relative to the surface profile of the reference surface, which is ideally set (eg, flat (f 1 at)) or the known margin of production. 6961-PF; Ahddub 6 1358528 (tol erances). Under the action of P SI, the optical interference pattern is recorded relative to each phase displacement between the pre-test guided wave and the reference leading wave, such that a series of optical interference patterns are generated and these optical interference patterns Sustainable optical interference (eg, at least a half cycle from constructive to destructive interference). These optical interference patterns can define a continuous density value for each spatial position of the pattern, wherein the continuous density value includes a sinus〇idal dependence of the phase-shifts ′ The phase-offset is equal to the phase difference between the combined test pre-guided wave and the reference pre-guided wave and for the spatial position. With the use of conventional numerical techniques, the phase offset of each spatial position can be extracted via sinusoidal correlation of density values, thereby providing the contour of the test surface associated with the reference surface. This numerical technique is generally called phase

移算術(phase-shi f t i ng algorithms)。 相較於參考表面至干涉儀之光徑長度,經由更改量測 表面至干涉儀之光徑長度的情況下,如此便可產生pSI中 之相位移。舉例而言,參考表面可相對於量測表面而進行 移動。另一方面’相位移可以設定為一常數(constant), 此常數即為利用改變量測、參考前導波所得到之非零光徑 (non-zero optical path)。後者的應用上是以波長調諧 PSI (wavelength tuning PSI)較為著名且已提出相關的描 述’例如· U. S. Patent No. 4,594,〇〇3 to G. E. Sommargren。 1057-6961-PF;Ahddub 7 1358528 , Fizeau 干涉释(Fizeau interferometer)為可用以對 於一測試物件(test object)之表面進行特徵化之其中一種 . 干涉儀。於許多貫施例中,就後期分析(later analysis) . 之一電腦(computer)對於一偵測器之一干涉圖案之連續畫 面(successive frames)進行捕捉的期間(time)而言,物件 表面輪廓化(object surface profiling)相位移(phase shifting)是利用參考表面之機械位移(mechanical translation)或波長調諸來進行〇 ® 舉例而言’在不需要Fizeau干涉圖案(Fizeau interference pattern)之時間調變(temporal modulation) 的部分場合中,輪廓表面(pro file surface)是可用以調整 動力式驅動零件(dynamically actuated parts)之高速量 測(high-speed measurements)。雖然在這些不同種類技術 中之 Twymann-Green 干涉儀幾何(Twymann-Green interferometer geometries)包括了空間相位移或基於極 $化(polarization)之相位移,但這些技術仍是需要對於參 考與物件光束反射(reference and object beam ref lections)進行分離《然而,不論是利用空間或極化方 式,大開孔 Fizeau 干涉儀(large-aperture Fizeau interferometer)之共同路徑特徵(common_path characteristics)是無法輕易地對於參考與物件光束反射 進行分離。 【發明内容】 1057-6961-PF;Ahddub 8Phase-shi f t i ng algorithms. The phase shift in pSI can be produced by changing the length of the measuring surface to the length of the optical path of the interferometer as compared to the length of the reference surface to the optical path of the interferometer. For example, the reference surface can be moved relative to the measurement surface. On the other hand, the phase shift can be set to a constant, which is the non-zero optical path obtained by the change measurement and the reference pre-wave. The latter application is well known for its wavelength tuning PSI (wavelength tuning PSI) and has been described in the related art ', for example, U.S. Patent No. 4,594, 〇〇3 to G. E. Sommargren. 1057-6961-PF; Ahddub 7 1358528, Fizeau Interferometer is one of the features that can be used to characterize the surface of a test object. Interferometer. In many embodiments, for later analysis, one of the time periods during which a computer captures a continuous frame of interference pattern of one of the detectors. The phase shifting of the object surface is based on the mechanical translation or wavelength modulation of the reference surface. For example, 'the time modulation is not required for the Fizeau interference pattern. In some cases of (temporal modulation), the pro file surface is a high-speed measurement that can be used to adjust dynamically actuated parts. Although the Twymann-Green interferometer geometries in these different kinds of technologies include spatial phase shifts or phase shifts based on polarization, these techniques are still required for reference and object beam reflections. (reference and object beam ref lections) for separation. However, whether using space or polarization, the common-path characteristics of the large-aperture Fizeau interferometer cannot be easily referenced to objects and objects. The beam is reflected for separation. SUMMARY OF THE INVENTION 1057-6961-PF; Ahddub 8

1358528 一般而言,本發明之第一特點在於包括了一 此干涉儀,包括一主空腔與一輔助參考表面,主 一局部反射表面,局部反射表面是用以定義一主 面與一測試表面,干涉儀是設計用以將輸入電磁 主要部分導引至主空腔、對於輸入電磁輻射之一 進行導引下而可經由輔助參考表面所反射,其中 腔中之主要部分之一第一部分是經由主要參考 射,於主空腔中之主要部分之一第二部分是通過 表面且由測試表面所反射,干涉儀更設計用以 面、主要參考表面、輔助參考表面所反射之電磁 至一多元件偵測器,藉此與另一電磁輻射導引之 涉而形成了一干涉圖案。 本發明之另一特點在於包括了一種方法, 括:將輸入電磁輻射之一主要部分導引至一干涉 空腔,其中,於主空腔中之主要部分之一第.一部 主空腔之一主要參考表面所反射,於主空腔中之 之一第二部分是通過主要參考表面且由一測試 射。對於輸入電磁輻射之一輔助參考表面進行導 以對於來自干涉儀之一輔助參考表面進行反射。 面、主要參考表面及輔助參考表面所反射之輸入 導引至一多元件偵測器,藉此與另一電磁輻射導 生干涉而形成了一干涉圖案。 本發明之裝置與/或方法之各實施例可包括 少一或多個特點。 干涉儀, 空腔包括 要參考表 輻射之一 輔助部分 ,於主空 表面所反 主要參考 將測試表 輻射導引 間產生干 此方法包 儀之一主 分是經由 主要部分 表面所反 引,藉此 將測試表 電磁輻射 引之間產 以τ之至 1057-6961-PF;Ahddub 3 1358528 本發明之方法可包括了在基於干涉圖案之下,決定了 相關於測試表面之表面輪廓資訊,干涉圖案是經由測試表 面主要>考表面及輔助參考表面所反射之輸入電磁轉射 所形成’ 一第二干涉圖案是由主要參考表面與輔助參考表 面所反射之電磁輕射所形成,並且測試表面所反射之電磁 輻射係不會抵達多元件偵測器。 於貫施例中,主要參考表面可為一局部反射表面。於 部分實施例中,於主空腔中之主要部分之第二部分是通過 主要參考表面且由測試表面所反射。 輔助參考表面之表面面積是小於主要參考表面之表面 面積。輔助參考表面為平坦狀,主要參考表面為曲型:本 發明之裝置更可包括一預防裝置,來自於測試表面之電磁 輻射可在預防裝置之可選擇方式下而遠離多元件债測器。 舉例而言’本發明之裝置可包括一開1,此開孔是位於一 主要參考表面與一測試表面之間。 本發明之裝置更可包括多元件偵測器與一電子控制1358528 In general, a first feature of the present invention includes an interferometer including a main cavity and an auxiliary reference surface, a main partially reflective surface, the partial reflective surface defining a major surface and a test surface The interferometer is designed to direct the input electromagnetic main portion to the main cavity, and to be guided by one of the input electromagnetic radiation, and is reflected by the auxiliary reference surface, wherein the first portion of the main portion of the cavity is via The main reference shot, one of the main parts of the main cavity, passes through the surface and is reflected by the test surface. The interferometer is designed to reflect the electromagnetics of the surface, the main reference surface, and the auxiliary reference surface. The detector detects an interference pattern with another electromagnetic radiation guide. Another feature of the invention is the inclusion of a method comprising: directing a major portion of the input electromagnetic radiation to an interference cavity, wherein one of the main portions of the main cavity is the first main cavity A primary reference surface is reflected by a second portion of the main cavity that passes through the primary reference surface and is fired by a test. The auxiliary reference surface, one of the input electromagnetic radiations, is guided to reflect from an auxiliary reference surface from one of the interferometers. The input reflected from the face, the primary reference surface, and the auxiliary reference surface is directed to a multi-element detector, thereby inducing interference with another electromagnetic radiation to form an interference pattern. Embodiments of the apparatus and/or method of the present invention may include one or more of the features. The interferometer, the cavity includes an auxiliary part to refer to the table radiation, and the main reference on the main empty surface is to dry the test table radiation guide. The main part of the method is reversed by the surface of the main part, This produces a test gauge electromagnetic radiation between τ to 1057-6961-PF; Ahddub 3 1358528. The method of the present invention can include determining surface profile information, interference patterns associated with the test surface, based on the interference pattern. It is formed by the input electromagnetic reflection reflected by the test surface main surface and the auxiliary reference surface. A second interference pattern is formed by electromagnetic light reflection reflected by the main reference surface and the auxiliary reference surface, and the test surface is The reflected electromagnetic radiation does not reach the multi-element detector. In one embodiment, the primary reference surface can be a partially reflective surface. In some embodiments, the second portion of the major portion of the main cavity is through the primary reference surface and is reflected by the test surface. The surface area of the auxiliary reference surface is smaller than the surface area of the main reference surface. The auxiliary reference surface is flat and the primary reference surface is curved: the device of the present invention may further include a preventive device, and electromagnetic radiation from the test surface may be remote from the multi-component detector in a selective manner of the preventive device. For example, the apparatus of the present invention can include an opening 1 between a primary reference surface and a test surface. The device of the invention may further comprise a multi-component detector and an electronic control

器,其中’在基於干涉圖案之下,電子控制器是設計用L 決定測試表面之表面輪廊資㉟。在基於經由電磁輻射所形 成之干涉圖案之下,電磁輻射是由測試表面、主要參考表 面及輔助參考表面所反射,電子控制器是設計用以決定測 試表面之表面輪廓資訊,並且一第二干涉圖案是由主要 &lt;參 考表面與辅助參考表面所反射之電磁輻射所形成,並且測 試表面所反射之電磁輻射係不會抵達多元伴倩測…、“ A 器 辅助 參考表面係以相對於干涉儀之一光軸而傾斜,藉此在干, 1057-6961-PF;Ahddub 10 1358528 圖案中形成複數空間載波條紋。本發明之裝置更包括一正 父相位偵測系統,正交相位偵測系統包括了多元件偵測 益。於部分實施例中,輔助參考表面是設置於一轉換器, 轉換器是設計用以改變延伸至多元件偵測器一光徑長度, 此光徑長度是,此多元件偵測器是應用於辅助參考表面所 反射之電磁輻射。干涉儀可包括一折疊鏡片(例如:一鏡子 或一稜鏡)與一機架,折疊鏡片是設計用以使得主要參考表 面朝上’部分之機架是設計用以支承測試表面。干涉儀包 括一光束分離器(例如:非極化光束分離器或極化光束分離 盗),光束分離器用以對於輸入電磁輻射之主要部分與輪入 電磁輻射之輔助部分之間進行分離。干涉儀可包括一或多 個成像鏡片,成像鏡片將測試表面成像於多元件债測器之 上。本發明之t置更可包括一光源’光源是作為輪入電磁 輻射(例如:雷射)之使用。 干涉儀為一Fizeau干涉儀、Michelson干涉儀、 干涉儀或M i rau干涉儀。 於特定實施例中,本發明之方法是可藉由其裝置之實 施例而加以實施。 於本發明之其它優點中’裝置與方法之實施例可提供 複數Fizeau干涉儀,就測不準(uncertainty)之環境來源 (例如:振動)而言,這些Fizeau干涉儀對可具有機械上的 穩定與相對不靈敏,並且當干涉儀用以對於一測試零件或 不同零件之間進行量測時’這些測不準之環境來源係成造 成干涉儀内部之表面的移動。在穩定度及與環境效應有關 1057-6961-PF;Ahddub 11 1358528 之不敏感ι±的作用下,干涉儀系統可具有不錯的可靠度愈 精硪性。 ’、 再者,在利用一干涉圖樣之單-畫面取代了多書面之 下,藉由實施例中所包括之干涉儀系統可進行表面輪摩量 測,其理由在於處理多晝面的系統中是需要具有㈣ 術。就遠度而言,單一畫面量測之執行技術所需之時間: 較多晝面技術要少。另外,利用單一畫面技術是可減少^ 於移動零件(例如:相位移所使用之轉換器)的需求,藉此 以減少干涉儀系統所需之成本。 在參考表面與測試表面$ π t , A衣曲之間不具有任何光學元件的情 況下,使用Fizeau干涉儀之單一晝面量測仍是可執行的。 因此,相較於量測光束路徑中包含有光學元件的系統而 言,於使用Fizeau干涉儀進行量測時所造成誤差之來源是 可以被減少的。 就商業上可利用性(c〇mmerciaUy旦而言, •使用上對於干涉儀系統進行適當的簡易變更下,本發明之 特點是可被達成的。舉例而言,具商業上可利用性之犯 干涉儀是可包含了使用少數附加元件之一辅助鏡子,並且 這些附加元件之價格是不至於太昂貴。 相較於傳統相位移系統,於本發明之部分實施例中之 裝置與方法是可包括機械相位移干涉儀系統,此機械相位 移干涉儀系統是可有效提昇性質。舉例而言,干涉 儀系統可包括-輔助鏡子,此辅助鏡子是設置於一轉換器 之上,如此便可在Fizeau空腔之外侧進行機械相位移。由 1057-6961-PF;Ahddub 12 於大開孔系統中之輔助 點,因而上述系統僅f利 、是遠小於參考鏡子之特 相位移。 利用複雜性較低之轉換器便可進行 就具有一輔助鏡子之 化方式可相對地簡化正交:lzeau干涉儀系統而言’利用極 u 父相位量測 干涉儀系統可對於來自於 不'知作。此Fizeau .理,並且在夂考表面t ; iZeaU工腔之光束進行極化處 在牡令年衣面與測 件(例如:四分之一玻 B不存在有任何附加元 刀之破片)的情況下仍可進行相仿θ、ai 此外,在利用載汸後, 逗仃相位ϊ測。 進行相位的量測。於特〜 ^由輔助鏡子可便於 〗於特疋實施例中, 一干涉圖案之中,直中lL 戟及條紋可被引入至 .r ” ,、此干涉圖案是利用涉儀、 將軸助鏡子q目料光束路錢行傾 干&quot;儀 以取代參考鏡子。此外,在 &quot;’成’藉此 在對於辅助鏡子進行傾斜之下, =用參考鏡子進行量測時便可將方向調整在零位置 (null position)上。 為了讓本發明之上述和其他目的、特徵、和優點能更 明顯易懂’下文特舉-較佳實施例,並配合所附圖示,作 詳細說明如下: 【實施方式】 以下所提出之各實施例中均包括了複數F i zeail干涉儀 (Fizeau interferometers),這些 Fizeau 干涉儀是經由輔 助參考鏡子(auxi. liary reference mirror)之摻雜 (inclusion)而被增強。由於不需要在Fizeau之參考表面 13 1057-6961-PF;Ahddub 1358528 • (F i zeau’ s ref erence)與複數測試表面(tes1; surf aCes) 之間引入任何附加元件或是改變上述各表面之間的對準 . (al ignment)的情況下,輔助參考鏡子是可經由各種干涉量 , 測技術(interferometry techniques)而加以完成。舉例而 吕’輔助參考鏡子是設計用以將複數載波條紋(carrier fringes)導入於 一 Fizeau 干涉圖案(Fizeau interference pat tern)之中,如此便可利用測試表面所形成之單一干涉 圖晝面(single interferogram frame)而產生 了一測試表 籲面之特徵{characterization)。又例如,由於不需要在 Fizeau參考表面與Fizeau干涉儀之複數測試表面之間引 入任何附加元件’於Fizeau干涉儀中之輔助參考鏡子便可 利用極化而輕易地完成了正交相位量測(i n s t a n t a n e 〇 u s quadrature phase measurement)。由於在使用 Fizeau 干 涉儀下之量測光徑(measurement beam path)中之任何光學 元件(opt i cal components)係為量測過程中造成一階錯誤 ⑩(first order errors)的來源(sources),在一辅助參考鏡 子的作用下便可使得這些技術不會在系統精確度(system accuracy)上產生任何的實質偏差(substantial loss)。 此外’辅助參考鏡子亦可在一 Fizeau干涉儀中進行機 械相位移,於過程中並不會造成參考表面或測試表面的移 動。與靜止 Fizeau 空腔(stationary Fizeau cavity)有關 之環境穩定性(environmental stabil ity)是可以提高系統 之精確度(accuracy)及重覆性(repeatability)。 β月參閱第1圖,干涉量測系統(interferometry 1057-6961-pp;Ahddub 14 1358528 system)100 疋用以對於一參考鏡片(reference 〇ptic)i4〇 之一參考表面141、一測試物件190(例如:光學平面鏡 • (optical flat))之一測試表面191及一輔助參考鏡子 • (auxi liary reference mirr〇r)150 之一表面 151 所反射所 產生之光學干涉(optical interference)進行量測,其中, 輔助參考鏡子150於實質上是小於參考鏡片140。參考表面 141與測試表面191定義出一 Fizeail空腔 cavity),如第1圖中所示之空腔101。干涉量測系統ι〇〇 鲁包括一機架(mount) 192,此機架192是用以對於與辅助參 考鏡子1 5 0有關之琪!1試物件1 9 〇進行支承。 另外’干涉量測系統1 00更包括一光束分離器(beam splitter)120。光束分離器 120 將一光源(i i ght source)l 10(例如:.雷射二極體(iaser diode)、氦氖雷射 (HeNe laser)或其它類似的光源)分離成為兩分量光東 (component beams),此兩分量光束分別相對於輸入光束 鲁(input beam)之反射分量(reflected component)與傳送分 量(transmitted components) 〇傳送分量被導弓|朝向於 Fizeau空腔101,而反射分量則是被導引朝向於辅助參考 鏡子150。此外,光束分離器120更可對於經由Fizeau空 腔101與辅助參考鏡子150所反射之光線進行結合,並且 將此一結合光束(combined light)導引至像素偵測器The device, where 'under the interference pattern, the electronic controller is designed to use L to determine the surface of the test surface. Under the interference pattern formed via electromagnetic radiation, the electromagnetic radiation is reflected by the test surface, the primary reference surface, and the auxiliary reference surface, and the electronic controller is designed to determine surface contour information of the test surface, and a second interference The pattern is formed by the electromagnetic radiation reflected by the primary &lt; reference surface and the auxiliary reference surface, and the electromagnetic radiation reflected by the test surface does not reach the multi-component measurement..." "A auxiliary reference surface is relative to the interferometer One optical axis is tilted to form a complex spatial carrier stripe in the pattern of the dry, 1057-6961-PF; Ahddub 10 1358528. The apparatus of the present invention further includes a positive parent phase detection system, and the quadrature phase detection system includes In some embodiments, the auxiliary reference surface is disposed on a converter, and the converter is designed to change the length of the optical path extending to the multi-element detector, the optical path length is the multi-element The detector is applied to the electromagnetic radiation reflected by the auxiliary reference surface. The interferometer can include a folding lens (for example: a mirror or an edge) With a frame, the folding lens is designed such that the main reference surface is facing up. The portion of the frame is designed to support the test surface. The interferometer includes a beam splitter (eg, a non-polarized beam splitter or polarization) The beam splitter is used to separate the main part of the input electromagnetic radiation from the auxiliary part of the incoming electromagnetic radiation. The interferometer may comprise one or more imaging lenses, and the imaging lens images the test surface in a multi-component debt Above the detector, the t-setting of the present invention may further comprise a light source 'the light source is used as a wheeled electromagnetic radiation (for example, a laser). The interferometer is a Fizeau interferometer, a Michelson interferometer, an interferometer or a Miru Interferometers. In a particular embodiment, the method of the present invention can be implemented by embodiments of the apparatus. In other advantages of the invention, embodiments of the apparatus and method can provide a plurality of Fizeau interferometers, In terms of environmental sources (eg vibration), these Fizeau interferometer pairs can be mechanically stable and relatively insensitive, and when When the instrument is used to measure between a test part or different parts, the environmental sources of these uncertainties are caused to cause the movement of the surface inside the interferometer. In terms of stability and environmental effects, 1057-6961-PF; Under the influence of Ahddub 11 1358528, the interferometer system can have better reliability and more precise. 'And, in addition, the single-picture using an interference pattern replaces multiple writings, by implementing The interferometer system included in the example can perform surface wheeling measurement because it is necessary to have (4) in a multi-faceted system. In terms of distance, the time required for single-screen measurement execution technology: More surface technology is less. In addition, the use of single-screen technology reduces the need for moving parts (eg, converters used for phase shifting), thereby reducing the cost of the interferometer system. A single facet measurement using a Fizeau interferometer is still executable with no optical elements between the reference surface and the test surface $πt, A. Therefore, the source of the error caused by the measurement using the Fizeau interferometer can be reduced compared to the system in which the optical element is included in the measurement beam path. In terms of commercial availability (c〇mmercia Uydan, • the features of the present invention can be achieved with appropriate and simple changes to the interferometer system in use. For example, commercially available crimes Interferometers may include the use of one of a few additional components to assist the mirror, and the price of these additional components is not too expensive. Compared to conventional phase shifting systems, devices and methods in some embodiments of the present invention may include The mechanical phase shift interferometer system, the mechanical phase shift interferometer system can effectively improve the properties. For example, the interferometer system can include an auxiliary mirror that is placed on a converter so that it can be in Fizeau The mechanical phase is displaced on the outer side of the cavity. It is made up of 1057-6961-PF; Ahddub 12 is the auxiliary point in the large opening system, so the above system is only far less than the special phase displacement of the reference mirror. The converter can be implemented with an auxiliary mirror to simplify the orthogonality relatively: in the case of the lzeau interferometer system, 'Using the pole u parent phase to measure the interference The system can be obtained from the non-known work. This Fizeau., and in the surface of the reference t; iZeaU work cavity beam is polarized in the year of the mud and the test piece (for example: a quarter glass B does not In the case where there is any fragment of the additional knives, the symmetry θ, ai can still be performed. In addition, after using the enthalpy, the phase measurement is performed. The phase measurement is performed. In a special embodiment, among the interference patterns, the straight lL 戟 and the stripe can be introduced to the .r ′′, and the interference pattern is used to drain the shaft and the mirror beam. The instrument replaces the reference mirror. In addition, in the case of &quot;'forming', it is possible to adjust the direction to the null position when measuring with the reference mirror. The above and other objects, features, and advantages of the present invention will become more apparent and understood <RTIgt; Complex F i zeail interference (Fizeau interferometers), these Fizeau interferometers are enhanced by the inclusion of an auxiliary reference mirror (auxiliary reference mirror). Since the reference surface of Fizeau is not required 13 1057-6961-PF; Ahddub 1358528 • ( F i zeau' s ref erence) and any additional elements introduced between the complex test surface (tes1; surf aCes) or changing the alignment between the above surfaces. (al ignment), the auxiliary reference mirror is Various interference quantities, interferometry techniques are used to complete. For example, Lu's auxiliary reference mirror is designed to introduce complex carrier fringes into a Fizeau interference pat tern, so that a single interferogram surface formed by the test surface can be utilized (single The interferogram frame produces a characteristic {characterization) of the test surface. As another example, quadrature phase measurements can be easily accomplished using polarization by introducing any additional components between the Fizeau reference surface and the complex test surface of the Fizeau interferometer. Instantane 〇us quadrature phase measurement). Since any optical components in the measurement beam path under the Fizeau interferometer are sources of first order errors in the measurement process, Under the influence of an auxiliary reference mirror, these techniques do not cause any substantial loss in system accuracy. In addition, the auxiliary reference mirror can also be mechanically phase-shifted in a Fizeau interferometer without causing movement of the reference or test surface during the process. The environmental stability associated with a stationary Fizeau cavity can improve the accuracy and repeatability of the system. Referring to FIG. 1 for the month of β, an interferometry system (interferometry 1057-6961-pp; Ahddub 14 1358528 system) 100 is used for one reference surface 141 and one test object 190 for a reference lens (reference 〇ptic) i4 ( For example, an optical plane is used to measure the optical interference generated by one of the surface 151 of one of the test surfaces 191 and one auxiliary reference mirror ( auxi liary reference mirr〇r) 150, wherein The auxiliary reference mirror 150 is substantially smaller than the reference lens 140. The reference surface 141 defines a Fizeail cavity with the test surface 191, such as the cavity 101 shown in FIG. The interference measurement system ι〇〇 Lu includes a mount 192 that is used to correlate with the auxiliary reference mirror 1 50! 1 Test object 1 9 〇 support. In addition, the interference measurement system 100 further includes a beam splitter 120. The beam splitter 120 separates a light source (i ght source) 10 (for example, an iaser diode, a HeNe laser, or the like) into a two-component optical component (component). Beams), the two component beams are respectively guided relative to the input beam and the transmitted components of the input beam, and the transmitted component is guided toward the Fizeau cavity 101, and the reflected component is It is directed toward the auxiliary reference mirror 150. In addition, the beam splitter 120 can combine the light reflected from the auxiliary reference mirror 150 via the Fizeau cavity 101 and direct the combined light to the pixel detector.

(pixelated detector)160(例如:CCD 攝相裝置(CCD camera)) ° 再者’第1圖中之干涉量測系統1 0 0更包括複數光學 1057-6961-PF;Ahddub 15 1358528 -- • 元件與光束成型透鏡(beam shaping optics)。光學元件包 括了一校正透鏡(collimating lens)115,光束成型透鏡包 . 括透鏡130、132。在光線入射於光束分離器120之前,藉 . 由校正透鏡115可對於來自光源110之分散光線 (diverging light)進行校正(collimates)。在光線接觸於 參考鏡片140之前,利用透鏡130 ' 132可對於光束分離器 120所反射之光束進行擴大。一般而言,除了校正透鏡^5 與透鏡1 3 0、1 3 2之外,干涉量測系統1 〇 〇亦包括其它光學 籲元件。 於操作過程中’光源11 〇係對於光束分離器丨2〇進行 照射。光束分離器120對於輔助參考鏡子15〇之表面ι51 所反射之一部分的照明進行傳遞,並且利用光束分離器】2〇 將部分照明反射朝向於F i zeau空腔1 〇 1。此照明是局部經 由參考鏡片140所傳遞且由測試物件19〇之測試表面191 所反射。此外,來自於光束分離器12〇且入射於參考鏡片 籲140之部分照明是經由參考表面141所反射。由參考表面 14卜測試表面1 91所反射的照明係沿著自F丨zeau空腔】〇丄 向後穿透光束分離器120之一共同路徑(c〇ffim〇n path)而傳 播投射在像素偵測器1 6 〇。此外,辅助參考鏡子i 5 〇之表面 151所反射之照明的一部分是可經由光束分離器12〇而反 射朝向於像素彳貞測器16㈧源自於辅助參考鏡子15〇、參考 表面141與測試表面191而入射於像素偵測器16〇之前導 波(WaVefr〇ntS)的干涉作用下,其結果產生了具有不同密 度(varying intensity)之條紋圖案(pattern)。 1057-6961-PF;Ahddub 16 1358528 干涉s測系統100包括一電子控制器(electr〇nic C〇ntr〇ller)180,此電子控制器18〇係與像素偵測器i6〇 之間相互連通。電子控制器180包括一影像擷取卡(frame grabber),此影像擷取卡用以對於像素偵測器i6〇所偵測 之影像進行儲存。電子控制器丨8〇對於影像擷取卡所儲存 之影像進行分析,並且根據其分析結果而提供使用者相關 於測試表面1 9 1之資訊。 一般而言’輔助參考鏡子15〇係為平坦且具方向性之 鏡子’則輔助參考鏡子1 5 〇之表面1 5丨可相對於參考表面 141所反射之照明路徑(path 〇f illun]inati〇n)而進行傾 斜,如此便可將載波條紋(carrier fringes)導引至位在像 素偵測器160之量測與參考前導波(measurement reference wavefronts)所形成之一干涉圖案 (interference pattern)。一般而言,在上述傾斜(tilt) 方式的作用下,這些條紋是可被導引至辅助參考鏡子丄5〇 鲁所反射之前導波、參考表面141所反射之前導波所共同形 成之一干涉圖案之中。於部分實施例中,在對於輔助參考 鏡子1 50進行方向定位下’載波條紋可具有一周期 (per i od) ’此周期大致上是相對於位在像素偵測器1 6 〇之3 或3個以上 &gt;(貞測器像素(d e t e c t 〇 r p i X e 1 s)(例如:約5或5 個以上、約8或8個以上、約1 〇或1 〇個以上、約2 〇或2 〇 個以上的偵測器像素)。輔助參考鏡子1 5 〇可設置於一可調 整機架(adjustable mount)之上,藉此以便利'於辅助參考 鏡子150之方向的調整。 1057-6961-PF;Ahddub 17 1358528 利用干涉量測系統1 〇 0決定測試表面19 1之一表面輪 廓(surface prof ile)時,其包括兩步驟:不具有測試表面 191 之一干涉儀量測(interferometer measurement)及具 有測試物件之量測。就各量測步驟而言,對於各偵測器像 素之影像資料(image data)之干涉相位(interference phase) (9與信號調變(signal modulation)#是可經由電子 控制器1 8 0可被決定。 就可經由各量測步驟進行相位資訊(phase 籲informat ion)之其中一種擷取方式而言,此擷取方式是用 以進行干涉圖案之一空間傅立葉轉換(spatial Fourier transform),隨後便在頻域(frequency domain)中、利用 一數位過濾器(digital filter)對於載波條紋頻率 (carrier fringe frequency)進行辨視。於各像素上,過 濾光譜(filtered spectrum)之逆轉換(inverse transform) 便可提供相位0與信號調變# »以Macy之‘‘ Two • Dimensional Fringe Pattern Analysis,” Appl, Opt., 22’ pp. 3898-3901 (1983)為例子’其揭露了上述戶斤提出 之利用傅立葉轉換的相位彌取方法(phase extraction methods),於此係已將所有内容已參照併入。 基於以下的演算(derivation)可知,參考表面141之 表面高度輪廓(surface height profile)係有關於各量測 之相位資訊。如第1圖所示’當干涉量測系統1 〇 〇中不包 含有參考鏡片14 0時,干涉量測系統1 〇 〇所量測之複合反 射率(complex reflectivity)#是以η為基準,其中,巧為 1057-6961-PP;Ahddub 18 1358528 « - _ 輔助參考鏡子之振幅有效反射率(effective amplitude reflectivity)’ 為參考表面 141 之振幅内反射率 ' (internal amplitude reflectivity),ί為通過光束成型 • 透鏡、參考鏡片1 40之基底(substrate)之穿透效果(ef feet of transmission)。 將相關於反射效果(reflection effects)之空腔長度 (cavity length)與相位改變(phase change)之所有常數 (overall constants)予以忽略的情況下,於各像素之量測 籲相位(measured phase)可表示為: (1) 其中, e.=arg(ri) (2) Θ; =arg(iV2) (3) 於此之 η =4^1 βχρ〇' θι) (4) 鲁 r2=T^exp(/02) (5) ί = ν^χρ(!·θ,) (6) 因此 Θ;=2Θ,+Θ2· (7) 與表面尚度所關連之相位值(phase vaiues)可根據 Θ, = 2k\ ( 8 ) θ2 = 2kh2 ( 9 ) 由於 k = 2π/λ (10) 1057-6961-PF;Ahddub 19 1358528 並且λ為光源波長(source wavelength) 量測信號調變(measured signal modulation)可表示 為: ma=ivt4ra (11) 其中’ r為條紋可見度係數(fringe visibility coef f icient) ’此條紋可見度係數是假設為獨立於場位置 (f i eld position),並且條紋可見度係數是隨著時間而為 定值(constant) 〇 就所包括之測試物件1 90所得到之干涉圖案可知,光 跡追蹤法(ray tracing)為測試表面191、參考表面U1所 反射之光線的一般路徑(c〇mm〇n path),其各像素所具有之 相位董測(phase measurement)可表示為: θδ = θζ-θ, (12) , 其中 θ’ζ=2θ,+θζ_ (13) 並且由Fizeau空腔(Fizeau cavity)本身所返回之相位心為 ez=arg(z) (14) 因此 z = (r2 + r3). (15) 量測信號調變為 MB:2VT 诞 (16) 其中Z = |z|2 就各像素之相對於測試表面191之表面輪廓資訊的相 位項θ3而言,此知&amp; ρ 相位項%是藉由以下之量測相位及信號調變 1057-6961-PF;Ahddub 20 ⑧ 1358528 • · ψ 9 而被決定。Fizeau空腔101之複合反射率r是可經由根據以 下方程式之量測資料(measured data)而對於各像素進行♦十 • 算: . (η) 參考表面141之反射率(reflectivity)是由方程式(Η) 與方程式(5 )而得到 Ρ為—(18) φ因此,由方程式(15)可知 r3=z-r2, (19) 一種可表示為 6 =f^^[Mfiexpd — ζ·〜)-岣], (20) 複合論証(complex argument)即為之所需相位(desired phase)為:_ θ3 = axg[MB exp( i θΒ-ΐθΑ)~ ma] + θ2 (2J) φ 於上述參考表面之輪廓/?2為已知’經由方程式(21)便 對於獨立於光學系統之效果f之測試表面1 9丨之表面輪廓進 行決定。 於特定實施例中,參考表面141之反射率是需要被降 低的在這些例子中’藉由將抗反射塗層(antireflection (AR) coating)塗覆於參考表面U1之上,如此可降低 FiZeau二腔1〇1之填充率(finesse),同時與參考表面 141、輔助參考鏡子1 5 0之表面1 51之間之光徑不穩定性 (instability)有關之誤差(err〇rs)的效果是可以被降 1057-6961-PP;Ahddl〇h 1358528 a · ·» ^低。舉例而言,相較於在不穩定環境(unstable environments)下所可能造成第一次量測與第二次量測之 - 間所發生之量測誤差而言,上述技術對於參考表面141、輔 . 助參考鏡子150之表面151所形成之“内,’空腔 (“internal” cav i ty)之漂移(dr i f t)是較敏感的。一般 而言,於m3之間之高填充·率條紋(high-finesse fj*inges) 是具有最大的敏感度(sensitivity)。就隨著Fizeau空腔 101之填充率而下降之振幅(amplitude)而言,當抗反射塗 鲁層塗覆於參考表面141時’其所印出之條紋的振幅便隨之 降低。舉例而言,如果尽=0 · 5 %且怂=4 % ’對於一内空腔(例 如:由參考表面141、輔助參考鏡子150之表面151所形成 之空腔)漂移之結果誤差(resulting errors)是被降低了 3 個因子(factor)。 另一方面或除此之外,由於干涉量測系統1 〇 〇可被設 計成為具有充足的剛性,於第一次量測與第二次量測之間 _且與某一特徵部分有關之内空腔漂移現象便可實質上被避 免。 於特定實施例中,藉由干涉儀系統(interferometer· system)之一部分的作用下,在第一次量測與第二次量測之 間 '内空腔之穩定性(stability)是可受到監控的,並且不 論一測試物件(t e s t 〇 b j e c t)是否被定位在此干涉儀系統 中,此干涉儀系統是可對於與内空腔有關之干涉圖案進行 監控。舉例而言,一環圈(annulus)可被設置於像素偵測器 160之視角(field of view)内,像素偵測器160僅對於參 1057^6961-PF;Ahddub 22 ⑧ 1358528 考表面141進行檢測且排除了測試表面191之反射 (reflection)r3。 如第2圖所示,部分實施例中之一環圈是可利用在 Fizeau玉腔1〇1中之一開孔(aperhre)21()而形成。舉例 而《如果測試物件1 9 0是大於干涉量測系統1 〇 〇之視角 時’在利用對於部分測試表面進行遮罩(masking)的方式作 用下H孔21 0是可以排除來自於測試表面之反射。 就每一次量測進行時,利用干涉量測系統1 00中所包 括之一環圈是可對於内空腔之相對頂端(relative tip)、 傾斜(ti It)、活塞(pist〇n)進行決定。藉由量測漂移值 (measured drift vaiues)對於方程式(21)進行修正後可 得: θ3 = argfM, exp(θβ - / θ, + ζ θ^;) - Μ,] + θ2, (22) 其中,0 為:第一次量測與第二次量測之間、且與位於 内工腔中之一移有關之像素位置上的相位改變(phaSe change) 〇 請參閱第3圖,干涉量測系統3 〇 〇可用於對於一測試 物件39 0之曲型測試表面(CUrVed test surf ace)進行輪廓 化(profiling)。干涉量測系統 30 0包括一參考物件 (ref erence object)310,其中,參考物件31〇具有一曲型 (例如:球型)參考表面(curved (e. g., spherical) reference surface)311 ’並且利用參考物件31〇與測試物 件 390 定義一 Fi zeau 空腔(Fizeau cav i ty ) 3;0 Γ。干涉量測 系統3 0 0之光束成型透鏡亦包括了一附加透鏡(add i t i ona 1 1057-6961-PF;Ahddub 23 1358528 lens)320 * j: ψ ,, /、甲’此附加透鏡320是用以對於來自光束分 離器1 2 0之昭A π …、明進订聚焦,如此便可將聚焦後之光線法線(pixelated detector) 160 (for example: CCD camera) ° Furthermore, the interference measurement system in Figure 1 includes the complex optical 1057-6961-PF; Ahddub 15 1358528 -- • components And beam shaping optics. The optical component includes a collimating lens 115, and a beam shaping lens package including lenses 130, 132. Before the light is incident on the beam splitter 120, the correcting lens 115 can collimate the diverging light from the light source 110. The beam reflected by the beam splitter 120 can be enlarged by the lens 130' 132 before the light comes into contact with the reference lens 140. In general, in addition to the correction lens ^5 and the lenses 130, 1 3 2, the interference measurement system 1 〇 〇 also includes other optical components. During operation, the light source 11 is illuminating the beam splitter 丨2〇. The beam splitter 120 transmits illumination of a portion of the surface ι 51 of the auxiliary reference mirror 15 , and uses a beam splitter to direct a portion of the illumination toward the F i zeau cavity 1 〇 1 . This illumination is partially transmitted by the reference lens 140 and reflected by the test surface 191 of the test article 19〇. In addition, a portion of the illumination from the beam splitter 12 and incident on the reference lens 140 is reflected via the reference surface 141. The illumination system reflected by the reference surface 14 and the test surface 91 is propagated along the common path (c〇ffim〇n path) of the beam splitter 120 from the F丨zeau cavity to the pixel detector. Detector 1 6 〇. In addition, a portion of the illumination reflected by the surface 151 of the auxiliary reference mirror i 5 is permeable to the pixel detector 16 via the beam splitter 12 (eight) from the auxiliary reference mirror 15 , the reference surface 141 and the test surface 191 and the interference of the guided wave (WaVefr〇ntS) incident on the pixel detector 16〇 results in a stripe pattern having a varying intensity. 1057-6961-PF; Ahddub 16 1358528 The interference s-test system 100 includes an electronic controller (electr〇nic C〇ntr〇ller) 180, which is in communication with the pixel detector i6〇. The electronic controller 180 includes a frame grabber for storing images detected by the pixel detector i6. The electronic controller 丨8〇 analyzes the image stored by the image capture card and provides the user with information about the test surface 191 based on the analysis result. In general, the 'auxiliary reference mirror 15 is a flat and directional mirror' that assists the reference mirror 1 5 〇 surface 1 5 丨 can be reflected relative to the reference surface 141 (path 〇f illun] inati〇 n) is tilted so that carrier fringes can be directed to one of the interference patterns formed by the measurement and wavefronts of the pixel detector 160. In general, under the action of the tilt mode described above, the fringes can be guided to the auxiliary reference mirror, and the guided waves are reflected by the reference surface 141 before being reflected by the reference surface 141. Among the patterns. In some embodiments, the 'carrier stripe may have a period id' for directional positioning of the auxiliary reference mirror 150. This period is substantially relative to the position of the pixel detector 16 〇 3 or 3 More than (detector 〇rpi X e 1 s) (for example: about 5 or more, about 8 or more, about 1 〇 or more than 1 、, about 2 〇 or 2 〇 More than one detector pixel). The auxiliary reference mirror 1 5 〇 can be placed on an adjustable mount to facilitate the adjustment of the direction of the auxiliary reference mirror 150. 1057-6961-PF Ahddub 17 1358528 When using the interferometric measuring system 1 〇0 to determine a surface prof ile of the test surface 19 1 , it comprises two steps: no interferometer measurement without the test surface 191 and having Measurement of the test object. For each measurement step, the interference phase (9 and signal modulation) of the image data of each detector pixel is electronically controllable. The device 1 800 can be determined. In one of the ways in which the phase information is input through each measurement step, the method is to perform a spatial Fourier transform of the interference pattern, and then the frequency is In the frequency domain, a carrier fringe frequency is discriminated by a digital filter. On each pixel, an inverse transform of the filtered spectrum is provided. Phase 0 and Signal Modulation # » by Macy's Two • Dimensional Fringe Pattern Analysis,” Appl, Opt., 22' pp. 3898-3901 (1983) as an example of 'exposing the use of Fourier transforms Phase extraction methods, all of which have been incorporated by reference. Based on the following calculations, the surface height profile of the reference surface 141 is related to each measurement. Phase information. As shown in Figure 1, when the interference measurement system 1 〇〇 does not contain the reference lens 14 0, the interference amount The complex reflectivity measured by System 1 is based on η, which is 1057-6961-PP; Ahddub 18 1358528 « - _ Amplitude effective reflectivity of auxiliary reference mirror ''internal amplitude reflectivity', ί is the effeet of transmission through the beam shaping, lens, and reference lens 140. In the case where all the constants of the cavity length and the phase change relating to the reflection effects are ignored, the measured phase can be measured for each pixel. Expressed as: (1) where, e.=arg(ri) (2) Θ; =arg(iV2) (3) where η =4^1 βχρ〇' θι) (4) Lu r2=T^exp (/02) (5) ί = ν^χρ(!·θ,) (6) Therefore Θ;=2Θ,+Θ2· (7) The phase value (phase vaiues) associated with the surface sufficiency can be based on Θ, = 2k\ ( 8 ) θ2 = 2kh2 ( 9 ) Since k = 2π/λ (10) 1057-6961-PF; Ahddub 19 1358528 and λ is the source wavelength measurement signal modulation Expressed as: ma=ivt4ra (11) where 'r is the fringe visibility coef f icient'. This fringe visibility coefficient is assumed to be independent of the field position (fi eld position), and the fringe visibility coefficient is over time. For the constant value, the interference pattern obtained by the test object 1 90 included is known as the ray tracing test table. 191. Referring to the general path of the light reflected by the surface U1 (c〇mm〇n path), the phase measurement of each pixel thereof can be expressed as: θδ = θζ-θ, (12), where θ 'ζ=2θ, +θζ_ (13) and the phase heart returned by the Fizeau cavity itself is ez=arg(z) (14) so z = (r2 + r3). (15) Measurement signal Modulated to MB: 2VT (16) where Z = |z|2 For the phase term θ3 of each pixel relative to the surface contour information of the test surface 191, the known &amp; ρ phase term % is by the following Measurement phase and signal modulation 1057-6961-PF; Ahddub 20 8 1358528 • · ψ 9 was decided. The composite reflectance r of the Fizeau cavity 101 is measurable for each pixel via measured data according to the following equation: (η) The reflectivity of the reference surface 141 is determined by the equation ( Η) and equation (5) to get ——(18) φ Therefore, from equation (15), we know that r3=z-r2, (19) one can be expressed as 6 =f^^[Mfiexpd — ζ·~)-岣], (20) The complex argument is the desired phase: _ θ3 = axg[MB exp( i θΒ-ΐθΑ)~ ma] + θ2 (2J) φ on the above reference surface The profile /?2 is known to determine the surface profile of the test surface 1 丨 independent of the effect of the optical system via equation (21). In a particular embodiment, the reflectivity of the reference surface 141 is required to be reduced. In these examples, 'antireflection (AR) coating is applied over the reference surface U1, thus reducing FiZeau II. The filling rate of the cavity 1〇1, and the effect of the optical path instability (err〇rs) between the reference surface 141 and the surface 1 51 of the auxiliary reference mirror 150 can be Being lowered 1057-6961-PP; Ahddl〇h 1358528 a · ·» ^ low. For example, the above technique is for reference surface 141, auxiliary, compared to the measurement error that may occur between the first measurement and the second measurement under unstable environments. The "inner" cavity is formed by the surface 151 of the reference mirror 150. The drift (dr ift) is more sensitive. In general, the high fill rate strip between m3 (high-finesse fj*inges) is the most sensitive. As the amplitude of the Fizeau cavity 101 decreases, the anti-reflective coating is applied to the reference surface 141. The amplitude of the stripe printed by it is reduced. For example, if =0. 5 % and 怂 = 4 % 'for an inner cavity (for example: by reference surface 141, auxiliary reference mirror 150 The resulting errors of the drift formed by the surface 151 are reduced by three factors. On the other hand or in addition, since the interference measurement system 1 can be designed to be sufficient Rigidity, first measurement and second time The phenomenon of internal cavity drift associated with a certain feature portion can be substantially avoided. In a particular embodiment, by the action of one of the interferometer systems, the first time The 'internal cavity' stability between the measurement and the second measurement is monitorable, and regardless of whether a test object (b) is positioned in the interferometer system, the interferometer system It is possible to monitor the interference pattern associated with the inner cavity. For example, an annulus can be placed in the field of view of the pixel detector 160, and the pixel detector 160 is only for the reference 1057. ^6961-PF; Ahddub 22 8 1358528 Test surface 141 is tested and the reflection r3 of test surface 191 is excluded. As shown in Fig. 2, one of the loops of some embodiments is available in Fizeau jade chamber 1〇 One of the holes 1 (aperhre) 21 () is formed. For example, "if the test object 1 90 is larger than the angle of view of the interference measuring system 1" in the use of masking for part of the test surface Way The reflection from the test surface can be excluded by using the lower H hole 21 0. For each measurement, one of the loops included in the interference measurement system 100 is a relative tip to the inner cavity. , tilt (ti It), piston (pist〇n) to make a decision. Equation (21) is corrected by measuring drift vaiues: θ3 = argfM, exp(θβ - / θ, + ζ θ^;) - Μ,] + θ2, (22) , 0 is: the phase change (phaSe change) between the first measurement and the second measurement and the pixel position related to one shift in the inner working chamber. Please refer to Fig. 3, the interference measurement System 3 〇〇 can be used to profiling a CUrVed test surf ace of a test object 39 0 . The interferometric measuring system 30 0 includes a reference object 310 having a curved (eg, spherical) reference surface 311 'and using a reference The object 31〇 and the test object 390 define a Fizeau cavity (Fizeau cav i ty ) 3; 0 Γ. The beam shaping lens of the interference measuring system 300 also includes an additional lens (add iti ona 1 1057-6961-PF; Ahddub 23 1358528 lens) 320 * j: ψ , , /, A 'this additional lens 320 is used For focusing on the beam splitter 1 2 0 from the beam splitter, the focus can be normalized.

入射在測試物# q Q η &gt; , I lr 390 之曲型表面(curve(j 5111^3^)上。除 U工腔3〇1之不同的幾何(geometry)之外,干涉量 測糸統3 0 〇之桓你η—入 作疋元全相同於干涉量測系統1 〇 0的。 一般而言’除了上述實施例中之相位資訊是由載波條 紋所決疋之外,藉由其它技術亦可對於相位資訊進行決 疋。舉例而言’部分實施例是可利用極化而由一單一干涉 ®圖案獲得相位量測’藉此可將相位正交(phase quadrature) k供至干涉圖案中之正交極化(orthogonal p〇iarizati〇ns) 之間。第4圖表示一干涉量測系統400 ’此干涉量測系統 40 0係利用極化方式以進行相位正交量測(phase quadrature measurement)。干涉量測系統400包括一極化 光束分離器(polarizing beam splitter (PBS))420,此極 化光束分離器420將來自於光源110之入射照明(incident |illumi nation)分離成為複數分量光束,這些分量光束具有 正父線性極化狀態(orthogonal linear polarization states)。一光束係經由辅助參考鏡子150之表面151所反 射,而其它光束則是經由Fizeau空腔1 0 1之參考表面、測 試表面所反射。四分之一玻片(quarter wave plates)410 被定位在各光束之路徑上,如此各光束之極化狀態 (polarization state)可被迴轉90度。如此一來,初始經 由PBS 420所傳遞之光束則’可立·印被反射,並且初始被反 射且立即由Fizeau空腔101所反射之光束便可被PBS 420 1057-6961-PF;Ahddub 24 1358528 所反射。 PBS 420將辅助參考鏡子150、Fizeau空腔101所反射 之照明導引朝向至一 貞測器組件(d e t e c t 〇 r assembly)401 ’其中’偵測器組件4(n包括像素偵測器 460、470 與非極化光 | 分離器(non —p〇iarizing beam splitter)435。偵測器組件401亦包括了複數透鏡430、 440、445’這些遠鏡430、440、445是用以將來自於PBS 420 之照明進行聚焦與校正。來自於PBS 42〇之部分照明經由 籲非極化光束分離器435之反射而朝向於像素偵測器47〇,並 且利用非極化光束分離器435將部分照明傳遞至像素偵測 器460。一線性極化器(iinear p〇iar^zer)是定位在各像素 偵測盗4 6 0、4 7 0與非極化光東分離器4 3 5之間。特別的是, 一極化器462是定位於像素偵測器46〇之前方,而另一極 化器472則是定位於像素偵測器47〇之前方,其中,兩極 化器462、472是相對於PBS 42〇之傳輸軸(transmissi〇n _axis)而以45度進行定向,藉此以確保素偵測器46〇、47〇 可對於經由辅助參考鏡子150、Fizeau空腔1〇1所反射之 照明進行取樣。四分之一玻片被定位在極化器472、非極化 光束分離器435之間,並且在利用玻片之定向作用下,一 90度之相位移(phase shift)可被引入至極化器所傳送 之極化狀態之中。因此,就一像素偵測器之各债測器像素 上之干涉圖案的干涉相位而言,其干涉相位是以9〇度偏置 的方式而相對於另一像素资測器之相對償測„‘器像素上之干 涉圖案的干涉相位。 1057-6961-PF;Ahddub ⑧ 1358528 處於正交下之信號可進行調變與相位之快速量測,其 係假設固定密度偏置(constant intensity offset)/DC為已 知。因此’在不具有物件之一攝相裝置(camera)所得之量 測密度(measured intensity)為 gA=lf+MAcos(QA) (23) 就處於正父下之其匕知相裝置所得之量測密度為 g^=lf+MAsm{QA) (24) 可得It is incident on the curved surface of the test object # q Q η &gt; , I lr 390 (curve(j 5111^3^). In addition to the different geometry of the U cavity 3〇1, the interference measurement糸The system 0 入 入 η 入 入 入 全 全 全 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉Techniques may also be useful for phase information. For example, 'some embodiments may utilize polarization to obtain phase measurements from a single interference® pattern' thereby providing phase quadrature k to the interference pattern Between the orthogonal polarizations (orthogonal p〇iarizati〇ns). Figure 4 shows an interferometric measurement system 400' This interferometric measurement system 40 uses polarization to perform phase quadrature measurements (phase quadrature) The interference measurement system 400 includes a polarization beam splitter (PBS) 420 that separates incident illumination from the source 110 into a complex component. Beam, these component beams have In the orthogonal linear polarization states, a beam of light is reflected by the surface 151 of the auxiliary reference mirror 150, while other beams are reflected by the reference surface of the Fizeau cavity 110, the test surface. A quarter wave plates 410 are positioned in the path of the beams so that the polarization state of each beam can be rotated by 90 degrees. Thus, the beam originally transmitted via the PBS 420 can be The ray is reflected and the beam that is initially reflected and immediately reflected by the Fizeau cavity 101 is reflected by PBS 420 1057-6961-PF; Ahddub 24 1358528. PBS 420 will assist the reference mirror 150, Fizeau cavity 101 The reflected illumination is directed toward a detector assembly 401 'where' the detector assembly 4 (n includes pixel detectors 460, 470 and unpolarized light | splitter (non -p)侦测iarizing beam splitter 435. The detector assembly 401 also includes a plurality of lenses 430, 440, 445' for focusing and correcting illumination from the PBS 420. A portion of the illumination from the PBS 42 is directed toward the pixel detector 47A by reflection from the non-polarized beam splitter 435, and a portion of the illumination is passed to the pixel detector 460 using the non-polarized beam splitter 435. A linear polarizer (iinear p〇iar^zer) is positioned between each pixel detecting thief 4 60 0, 407 and the non-polarized optical splitter 4 3 5 . In particular, a polarizer 462 is positioned in front of the pixel detector 46, and another polarizer 472 is positioned in front of the pixel detector 47, wherein the polarizers 462, 472 are Oriented at 45 degrees with respect to the transmission axis of the PBS 42 (transmissi〇n_axis), thereby ensuring that the prime detectors 46〇, 47〇 can be reflected by the auxiliary reference mirror 150, the Fizeau cavity 1〇1 The illumination is sampled. A quarter slide is positioned between polarizer 472, non-polarized beam splitter 435, and a 90 degree phase shift can be introduced to the polarizer using the orientation of the slide. Among the transmitted polarization states. Therefore, in terms of the interference phase of the interference pattern on each of the detector pixels of a pixel detector, the interference phase is offset by 9 degrees and relative to the other pixel detector. The interference phase of the interference pattern on the pixel. 1057-6961-PF; Ahddub 8 1358528 The signal under quadrature can be used for fast modulation and phase measurement, which assumes constant density offset/ The DC is known. Therefore, 'measured intensity obtained by a camera that does not have one object is gA=lf+MAcos(QA) (23). The measured density obtained by the device is g^=lf+MAsm{QA) (24)

quad 一 jDC 9 MQA)=^i~ (25) SA~h e+r-zff+wr)2 (26) 為了決定’不論是採用高度傾斜(highly tilted)或快速 移動(rapid movement)對於辅助參考鏡子進行操作,其均 可製作出一個別篁測(separate measurement),藉此便守 對於調變項沁c〇s(eJ與沁血队)進行平均。在R. Smy the and R.Quad a jDC 9 MQA)=^i~ (25) SA~h e+r-zff+wr)2 (26) In order to determine 'whether using highly tilted or rapid movement for auxiliary reference When the mirror is operated, it can create a separate measurement, so that the average is adjusted for the modulation term 沁c〇s (eJ and the blood team). At R. Smy the and R.

Moore, Proc· Soc· Phot. Opt· Eng. 429, 16 (1983)所 鲁知·出之一替代實施例(alternative embodiment)中,在增 加了具有一附加相位移(additional phase shift)之至少 一攝相裝置的作用下,其所提供之充足資訊是可對於調 變、平均密度及相位等進行同時求解。 於其它實施例中,極化編碼參考與量測光束 (polarization-encoded reference and measurement beams)可將多個影像(muitiple images)、以各種相位移方 式而投影至單一攝相裝置偵測器(sing〗e camera detector),此一方式與 Kujawinska 等人在“ Spatiai 1057-6961-PF;Ahddub 26 ⑧ (28) (27) 1358528 並且信號調變可表示為: M2 = [7(g2-g4)-(g〇-g6)f+f8g3-Wg5)]2 162 另一方面或除此之外,凡藉由一辅助參考鏡子以決定 干涉相位與調變之其它方法均可被採用。 由上述各實施例可知,Fizeau空腔之開孔的大小是足 以對於整個測試表面(entire test surface)之反射進行捕 丨捉利用大型參考鏡片(large reference optic)(例如: 參考表面141之尺寸是相同於或大於測試表面19i之尺寸) 是可局部地達到上述之目的。實際上,由於干涉量測系統 是設計用以對於大型測試零件(large test parts)進行特 徵化處理,因而可採用相對大型且重的參考鏡片進行處 理。由於Fizeau開孔(Fizeau aperture)並未以相同的尺 寸條件(same size requirements)放置在輔助鏡子之上且 輔助鏡子是做為參考鏡片14〇之使用,則以平移小型輔助 鏡子進行機械相位移的方式是具有多項優點的…由此可 知,在相較於參考鏡片140所使用之一轉換器,上述轉換 器是可具有較小之尺寸與較簡單之構造。再者,由於輔助 參考鏡子肖FlZeau ^腔之間存在有實體距離(phys㈣ dlstance),在相較於參考鏡片14〇之下,輔助參考鏡子是 可以採取較具效能的方式而自測試物件進行實質的隔離疋 如此使得資料獲得期間t Flzeau空腔可具有較佳 1057-6961-PF;Ahddub 28 1358528 * • · 如第6圖所示之部分實施例中’干涉量測系統可設計 成為一向上看(upffard_】00king)型之系統,藉此以簡化測 .試零件之握持操作。舉例而言,干涉量測系統6〇〇包括一 .折疊鏡子(fold mirror)610,此折疊鏡子61〇是位於光束 分離器120與參考物件640、測試零件69〇之間。折疊鏡子 610將來自於光束分離器ι2〇之照明沿著一垂直路徑 (vertical path)進行導引,如此便可將照明照射在位於水 平面(horizontal plane)之參考物件64〇上。在利用與參 考表面6 41有關之測試表面6 9 1的作用下,測試零件6 9 〇 便可相當容易地水平設置於一機架(m〇unt)692之上,藉由 此機架6 9 2以對於測試表面6 91、參考表面6 41之間保持一 小里的分離。在上述組態中,由於重力(gravity)會自動地 將測試零件對準於參考物件64〇,具有任何尺寸之所有平坦 零件(flat parts)均可不必採用上述之頂端與傾斜對準。 一般而言’上述實施例中包括了一輔助鏡子與與一 籲Fizeau干涉儀之使用,並且採用一輔助鏡子之相位與振幅 技術(phase and magnitude techniques)是同樣可以應用 在其它類型之干涉儀。舉例而言,採用一輔助鏡子之相位 與振幅技術是可適用搭配於一習用干涉顯微鏡物鏡 (conventional interference microscope objective)之 使用操作’例如:Mirau、Michel son或Linnik。習用干涉 顯微鏡物鏡可包括有一辅助參考鏡子,此辅助參考鏡子是 可具有標準幾何(standard geometry)之相對小量變化 (relatively little modification)。 1057-6961-PF;Ahddub 29 ⑧Moore, Proc. Soc. Phot. Opt. Eng. 429, 16 (1983), in an alternative embodiment, at least one having an additional phase shift is added. Under the action of the camera, the sufficient information provided can be solved simultaneously for modulation, average density and phase. In other embodiments, the polarization-encoded reference and measurement beams can project a plurality of images (muitiple images) to a single phase detector detector in various phase shift modes (sing 〗 e camera detector), this way with Kujawinska et al. in "Spatiai 1057-6961-PF; Ahddub 26 8 (28) (27) 1358528 and signal modulation can be expressed as: M2 = [7 (g2-g4)- (g〇-g6)f+f8g3-Wg5)]2 162 On the other hand or in addition, other methods for determining the phase and modulation of the interference by means of an auxiliary reference mirror can be employed. For example, the size of the opening of the Fizeau cavity is sufficient to capture the reflection of the entire test surface using a large reference optic (eg, the size of the reference surface 141 is the same or greater than The size of the test surface 19i is locally achievable. In fact, since the interference measurement system is designed to characterize large test parts, a relative The type and heavy reference lens is processed. Since the Fizeau aperture is not placed on the auxiliary mirror with the same size requirements and the auxiliary mirror is used as the reference lens 14 The manner in which the small auxiliary mirror is translated to perform mechanical phase shifting has a number of advantages. Thus, it can be seen that the converter is of a smaller size and simpler construction than one of the transducers used in the reference lens 140. Furthermore, since there is a physical distance (phys(d) dlstance) between the auxiliary reference mirrors, the auxiliary reference mirror can take a more effective way to self-test the objects. The isolation 疋 so that the t Flzeau cavity can have a better 1057-6961-PF during the data acquisition period; Ahddub 28 1358528 * • · In some embodiments as shown in Fig. 6, the 'interference measurement system can be designed to look upwards (upffard_) 00king) type system, thereby simplifying the gripping operation of the test part. For example, the interference measuring system 6〇〇 includes one. Mirror stack (fold mirror) 610, this folding mirror 61〇 beam splitter 120 is located on the reference object 640, between the test part 69〇. The folding mirror 610 directs the illumination from the beam splitter ι2〇 along a vertical path such that the illumination is illuminated onto the reference object 64〇 on the horizontal plane. Under the action of the test surface 691 associated with the reference surface 461, the test part 691 can be placed relatively easily on a frame (m〇unt) 692, whereby the frame 6 9 2 to maintain a small separation between the test surface 691 and the reference surface 601. In the above configuration, since the gravity automatically aligns the test part to the reference object 64, all of the flat parts of any size need not be aligned with the top and the tilt described above. In general, the above embodiments include the use of an auxiliary mirror and a Fizeau interferometer, and the phase and magnitude techniques of an auxiliary mirror are equally applicable to other types of interferometers. For example, the phase and amplitude technique using an auxiliary mirror is applicable to a conventional interference microscope objective [e.g., Mirau, Michelson or Linnik. Conventional Interference The microscope objective can include an auxiliary reference mirror that is relatively smallly modified with standard geometry. 1057-6961-PF; Ahddub 29 8

露如上,然其並非用以 ’在不脫離本發明之精 因此本發明之保護範圍 為準。 雖然本發明已以較佳實施例揭 限制本發明,任何熟習此項技藝者 神和範圍内’當可做更動與潤飾, 當事後附之申請專利範圍所界定者 【圖式簡單說明】 第1圖表示一干涉量測組件(interferometry assembly)之一實施例之圖式,此干涉量測組件包括一 Fizeau 干涉儀(Fizeau interfer〇meter),並且利同一輔助 參考鏡子(auxiliary reference mirr〇r)對於以“⑽干涉 儀進行增強。 第2圖表示第1圖之干涉量測組件經修正後可具有一 乍%型開孔(narrow annular aperture),此開孔阻隔了對 於物件(object)之視線(view),因而可對於來自Fizeau參 考表面 (Fizeau reference) 之單一表面反射 (single-surface reflection)的一部分進行保留。 第3圖表示一干涉量測組件之一實施例之圖式,此干 涉i測組件包括一球型Fizeau空腔(spherical Fizeau cavity)及一輔助參考鏡子。 第4圖表示一干涉量測組件之一實施例之圖式,此干 涉量測組件包括一 F i z e a u干涉儀,此F i z e a u干涉儀是利 用一辅助參考鏡子對於Fizeau干涉儀進行增強,而輔助參 考鏡子是利用極化(ρ ο 1 a r i z a t i ο n+)而被提供做為瞬·間正交 相位量測(instantaneous quadrature phase measurement) 1057-6961-PF;Ahddub 30 1358528 • * * - * 之使用。 第5圖表示一干涉量測組件之一實施例之圖式,此干 涉量測組件包括一 F i zeau干涉儀,此F i zeau干涉儀是利 • 用一輔助參考鏡子對於Fizeau干涉儀進行增強,而輔助參 考鏡子疋利用機械相位移(mechanical phase shifting)而 被知1供做為相位量測(phase measurement)之使用。 第6圖表示一干涉量測組件之一實施例之圖式,此干 涉置測組件包括一向上看Fizeau干涉儀(upward-lookingIt is to be understood that the scope of the present invention is not intended to be While the present invention has been described in terms of the preferred embodiments of the present invention, any one skilled in the art will be able to make changes and refinements, as defined by the scope of the patent application. The figure shows a diagram of an embodiment of an interferometry assembly comprising a Fizeau interferometer and an auxiliary reference mirr〇r Enhanced by the "(10) interferometer. Figure 2 shows that the interference measurement assembly of Figure 1 can be modified to have a narrow annular aperture that blocks the line of sight for the object ( View) and thus may be retained for a portion of a single-surface reflection from a Fizeau reference. Figure 3 shows a diagram of an embodiment of an interference measurement assembly. The assembly includes a spherical Fizeau cavity and an auxiliary reference mirror. Figure 4 shows an embodiment of an interference measurement assembly. In the drawing, the interferometric measuring component comprises a Fizeau interferometer which uses an auxiliary reference mirror to enhance the Fizeau interferometer, and the auxiliary reference mirror utilizes polarization (ρ ο 1 arizati ο n+) It is provided as an instantaneous quadrature phase measurement 1057-6961-PF; Ahddub 30 1358528 • * * - *. Figure 5 shows a diagram of an embodiment of an interference measurement component. The interference measurement assembly includes a Fieze interferometer that enhances the Fizeau interferometer with an auxiliary reference mirror, and the auxiliary reference mirror uses mechanical phase shifting. It is known that 1 is used as a phase measurement. Figure 6 shows a diagram of an embodiment of an interference measuring assembly including an upward looking-looking Fizeau interferometer (upward-looking)

Fizeau interferometer),此向上看Fizeau干涉儀是利用 一輔助參考鏡子對於Fizeau干涉儀進行增強。 要元 件符 號 說 明 ] 100〜 干涉 量 測 系 統; 101- ~Fizeau 空腔; 110〜 光源 , 115- '校正透鏡; 120- 光束 分 離 器 130 、132〜透鏡; 140- 參考 鏡 片 9 141- '參考表面; 150- 辅助 參考 鏡 子; 151- -表面; 160〜 像素 偵 測 器 ; 180- 、電子控制器; 190〜 測試物 件 » 191- -測試表面; 192〜 機架 t 210- ••開孔; 300- 干涉 量 測 系 統; 301- -Fizeau 空腔; 310〜 參考 物 件 * 9 311- 參考表面; 320〜 透鏡 * 3 90- -測試物件; 400- 干涉 田 測 系 統; 401- -偵測器組件; 1057-6961-PF;Ahddub 31 1358528 420~極化光束分離器; 430、440、44 5〜透鏡 435〜非極化光束分離器;460〜像素偵測器; 462、472〜極化器 472〜極化器; 510~轉換器; 610〜折疊鏡子; 641~參考表面; 6 91〜測試表面; 470〜像素偵測器; 5 0 0 ~干涉量測系統; 6 0 0〜干涉量測系統; 640~參考物件; 6 9 0 ~測試零件; 6 92~機架。Fizeau interferometer), this upward looking Fizeau interferometer is enhanced with a secondary reference mirror for the Fizeau interferometer. Element Symbol Description] 100~ Interference Measurement System; 101- ~Fizeau Cavity; 110~ Light Source, 115-'Corrected Lens; 120- Beam Splitter 130, 132~Lens; 140- Reference Lens 9 141- 'Reference Surface 150- auxiliary reference mirror; 151--surface; 160~ pixel detector; 180-, electronic controller; 190~ test object» 191- - test surface; 192~ frame t 210- •• opening; 300 - Interference measurement system; 301--Fizeau cavity; 310~ Reference object* 9 311-reference surface; 320~ lens* 3 90--test object; 400-interference field measurement system; 401--detector component; 1057-6961-PF; Ahddub 31 1358528 420 ~ polarized beam splitter; 430, 440, 44 5 ~ lens 435 ~ non-polarized beam splitter; 460 ~ pixel detector; 462, 472 ~ polarizer 472 ~ Polarizer; 510~converter; 610~folding mirror; 641~ reference surface; 6 91~ test surface; 470~pixel detector; 5 0 0 ~ interference measurement system; 6 0 0~ interference measurement system; 640~ reference object; 6 9 0 ~ Test parts; 6 92~ rack.

1057-6961-PF;Ahddub 321057-6961-PF; Ahddub 32

Claims (1)

135852 094108007號 100年11月7日修正替換頁 十、申請專利範圍: 1. 一種干涉量測系統’包括: 一干涉儀,包括一主空腔與一輔助參考表面,該主空 腔包括一局部反射表面,該局部反射表面是用以定義一主 要參考表面與一測試表面’該干涉儀是設計用以將輸入電 磁輻射之一主要部分導引至該主空腔、對於該輸入電磁輻 射之一輔助部分進行導引下而可經由該辅助參考表面所反 _射’其中,於該主空腔中之該主要部分之一第一部分是經 由該主要參考表面所反射’於該主空腔中之該主要部分之 一第一部分是通過該主要參考表面且由該測試表面所反 射,該干涉儀更設計用以將該測試表面、該主要來考表面 該輔助參考表面所反射之該電磁輻射導引至一多元件債測 器,藉此與另一該電磁輻射導引之間產生干涉而形成了一 干涉圖帛,其中該輔助參考表面為傾斜狀態,使得在該多 π件偵測益中,從該主要參考表面與該輔助參考表面所反 _射之該電磁輻射之路徑為非平行。 2·如申4專利範圍帛!項所述之干涉量測系統,其中 該主空腔係定義一 Fizeau空腔。 3.如申請專利範圍第!項所述之干涉量測系統,其中, 於該主要參考表面與該測試表面之間之該第二部分之該光 東路徑中是不具有光束成型透鏡。 1項所述之干涉量測系統,其中, 積是小於該主要參考表面之表面 4.如申請專利範圍第 該辅助參考表面之表面面 面積。 1057-6961-PF1 33 100年η月7曰修正替換頁 5. 如申清專利範圍第!項所述之干涉量測系統,其中’ 該輔助參考表面為平坦狀’該主要參考表面為曲型。 6. 如申請專利範圍第i項所述之干涉量測系統,更包 括-㈣裝置’來自於該測試表面之該電磁㈣可在該預 防裝置之可選擇方式下而遠離該多元件偵測器。 7·如申請專利範圍第1 固笫1項所述之干涉量測系統,更包 括該多元件偵測器與一電子控制器…,在基於該干涉 圖案之下,該電子控制器是設計用以決定該測試表面之表 面輪廓資訊。 8. 如申請專利範圍第7項所述之干涉量測系統,&quot;, 在基於經由該電磁輻射所形成之該干涉圖案之下,該電磁 輻射是由該測試表面、$主要參考表面及該輔助參考表面 所反射’ $電子控制H是設計^決定該測試表面之該表 面輪靡資m,並且1二干涉圖案是由該主要參考表面與 該辅助參考表面所反射之該電磁輻射所形《,並且該測試 表面所反射之該電磁輻射係不會抵達該多元件偵測器。 9. 如申請專利範圍第以所述之干涉量測系統,其中, 該輔助參考表面係以相對於該干涉儀之一光轴而傾斜藉 此在該干涉圖案中形成複數空間載波條紋。 S 10·如申請專利範圍第i項所述之干涉量測系統,更包 括-正交相位偵測系統’該正交相位债測系統包括了該多 元件偵測器。 11.如申請專利範圍第i項所述之干涉量測系統,其 令,該干涉儀包括一折疊鏡片與一機架,該折疊鏡片是設 1057-6961-PF1 34 100年11月7曰修正替換頁 135852|〇94_7號 計用以使得該主要參考表面朝上,部分之該機 以支承該測試表面。 1 2.如申請專利範圍第1項所述之干涉量 中,該干涉儀包括—光束分離器,該光束分離 該輸入電磁輻射之該主要部分與該輸入電磁輻 部分之間進行分離。 1 3 _如申請專利範圍第1項所述之干涉量 中,該干涉儀包括一或多個成像鏡片,該成像 試表面成像於該多元件偵測器之上。 14. 如申請專利範圍第1項所述之干涉量測 括一光源’該光源是作為該輸入電磁輻射之使j 15. 如申请專利範圍第1項所述之干涉量 中,該輔助參考表面是連接於一轉換器,該轉 用以改變該輸入電磁輻射之一光徑長度,該輸 是經由該輔助參考表面反射至該多元件偵測器 1 6. —種干涉量測方法,包括: 將輸入電磁輻射之一主要部分導引至一干 空腔’其中’於該主空腔中之該主要部分之一 經由該主空腔之一主要參考表面所反射,於該 該主要部分之一第二部分是通過該主要參考表 試表面所反射; 對於該輸入電磁輕射之—輔助參考表面進 此以對於來自該干涉儀之一辅助參考表面進行 將該測試表面、該主要參考表面及該輔助 架是設計用 測系統,其 器用以對於 射之該輔助 測系統,其 鏡片將該測 系統,更包 有。 測系統,其 換器是設計 入電磁輻射 涉儀之一主 第一部分是 主空腔中之 面且由測 行導引,藉 反射;以及 參考表面所 1057-6961-PF1 35 100年1】月7日修正替換頁 135852^ 〇94]〇8〇〇7^ 反射之。輸入電磁輻射導引至一多元件偵測器藉此與另 一該電磁輻射導引之門;止 B產生干涉而形成了 一干涉圖案, ’ /、中該辅助參考表面為傾斜狀態,使得在該多元件偵 •測裔中&amp;該主要參考表面與該輔助參考表面所反射之該 電磁輻射之路徑為非平行。 1 7.如申明專利範圍第丨6項所述之干涉量測方法,更 包括了 .基於該干涉圖案之下,決定了相關於該測試表面 之表面輪靡資訊。 馨1 8.-種干涉量測系統,包括: 一干涉儀,包括一主空腔與一輔助參考表面,該主空 腔包括主要參考表面與一測試表面,其中,該干涉儀是 設計用以將輸入電磁輻射之—主要部分導引至該主空腔、 對於該輪入電磁輻射之一輔助部分進行導引下而可經由該 辅助參考表面所反射,其中,於該主空腔中之該主要部分 之第部分是經由該主要參考表面所反射,於該主空腔 _中之該主要部分之一第二部分是通過該主要參考表面且由 該測試表面所反射,該主要部分未接觸該輔助參考表面, 並且該輔助部分未接觸該主要參考表面或該測試表面,該 干涉儀更設計用以將該測試表面、該主要參考表面、該輔 助參考表面所反射之該電磁輻射導引至一多元件偵测器, 藉此與另一該電磁輻射導引之間產生干涉而形成了一干涉 圖案;以及 電子控制器,在基於該干涉圖案之下,該電子控制 器是設計用以決定該測試表面之表面輪廓資訊,該干涉圖 1057-6961-Pfi 36 135852鼋_⑽〇7號 1〇〇年11月7曰修正替換頁 135852鼋_⑽〇7號 案是經由該測試表 所反射之該輸入電 主要參考表面與該 成,並且該測試表 元件偵測器。 面、該主要參考表面 培輻射所形成,一第 輔助參考表面所反射 面所反射之該電磁輻 及該輔助參考表面 二干涉圖案是由該 之該電磁輻射所形 射係不會抵達該多 19.如申請專利範圍第18項所述之干涉量測系統其 中’該主要參考表面為一局部反射表面。 2 〇.如申叫專利範圍第1 9項所述之干涉量測系統,其 中,於該主空腔中之該主要部分之該第二部分是通過該主 要參考表面且由該測試表面所反射。 21.如申請專利範圍第18項所述之干涉量測系統,其 中該干/步儀為Fizeau干涉儀、Michelson干涉儀、 Linnik干涉儀或Mirau干涉儀。 2 2. —種干涉量測方法方法,包括: 將輸入電磁輻射之一主要部分導引至一干涉儀之一主 •空腔,其中,於該主空腔中之該主要部分之一第一部分是 經由該主空腔之—主要參考表面所反射,於該主空腔中之 該主要部分之一第二部分是由一測試表面所反射; 對於該輸入電磁韓射之一輔助參考表面進行導引,藉 此以對於來自該干涉儀之一輔助參考表面進行反射; 將該測試表面、該主要參考表面及該輔助參考表面所 反射之該輸入電磁輻射導引至一多元件偵測器,藉此與另 一該電磁輻射導弓丨之間產生干涉而形成了 一干涉圖案;以 及 1057-6961-PF1 37 1358528 . 第 094108007 號 100 年 11 基於該電磁輻射所形成之該干涉圖案之 關於該測試表面之表面輪廓資訊,該電磁輻 - 表面、該主要參考表面及該輔助參考表面所 . 第二干涉圖案是由該主要參考表面與該輔助 射之該電磁輻射所形成,並且該測試表面所 輻射係不會抵達該多元件偵測器, 其中該主要部分未接觸該輔助參考表面 部分未接觸該主要參考表面或該測試表面。 ® 23.如申請專利範圍第22項所述之干涉 中,該主要部分之該第二部分是通過該主要 該測試表面所反射。 月7日修正替換頁 下,決定了相 射是由該測試 反射,並且一 參考表面所反 反射之該電磁 ,並且該輔助 量測方法,其 參考表面且由135852 094108007 No. 7 modified on November 7, 100. Patent application scope: 1. An interference measurement system includes: an interferometer comprising a main cavity and an auxiliary reference surface, the main cavity including a part a reflective surface for defining a primary reference surface and a test surface. The interferometer is designed to direct a major portion of the input electromagnetic radiation to the main cavity for one of the input electromagnetic radiation The auxiliary portion is guided to be reflected by the auxiliary reference surface, wherein a first portion of the main portion in the main cavity is reflected in the main cavity via the main reference surface The first portion of the main portion is passed through the main reference surface and reflected by the test surface, the interferometer is further designed to guide the test surface, the main reference surface, the auxiliary reference surface reflected by the electromagnetic radiation And an interference pattern formed by the interference between the multi-component detector and the other electromagnetic radiation guide, wherein the auxiliary reference surface is Oblique state, so that the multi-element detector Ik π, the reference surface from the primary to the secondary reference anti _ exit surface of the non-parallel path of the electromagnetic radiation. 2·If the application scope of Shen 4 is 帛! The interferometric measuring system of the item, wherein the main cavity defines a Fizeau cavity. 3. If you apply for a patent scope! The interferometric measuring system of the present invention, wherein the optical path of the second portion between the primary reference surface and the test surface does not have a beam shaping lens. The interferometric measuring system of claim 1, wherein the product is smaller than a surface of the main reference surface. 4. The surface area of the auxiliary reference surface is as claimed in the patent application. 1057-6961-PF1 33 100 years η月7曰Revision replacement page 5. If Shenqing patent scope is the first! The interferometric measuring system of the item, wherein 'the auxiliary reference surface is flat' and the main reference surface is curved. 6. The interferometric measuring system of claim i, further comprising - (d) device - the electromagnetic (four) from the test surface can be remote from the multi-element detector in an alternative manner of the preventive device . 7. The interference measurement system of claim 1, wherein the multi-component detector and an electronic controller are further configured to design the electronic controller based on the interference pattern. To determine the surface contour information of the test surface. 8. The interference measurement system of claim 7, wherein the electromagnetic radiation is from the test surface, the primary reference surface, and the interference pattern formed by the electromagnetic radiation. The auxiliary reference surface is reflected by the 'electronic control H' which is designed to determine the surface rim of the test surface, and the two interference patterns are shaped by the electromagnetic radiation reflected by the primary reference surface and the auxiliary reference surface. And the electromagnetic radiation reflected by the test surface does not reach the multi-component detector. 9. The interferometric measurement system of claim 1, wherein the auxiliary reference surface is tilted relative to an optical axis of the interferometer to form a complex spatial carrier stripe in the interference pattern. S10. The interference measurement system of claim i, further comprising: a quadrature phase detection system, wherein the quadrature phase debt measurement system comprises the multi-element detector. 11. The interferometric measuring system of claim i, wherein the interferometer comprises a folding lens and a frame, the folding lens is set to 1057-6961-PF1 34 November 7 correction Replacement page 135852|〇94_7 is used to bring the primary reference surface up, and part of the machine to support the test surface. 1 2. In the amount of interference as recited in claim 1, the interferometer includes a beam splitter that separates the main portion of the input electromagnetic radiation from the input electromagnetic spoke portion. 1 3 _ In the interference amount described in claim 1, the interferometer includes one or more imaging lenses, and the imaging test surface is imaged on the multi-component detector. 14. The interference measurement as described in claim 1 includes a light source 'the light source is the input electromagnetic radiation. j 15. The auxiliary reference surface according to the interference amount described in claim 1 Is connected to a converter, the switch is used to change the optical path length of the input electromagnetic radiation, and the input is reflected to the multi-component detector 1 via the auxiliary reference surface. 6. The interference measurement method comprises: Directing a major portion of the input electromagnetic radiation to a dry cavity, wherein one of the main portions of the main cavity is reflected by a primary reference surface of one of the main cavities, one of the main portions The second part is reflected by the primary reference surface; for the input electromagnetic light-assisted reference surface, the test surface, the primary reference surface and the auxiliary are applied to an auxiliary reference surface from the interferometer The frame is a design measuring system, and the device is used for the auxiliary measuring system for shooting, and the lens is included in the measuring system. The measuring system, the converter is designed into one of the electromagnetic radiation related devices. The first part is the surface in the main cavity and is guided by the measuring line, by reflection; and the reference surface is 1057-6961-PF1 35 100 years 1 month 7th correction replacement page 135852^ 〇94] 〇8〇〇7^ reflection. The input electromagnetic radiation is guided to a multi-element detector to thereby guide the gate with another electromagnetic radiation; the interference of B forms an interference pattern, and the auxiliary reference surface is inclined, so that the auxiliary reference surface is inclined In the multi-component detection &amp; the primary reference surface and the path of the electromagnetic radiation reflected by the auxiliary reference surface are non-parallel. 1 7. The method of interferometry as described in claim 6 of the patent scope further includes determining the surface rim information associated with the test surface based on the interference pattern.馨1 8. An interferometric measuring system comprising: an interferometer comprising a main cavity and an auxiliary reference surface, the main cavity comprising a main reference surface and a test surface, wherein the interferometer is designed to Directing the main portion of the input electromagnetic radiation to the main cavity, under which the auxiliary portion of the entrained electromagnetic radiation is guided for reflection through the auxiliary reference surface, wherein the main cavity a first portion of the main portion is reflected by the primary reference surface, and a second portion of the main portion in the main cavity _ passes through the main reference surface and is reflected by the test surface, the main portion not contacting the Auxiliary reference surface, and the auxiliary portion does not contact the main reference surface or the test surface, the interferometer is further designed to guide the electromagnetic radiation reflected by the test surface, the main reference surface, and the auxiliary reference surface to a multi-element detector for interfering with another electromagnetic radiation guide to form an interference pattern; and an electronic controller based on the interferogram Below, the electronic controller is designed to determine the surface contour information of the test surface, the interferogram 1057-6961-Pfi 36 135852 鼋 _ (10) 〇 7 No. 1 11 November 7 曰 corrected replacement page 135852 鼋 _ (10) Case No. 7 is the main reference surface of the input electric field reflected by the test table and the test element detector. The surface is formed by the primary reference surface radiation, and the electromagnetic radiation reflected by the reflective surface of the auxiliary reference surface and the auxiliary interference surface two interference pattern are not formed by the electromagnetic radiation. The interferometric measuring system of claim 18, wherein the primary reference surface is a partially reflective surface. The interferometric measuring system of claim 19, wherein the second portion of the main portion in the main cavity passes through the main reference surface and is reflected by the test surface . 21. The interferometric measuring system of claim 18, wherein the dry/stepper is a Fizeau interferometer, a Michelson interferometer, a Linnik interferometer or a Mirau interferometer. 2 2. An interference measurement method, comprising: directing a main portion of the input electromagnetic radiation to a main cavity of an interferometer, wherein the first portion of the main portion in the main cavity Reflected by a primary reference surface of the main cavity, the second portion of the main portion of the main cavity being reflected by a test surface; for guiding the auxiliary reference surface of the input electromagnetic projection Thereby, thereby reflecting the auxiliary reference surface from one of the interferometers; guiding the input electromagnetic radiation reflected by the test surface, the main reference surface and the auxiliary reference surface to a multi-component detector, Thereby forming an interference pattern by interference with another electromagnetic radiation guide arch; and 1057-6961-PF1 37 1358528. No. 094108007 100 years 11 based on the interference pattern formed by the electromagnetic radiation Testing surface surface information of the surface, the electromagnetic radiation surface, the primary reference surface, and the auxiliary reference surface. The second interference pattern is defined by the primary reference surface and the auxiliary The emission of electromagnetic radiation being formed, and the test does not reach the surface emissivity of the multi-element detector, which is not in contact with the main portion of the auxiliary section is not the primary reference surface or reference surface in contact with the test surface. ® 23. In the interference described in claim 22, the second portion of the main portion is reflected by the primary test surface. On the 7th of the revised replacement page, it is determined that the reflection is reflected by the test, and the electromagnetic surface is reflected by a reference surface, and the auxiliary measurement method has its reference surface and is 1057-6961-PF1 381057-6961-PF1 38
TW94108007A 2005-03-16 2005-03-16 Interferometry systems and methods TWI358528B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94108007A TWI358528B (en) 2005-03-16 2005-03-16 Interferometry systems and methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94108007A TWI358528B (en) 2005-03-16 2005-03-16 Interferometry systems and methods

Publications (2)

Publication Number Publication Date
TW200634288A TW200634288A (en) 2006-10-01
TWI358528B true TWI358528B (en) 2012-02-21

Family

ID=46728185

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94108007A TWI358528B (en) 2005-03-16 2005-03-16 Interferometry systems and methods

Country Status (1)

Country Link
TW (1) TWI358528B (en)

Also Published As

Publication number Publication date
TW200634288A (en) 2006-10-01

Similar Documents

Publication Publication Date Title
US7417743B2 (en) Interferometry systems and methods
US7492469B2 (en) Interferometry systems and methods using spatial carrier fringes
TWI269022B (en) Phase-shifting interferometry method and system
JP5032680B2 (en) Method and apparatus for measuring geometric properties of a test object, and optical profiling system
JP4951189B2 (en) Frequency conversion phase shift interferometry
Chen et al. 3-D surface profilometry using simultaneous phase-shifting interferometry
US7619746B2 (en) Generating model signals for interferometry
KR102549714B1 (en) Optical phase measurement method and system
US6359692B1 (en) Method and system for profiling objects having multiple reflective surfaces using wavelength-tuning phase-shifting interferometry
US20030035113A1 (en) Quadrature phase shift interferometer with unwrapping of phase
US20080062428A1 (en) Synchronous frequency-shift mechanism in Fizeau interferometer
US20100238455A1 (en) Error compensation in phase shifting interferometry
US6717680B1 (en) Apparatus and method for phase-shifting interferometry
TWI452262B (en) Interferometer system for simultaneous measurement of linear displacement and tilt angle
Chatterjee et al. Measurement of wedge angle of a transparent parallel plate using quasi-monochromatic light source and phase shifting interferometry
US9678436B2 (en) Irradiation module for a measuring apparatus
TWI358528B (en) Interferometry systems and methods
KR101078197B1 (en) Polarized point-diffraction interferometer for aligning optical system
Zhou et al. An angular displacement interferometer based on total internal reflection
US6885461B2 (en) Weighted least-square interferometric measurement of multiple surfaces
US10563975B1 (en) Dual-sensor arrangment for inspecting slab of material
KR101457303B1 (en) Apparatus and method for 3d measurements of surface, thickness and refractive indices of a wafer using nir light
KR102125624B1 (en) Handheld spectroscopic ellipsometer and method for measuring spectral elepsometric parameter using the same
Chatterjee et al. Interferometric-auto-collimation technique for the determination of small angular tilt of a plane mirror
JPH028703A (en) Phase detection of interference fringe

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees