TWI358148B - Lithium metal oxide materials and methods of synth - Google Patents

Lithium metal oxide materials and methods of synth Download PDF

Info

Publication number
TWI358148B
TWI358148B TW094132932A TW94132932A TWI358148B TW I358148 B TWI358148 B TW I358148B TW 094132932 A TW094132932 A TW 094132932A TW 94132932 A TW94132932 A TW 94132932A TW I358148 B TWI358148 B TW I358148B
Authority
TW
Taiwan
Prior art keywords
composition
mixture
temperature
coating
core
Prior art date
Application number
TW094132932A
Other languages
Chinese (zh)
Other versions
TW200713669A (en
Inventor
Per T Onnerud
Jay Jei Shi
Sharon L Dalton
Christina Lampe-Onnerud
Original Assignee
Tiax Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tiax Llc filed Critical Tiax Llc
Priority to TW094132932A priority Critical patent/TWI358148B/en
Publication of TW200713669A publication Critical patent/TW200713669A/en
Application granted granted Critical
Publication of TWI358148B publication Critical patent/TWI358148B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

1358148 九、發明說明: 【發明所屬之技術領域】 本發明係關於鋰金屬氧化物組成物,以及利用此等組成 物之電化裝f ’尤指經鎂錦氧化物組成物,適於做為鐘 電化裝置之成份。 【先前技術】 再充電式鋰和鋰離子,可用於各種用途,諸如手機電 話、膝上型電腦、數位相機和錄影照相機,以及混用電動車 輛等’因其能量密度高之故。 市售链離子及電池典型上包含石墨質陽極和LiQ)〇2質陰 極材料。然而,LiCo〇2質陰極材料昂貴,且典型上容量 低,大約 150 mAh/g。1358148 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a lithium metal oxide composition, and an electrochemical device using the composition, particularly a composition of magnesium oxide, which is suitable as a clock The composition of the electrochemical device. [Prior Art] Rechargeable lithium and lithium ions can be used for various purposes such as cell phone phones, laptop computers, digital cameras and video cameras, and mixed electric vehicles, etc. due to their high energy density. Commercially available chain ions and batteries typically comprise a graphite anode and a LiQ) tantalum cathode material. However, LiCo〇2 cathode materials are expensive and typically have a low capacity of about 150 mAh/g.

LiCo〇2質陰極材料的另類,包含LiNi〇2質陰極材料,較 ,便宜·。典型的LiNi02質陰極材料包含具有式LiNi〇8C〇〇2〇2 或LiNio.sCoo^AIq.osO2之組成物。此等材料較不含鈷的 L|Nj〇2質陰極材料為貴,因為鈷的成本較鎳為高。此外, LiNiCo02 f陰極材財全性、猶雜和n循環效率,通常 比LCo〇2質陰極材料低,因為LiNi〇2型陰極的結構穩定型 較低’而表面電阻係數較高。An alternative to LiCo〇2 cathode materials, including LiNi〇2 cathode materials, is relatively inexpensive. A typical LiNiO 2 cathode material comprises a composition having the formula LiNi〇8C〇〇2〇2 or LiNio.sCoo^AIq.osO2. These materials are more expensive than cobalt-free L|Nj〇2 cathode materials because cobalt is more expensive than nickel. In addition, the LiNiCo02 f cathode material is generally less complex, more complex, and has a higher n-cycle efficiency than the LCo〇2 cathode material because the LiNi〇2 cathode has a lower structural stability and a higher surface resistivity.

Li(Ni,Co)〇2質陰極材料亦已揭示。例如Lecerf等人在美 4,980,080 LiyNi,y〇2^ Li,xCox02 的二次電池所示陰極材料之製法。Xie等人在美國專利第 5,750,288 基於LixMyOz材料之電池,其中M為非過渡金屬選自包含 紹、鎵、錫、辞。Mayer在美國專利第5,783,333號内揭示 LixNiyCozMn〇2材料。Mayer又在美國專利第6,〇〇7 947和 6,379,842 號中揭示式 LixNiyCozMn〇24 υχΜη2 ιΜ1Λυ^ 材料,其中Μ為一種金屬,選自包含紹、鈦、鶴、絡、翻、 鎮、組、石夕,及其組合,❿M1係鉻、欽、鶴、錄、銘、 5 1358148 鉄、錫、鋅、錯、石夕之一,或其組合。Kumta等人在美國 利第6,007,654號中揭示具有式Lii+xMi為队〇2㈣和 LiNi^MyNxOp之陰極材料,其中M為過渡金屬,選自包含 鈦、釩、鉻、錳、鉄、鈷和鋁,而N為第n族元素,選 含鎂、約、認、鋇和鋅。Sunagawa等人在美國專利第 6,040,090號中揭示基於Li-Ni-Co-Mn-〇2之正電極材料。Li (Ni, Co) 〇 2 cathode materials have also been disclosed. For example, the method of preparing a cathode material shown by Lecerf et al. in U.S. 4,980,080 LiyNi, y〇2^ Li, xCox02 secondary battery. Xie et al., U.S. Patent No. 5,750,288, which is based on a LixMyOz material, wherein M is a non-transition metal selected from the group consisting of sulphur, gallium, tin, and rhodium. The LixNiyCozMn〇2 material is disclosed in U.S. Patent No. 5,783,333. The material of the formula LixNiyCozMn〇24 υχΜη2 ιΜ1Λυ^ is disclosed in U.S. Patent Nos. 6, 947 and 6,379,842, the bismuth is a metal selected from the group consisting of sho, titanium, crane, collateral, turn, town, group, stone. Xi, and its combination, ❿M1 series chrome, Chin, He, Lu, Ming, 5 1358148 鉄, tin, zinc, wrong, one of Shi Xi, or a combination thereof. Kumta et al., U.S. Patent No. 6,007,654, discloses a cathode material having the formula Lii+xMi as a group 2(4) and LiNi^MyNxOp, wherein M is a transition metal selected from the group consisting of titanium, vanadium, chromium, manganese, lanthanum, cobalt, and aluminum. And N is an element of the nth group, and is selected to contain magnesium, about, recognize, bismuth, and zinc. A positive electrode material based on Li-Ni-Co-Mn-〇2 is disclosed in U.S. Patent No. 6,040,090 to Sunagawa et al.

Peres等人在美國專利第6,274,272號中揭示具有式 LiLNVc-A^CocAUMgMO2之活性陰極材料。Ga〇等人在美 專利第6,277,521號中揭示鋰金屬氧化物材料,含有'式 LiNikCOyMJVi’bO2之複數摻雜物,其中M係選自包含欽、梦 之金屬,及其組合,而Μ,是選自包含鎂、鈣、锶、鋇之^ 屬,及其組合。Mao等人在美國專利第6,〇71,649號中揭示 LiCo02塗佈之LiNi02或Li(Ni,Co)02材料。其中無一揭示 Li-Mg-Ni-02質之陰極材料。 、An active cathode material having the formula LiLNVc-A^CocAUMgMO2 is disclosed in U.S. Patent No. 6,274,272. A lithium metal oxide material containing a complex dopant of the formula LiNikCOyMJVi'bO2, wherein the M system is selected from the group consisting of a metal containing Qin, a dream, and combinations thereof, is disclosed in U.S. Patent No. 6,277,521. It is selected from the group consisting of magnesium, calcium, strontium, barium, and combinations thereof. A LiCo02 coated LiNiO 2 or Li (Ni, Co) 02 material is disclosed in U.S. Patent No. 6,71,649. None of them revealed a Li-Mg-Ni-02 cathode material. ,

Matsubam等人在美國專利第6,〇45,771號内揭示一種陰 極材料,具有式Liy_xlNilx2Mx〇2,其中M為選自包含鋁: 鉄、銘、錳和鎂之金屬,Χ = χ1+Χ2,〇<χ1^〇2,〇<χ2乞 0.5,〇<xg〇.5,而 〇.9gygi.3。 ^ 多數廠家亦商業化製造陰極,利用通式LiNic〇M〇2之材 料。TODA (前身為富士化學公司)製造產品CA5、 CA1505N 和 NCA。Ηοηέ-Ο-FMC 和 Nichia (均為日本公司) 亦提供騎質陰極。此等產品典型上缺點為安全性能低,生 產率較差。 【發明内容】 按照一或以上具體例,本發明係關於UxMgyNi〇2材料, 在電化用途或系統内利用時,其特徵為,係或提供系統,在 =用上更安全之低廉陰極材料,帶有高容量、長循環壽命、 而產率,尤其是高供電率,以及高電壓。在若干具體例中, ⑧ 6 特徵4,成本較低,有改進之化學安定A cathode material having a formula of Liy_xlNilx2Mx〇2, wherein M is selected from the group consisting of metals containing lanthanum, lanthanum, manganese and magnesium, Χ = χ1+Χ2, 〇<lt;>>;χ1^〇2,〇<χ2乞0.5,〇<xg〇.5, and 〇.9gygi.3. ^ Most manufacturers also manufacture cathodes commercially, using materials of the general formula LiNic〇M〇2. TODA (formerly Fuji Chemical Co., Ltd.) manufactures products CA5, CA1505N and NCA. Ηοηέ-Ο-FMC and Nichia (both Japanese companies) also provide riding cathodes. Typical disadvantages of these products are low safety performance and poor productivity. SUMMARY OF THE INVENTION According to one or more specific examples, the present invention relates to UxMgyNi〇2 materials, when utilized in an electrochemical application or system, characterized in that it is a system or a system that is safer and less expensive to use. High capacity, long cycle life, and high yield, especially high power. In a number of specific examples, 8 6 features 4, lower cost, improved chemical stability

LiCoO iJ/查較南’又能提供較之容量,尤其是例如相較於 1^〇〇2和/或LiNi〇2質陰極材料。 铷一或以上具體例’本發明提供式LixMgyNi〇2之組成 物^ 中 〇.9<x<1.3,0.01<y<〇1*〇9i<x^<i3。 ,照又-具體例’本發明提供以式l 為芯層LiCoO iJ/Check South can provide more capacity, especially for example cathode materials compared to 1^〇〇2 and/or LiNi〇2. One or more specific examples' The present invention provides a composition of the formula LixMgyNi〇2, 〇.9<x<1.3, 0.01<y<〇1*〇9i<x^<i3. The present invention provides a core layer of the formula

ϋ:ν·9<Χ<1·3’〇·〇1<π〇.1 和 〇.9<X+y<L2),而以 ,LlaC〇b〇2g芯層之塗層(其中〇7<&<13和〇9<b< 1.2)之組成物。 按照-或以上具體例,本發明提供_種電化電池,包括 $ ’具有式LixMgyNi〇2之組成物,其中〇9<χ<1 3,〇〇1 <y<0.1 和 〇.9<x+y< 1 3。 按照-或以上具體例,本發明提供—種電化電池,包括 丢玉’其粒材包含具有式LixMgyNi02為芯層 (其中 0.9<x< .’ 0.01<y<0.1和〇.9i<x+y<1 3),以及芯層上之塗層。 塗料具有式LiaCob02 ’其中〇 7<a<1 3和〇 9<b<1 2。ϋ: ν·9<Χ<1·3'〇·〇1<π〇.1 and 〇.9<X+y<L2), and LlaC〇b〇2g core layer coating (where 〇7<;&< 13 and 〇 9 < b < 1.2) composition. According to - or the above specific examples, the present invention provides an electrochemical cell comprising a composition having the formula LixMgyNi〇2, wherein 〇9<χ<1 3, 〇〇1 <y<0.1 and 〇.9<x +y< 1 3. According to - or the above specific examples, the present invention provides an electrochemical cell comprising a Jadeite whose particle comprises a core layer of the formula LixMgyNi02 (where 0.9<x<.' 0.01<y<y<0.1 and 〇.9i<x +y<1 3), and the coating on the core layer. The coating has the formula LiaCob02' where 〇 7 < a < 1 3 and 〇 9 < b <

組成物之製法提供包括魄、鎂源和賴的化合物之混 合物,令混合物在加溫的氧化氛關,反應一段期間 ,足以The composition is prepared by providing a mixture of a compound of cerium, magnesium and lysine, and the mixture is heated in an oxidizing atmosphere for a period of time sufficient

LixMgyNi〇2組成物,其中 〇9<χ<1 3,〇〇1 <y<0.1 和 0.91<x+y<i.3 〇 按照一或以上具體例,本發明提供加塗粒材之製法,包 括步驟為’提供包紐、跡鎳的化合物ϋ合物,把 第一混合物在第一溫度的氧化氛圍内燒結,歷第一期間足以 把第-混合物結晶成雜’具有式LixMgyNiC)2,其中〇9<χ < 1.3 ’ 0.01 <y<〇.l和〇 % <x+y<丨3 ;並對芯粒塗以包括 鋰和鈷的化合物之第二混合物,把塗過的芯粒在第二溫度燒 結’歷第二期間足以將具有< LiaC〇b〇2雜層加以結晶,其 中 0.7<a<1.3 和 〇.9<b< 1.2。 7 1358148 處,而Ni主要在姓S與卜%走 1主要在結晶學上3a 本發明其他以賴 =和而:=<-。 ΐ:::Γ白’附圖為簡圖,不照比例繪製'照附圖之_ Φ 示。為清楚起見,每一袓件夫//诸圖中均以同樣數字展 _本發明並無必要圖示者,每一組件也未必均圖 各種和配置的細節,包含 ί 乂二二目其變化’旨在涵蓋以後所列項目?及i等: 形=提 =池本 2 ΪΪί子電池,以及製法和使用,例如利用本發明Ϊ ^具明組成物之電化裝置’其特徵特別在於成本 量。、子女疋性,而在長期操作壽命當中,提供高度容 按照若干具體例,本發明組成物典型上顯示比包含但不 限於一次和二次電池之電化裝置内利用uc〇〇2和UNi〇" 具改進容量、循環性和安全性。本發明材料可提供 、,坐濟应處,因為典型上生產和/或利用成本,較UC〇〇/、、LixMgyNi〇2 composition, wherein 〇9<χ<1 3, 〇〇1 <y<0.1 and 0.91<x+y<i.3 〇 According to one or more specific examples, the present invention provides coated granules The method comprises the steps of: providing a compound conjugate of nickel and nickel, sintering the first mixture in an oxidizing atmosphere at a first temperature for a first period sufficient to crystallize the first mixture into a heterogeneous 'having a formula LixMgyNiC) Wherein 〇9<χ < 1.3 '0.01 <y<〇.l and 〇% <x+y<丨3; and coating the core particles with a second mixture of compounds comprising lithium and cobalt, coated The core particles are sintered at the second temperature for a second period of time sufficient to crystallize the layer having < LiaC〇b〇2, wherein 0.7 <a <1.3 and 〇.9<b<1.2. 7 1358148, while Ni mainly in the surname S and Bu% away 1 mainly in crystallography 3a Others in the invention rely on = and and: = <-. ΐ:::Γ白' The drawings are simplified and not drawn to scale _ Φ as shown in the drawing. For the sake of clarity, each of the figures is shown in the same number. The present invention is not necessarily illustrated, and each component does not necessarily have various details and configuration details, including ί 乂 二 二The change 'is intended to cover the items listed later? and i et al.: shape=提=池本2 ΪΪί subcell, and the method of manufacture and use, for example, the electrochemical device of the present invention using the present invention is characterized in particular by the amount of cost. Having a child's temperament and providing a high degree of capacity during long-term operational life, according to a number of specific examples, the composition of the present invention typically exhibits utilization of uc〇〇2 and UNi〇" in an electrochemical device including but not limited to primary and secondary batteries. ; Improved capacity, circulation and safety. The material of the present invention can provide, and is suitable for, because of the typical production and / or utilization costs, compared to UC 〇〇 /,

LiNi02 或 LiNi〇8C〇〇2〇2 質材料為低。 物,=實^^f體例’本發明提供鐘金屬氧化物組成 及實;ί! Λ ί晶性晶格内a處關聯之第-種金屬,以 R3m結晶晶二之3〜二種金a處在結日日日學上’於 發明若干且的:f為處’而b處可稱為3b處。按照本 :屬在3b處關聯。當例如利用本發明材料懈 況下為第二種金f ;;裡,或在若干情 定性。接“二嵌和絲過程中,提供結晶安 中之阶極、t構ί ’本發明組成有胁利用做電化裝置 ^脫嵌(de-mtercalation)過程中,至少部份將晶體晶格穩 或以上較佳具體例,組成物可包括鐘_ 晶學上與t處^細晶學上與% _,喊是在結 或以上具體例’本發明提供—餘成物,其通式 為 I^MgyNiO〗’其中 〇.9<x<1.3 和 〇〇1<y<〇J,而 〇91< ^曰^:^^1·1 *a〇2<y<0·05為佳。組成物之 、、《曰曰特I·生為,鋰和鎂與3a處關聯,鎳與北處關聯。 按照又-具體例’本發明提供粒材,包括制或内層, 施加-層或多層的金屬氧化物塗層。LiNi02 or LiNi〇8C〇〇2〇2 is low in material. The present invention provides a composition of a metal oxide of a bell and a solid; a layer of a metal associated with a crystal lattice in the crystal lattice of R3m. At the end of the day, I learned that 'invented several: f is the place' and b is called 3b. According to this: the genus is associated at 3b. When, for example, the material of the present invention is used, it is the second type of gold; in, or in several cases. In the process of "two-embedding and silk, providing the step of crystallographic centering, t-structure", the composition of the invention is used in the process of de-mtercalation, at least partially crystallizing the crystal or In the above preferred embodiment, the composition may include a crystallized crystal and a t fine crystallographically and % _, shouting at the junction or the above specific example 'provided by the present invention—the remainder, the general formula of which is I^ MgyNiO〗 'where 〇.9<x<1.3 and 〇〇1<y<〇J, and 〇91<^曰^:^^1·1 *a〇2<y<0·05 is preferred. Composition , "Lithium I. Born, lithium and magnesium are associated with 3a, and nickel is associated with the north. According to yet another specific example, the present invention provides a granular material, including an inner layer, an applied layer or a plurality of layers of metal oxide. Coating.

LiaCob〇2^b^ , ^ 〇曰9<b<1.2:在若干情況T,塗層特徵為減於芯層内的錄 篁,其Co/Ni莫耳比在約〇.〇1至約! 4之範圍。本 具體例中,0.9<a<1.3、L8<b<2.2,而c〇/Ni莫耳比在約 〇.〇2至約G.8之範圍。-層或多層之特徵為,具有銘量 於距離(例如絲表Φ的麟)之濃度梯度。録量相對於盘 表面距離之濃度梯度性質,範圍從粒外表面約1〇〇% g ^發明又提供—種❹種合成技術,具有第—種 it =處獅,且在某些情況1",具有第二種金屬,ί先 “ I按照進—步之其他具體例’本㈣提供之合成 _重量駐㈣重量%之顧 1佔粒材在約 技術,可減少第二種金屬與3a處_之任何傾向_ 可在鐘嵌人/脫嵌循環過程中,提供鐘混合 學生置=,ί發:_可提供化 量、低成本’以及高電壓,和改進循環壽命 =照一或以上之具體例,本發明技術可利用先質化合 如成鐘金屬氧化物,最好是摻雜有晶體晶格安定金屬 ί虛理if化物。按照其他具體例’本發明技術可提供或促 ίΐϊΐ 1;=由先質化合物形成離子性物,最好變成與 ^曰曰予上特殊處_。本發明處理條件可促進形成金屬氧化 讀與預定的結晶學上特殊處_。例如,本發明 利給予體化合物,可優先變成與結晶 二亡a處關聯之一或以上金屬給予體化合物,可優先變成與 、,.口曰日子上3b處關聯之一或以上金屬給予體化合物。因此,按 照一或以上具體例,本發明可利用鋰給予體化合物、鎂金 給予體化合物、鎳金屬給⑽化合物;處理條件可促進離子 性物的形成,相混,且結晶形成鐘混合金屬氧化物,盆中第 一種金屬可優先與結晶學上3a處關聯,而第二種金屬可優先 與补處關聯。 物。=照又一具體例,本發明技術可提供鋰鎂鎳氧化物組成 自 如 或以上之技術可利用先質化合物,包含例如選 ^二鋰給予體、鎂給予體和鎳給予體。在某些情況下,可 或以上氧化劑或化合物。因此,先質化合物混合物可 列如鋰源、氧化劑、第一種金屬給予體和第二種金屬給 體,-〔鋰源、氧化劑、第一種金屬給予體和第二種金屬給予 圍,、在大約同樣處理條件,例如在大約同樣處理溫度範 开去f行一次或多次相變化或相過渡,選用的先質化合物之 過轉侧預定的原子價’直到(或在某些情況下通 t相變化。_ ’所利用的處理條件會抑制或至少不會促 1任何原子價變化。因此,按照本發明一或以上較佳具體 ^先質化合物或個別給予體成份,會遇到處理條件,促進 或維持化學安定性,直至反應成所需相。 #鋰給予體或鋰源包括氫氧化鋰、碳酸鋰,或其混合物。 氧化劑可包括硝酸鋰或硝酸鎳,或其混合物。在某些情況 下鐘源可包括或包含罐酸鐘和氫氧化鐘。第一種金屬給予 包括氫氧化鎂、碳酸鎮、氧化鎮,或其混合物。第二種 ,屬給予體可包括氫氧化鎳、硫自复錄、石肖酸鎳、氧化錄 其混合物。 〃 π 先質化合物可具有方便混合於先質混合物内之任何形 ^例如,先質混合物可包括各先質化合物之粉末混合物, 或各先質化合物之漿液。此外,先質化合物可為母料包括 鋰、第一種金屬給予體和/或第二種金屬給予體之氫氧化 物。氧化劑可視需要加入母料内,以方便在利用之前的處理 和儲存。按照一或以上具體例,先質化合物需要有最好能促 進本發明鋰金屬氧化物材料有效利用之結構。因此,本發明 合成技術可提供形態學上所需的鋰金屬氧化物材料。 先質化合物可有各種形狀,可轉變成可以塗佈或被塗佈 之材料,以形成電化裝置之組 末化合物可呈球形。亦可視兩 ^ ,一或以上之先質粉 合終端使用者的期望。,以配合或適 鋰鎂鎳氧化物材料,二做形’以提供例如 極。因此,按照—或以例如再充電式電化裝置内的陰 予體’諸如具有球形之氫氧質混合物包括錄給 明一H於此。然而,本發 密度)之氫氧ibi例,鎳給㈣可包括高密度(例如高分液 粒徑喊物製法是,糊預界定或預選定 组^物ί化。物。任何粒徑均可利用來產生本發明LiaCob〇2^b^ , ^ 〇曰9<b<1.2: In some cases T, the coating is characterized by subtraction from the recording in the core layer, and its Co/Ni molar ratio is about 〇.〇1 to about! 4 range. In this specific example, 0.9 < a < 1.3, L8 < b < 2.2, and c〇 / Ni molar ratio in the range of about 〇.〇2 to about G.8. The layer or layers are characterized by a concentration gradient with a distance (for example, the lining of the silk gauge Φ). The concentration gradient of the recording relative to the surface distance of the disc, ranging from about 1% to about g g of the outer surface of the particle. The invention also provides a technique for synthesizing the species, having the first species = lion, and in some cases 1" , with the second metal, ί first "I according to other specific examples of the step-by-step" (4) provided by the synthesis _ weight station (four) weight% of the Gu 1 accounted for the pellet in the technology, can reduce the second metal and 3a Any tendency of _ can be provided during the clock-embedding/de-intercalation cycle, providing a clock-mixed student set =, ί hair: _ can provide the amount, low cost, and high voltage, and improve the cycle life = one or more In a specific example, the present invention may utilize a precursor compound such as a metal oxide of a clock, preferably a crystal lattice stabilizer metal compound. According to other specific examples, the present invention may provide or promote a method; = forming an ionic substance from a precursor compound, preferably becoming a special site. The treatment conditions of the present invention promote the formation of a metal oxidation read and a predetermined crystallographically specific site. For example, the present invention provides a donor. Compound, which can preferentially become crystallized One or more metal donor compounds associated with a death may preferentially become one or more metal donor compounds associated with 3b on the day of the mouth. Therefore, according to one or more specific examples, the present invention may utilize lithium. The compound is given, the magnesium gold donor compound, and the nickel metal compound (10); the treatment conditions promote the formation of ionic substances, are mixed, and the crystal forms a mixed metal oxide, and the first metal in the pot can be preferentially crystallized. 3a is associated, and the second metal can be preferentially associated with the replenishment. According to yet another specific example, the present technology can provide a lithium magnesium oxide composition freely or above, a precursor compound can be utilized, including, for example, a dilithium donor, a magnesium donor, and a nickel donor. In some cases, the oxidant or compound may be used. Thus, the precursor compound mixture may be listed as a lithium source, an oxidant, a first metal donor, and a second. a metal donor, - [lithium source, oxidant, first metal donor and second metal donor, in about the same processing conditions, for example in the same treatment The degree of one or more phase changes or phase transitions, the predetermined atomic valence of the precursor of the selected precursor compound' until (or in some cases through the t phase change. _ ' utilized processing conditions Any valence change may be inhibited or at least not promoted. Therefore, in accordance with one or more preferred embodiments of the present invention, the individual precursor compound or individual donor component will encounter processing conditions that promote or maintain chemical stability until the reaction is completed. The desired phase. The lithium donor or lithium source comprises lithium hydroxide, lithium carbonate, or a mixture thereof. The oxidizing agent may include lithium nitrate or nickel nitrate, or a mixture thereof. In some cases, the clock source may include or contain a can acid clock And a hydroxide clock. The first metal is given to include magnesium hydroxide, carbonic acid, oxidized town, or a mixture thereof. The second, the donor may include nickel hydroxide, sulfur self-recovery, nickel tartaric acid, oxidation record Its mixture. The 〃 π precursor compound may have any form which is convenient to be mixed in the precursor mixture. For example, the precursor mixture may include a powder mixture of each precursor compound, or a slurry of each precursor compound. Further, the precursor compound may be a hydroxide of the master batch including lithium, the first metal donor, and/or the second metal donor. The oxidant can be added to the masterbatch as needed to facilitate handling and storage prior to use. According to one or more specific examples, the precursor compound needs to have a structure which preferably promotes efficient use of the lithium metal oxide material of the present invention. Thus, the synthetic techniques of the present invention provide morphologically desirable lithium metal oxide materials. The precursor compound can have various shapes and can be converted into a material which can be coated or coated to form a composition of the electrochemical device which can be spherical. It is also possible to visualize the expectations of the end user with two or more. In order to match or suit the lithium magnesium oxide material, two shapes are provided to provide, for example, a pole. Thus, according to - or in the case of, for example, a negative body in a rechargeable electrochemical device, such as a mixture having a spherical oxyhydrin, is included herein. However, the hydrogen density of the present invention, the nickel (4) may include a high density (for example, the high-dispersion particle size method is, the paste is pre-defined or pre-selected.) Any particle size may be used. Use to produce the invention

Li約奸嶋伽,可在約2 比,體例’可選擇先質化合物的材料莫耳 m ^ LixMgyNK)2 德餘,其中 〇.1 ◊ 、强用ΖϋΙΓ0.1,而0.9<x+y<1.3。在某些情況下,可 =、=t使〇.9<x<U和〇〇2<y<〇〇5。再於其他情 況下,X可約Ι-y。 在本發明又其他具體例中,LixMgyNi〇2或^為吨 材料可具有下式之任—:Li] πύα、以歲_腦2、 ii.〇5Mg〇.02Ni〇2 . ^ Li1.05Mg〇.〇3〇Ni02 >Li is about to smuggle sangha, can be in about 2 ratios, the system 'can choose the precursor compound material Moer m ^ LixMgyNK) 2 Deyu, where 〇.1 ◊, strong ΖϋΙΓ0.1, and 0.9<x+y&lt ;1.3. In some cases, =, =t makes 〇.9<x<U and 〇〇2<y<〇〇5. In other cases, X can be approximately Ι-y. In still another specific embodiment of the present invention, LixMgyNi〇2 or ^ ton of material may have any of the following formulas::Li] πύα, by age_brain 2, ii.〇5Mg〇.02Ni〇2 . ^ Li1.05Mg〇 .〇3〇Ni02 >

Lii.osMgo^NA和LiU5Mg0.05NiO2。因此,先質化合物可選 用在此莫耳比内,提供該組成物。 先質化合物典型上經預先混合,容許均質混合。在又一 具體例中,本發明材料可利用例如加熱而結晶,以方便結 成本發明組成物。 合成過程包括把先質化合物混成實質上均質混合物。合 成過程可又包括把先質混合物分成一或以上加熱階段或步驟 1358148 加熱,例如按照預定加熱形態,分成二或以上之熱浸泡。合 成過程典型上促進相對應給予體成份之氧化,或形成盘氧 合物;該成份之混合,典型上猶子性混合;鐘金屬 氧化物組成物;其中組成物之第一種金屬(例如鎂)與如處 關聯,而第二種金屬(例如鎳)與3b處關聯。例如,在鋰鎂 鎳氧化物組成物内,混合物可加熱至第一加熱溫度,並進 優先形成Ni3+,超過Ni2+。 按照本發明m具體例,第-加熱步驟或步驟涉及 對新生成的先質混合物加熱,使形成氧化物和/ 時’給予體化合物不會改變原子價,或至少改變最微乎^ 二,’把先質混合物在第—加熱步驟加熱至約45〇以 熱次溫度。此第一熱浸溫度範圍可從約35〇ΐ至約7〇〇 二加熱步驟包括利用約70(TC的第二熱浸溫度埶 因熱浸而結晶。第二熱“可在約6。。 持長達約6小時。按照其他具_,第—J π不加熱階段:、以“ s ^物已结;Si程=溫s持以 維持約1小時’但可維持長達約6小時。 一一文可 進行^熱以及浸泡’可暴露於氧化氛圍(諸如空氣或純氧) 成,ί 籍高严t速率,足以促進氧化物形 物-每分鐘之=約=:質:合 所加熱率控制視若;因=定 被處理數f、所需相對組成物,以及暴露於氧 13 如笛一第二加熱階段包括提高溫度,足以方便結晶,諸 屬傾向於與33處關聯’而第二種金屬傾向於與 處,聯。例如氧化物混合物可以每分鐘約贼速率加熱, 母为鐘約5°C為佳,甚至以每分鐘約2。匚更好。 經熱處理後’容許材料藉自_流,自然冷卻至室溫, 可餘何適#設伽進行。例何_容納混合 物之爐或烘箱。爐内可充入空氣和/或氧。 燒結的結晶材料可在任何適當研磨裝置内研磨。例如可 ,用裝設瑪稱和磨杵之研磨機(義紐約州偏_市的 :^Brillkmaun或Brinkmann儀器公司產銷之型號舰㈨ 研Ϊ機)’把結晶組成物研磨,使其具有所需粒徑。其他適用 研磨方法或系統包含例如球磨、喷磨、濕磨、鎚磨和針磨。 所需粒徑可變化,視特殊制或_而定。因此按照本發 明一或以上具體例,LixMgyNi〇2研磨約5分鐘,即可形成顆 粒,直至達成平均粒徑約2_至約2〇/m,而以約至 約10;tzm為佳。 按照本發明一或以上較佳具體例,典型上為粒狀之 =χΜ,Ν1〇2組成物,又包括塗層,進一步改進第一循環效 率、哥命和/或安全性’甚至組成物利用做電化裝置内的陰 極材料時’可以減少產生氣體。按照本發明又一具體例, =MgyNi02顆粒又包括一或以上之塗層,在顆粒製成電極糊 料,可減少任何凝膠化傾向。例如顆粒經塗佈後,可減少在 包括NMP、PVDF、LixMgyNi〇2和導電性碳(比未塗佈錄化 物更優)之混合物内容易凝膠化。 按照本發明m具體例,塗層可包括式LiCG〇2之也 成物。塗過之LixMgyNi〇2粒可令其與鐘塩溶液或混合物,諸 如但不限於 LiN〇3、LiOH、LiAc、Li2S〇4、Li2C〇3,與含銘 之溶液’混合製成。按照本發明—或以上具體例,贿可 包括LiN〇3,而鈷塩可包括Co(N〇3)2 . 6氏〇。Li/c〇莫耳比 可變化,但典型上在約0.6至約Μ範圍。Li/c〇莫耳比範圍 以,0.95至約1.05為佳,故塗層内的c〇含量對芯層内的⑽ 含量之莫耳比,在約〇.〇4至約〇.4之範圍,而以約〇〇5 〇·15更好。 u —如有典型上塩類所帶水存在,宜容許利用適當技術使其 =發。例如,混合物可在熱板上加熱,同時攪拌至乾在 轉乾燥烘箱内為之。 ^先質塗佈材料可使用任何適當裝置,諸如烙室爐,在空 氣中加熱燒結,以方便芯層上塗層之氧化和/或結晶二 如塗層可藉以任何適當速率(諸如每分鐘約5。〇提高先質 塗佈LixMgyNi〇2粒之溫A ’並保持或浸泡於約45(rc溫度經 約1小時而合成。可利用第二浸泡溫度,以每分鐘約rc之 速率提供溫度,並在約7崎維持約2小時,以促進塗層社 =曰。此燒結處理例可提供塗佈過材料,有濃度梯度結構,^ 或接近外表面之存在量,較在或接近芯層之區域為 ^=可_其他技術,提供具有本發明組成物之塗佈過芯 層材料。 可騎直舰合物充分賴。例如·加敎, 卢率加熱㈣度約U(rc進行乾燥。乾燥溫 又了維持必要之長度’持續〇分鐘至1小時或以上。 奶成Γ或以上塗層之第-加熱速*可以改變,在每分鐘 ==約贼之範圍。第-熱浸溫度可在= f °此第―熱浸溫度可維持到達成充分或所需 變化,從每分鐘約rc至每分鐘約腕。第以 到室溫。 進心層下降。塗佈過的顆粒容許冷卻 彻if乾燥/加熱/浸泡過程中可利用任何滷合#偌4A 任何供箱或爐’以提供適當的氧化氛圍。® 〇 3 燒結的塗層材料經進—步處理,得粒徑在約8難至約 間之顆粒。例如,燒結之塗層材 知 磨越的研磨機内,研磨約5分鐘。 纟裝⑨瑪稱和 ίΜΆ 即可及ίΐϊ體例之功能和優點,由如下實施例 二實施例說明本發明組成物和技術之益 处和/或優點,但未明示本發明全部範圍。 在實施例中進行下列測試規程。 4SJ. ·速率能力測試和形成一第一循举树率 使用硬幣電池供材料壽命測試,利用鐘金屬做為抗衡 極。硬幣電池的正電極,係由按照實施例2製成的複合陰 所製成。電解質為EC/DEC (1:1) -LiPF6, 1 Μ (紐約州^ 市的ΕΜ工業公司有售),隔板為玻纖材料(Fisher科學公>司 有售)。 電池經完全充電和放電’速率為C/20供第一循環效率測 量’此為放電容量對充電容量之比。然後,電池以約C//、' C/2、1C、2C、3C和5C循環,從約2.7伏特至約4.2伏特。 1C速率之定義為1小時約15〇 mAh/g放電。 規程2:使用壽命循環測試 使用硬幣電池供材料使用壽命測試。硬幣電池的正電極 係由複合陰極製成,負電極由複合陽極製成,包括中間如碳 微粒石墨(MCMB 2528, 90重量%)、PVDF粘合劑(7重 量%),和碳黑(3重量%)。電解質為EC/DEC ( 1:1 ) _ LiPF6,1 Μ (紐約州霍桑市EM工業公司有售),而隔板有玻 纖材料(Fisher科學公司有售)。 電池起先完全充電和放電,以約C/5速率經三次循環, 深循環。深循環包含充電至約4.2V (完全充電),並放電至 約2.7V (完全放電)。電池完全充電至約4.2V (100%充電狀 態(SOC)),電池再以約1C速率電流放電至全容量的約20 %,達約80% SOC。電池再循環以約ic速率電流放電約1〇 % (至約70% SOC) ’並充電10% (至約go% SOC),典型 上稱為淺循環。 每200淺循環後,進行一次深循環。此項測試表示所評 估電池之有效壽命。 規程3 :面積比阻抗(ASI)測詈 在各種出發SOC條件的ASI (以Ω«η2計),是利用硬幣 電池脈波放電決定。ASI按照下式計算: ASI=A · (Δν/Ι) 其中Α為電極面積,以cm2計’ I為在約6C速率的放電電流 脈波。電壓變化(Δν)是在放電脈波之際的電壓變化。 例如在SOC = 90%時’測量起初電壓。電池以6C速率 放電,18秒後測量最後電壓。 ASI與電位可行電力相關,對鋰離子電池,在材料和配 方之間,比較電力容量。 此對高脈波電力應用特別重要。 實施例1 ·合成組$物 製備LiwMgo.oMNiO2組成物,加以評估。組成物是由下 列成份乾混製備: —約242.91克Li(OH)2 (無水細粉,美國密蘇里州聖 路易市 Sigma-Aldrich, Inc.有售)。 —約14.79克Mg(OH)2 (細粉,麻州華德山市Alfa Aesar公司有售)。 一約34.97克LiN〇3 (晶體’麻州華德山市Alfa Aesar 公司有售)。 在1公升甕内,於約940.31克Ni(OH)2 (#543高密度球 形粉末,美國俄亥俄州克立夫蘭市OM集團公司有售),添加 1358148 混合材料。化合物在甕内振搖混合。 把均句先質粉末(先質化合物)置於氧化鋁坩鍋内,加 以燒結。 以約5°C /分鐘速率加熱至約450T:,在約450°C保持約 4小時,進行燒結。再以約2〇c /分鐘提高溫度至約7〇〇cc, 保持約4小時。 令樣品自然冷卻至室溫。冷卻之樣品研磨約5分鐘,把 任何凝結物打破。粉末材料以27〇號篩加以筛選,除去較大 顆粒’保證所需10/ζιη粒徑。 第1圖為掃描電子顯微圖之影本,表示約l〇"m球形芯 層材料之形態。進行X射線繞射圖型(XRD)分析,顯示產 生的組成物有相純度,未顯現雜質。第2圖係所得組成物的 XRD圖之影本。xrd資料顯示所得粉末基本上無雜質。Lii.osMgo^NA and LiU5Mg0.05NiO2. Thus, a precursor compound can be used in this molar ratio to provide the composition. The precursor compounds are typically pre-mixed to allow for homogeneous mixing. In still another embodiment, the material of the present invention can be crystallized by, for example, heating to facilitate the cost of the composition of the invention. The synthesis process involves mixing the precursor compounds into a substantially homogeneous mixture. The synthesis process may further comprise dividing the precursor mixture into one or more heating stages or step 1358148 to heat, for example, by two or more heat soaks in accordance with a predetermined heating pattern. The synthesis process typically promotes oxidation of the corresponding donor component, or formation of a disk oxygenate; mixing of the components, typically a meridian mixture; a bell metal oxide composition; wherein the first metal of the composition (eg, magnesium) Associated with, and a second metal (such as nickel) is associated with 3b. For example, in a lithium magnesium nickel oxide composition, the mixture can be heated to a first heating temperature and preferentially forms Ni3+ over Ni2+. According to a specific embodiment of the invention m, the first heating step or step involves heating the newly formed precursor mixture such that the formation of the oxide and/or the donor compound does not change the valence, or at least the change of the minimum, The precursor mixture is heated to a temperature of about 45 Torr in the first heating step. The first hot dip temperature can range from about 35 Torr to about 7 Torr. The heating step includes utilizing about 70 (the second hot dip temperature of TC is crystallized by hot dip. The second heat can be about 6.). Hold for about 6 hours. According to other _, the first - J π no heating stage: "s s ^ things have been knotted; Si process = temperature s hold for about 1 hour" but can be maintained for up to about 6 hours. The heat and soaking can be exposed to an oxidizing atmosphere (such as air or pure oxygen), which is high enough to promote oxides - per minute = about =: quality: combined heating The rate control is as follows; because = the number of processed f, the required relative composition, and exposure to oxygen 13 such as flute a second heating stage including increasing the temperature, sufficient to facilitate crystallization, the genus tends to associate with 33 ' The two metals tend to be in contact with each other. For example, the oxide mixture can be heated at a rate of about thief per minute, preferably about 5 ° C for the mother, or even about 2. for every minute. From the _ stream, naturally cooled to room temperature, can be carried out by the gamma. Example _ accommodating the furnace or oven The furnace can be filled with air and/or oxygen. The sintered crystalline material can be ground in any suitable grinding device. For example, a grinder equipped with a horse and a honing machine (York State: _Brillkmaun or Model ship produced and sold by Brinkmann Instruments (9) Grinding machine) 'The crystal composition is ground to have the required particle size. Other suitable grinding methods or systems include, for example, ball milling, jet milling, wet milling, hammer grinding and needle grinding. The particle size may vary, depending on the particular formulation or _. Therefore, according to one or more specific examples of the present invention, LixMgyNi〇2 is ground for about 5 minutes to form granules until an average particle size of about 2 to about 2 Å is achieved. m, and preferably from about 10 to tzm. According to one or more preferred embodiments of the present invention, the composition of the granules, χΜ1〇2, which is typically granulated, further includes a coating to further improve the first cycle efficiency. , sacred and/or safety 'even when the composition is used as a cathode material in an electrochemical device' can reduce the generation of gas. According to yet another embodiment of the invention, the =MgyNi02 particles further comprise one or more coatings, Electrode paste, can be reduced Any tendency to gel. For example, after the particles are coated, it is easy to gel in a mixture including NMP, PVDF, LixMgyNi 2 and conductive carbon (better than uncoated). In a specific example, the coating may comprise a composition of the formula LiCG〇2. The coated LixMgyNi〇2 particles may be combined with a clock solution or mixture such as, but not limited to, LiN〇3, LiOH, LiAc, Li2S〇4, Li2C. 〇3, mixed with the solution containing the name. According to the invention - or the above specific examples, the bribe may include LiN〇3, and the cobalt ruthenium may include Co(N〇3)2.6 〇. Li/c〇 The molar ratio can vary, but is typically in the range of from about 0.6 to about Μ. The Li/c〇 molar ratio is preferably from 0.95 to about 1.05, so the molar ratio of the c〇 content in the coating to the (10) content in the core layer ranges from about 〇.〇4 to about 〇.4. And better with about 〇5 〇·15. u — If there is water in a typical upper scorpion, it should be allowed to use appropriate techniques to make it = hair. For example, the mixture can be heated on a hot plate while stirring to dry in a drying oven. The precursor coating material can be heated and sintered in air using any suitable means, such as a chamber furnace, to facilitate oxidation and/or crystallization of the coating on the core layer, such as by coating at any suitable rate (such as about every minute). 5. Increasing the temperature of the precursor coated LixMgyNi〇2 and maintaining or soaking at about 45 (the temperature of rc is synthesized over about 1 hour. The second soaking temperature can be used to provide the temperature at a rate of about rc per minute, And maintained at about 7 saki for about 2 hours to promote the coating. The sintering treatment can provide a coated material with a concentration gradient structure, or near the outer surface, at or near the core layer. The region is ^=may other technology, providing a coated core material having the composition of the present invention. The rideable straight-water compound is sufficient. For example, twisting, heating at a rate of (four) degrees about U (rc for drying. Drying) Warm again and maintain the necessary length 'continued for 1 hour or more. The milk-forming or the first coating-heating rate* can be changed, in the range of == about thief per minute. The first-hot dip temperature can be = f ° This first hot dip temperature can be maintained until sufficient or required Change from about rc per minute to about every minute of the wrist. From room to room temperature. The core layer is lowered. The coated particles allow for cooling. Any halogenation can be utilized during the drying/heating/soaking process. Box or furnace 'to provide a suitable oxidizing atmosphere. ® 〇3 Sintered coating material is subjected to further processing to obtain particles with a particle size of about 8 to about. For example, the sintered coating material is more polished. In-machine, grinding for about 5 minutes. The functions and advantages of the composition and the advantages of the present invention are illustrated by the following embodiment 2, but the invention is not shown. The following test procedures were carried out in the examples. 4SJ. · Rate capability test and formation of a first continuation tree rate using coin batteries for material life testing, using clock metal as the counter electrode. Positive electrode of coin battery, Made of composite yin made according to Example 2. The electrolyte is EC/DEC (1:1) - LiPF6, 1 Μ (available from ΕΜIndustrial Co., Ltd., New York), and the separator is made of glass fiber (Fisher) Scientific Public > Division available). Battery Full charge and discharge 'rate for C/20 for first cycle efficiency measurement' This is the ratio of discharge capacity to charge capacity. Then, the battery cycles at approximately C//, 'C/2, 1C, 2C, 3C, and 5C From about 2.7 volts to about 4.2 volts. The 1C rate is defined as a discharge of about 15 mAh/g for 1 hour. Procedure 2: Life cycle test uses a coin cell for material life test. The positive electrode of the coin cell is made up of a composite cathode. Made of negative electrode made of composite anode, including intermediate such as carbon particulate graphite (MCMB 2528, 90% by weight), PVDF binder (7% by weight), and carbon black (3% by weight). Electrolyte is EC/DEC ( 1:1 ) _ LiPF6,1 Μ (available from EM Industries, Hawthorne, NY), and the partitions are made of fiberglass (available from Fisher Scientific). The battery is initially fully charged and discharged, and is cycled three times at approximately C/5 rate for deep circulation. The deep cycle consists of charging to approximately 4.2V (full charge) and discharging to approximately 2.7V (fully discharged). The battery is fully charged to approximately 4.2V (100% state of charge (SOC)) and the battery is then discharged at a current rate of approximately 1C to approximately 20% of full capacity to approximately 80% SOC. Battery recirculation discharges about 1% (to about 70% SOC)' and charges 10% (to about go% SOC) at about ic rate current, typically referred to as shallow cycle. After every 200 shallow cycles, a deep cycle is performed. This test represents the estimated useful life of the battery. Procedure 3: Area Specific Impedance (ASI) Measurement The ASI (in Ω«η2) for various starting SOC conditions is determined by the pulse discharge of the coin battery. ASI is calculated according to the following formula: ASI = A · (Δν / Ι) where Α is the electrode area, and I is the discharge current pulse at a rate of about 6C. The voltage change (Δν) is a voltage change at the time of discharge pulse. For example, when the SOC = 90%, the initial voltage is measured. The battery was discharged at a rate of 6 C and the final voltage was measured after 18 seconds. ASI is related to potential power, and for lithium-ion batteries, the power capacity is compared between materials and recipes. This is especially important for high pulse power applications. Example 1 - Synthesis Group $ A composition of LiwMgo.oMNiO2 was prepared and evaluated. The composition was prepared by dry blending of the following ingredients: - about 242.91 grams of Li(OH)2 (anhydrous fine powder, available from Sigma-Aldrich, Inc., St. Louis, Missouri, USA). - Approximately 14.79 grams of Mg(OH)2 (fine powder, available from Alfa Aesar, Waldorf, MA). Approximately 34.97 grams of LiN〇3 (crystals available from Alfa Aesar, Waldorf Assay, MA). In a 1 liter 瓮, about 940.31 grams of Ni(OH)2 (#543 high density spherical powder, available from OM Group, Cleveland, Ohio, USA), 1358148 mixed material was added. The compound was shaken and mixed in a crucible. The homogenous powder (precursor compound) was placed in an alumina crucible and sintered. It is heated to a temperature of about 5 ° C / minute to about 450 T: and maintained at about 450 ° C for about 4 hours for sintering. The temperature was then increased to about 7 cc at about 2 〇 c / minute for about 4 hours. Allow the sample to naturally cool to room temperature. The cooled sample was ground for about 5 minutes to break any coagulum. The powder material was screened through a 27-inch sieve to remove larger particles to ensure a desired 10/ζηη particle size. Figure 1 is a photograph of a scanning electron micrograph showing the morphology of a spherical core material. X-ray diffraction pattern (XRD) analysis showed that the resulting composition had phase purity and no impurities were observed. Figure 2 is a copy of the XRD pattern of the resulting composition. The xrd data shows that the resulting powder is substantially free of impurities.

Ui^MgacmNiO,皙電化電池的Μ作和雷 能評估 將按實施例1所述製成之約90重量%活性陰極材料粉 末,約6重量%碳黑(AB 1〇〇%,美國德州The |〇〇(11肋扣 市雪弗龍菲律普化學公司有售),和約4重量% K1120粘合 劑,在NMP内含12% PVDF (日本Kureha化學公司有 售)’混合製成Li丨.〇5Mg〇.〇25Ni〇2陰極。另加nmp (N-曱基四 氫吡咯酮),製成所需粘度,並促進混合。 浴液在有約50粒鋼珠的250 ml甕内,於由漆振動器上 混合約30分鐘。混合漿液用有大約15〇//m微塗間隙的 塗在鋁箔上,約20/zm厚。 塗vl在約130 C乾燥約30分鐘。乾燥後的塗箔通過加壓 的石牙光輥,直徑約3十壓力設定在約1〇〇㈣,把乾燥 塗羯密實化。把密實化的乾驗_成約2 em2圓片,用做 電極。圓片電極上的活性材料重量,典型上約2〇毫克。圓片 電極在真空下,闕8GI乾燥約16小時’職組裝電池。 ⑧ 18 1358148 組裝硬幣電池(Hosen型#2025),利用圓片電極做為 極。硬幣電池包括玻纖隔板,含EC/DEC ( 1:1)七肿二 電解質(美國紐約州霍桑市EM工業公司有售),和鐘6金 極。全部組鶴作是在充填氫的手套操作箱内進行 水和氧氣含量低於約2ppm。 、的 硬擎電池使用循環機/測試機(美國奥克拉荷 馬州吐鮮Ma_飼有f ),按照上魏程卜2、 容量、效率、速率能力、電力和循環性。LiiG5Mg_Ni〇 成物(即0%塗層)資料的電化效能’列於下表卜不雷 3 Lil05M^Ni〇2Ui^MgacmNiO, ΜElectrical battery fabrication and lightning energy evaluation will be about 90% by weight of active cathode material powder prepared as described in Example 1, about 6% by weight carbon black (AB 1%, Texas Texas | 〇〇 (11 sold by Chevron Phillips Chemical Co., Ltd.), and approximately 4% by weight of K1120 binder, containing 12% PVDF (available from Kureha Chemical Co., Japan) in NMP 〇5Mg〇.〇25Ni〇2 cathode. Add nmp (N-fluorenyltetrahydropyrrolidone) to make the desired viscosity and promote mixing. The bath is in 250 ml 有 with about 50 steel balls. It was mixed by a paint shaker for about 30 minutes. The mixed slurry was coated on an aluminum foil with a micro-coating gap of about 15 Å/m, about 20/zm thick. The coating vl was dried at about 130 C for about 30 minutes. The foil is passed through a pressurized stone tooth roller, and the pressure is set to about 1 〇〇 (4) with a diameter of about 30 ,, and the dry coating 羯 is densified. The compacted dry _ _ into about 2 em 2 wafer is used as an electrode. The weight of the active material is typically about 2 〇. The wafer electrode is vacuumed and 阙 8GI is dried for about 16 hours to assemble the battery. 8 18 1358148 Group Coin battery (Hosen type #2025), using the wafer electrode as the pole. The coin battery includes a glass fiber separator containing EC/DEC (1:1) seven swollen electrolyte (available from EM Industrial Co., Hawthorne, NY) ), and Zhong 6 gold pole. All groups of cranes are in the hydrogen-filled glove box for water and oxygen content less than about 2ppm., hard battery use cycle machine / test machine (Oklahoma, USA) Fresh Ma_ is fed with f), according to Shang Wei Cheng Bu 2, capacity, efficiency, rate ability, power and circulation. The electrochemical performance of LiiG5Mg_Ni 〇 (ie 0% coating) data is listed in the table below. 3 Lil05M^Ni〇2

物的谷ϊ典型上約19〇mAh/g。 X ϋ · Lii.osMgo.cmNiO,質電池的雷&The gluten of the material is typically about 19 〇 mAh/g. X ϋ · Lii.osMgo.cmNiO, Thunder &

LiMgyNi02 芯層帶有 LiCo02 塗層含量 莫耳% 第一循 環效率 % C/5 mAh/g 0% 87 203 5% 92 202 10% 89 197 15% 90 191 特定率之比容量LiMgyNi02 core layer with LiCo02 coating content Mohr% first cycle efficiency % C/5 mAh/g 0% 87 203 5% 92 202 10% 89 197 15% 90 191 Specific ratio specific capacity

—-ή埋ms胆1¾•独之年令种測站丨 極 量 製備和評估塗佈過電極。按實施例2所述製成密實化電 切成約60x50 mm2的旗形電極。電極上的活性材料重 典型上約300 mg。一如陰極,陽極製法是把配 MCMB : PVDF (93 : 7)塗在銅紅,切成⑻χ5〇職2旗形 電極。同樣利用在175 psii牙光加以密實化。旗鍵電極在 下,於約80°C乾燥約16小時。--- ή buried ms 胆 13⁄4 • 独 独 令 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测A flag electrode which was densified into a shape of about 60 x 50 mm2 was prepared as described in Example 2. The active material weight on the electrode is typically about 300 mg. Like the cathode, the anode method is to apply MCMB: PVDF (93: 7) to copper red, and cut into (8) χ 5 〇 2 flag electrode. Also used to densify at 175 psii. The flag electrode was dried and dried at about 80 ° C for about 16 hours.

19 1358148 組裝二電極袋形電池。電池由乾燥陽極和陰極構成,利 用約65x55 mm2長方形尺寸的玻纖隔板加以隔開。令約16 ml的EC/DEC (1:1) -LiPF6, 1 Μ電解質浸入電極和隔板 内,把總成在二片70x60 mm2玻璃板間壓縮。把整個總成置 入鋁積層袋内,大約gOx^mm2,在真空下密封。 〜 —全部組裝操作是在充填氬的手套操作箱内進行,其中水 和氧氣含量少於約2ppm。 μ 袋形電池經充電,以約c/io電流率放電,於約4 lv至 約2.7V之間,再以約C/5電流率充電至容量約18〇 約 200 mAh/g 〇 把具有充電過複合陰極的電池,於充填氬的手套操作箱 内拆開。從鋁集流器除去複合陰極粉末。把複合電極粉末, 和EC/DEC (1:1) -LiPF6,1 Μ電解液,粉末/電解液的重量 比為1 : 1,加載於密封成壓實Dsc鍋内。以約51 /分鐘上 升到約450°C的連續掃描率’進行DSC測量。 第13圖内所示安全性資料,顯示5% LiC〇02塗層材料之DSC曲線,與UNi〇8C〇〇i5AW〇2 (日本 TODA公司產銷的CA1505N電池)比較。DSC曲線在放煞 反應中具有化學反應係數之記號。 tMMA :皇質電化雷、》 將約244.42克Li(OH)2 (無水細粉)和約35.18克(晶 體)乾混’製成Li^NiC^組成物。 在1公升甕内’把混合材料加於約946.15g Ni(OH)2 (OM集團公司#543高密度球形粉末)。先質粉末混合物利用 振動混合。 把先質粉末放入氧化鋁坩鍋内,並加以燒結。燒結是以 約5°C /分鐘速率加熱至約450。(: ’並在約450°C保持約4小 時進行。溫度以約2°C /分鐘提升到約7〇〇°C,並保持約4小 時。 ⑧ 20 1358148 谷许樣οσ自然冷卻至室溫。 冷研磨約5分鐘,把任何凝聚物打破。粉末材料 經270號師加以篩選,除去大粒,以確保所需10/zm粒徑。 經XRD分析’顯示此材料為相纯品,無明顯雜質。此粉末按 照實施例2所述程序進行,結果如表2所列(即塗層)。 幻:^1Ηί〇2質電池之雷彳hM能19 1358148 Assemble a two-electrode pouch battery. The battery consists of a dry anode and a cathode, separated by a glass-fiber separator of approximately 65 x 55 mm2. Approximately 16 ml of EC/DEC (1:1)-LiPF6, 1 Μ electrolyte was immersed in the electrode and separator and the assembly was compressed between two 70 x 60 mm2 glass plates. The entire assembly was placed in an aluminum laminate bag, approximately gOx^mm2, sealed under vacuum. ~ - All assembly operations were carried out in an argon-filled glove box with a water and oxygen content of less than about 2 ppm. The μ bag-shaped battery is charged and discharged at a current rate of about c/io, between about 4 lv and about 2.7 V, and then charged at a current rate of about C/5 to a capacity of about 18 〇 about 200 mAh/g. The battery passing through the composite cathode was disassembled in a glove box filled with argon. The composite cathode powder was removed from the aluminum current collector. The composite electrode powder, and the EC/DEC (1:1) - LiPF6, 1 Μ electrolyte, powder / electrolyte weight ratio of 1: 1, was loaded into a sealed compacted Dsc pot. DSC measurements were taken at a continuous scan rate of about 51 / min up to about 450 °C. The safety data shown in Figure 13 shows the DSC curve of 5% LiC〇02 coating material compared to UNi〇8C〇〇i5AW〇2 (CA1505N battery produced and sold by Japan TODA). The DSC curve has a sign of the chemical reaction coefficient in the deuterium reaction. tMMA: Royalized Electron Ray, "Approximately 244.42 g of Li(OH)2 (anhydrous fine powder) and about 35.18 g (crystal) were dry-blended to form a Li^NiC^ composition. The mixed material was added to about 946.15 g of Ni(OH)2 (OM Group #543 high density spherical powder) in a 1 liter 瓮. The precursor powder mixture is mixed by vibration. The precursor powder was placed in an alumina crucible and sintered. Sintering is heated to about 450 at a rate of about 5 ° C / minute. (: 'And proceed at about 450 ° C for about 4 hours. The temperature is raised to about 7 ° C at about 2 ° C / min and held for about 4 hours. 8 20 1358148 Gu Xu οσ naturally cooled to room temperature Cold grinding for about 5 minutes to break any agglomerates. The powder material was screened by the No. 270 division to remove large particles to ensure the required 10/zm particle size. XRD analysis showed that the material was pure, no obvious impurities. This powder was carried out in accordance with the procedure described in Example 2, and the results are listed in Table 2 (ie, coating). Magic: ^1Ηί〇2 battery Thunder hM can

LiNi02 芯層帶有 ---特定率之比容量 LiCo02 塗層含量 J耳% 第一循 環效率 C/5 mAh/g 1C mAh/g 2C mAh/g 3C mAh/g 5C mAh/g _ 〇% 89 211 192 184 178 154 5% 88 214 203 197 190 166 _ 10% 90 209 196 192 184 168 _ 15% 89 197 185 179 172 151 資料表示本發明LiMgyNi02質電化電池,以比電容量化 之效能(見表1)’與典型鋰鎳氧化物材料的效能比較,列於 最高者。LiNi02 core layer with specific ratio of specific capacity LiCo02 coating content J ear% first cycle efficiency C/5 mAh/g 1C mAh/g 2C mAh/g 3C mAh/g 5C mAh/g _ 〇% 89 211 192 184 178 154 5% 88 214 203 197 190 166 _ 10% 90 209 196 192 184 168 _ 15% 89 197 185 179 172 151 The data shows the effectiveness of the specific capacitance of the LiMgyNi02 electrochemical cell of the invention (see table) 1) 'Compared with the performance of typical lithium nickel oxide materials, listed the highest.

:與LiCoO,質電化雷池比鲛 ^ 使用LiCo〇2 (曰本東京曰本化學工業公司產銷之c_5 級做為活性材料,製備電化電池内之比較性複合陰極。一 如前述,實施例製備類似的硬幣電池,以供評估。 此材料之電化資料列於表3。 表3 : LiCoO,質電池之電化效能 樣品 ---_ 特定率之比容量 第一循 環效率 C/5 mAh/g 1C mAh/g 2C mAh/g 3C mAh/g 5C mAh/g _LiCo〇2 —97 157 143 127 108 71 ⑧ 21 1358148 Ο m , 〇·〇2· 0.025. g^3,.QJ4和0.05)内鐵化摻雜物令暑之妗能 λλι Λ 七種 Lll〇5MgyNl〇2 組成物,其中 y 從 0.005, 〇.01, j it0·04至〇.05 *等,進行評估。此等組成物之合成 ’實質上與實施例1所述程序類似’惟Mg(〇H)2的位準 變化’以獲得各種摻雜物含量。:Compared with LiCoO, the quality of the electric cell, using the LiCo〇2 (the c_5 grade produced and sold by Sakamoto Tokyo Sakamoto Chemical Industry Co., Ltd. as the active material to prepare a comparative composite cathode in the electrochemical cell. As described above, the preparation of the example is similar. The coin battery is for evaluation. The electrochemical data of this material are listed in Table 3. Table 3: LiCoO, electrochemical performance sample of the battery---_ specific ratio specific capacity first cycle efficiency C/5 mAh/g 1C mAh /g 2C mAh/g 3C mAh/g 5C mAh/g _LiCo〇2 —97 157 143 127 108 71 8 21 1358148 Ο m , 〇·〇2· 0.025. g^3, .QJ4 and 0.05) The sundries can make λλι Λ seven kinds of Lll〇5MgyNl〇2 compositions, where y is evaluated from 0.005, 〇.01, j it0·04 to 〇.05*, etc. The synthesis of these compositions was substantially similar to the procedure described in Example 1 'only the level change of Mg(〇H)2' to obtain various dopant contents.

。經XRD分析時,所有樣品(y=5%的樣品除外)顯示相 純口口 ’無明顯雜質。對此後者組成物,檢測Lii 〇5Mg_5Ni〇2 雜質,表示混合鎳氧化物存在。 所有樣品在類似實施例2所述程序製成的硬幣電池内, 以電化學方式測試。. All samples (except y = 5% of the samples) showed a pure mouth 'no significant impurities' by XRD analysis. For the latter composition, the Lii 〇5Mg_5Ni〇2 impurity was detected to indicate the presence of mixed nickel oxide. All samples were tested electrochemically in a coin cell made in a procedure similar to that described in Example 2.

Id : LlMgvNiQ2在不同的Mg換雜位準之雷化性能Id : LlMgvNiQ2 is different in different Mg impurity levels

LiMgyNi〇2 在Mg摻 雜位準 特定率之比容詈 第一循 環效率 % C/20 mAh/g C/5 mAh/g 1C mAh/g 2C mAh/g 3C mAh/g 5C mAh/g 0 89 227 211 192 184 178 154 0.005 90 226 210 191 183 176 166 0.01 90 223 207 191 184 178 169 0.02 89 218 204 189 183 178 169 0.025 87 214 203 192 185 180 172 0.03 87 210 199 187 181 176 167 表4資料表示本發明LiMgyNi02質電池之電化效能,例 如1C速率之比電容,較LiNi〇2質電池效能為佳,且優於 LiCo〇2質電池之效能。 1358148LiMgyNi〇2 Specific ratio of Mg doping level tolerance First cycle efficiency % C/20 mAh/g C/5 mAh/g 1C mAh/g 2C mAh/g 3C mAh/g 5C mAh/g 0 89 227 211 192 184 178 154 0.005 90 226 210 191 183 176 166 0.01 90 223 207 191 184 178 169 0.02 89 218 204 189 183 178 169 0.025 87 214 203 192 185 180 172 0.03 87 210 199 187 181 176 167 Table 4 data representation The electrochemical performance of the LiMgyNi02 battery of the present invention, such as the specific capacitance of the 1C rate, is better than that of the LiNi 2 battery and is superior to that of the LiCo 2 battery. 1358148

f 關 7 : 粒塗以 LiCoC^I 在此實施例中,實質上按實施例丨所述製成的鋰鎂鎳氧 化物組成物’塗以鋰鈷氧化物層。 為合成塗層,取約105.55克LiN〇3 (結晶粉末,美國麻 州華德山市Alfa Aesar公司有售),和約445.50克 Co(N03)2 · 6H20 (結晶凝聚物’八抱Aesar亦有售),演入約 200-300毫升祕水a。於此添加實質上按實施例丨所述製成 的約 1000 克 Lii.〇5Mga〇25Ni02 粉末。 在熱板上攪拌中蒸發除去過量水,直至混合物變成稠漿 液。把^漿液傾倒在氧化鋁坩鍋内,於下列加熱形態下燒結; 以約2°C。/分鐘速率加熱至約11〇°c,在約U(rc保持約】小 時,以5°C /。分鐘速率加熱至約45〇χ:,在約45(Γ(:熱浸約i 小時,以約2C /分鐘速率加熱至約7〇〇°c,在約7〇〇°c熱浸 約2小時。 * 令製成的樣品自然冷卻至室溫。一旦冷卻,即研磨約5 分鐘,把任何凝聚物打碎,經27〇號篩加以篩選。 XRD分析顯示所製成的塗後組成物,具有梯度形態,盔 明顯雜質’由第5圖所示xrd圖影本可見,圖示為5;耳& 塗過的Ι^·〇5Μ§0.〇25Νί〇2。第4圖係此樣品的SEM顯微照片 影本,顯示塗過的粉末組成物維持約l〇//m之球形形態ό、 表1列出Li! 〇5Mg〇.〇25Ni〇2芯層材料塗以不同含詈的 LiCo〇2塗層之速率能力和第一循環效率。第6_8圖表示以f Off 7: granules coated with LiCoC^I In this example, the lithium magnesium oxynitride composition prepared substantially as described in Example ’ was coated with a lithium cobalt oxide layer. For the synthetic coating, approximately 105.55 grams of LiN〇3 (crystalline powder, available from Alfa Aesar, Inc., Huadeshan, MA, USA), and approximately 445.50 grams of Co(N03)2 · 6H20 (crystalline agglomerate 'Eight Aesar also Available for sale), play about 200-300 ml of secret water a. About 1000 g of Lii.〇5Mga〇25Ni02 powder, substantially as described in Example 添加, was added thereto. Excess water was removed by evaporation on a hot plate until the mixture became a thick slurry. The slurry was poured into an alumina crucible and sintered in the following heating form; at about 2 °C. The rate of /min is heated to about 11 ° C, heated to about 45 以 at a rate of 5 ° C / min at about U (rc for about ) hours, at about 45 (Γ (: hot dip for about i hours, Heat to about 7 ° C at a rate of about 2 C / min and hot dip at about 7 ° C for about 2 hours. * Let the finished sample be naturally cooled to room temperature. Once cooled, grind for about 5 minutes. Any condensate is broken and sieved through a 27-inch sieve. XRD analysis shows that the prepared composition has a gradient morphology, and the visible impurities of the helmet are visible from the xrd image shown in Figure 5, which is shown as 5; Ear & coated Ι^·〇5Μ§0.〇25Νί〇2. Figure 4 is a SEM micrograph of this sample showing that the coated powder composition maintains a spherical morphology of about 1 〇//m. Table 1 lists the rate capability and first cycle efficiency of Li! 〇5Mg〇.〇25Ni〇2 core material coated with different yttrium-containing LiCo〇2 coatings. Figure 6_8 shows

LlC〇〇2塗佈Lil 05Mg〇〇25Ni〇2質芯層組成物之放電形態,分別 具有約5莫耳%塗層,約1G莫耳%塗層和約i5 g耳%塗 顯示鋰鎂鎳組成物可塗達約15莫耳鋰鈷氧“ 層,並保持約同樣電化效能。第11圖為此等樣品之細比 較圖’顯示梯度隨LiCo〇2塗層量遞增。 。成一梯度塗佈之Lil 05Mg0()25Ni〇2材料,使用 23 1358148 和7之方法’分別塗佈約10%和約15% Lico〇2。研究 Bragg反射中的不對稱程度增加,檢測梯度塗層。特別是使 用2-0 (夾角)中在約44.4度處之高峯104,顯示高峯104 之不對稱,如何隨LiCo02量連續遞增(第11圖)。第11圖 中之各XRD圖型,為2-0調節零點位置,並於強度正常 化’以比較(在第11圖右側插入所示)。·梯度塗佈樣品亦以 電化方式按照規程1評估速率能力和第一循環效率,如表i 所列。LlC〇〇2 coated Lil 05Mg〇〇25Ni〇2 core layer composition discharge form, respectively, having about 5 mol% coating, about 1G mol% coating and about i5 g ear % coating showing lithium magnesium nickel The composition can be applied to a layer of about 15 moles of lithium cobalt oxide and maintains about the same electrochemical performance. Figure 11 is a comparison of the samples for this sample. The gradient is increased with the amount of LiCo〇2 coating. Lil 05Mg0 () 25Ni 〇 2 material, using the method of 23 1358148 and 7 'coated about 10% and about 15% Lico 〇 2 respectively. Study the increase in the degree of asymmetry in Bragg reflection, detect the gradient coating. Especially use The peak 104 at about 44.4 degrees in 2-0 (angle) shows the asymmetry of peak 104, how it increases continuously with the amount of LiCo02 (Fig. 11). The XRD pattern in Figure 11 is 2-0. Zero position and normalization of intensity 'to compare (shown on the right side of Figure 11). · Gradient coated samples were also electrochemically rated according to Protocol 1 for rate capability and first cycle efficiency, as listed in Table i.

宜施例9 :比較LiCoO,塗佈之Li^NiO,芯層材料 合成三梯度塗佈之Li^sNiO2材料,使用實質上如實施例 4和7所述方法,分別塗以5%、1〇%和15% LiC〇〇2。塗佈 過的樣品如上述和規程丨,以電化方式測試速率能力和第一 循環效率。表2所列之比電容結果,顯示本發明鋰鈷氧化物 塗佈之鐘鎳氧化物化合物,具有較未塗佈化合物更佳或至少 同等績效能力。Example 9: Comparing LiCoO, coated Li^NiO, core layer material to synthesize a three-gradient coated Li^sNiO2 material, using 5%, 1 分别, respectively, using the methods described in Examples 4 and 7, respectively. % and 15% LiC〇〇2. The coated samples were electrochemically tested for rate capability and first cycle efficiency as described above and in the protocol. The specific capacitance results listed in Table 2 show that the lithium cobalt oxide coated clock nickel oxide compound of the present invention has better or at least equivalent performance capabilities than the uncoated compound.

第9圖表示利用Lico〇2塗佈的Ui〇5Ni〇2材料之 電池ASI,按照上述規程3測量。第1〇圖顯示利用未塗 UMgNiO2材料的電池之若干ASI測量。如第9和1〇圖州 不,鋰鈷氧化物塗佈的鋰鎳氧化物電池之電位可得電力效 能,即使不勝過利用未塗鋰鎳氧化物材料的電池,亦可媳 ί 表示_各種活性材料,包含鐘鎳氧化物、鐘鎂Fig. 9 shows a battery ASI of Ui〇5Ni〇2 material coated with Lico(R) 2, measured according to the above procedure 3. Figure 1 shows several ASI measurements of a battery using uncoated UMgNiO2 material. As shown in Figures 9 and 1 of the state, lithium-potassium oxide-coated lithium-nickel oxide batteries have potentials that provide power efficiency, even if they are better than batteries that use uncoated lithium-nickel oxide materials. Active material, including clock nickel oxide, clock magnesium

鎳氧化物、鋰鈷氧化物塗佈之鋰鎂鎳氧化物、 =ν1〇^〇0·15αι_ο2 (日本TODA公司產銷之CAl5〇5電池) 和ΙΧ:ο〇2 (日本東京日本化學工業公司產銷之c_5級 池’關於ic的放電率之容量鱗率。第丨 I ,用本發明塗佈和未塗佈鐘鎂鎳氧化物之=見較义用^ ,氧化物㈣池有更佳效能。第13圖㈣線表示本發 和以贿氧化物塗佈馳鎂錄氧化物材料, ^ 化物材料在約充電狀態相較之微分掃^量熱術錄3Nickel oxide, lithium cobalt oxide coated lithium magnesium nickel oxide, =ν1〇^〇0·15αι_ο2 (CAl5〇5 battery produced and sold by Japan TODA Co., Ltd.) and ΙΧ:ο〇2 (Japan Tokyo Chemical Industry Co., Ltd. The c_5 level pool 'the capacity scalar rate of the discharge rate of ic. The first I, with the coated and uncoated clock magnesium nickel oxide of the present invention = see the use of ^, oxide (four) pool has better performance. Figure 13 (d) line shows the present invention and the application of brittle oxide coated magnesium oxide oxide material, ^ compound material in the state of charge compared to the differential sweeping volume heat record 3

24 不塗佈和未塗佈材料較具熱安定性。 際夂it 之士均知上述參數和造型只是舉條,㈣ 5=明之特殊具體例。例如,:發明顆==j 體例,可包含形成方便包裝和塗 /或刀接岔度之顆粒,諸如但不限板,/门匕裝和 ί於t和/或第三維度。此外,粒徑範圍以 2術,其中混合物可具有第—種類顆粒,例3塗q 2-種粒徑’以及第二種顆粒,例如塗佈二具 ^載’具有第二種粒徑所以,須知前述具體僅二, 改;、料和改進。此等改變、修飾二: I外,且屬於本發明精神和範圍内。 t本發明針對所述各特點、系統或方法,,以及 ,特點、系統和/或方法之任何組合,如果此 系 或2彼此k致,則視為在本發明如t請專利範圍且2 之範f内。使用第一」和「第二」,甚至「第三」和ΐ第 在===優先、前後、順序或暫行排 25 1358148 【圖式簡單說明】 第1圖為顯微照片影本,展示本發明以 HtNl02為代表的—或以上具體例之典型_鎳氧化物 組成物, 第2圖為第1圖所示組成物的乂射線繞射圖型; 第3圖為第1圖所示材料不同放電率的放電形態 圖, 第4圖為顯微照片影本,展示本發明以約5莫 ΙΧ:〇02 : Ι^0·025_2為代表的一或以上具體例之血型鐘鈷 氧化物梯度塗佈的鋰鎂鎳氧化物組成物; 、、 第5圖為第4圖所示塗佈組成物之曲線圖; 第6圖為第4騎示具有約5莫耳職層 不同速率之放曲線圖; 观且成物 丈η Ϊ I圖ίϊ 4圖所示具有約1〇莫耳%塗層含量的組成物 不同速率之放電形態曲線圖; =圖為第4圖所示具有約15莫耳%塗層含量的組成物 不同速率之放電形態曲線圖; 第9圖為按照本發明—或以上具體例,按規程3使用約 is和18s脈波,具有約5莫耳%〇(:〇〇2梯度塗層的 LiMga^NiO2組成物之面積比阻抗曲線圖; 第10圖為按照本發明一或以上具體例,按規程3使用u 和18s脈波,各種LiMgQ()25Ni〇2組成物之面積比阻抗曲線 圖; 第11圖為按照本發明一或以上具體例,在Lic〇〇2組成 物=5莫耳%、1G莫耳%和15莫耳%梯度塗層含量(右侧 所不放大部份),顯示高峯形態的χ射線繞射圖型之曲線 圖; •第12圖為利用⑻LiNi02、(b)LiMgNi02、⑹約5莫耳%24 Uncoated and uncoated materials are more thermally stable. Everyone knows that the above parameters and shapes are just a few words. (4) 5=Special specific examples of Ming. For example, the invention of the ==j system may include particles that form a convenient package and a coating/or knives, such as, but not limited to, a panel, and a t- and/or third dimension. Further, the particle size range is 2, wherein the mixture may have the first type of particles, the third type is coated with the q2-type particle size ', and the second particle, for example, the coated two-loaded 'has a second particle size, so It should be noted that the foregoing specific only two, change; material and improvement. These changes, modifications 2: I, and are within the spirit and scope of the present invention. The present invention is directed to the various features, systems, or methods, and any combination of features, systems, and/or methods, and if the system or the two are inconsistent with each other, the invention is considered to be within the scope of the invention and Fan f. Use the first and second, even the third and the first === priority, before, after, order or temporary row 25 1358148 [Simplified illustration] Figure 1 is a photomicrograph showing the invention Representative of HtNl02 - or the typical _ nickel oxide composition of the above specific examples, Figure 2 is the x-ray diffraction pattern of the composition shown in Figure 1; Figure 3 is the different discharge of the material shown in Figure 1. The discharge pattern of the rate, Fig. 4 is a photomicrograph of the photomicrograph, showing the blood-type clock cobalt oxide gradient coating of one or more specific examples represented by about 5 ΙΧ: 〇02: Ι^0·025_2 Lithium magnesium nickel oxide composition; ,, Fig. 5 is a graph of the coating composition shown in Fig. 4; Fig. 6 is a graph showing the 4th riding with a different rate of about 5 moles of the layer; And the graph of the discharge morphology of the composition having a composition content of about 1 〇 mol % coating is shown in Fig. 4; = Fig. 4 has a coating of about 15 mol% as shown in Fig. 4 a graph of the discharge morphology at different rates of the composition of the content; Figure 9 is a diagram according to the invention - or the above specific examples, 3 is an area ratio impedance curve of a LiMga^NiO2 composition having a gradient of approximately 5 mol% 〇 (: 〇〇2 gradient coating) using a is and 18 s pulse wave; FIG. 10 is a specific example according to one or more of the present invention. , according to the procedure 3 using u and 18s pulse wave, the area ratio specific impedance curve of various LiMgQ () 25Ni 〇 2 composition; Figure 11 is a specific example of one or more according to the present invention, in the Lic 〇〇 2 composition = 5 Mo Ear %, 1G molar %, and 15 mole % gradient coating content (not amplified on the right side), showing a peak shape of the χ ray diffraction pattern; • Figure 12 is the use of (8) LiNi02, (b ) LiMgNi02, (6) about 5 mol%

LiCo02 塗伸 LiMgoobNiC^ ’ 和(d)CA1505N (日本 TODA 公 26 1358148 司)’々在約1C放電循環之際,電池容量保持率曲線圖; 第13圖為⑻LiMg0025NiO2、(b)約5莫耳%LiC〇02塗佈 LiMg〇.〇25Ni〇2 ’ 和(c)TODA NCA-02 電極,經約 4.2V 充電 (100%充電狀態)並沉浸於電解液内後,微分掃描量熱術形 態之曲線圖。 【主要元件符號說明】LiCo02 coated LiMgoobNiC^ ' and (d) CA1505N (Japan TODA Gong 26 1358148) '々 at about 1C discharge cycle, battery capacity retention rate chart; Figure 13 is (8) LiMg0025NiO2, (b) about 5 mole% LiC〇02 coated LiMg〇.〇25Ni〇2 ' and (c) TODA NCA-02 electrodes, after about 4.2V charging (100% state of charge) and immersed in the electrolyte, the differential scanning calorimetry morphology curve Figure. [Main component symbol description]

2727

Claims (1)

1358148 十、申請專利範圍: 1. 一種組成物,其實為LixMgyNi02,式中0.9<χ<1.3和 0.01<y<0.1,而 0.9<x+y<1.3 者。 2. 如申請專利範圍第1項之組成物,其中0.9<χ<1.1 者。 3. 如申請專利範圍第1項之組成物,其中0.02<y<0.05 者。 4. 如申請專利範圍第1項之組成物,其中x= 1.05而y= 0.025 者。 φ 5.—種組成物,包括: 芯層,其式為 LixMgyNi02,式中 0.9<x<1.3 和 0.01< y<0.1,而 0.9<x+y<1.3 ;以及 芯層上之塗層,其式為LiaCob02,式中0.7<a<1.3和 0.9<b<1.2 者。 6. 如申請專利範圍第5項之組成物,其中0.9<a< 1.3和 0.9<b<1.2 者。 7. 如申請專利範圍第5項之組成物,其中Co : Ni莫耳比 介於約0.01至約0.8之間者。 m 8.如申請專利範圍第5項之組成物,其中0.9<x< 1.1和 胃 0.02<y<0.05 者。 9. 如申請專利範圍第8項之組成物,其中x= 1.05和y= 0.025 者。 10. —種電化電池,包括陰極,含組成物,其式為 LixMgyNi〇2,式中 0.9<x<1.3 和 0.01<y<0.1,而 0.9<x+y <1,3 者。 11. 如申請專利範圍第10項之電化電池,其中0.9<χ<1.1 者。 12. 如申請專利範圍第11項之電化電池,其中0.02<y< 0.05 者。 28 1358148 I3·如申請專利範圍第10項之電化電池,其中X=1 〇5和 y = 0.025 者。 14·一種電化電池,包括陰極,含粒材,包括芯層,其式 為 LixMgyM02,式中 09<x<13 和 〇〇1<y<〇i,而 〇9< x+y<l_3 ’以及芯層上之塗層,其式為UaC〇b〇2 <1.3 和 0.9<b<1.2 者。 ’ 15.如申請專利範圍第14項之電化電池,i 和o.〇2<y<a〇5,而 〇.9<a<13,且〇9<1)‘、匕者广〆1.1 —η1 二ft?專利範圍第15項之電化電池,其中x=1.〇5和 y=0.025 ’ 而 a= 1,且 b = 〇.〇25 者。 17.一種組成物之製法,包括: 混合物,包括經源、鎮源和鎳源;以及 把混σ物在氧化氛圍内燒結,其溫度和時間足以把混 合Μ晶成 UxMgyNi〇2_物,式中 G9<x<H==; <0.1,而 0.9<x+y<L3 者。 Mg(^如圍第17項之製法,其中鎮源包括 者以)2鋰源〇括LlN〇3和Li〇H,而鎳源包括Ni(〇H)2 ^利範圍第17項之製法,其中溫度介於約400 以每項H射麟⑽混合物 第一浸泡溫度,介於約侧。C和500 21. 如申請專利範圍帛2〇項之製法,其 第一浸泡溫度,經約4小時者。 、〇匕括維持 22. 如申請專利範圍第2〇項之製法,其 物以母分鐘約2。〇速率加埶至第-浸泡瓜声2、、,口又匕括混曰 9〇〇°C之間者。 ”,、主弟一次,包,皿度,介於約00(TC和 23. 如申料利制第22項之躲,射燒結又包括維持 90 第二浸泡溫度’經約4小時者。 24. —種塗佈顆粒之製法,包括步驟為: 、 提供化合物之第一混合物,包括鋰源、鎂源和鎳源, 以及把第一混合物在氧化氛圍内,於第一溫度燒結,並經第一 ,間,足以把第一混合物結晶成芯粒,其式為UxMgyNi〇2, 式中 〇.9<χ<1·3 和 0.01<y<0 卜而 〇 91<x+y<13;以及 膝浴把芯粒塗以第二混合物,包括化合物,含鋰和鈷,並 曰、,過之芯粒在第二溫度燒結,經第二期間,足以把塗層結 日日,/、式為 LiaCob〇2,式中 〇.7<a<1.3 和 〇9<b<l 2 者。 25. 如申請專利範圍第24項之製法,其中〇9<χ<ι」和 ^2<y<0.05,而 〇9<a<13,且 〇9<b<i2 者。 社,26=請專利範圍第24項之製法,其中第一混合物之燒 ΐ ^第—混合物以每分鐘約5ΐ:速率加熱至第一浸泡溫 500°c之間,以及第二混合物以每 L加熱至第二浸泡溫度,介於約00(rc和90(TC之門者 结,26項之製法,其中第;合物之燒 7又包括第一浸泡溫度維持約1小時至約6小時,而筮-萼 泡溫度維持約丨小時至約8小時者。 』子而第一反 28.如申請專利範圍第24項之製法,其中塗 、-’包括對塗佈過之芯粒以每分鐘約2。 二: 溫度,介於約听和約12(rc之間者。料加熱至第二改泡 結 結,又粒’。㉟2 =粒燒 泡溫度,介_ WC㈣·。/料域至第四浸 31. 如申請專利範圍第3〇項之製法,1 結’又包括維持第四浸泡溫度約1小時者Γ、敎心粒燒 32. 如申請專利範圍第24項之製法,其中塗佈過之芯粒燒 IJ58148 結,又包括對塗佈過的芯粒以每分鐘約 泡溫度,介_ _〇C和㈣ot之間者。逮羊加熱至第五七 33.如申清專利範圍第%項之激法, 結,又包括維持第五浸泡溫度約㈠時者Γ中塗佈過之芯粒燒 34·如申請專利範圍第24 m_)2,鋰源包括Li ’其中鎮源包括 者。 LlUH而鎳源包括Ni(OH)2 35. —種顆粒,包括芯層材料, 物,其中Mg和Li主要在姓曰;S有式1^Μ@02之組成 3b處,而0.01<y<〇ff、。。曰曰予上3a處’ Ni主要在結晶學上 圍第—者。 重量專利範圍第37項之顆教,其中塗層佔顆粒約3〇 311358148 X. Patent application scope: 1. A composition, actually LixMgyNi02, where 0.9<χ<1.3 and 0.01<y<0.1, and 0.9<x+y<1.3. 2. For example, the composition of claim 1 of the patent scope, where 0.9 < χ < 1.1. 3. For example, the composition of claim 1 of the patent scope, wherein 0.02 < y < 0.05. 4. For the composition of claim 1 of the patent scope, where x = 1.05 and y = 0.025. Φ 5. A composition comprising: a core layer of the formula LixMgyNi02, wherein 0.9<x<1.3 and 0.01<y<0.1, and 0.9<x+y<1.3; and coating on the core layer The layer is of the formula LiaCob02, where 0.7<a<1.3 and 0.9<b<1.2. 6. The composition of claim 5, wherein 0.9 < a < 1.3 & 0.9 < b < 1.2. 7. The composition of claim 5, wherein the Co: Ni molar ratio is between about 0.01 and about 0.8. m 8. The composition of claim 5, wherein 0.9 < x < 1.1 and stomach 0.02 < y < 0.05. 9. For example, the composition of claim 8 of the patent scope, where x = 1.05 and y = 0.025. 10. An electrochemical cell comprising a cathode comprising a composition of the formula LixMgyNi〇2, wherein 0.9<x<1.3 and 0.01<y<0.1, and 0.9<x+y <1,3 . 11. For an electrochemical battery according to item 10 of the patent application, wherein 0.9<χ<1.1. 12. For an electrochemical cell according to item 11 of the patent application, wherein 0.02 < y < 0.05. 28 1358148 I3. An electrochemical cell according to claim 10, wherein X = 1 〇 5 and y = 0.025. 14. An electrochemical cell comprising a cathode comprising a granule comprising a core layer of the formula LixMgyM02, wherein 09<x<13 and 〇〇1<y<〇i, and 〇9<x+y<l_3' and The coating on the core layer is of the formula UaC〇b〇2 <1.3 and 0.9<b<1.2. ' 15. As for the electrochemical battery of claim 14th, i and o.〇2<y<a〇5, and 〇.9<a<13, and 〇9<1)', 匕 〆 〆 1.1 Η1 二ft? The electrochemical cell of the 15th patent range, where x=1.〇5 and y=0.025' and a=1, and b=〇.〇25. 17. A method of making a composition comprising: a mixture comprising a source, a source of a source, and a source of nickel; and sintering the mixed slag in an oxidizing atmosphere at a temperature and for a time sufficient to crystallize the mixture into a UxMgyNi〇2_ Where G9<x<H==;<0.1, and 0.9<x+y<L3. Mg (^ is the method of preparation of the 17th item, wherein the source includes the) lithium source includes LlN〇3 and Li〇H, and the nickel source includes the Ni (〇H) 2 ^ range of the 17th method, The temperature is between about 400 and the first soaking temperature of each H-shoot (10) mixture, on the about side. C and 500 21. The method of applying the patent scope 帛2〇, the first soaking temperature, after about 4 hours. 〇匕 维持 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. The enthalpy rate is increased to the first - soaked melon sound 2, and the mouth is also mixed between 9 ° ° C. ", the first time, the package, the degree of the package, between about 00 (TC and 23. For example, the hiding of the 22nd item of the claim, the sintering also includes maintaining the second soaking temperature of 90) for about 4 hours. a method for preparing coated particles, comprising the steps of: providing a first mixture of compounds, including a lithium source, a magnesium source, and a nickel source, and sintering the first mixture in an oxidizing atmosphere at a first temperature and passing through the first One, between, is sufficient to crystallize the first mixture into a core particle of the formula UxMgyNi〇2, where 〇.9<χ<1·3 and 0.01<y<0> and 〇91<x+y<13; And the knee bath coats the core particles with the second mixture, including the compound, containing lithium and cobalt, and sputum, and the core particles are sintered at the second temperature, and the second period is sufficient to coat the coating day, /, It is LiaCob〇2, where 〇.7<a<1.3 and 〇9<b<l 2 . 25. The method of claim 24, wherein 〇9<χ<ι> and ^2<y< 0.05, and 〇9<a<13, and 〇9<b<i2. Society, 26=Please refer to the method of Article 24 of the patent scope, in which the first mixture is burned ^ - the mixture is heated to a first soaking temperature of 500 ° C at a rate of about 5 Torr per minute, and the second mixture is heated to a second soaking temperature per L, at about 00 (rc and 90 (the gate of the TC, The method of claim 26, wherein the first compound has a first soaking temperature for about 1 hour to about 6 hours, and the 筮-bubble temperature is maintained for about 丨 hours to about 8 hours. 28. The method of claim 24, wherein the coating comprises: - coating the coated core particles at about 2 per minute. 2: temperature, between about 1 and about rc. To the second change to the bubble knot, and then the particle '.352 = grain bubble temperature, _ WC (four) · / / area to the fourth dip 31. As in the patent application scope 3, the method of 1 knot 'including maintenance The fourth soaking temperature is about 1 hour, and the core is burned. 32. According to the method of claim 24, wherein the coated core pellet is sintered, the IJ58148 knot is included, and the coated core pellet is about every minute. The temperature of the bubble, between _ _ 〇 C and (four) ot. The sheep is heated to the fifth seven 33. If Shen Qing patent range of the first item, And including maintaining the fifth soaking temperature about (1), the core granules coated in the crucible 34. As claimed in the patent range 24 m_) 2, the lithium source includes Li 'where the source includes. LlUH and the nickel source includes Ni (OH) 2 35. A type of particle comprising a core material, wherein Mg and Li are mainly at a surname 曰; S has a composition 3b of the formula 1^Μ@02, and 0.01 <y<〇ff,. .曰曰上上3a' Ni is mainly in the middle of crystallography. The weight of the patent scope of the 37th of the teaching, in which the coating accounts for about 3 〇 31
TW094132932A 2005-09-23 2005-09-23 Lithium metal oxide materials and methods of synth TWI358148B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW094132932A TWI358148B (en) 2005-09-23 2005-09-23 Lithium metal oxide materials and methods of synth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094132932A TWI358148B (en) 2005-09-23 2005-09-23 Lithium metal oxide materials and methods of synth

Publications (2)

Publication Number Publication Date
TW200713669A TW200713669A (en) 2007-04-01
TWI358148B true TWI358148B (en) 2012-02-11

Family

ID=46728161

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094132932A TWI358148B (en) 2005-09-23 2005-09-23 Lithium metal oxide materials and methods of synth

Country Status (1)

Country Link
TW (1) TWI358148B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010032207B4 (en) 2010-07-26 2014-02-13 Süd-Chemie Ip Gmbh & Co. Kg Process for reducing magnetic and / or oxidic impurities in lithium-metal-oxygen compounds
CN113307311A (en) * 2021-04-08 2021-08-27 桂林理工大学 Mg2+Preparation method for improving electrochemical performance of lithium nickelate positive electrode material by double doping

Also Published As

Publication number Publication date
TW200713669A (en) 2007-04-01

Similar Documents

Publication Publication Date Title
CA2565810C (en) Lithium metal oxide materials and methods of synthesis and use
JP6612356B2 (en) Multi-component material having an inclined structure for lithium ion battery, preparation method thereof, positive electrode of lithium ion battery and lithium ion battery
TWI286849B (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN103500827B (en) Lithium ion battery and multi-element positive material thereof as well as preparation method of multi-element positive material
CN109715562B (en) Surface stable cathode material for lithium ion battery and synthesis method thereof
Cho et al. Synthesis, thermal, and electrochemical properties of AlPO4-coated LiNi0. 8Co0. 1Mn0. 1 O 2 cathode materials for a Li-Ion cell
CN108390022A (en) Lithium battery tertiary cathode material, preparation method and the lithium battery of carbon-metal oxide compound coating
CN109360963A (en) Tertiary cathode material micron-stage sheet-like mono-crystalline structures aggregate and preparation method thereof
CN112158891A (en) Cathode active material having improved particle morphology
WO2012022618A1 (en) Alumina dry -coated cathode material precursors
TW200830600A (en) Lithium secondary battery
CN110459736A (en) Positive electrode and anode pole piece and lithium ion battery containing the positive electrode
TW201136011A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TWI277232B (en) Positive-electrode active material for non-aqueous electrolyte secondary cell and process for preparing the same
TW201204633A (en) Method for producing lithium silicate compound
JP2007294119A (en) Single crystal particle of oxide for lithium secondary battery electrode and its manufacturing method, and lithium secondary battery using it
CN110224114A (en) A kind of anode material for lithium ion battery and preparation method thereof
JP2018014322A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2002151078A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing process
TW200840121A (en) Lithium transition metal complex oxide for lithium ion secondary battery cathode active material and method for producing the same, lithium ion secondary battery cathode active material, and lithium ion secondary battery
JP4228163B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2012146639A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery using the same
CN114094060A (en) Preparation method of high-voltage positive electrode material with core-shell structure
WO2024066809A1 (en) Positive electrode material, preparation method therefor, positive electrode sheet, secondary battery, and electronic device
TWI358148B (en) Lithium metal oxide materials and methods of synth