TWI354987B - Storage device - Google Patents

Storage device Download PDF

Info

Publication number
TWI354987B
TWI354987B TW96145092A TW96145092A TWI354987B TW I354987 B TWI354987 B TW I354987B TW 96145092 A TW96145092 A TW 96145092A TW 96145092 A TW96145092 A TW 96145092A TW I354987 B TWI354987 B TW I354987B
Authority
TW
Taiwan
Prior art keywords
storage device
lens
light
splitting element
storage medium
Prior art date
Application number
TW96145092A
Other languages
Chinese (zh)
Other versions
TW200923930A (en
Inventor
Ping Jung Wu
Yuan Chin Lee
Ruey Shyan Hong
Hung Yueh Chen
Chau Yuan Ke
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW96145092A priority Critical patent/TWI354987B/en
Publication of TW200923930A publication Critical patent/TW200923930A/en
Application granted granted Critical
Publication of TWI354987B publication Critical patent/TWI354987B/en

Links

Landscapes

  • Holo Graphy (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Description

1354987 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種全像儲存裝置,尤指一種可拉 階與高階項間光能量密度差異之全像儲存裝置。 ^ 【先前技術】 隨著高晝質數位電視的開播,乃至於未來的3〇立體影1354987 IX. Description of the Invention: [Technical Field] The present invention relates to a holographic storage device, and more particularly to a holographic storage device for difference in optical energy density between a high-order item and a high-order item. ^ [Prior Art] With the launch of high-quality digital TV, and even the future 3 〇 stereo

J,由=生活水準的提高,人們對儲存媒體的容量需求也 △來愈1¾。而現今光學儲存技術中,光碟 量也幾乎到了極限,無法再向上提昇,因此發展其 更大的光儲存技術已是刻不容緩。而光儲存進入高容量的 時代是必㈣趨勢’而全像儲存為下—代大容量的技術, 可到達IT byte以上的等級,但為了可達到此一容量,材料 的充分利用係十分重要的。 全像儲存裝置的三種可減少位元錯誤率BER(Bit Err〇r 她)的方法S :第-種方法如第一圖所示之離焦⑽娜) 記錄系統’其中空間調變器(SLM) 51設於傅立葉透鏡” 前焦面處’儲存媒介53 ^於傅立葉透鏡52之光輸出側, 因此全像資料係採雜焦的方式紀錄在儲存媒介53上。此 方法之主要技術係將紀錄平面離焦而增加紀錄面積,可以 拉近各階紐量密度。第二種方法如第二圖所示之相位光 罩(Phase mask),空間調變器51設於傅立葉透鏡52前焦面 處,儲存媒介53設於傅立葉透鏡52之光輪出侧,其中將 相位光罩54設於空間調變器51與傅立葉透鏡52之間藉 由改變各像素點(Pixel)的相對相位(Relive phase)來拉近 各階光能量密度。第三種方法如第三圖所示之錐形透鏡 (Ax1C〇n),將錐形透鏡55置放於空間調變器51前方,改變 5 8/ 入射光之幾何分布,以改變光能量 【發明内容】 士發明係提供—種全像儲存裝置,藉*設於_第一傅 2Ϊ?,—第二傅立葉透鏡之間的第-濾光元件,用以 ° 11 DC)項的能量,而拉近零階與高階項間能量密 又的、異,並與參考光束干涉,使紀錄訊號可以寫入點狀 光閘陣列中,亦可同時增加記錄容量。 一本發全像儲存裝置,包含-光源產生器,使產生 一光束,一第一分光元件,係將該光束分為一訊號光與一 f考光束」一空間調變器,接收該訊號光並進行編碼;一 第:傅立葉透鏡,設於該空間調變器之光輸出側,使該訊 號光通過’一第二傅立葉透鏡,設於該第一傅立葉透鏡之 光輸出側,使該訊號光通過;一第一濾光元件,係設於一 傅立葉平面(Fourier Piane)上,且位於該第一傅立葉透鏡與 該第二傅立葉透鏡之間,使該訊號光通過該第一濾光元件 上,一第一分光元件,設於該第二傅立葉透鏡之光輸出側, 使該訊號光通過;一第一透鏡,設於該第二分光元件之光 輸出側;及一儲存媒介,設於該第一透鏡之光輸出側,其 係將經過該第一透鏡之訊號光和該參考光束所形成的干涉 圖案記錄於該儲存媒介上。 其中,該第一分光元件及該第二分光元件為一偏極化 分光鏡。 該空間調變器係設於該第一傅立葉透鏡之前焦面位 置。 1354987 【圖式簡單說明】 第二圖為習知的離焦(Defocus)記錄系統示意圖。 第二圖為習知的相位光罩(Phase mask)系統示意圖。 第三圖為習知的錐形透鏡(Axicon)系統示意圖。 第四圖係顯示本發明全像儲存裝置之寫入光路示意 圖。 第五圖係顯示第四圖中圓圈A之放大圖。 第六圖為本發明在傅立葉平面的影像示意圖。 第七圖為本發明在傅立葉平面的影像模擬示意圖。 β 第八圖為原始訊號的波形示意圖。 第九圖為經過濾光元件濾去部分直流(DC)項的示意 圖。 第十圖及第十一圖皆係顯示吸收零階光能量之示意 圖。 第十二圖係顯示本發明全像儲存裝置之讀取光路示意 圖。 第十三圖係顯示第十二圖中圓圈B之放大圖。 第十四圖係顯示本發明全像儲存裝置之另一讀取光路 鲁 示意圖。 【主要元件符號說明】 1…全像儲存裝置 2- 光源產生器 3- --第一分光元件 4- --空間調變器 5- --第一傅立葉透鏡 6- —第二傅立葉透鏡 13 1354987 7、71---第一濾光元件 8- -第二分光元件 9- -第一透鏡 10- 儲存媒介 11…第三分光元件 12…第一反射元件 13…第二反射元件 14—第三反射元件 15…光偵測器 16—第三傅立葉透鏡 17…第四傅立葉透鏡 18 —第二滤光元件 21 —光束 31—訊號光 32…參考光束J, by the improvement of living standards, people's demand for storage media capacity is also △. In today's optical storage technology, the amount of optical discs is almost at its limit and cannot be upgraded upwards. Therefore, it is imperative to develop its larger optical storage technology. The era of light storage into high capacity is a must-have trend. The holographic image is stored as a lower-generation large-capacity technology, which can reach the level above IT byte. However, in order to achieve this capacity, the full utilization of materials is very important. . Three methods for reducing the bit error rate BER (Bit Err〇r her) of the holographic storage device S: the first method is as shown in the first figure (10) Na) Recording system 'where the spatial modulator (SLM) 51 is disposed at the front focal plane of the Fourier lens "storage medium 53 ^ on the light output side of the Fourier lens 52, so the holographic data is recorded on the storage medium 53 by means of coke. The main technical system of this method will record The plane defocusing increases the recording area, and the density of each step can be narrowed. The second method is the phase mask shown in the second figure, and the spatial modulator 51 is disposed at the front focal plane of the Fourier lens 52. The storage medium 53 is disposed on the light exit side of the Fourier lens 52. The phase mask 54 is disposed between the spatial modulator 51 and the Fourier lens 52 by changing the relative phase of each pixel (Pixel). Near-order optical energy density. The third method is the conical lens (Ax1C〇n) shown in the third figure, and the conical lens 55 is placed in front of the spatial modulator 51 to change the geometric distribution of the incident light. To change the light energy [invention content] A holographic storage device, by means of a first filter element disposed between the first Fourier lens and the second Fourier lens, for the energy of the (11 DC) term, and the zeroth order and the higher order The energy between the items is different and different, and interferes with the reference beam, so that the recording signal can be written into the dot shutter array, and the recording capacity can be increased at the same time. A holographic storage device comprising a light source generator enables Generating a light beam, a first light splitting component, dividing the light beam into a signal light and a f test beam, a spatial modulator, receiving the signal light and encoding; a first: Fourier lens, disposed in the space modulation The light output side of the transformer passes the signal light through a second Fourier lens disposed on the light output side of the first Fourier lens to pass the signal light; a first filter element is disposed on a Fourier plane And (Fourier Piane) between the first Fourier lens and the second Fourier lens, the signal light passes through the first filter element, a first beam splitting element, and the light disposed in the second Fourier lens Output side, let the signal light pass a first lens disposed on a light output side of the second beam splitting element; and a storage medium disposed on a light output side of the first lens, the light passing through the first lens and the reference beam The interference pattern is recorded on the storage medium. The first beam splitting element and the second beam splitting element are a polarization beam splitter. The spatial modulator is disposed at a focal plane position of the first Fourier lens. 1354987 [Simple description of the drawing] The second figure is a schematic diagram of a conventional defocus recording system. The second figure is a schematic diagram of a conventional phase mask system. The third figure is a schematic diagram of a conventional Axicon system. The fourth figure shows a schematic diagram of the write path of the holographic storage device of the present invention. The fifth figure shows an enlarged view of the circle A in the fourth figure. The sixth figure is a schematic diagram of the image of the invention in the Fourier plane. The seventh figure is a schematic diagram of the image simulation of the Fourier plane of the present invention. The eighth figure is the waveform diagram of the original signal. The ninth figure is a schematic diagram of a portion of the direct current (DC) term filtered by the filter element. Both the tenth and eleventh figures show schematic diagrams of the absorption of zero-order light energy. Fig. 12 is a view showing the reading optical path of the holographic storage device of the present invention. The thirteenth image shows an enlarged view of the circle B in the twelfth figure. Fig. 14 is a view showing another reading light path of the holographic storage device of the present invention. [Main component symbol description] 1...Full image storage device 2 - Light source generator 3 - First light splitting element 4 - Spatial modulator 5 - First Fourier lens 6 - Second Fourier lens 13 1354987 7, 71---first filter element 8 - - second beam splitter 9 - - first lens 10 - storage medium 11 ... third beam splitter 12 ... first reflective element 13 ... second reflective element 14 - third Reflecting element 15...photodetector 16 - third Fourier lens 17 ... fourth Fourier lens 18 - second filter element 21 - beam 31 - signal light 32 ... reference beam

Claims (1)

1354987. . _ * ‘ 100年9月8日修正替換頁 十、申請專利範圍: 1. 一種儲存裝置,包含: 一光源產生器,使產生一光束; 一第一分光元件,係將該光束分為一訊號光與一參 考光束; 一空間調變器,接收該訊號光並進行編碼; 一第一傅立葉透鏡,設於該空間調變器之光輸出 側,使該訊號光通過; 一第二傅立葉透鏡,設於該第一傅立葉透鏡之光輸 Φ 出側,使該訊號光通過; 一第一濾光元件,係設於該第一傅立葉透鏡與該第 二傅立葉透鏡之間,使該訊號光通過; 一第二分光元件,設於該第二傅立葉透鏡之光輸出 側,使該訊號光通過; 一第一透鏡,設於該第二分光元件之光輸出側;及 一儲存媒介,設於該第一透鏡之聚焦位置,其係將 經過該第一透鏡之訊號光和該參考光束所形成的干涉圖 案記錄於該儲存媒介上; • 其中,該第一濾光元件可吸收該第一傅立葉透鏡訊 號光中之零階光的能量,藉以減少該零階光的能量密 度,且拉近各階光能量。 2. 如申請專利範圍第1項所述之儲存裝置,其中該第一分光 元件及該第二分光元件為一偏極化分光元件。 3. 如申請專利範圍第1項所述之儲存裝置,其中該空間調變 器係設於該第一傅立葉透鏡之前焦面位置。 4. 如申請專利範圍第1項所述之儲存裝置,其中該第一濾光 元件係設於該第一傅立葉透鏡之後焦面位置。 15 5. 如申嗜糞利銘 100年9月8曰修正祕頁 ::專利範圍第i項所述之儲 _ 6. 如傅立葉透鏡之前焦面位置。 . 為-碟片狀二44項所述之儲存裝置,其中該儲存媒介 佶ti:專利範圍第1項所述之儲存裝置,進一步包含-光 8ΓΓ使感應從該儲存媒介繞射的光束。 為-第7項所述之儲存裝置,其中該光偵測器 J :互補性乳化金屬半導體偵測器(CMOS Sensor),當該 :考光束射向該儲存媒介,並重建還原為一編碼物體‘ f ’该編碼物體光束再經過該第—透鏡、該第二分光元 被?於該第二分光元件—側之互補性氧化金屬半導 體4貞測器(CMOS Sensor)所接收。 9.如申請專利範圍第8項所述之儲存裝置,其中該互補 化金屬半導體债測器(CMOS Sensor)包括-訊號處理器, 使將一末端能量提升一位階。 10. 如申凊專利範圍第8項所述之儲存裝置,其中該參考光 束係為偏振相位共輛參考光束。 11. ,申凊專利範圍第7項所述之儲存裝置,其中該光價測 器為了感光耦合元件(CCD),當該參考光束射向該儲存媒參 川,並重建還原為一編碼物體光束,該編碼物體光束再 經過该第一透鏡、該第二分光元件而被設於該第二分光 元件一側之感光耦合元件(CCD)所接收。 12. 如申請專利範圍第7項所述之儲存裝置,其中該光偵測 器與,第二分光元件間設有一第三傅立葉透鏡、一第四 傅立葉透鏡及一第二濾光元件,使從該第二分光元件進 入該光偵測器的光訊號進行處理Q 13•如申請專利範圍第12項所述之儲存裝置,其中該第三傅 13549871354987. . _ * 'Revision of the replacement page on September 8th, 100. Patent application scope: 1. A storage device comprising: a light source generator for generating a light beam; a first light splitting element for dividing the light beam a signal light and a reference beam; a spatial modulator that receives and encodes the signal light; a first Fourier lens disposed on the light output side of the spatial modulator to pass the signal light; a Fourier lens is disposed on the light output Φ side of the first Fourier lens to pass the signal light; a first filter element is disposed between the first Fourier lens and the second Fourier lens to make the signal Light passing through; a second beam splitting element disposed on a light output side of the second Fourier lens to pass the signal light; a first lens disposed on a light output side of the second beam splitting element; and a storage medium a focus position of the first lens, wherein the interference pattern formed by the signal light of the first lens and the reference beam is recorded on the storage medium; wherein the first filter element is The energy of the first Fourier lens receiving information in the signal light of the zero order light, thereby reducing the energy density of the zero-order light, and light energy closer to each order. 2. The storage device of claim 1, wherein the first beam splitting element and the second beam splitting element are a polarizing beam splitting element. 3. The storage device of claim 1, wherein the spatial modulator is disposed at a focal plane position of the first Fourier lens. 4. The storage device of claim 1, wherein the first filter element is disposed at a focal plane position of the first Fourier lens. 15 5. For example, the application of the fascination of the fascination of the 100 100 100 :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: 6. 6. 6. 6. A storage device according to the invention, wherein the storage device 佶 ti: the storage device of the first aspect of the patent, further comprising - a light beam that induces diffraction from the storage medium. The storage device of item 7, wherein the photodetector J: a complementary emulsified metal-semiconductor detector (CMOS Sensor), when the test beam is directed to the storage medium, and reconstructed into an encoded object 'f' The encoded object beam passes through the first lens and the second splitter. The second spectroscopy element-side is received by a complementary oxidized metal semiconductor 4 CMOS sensor. 9. The storage device of claim 8, wherein the complementary metal semiconductor CMOS sensor comprises a signal processor that increases the energy of one end by one step. 10. The storage device of claim 8, wherein the reference beam is a polarization phase common reference beam. 11. The storage device of claim 7, wherein the photometric detector is for a photosensitive coupling element (CCD), and the reference beam is directed toward the storage medium and reconstructed into a coded object beam. The coded object beam is received by the photosensitive element (CCD) provided on the second beam splitting element via the first lens and the second beam splitting element. 12. The storage device of claim 7, wherein a third Fourier lens, a fourth Fourier lens, and a second filter element are disposed between the photodetector and the second beam splitter. The second beam splitting element enters the optical signal of the photodetector for processing. The storage device according to claim 12, wherein the third Fu 1354987 100年9月8日修正智 立葉透鏡和第四傅立葉透鏡係使讀取該 (pixel match)。 ’、配 14. 如申請專利範圍第1項所述之儲存裝置,其中更勺 -第二分光7C件…第-反射元件、—第二反射元= 一第三反射元件,使該參考光束通過該第三分光元 射人該第一反射元件;及當寫入時,該參束二$ 第-反射元件反射該參考光束賴第二反射元件到該^ 存媒介上,而當讀取時,該參考光束會從該第一反射L 件反射該參考光束經該第三反射元件到該儲存媒介上。凡On September 8, 100, the modified LI lens and the fourth Fourier lens system were used to read the (pixel match). The storage device according to claim 1, wherein the scoop-second spectroscopic 7C member, the first reflecting element, the second reflecting element=the third reflecting element, pass the reference beam The third splitter is incident on the first reflective element; and when written, the reference two-th reflective element reflects the reference beam to the second reflective element onto the storage medium, and when read, The reference beam reflects the reference beam from the first reflective L piece through the third reflective element onto the storage medium. Where 15. 如申請專利範圍第14項所述之全像儲存裝置,其中該 三分光元件係為一偏極化分光元件。 八 16. 如申請專利範圍第1項所述之儲存裝置,其中該第一 鏡為一光儲存透鏡(storage lens)。 17. 如申請專利範圍第1項所述之儲存裝置,其中該第— 光元件中心位置為一圓形吸收點。 /' ^ 、 18. 如申請專利範圍第π項所述之儲存裝置,其中該第一 光元件中心圓形吸收點之外圍予以塗黑。、〇 〜 19. 一種儲存裝置,包含:15. The holographic storage device of claim 14, wherein the three-beam splitting element is a polarized beam splitting element. 8. The storage device of claim 1, wherein the first mirror is a light storage lens. 17. The storage device of claim 1, wherein the central position of the first optical element is a circular absorption point. /' ^ , 18. The storage device of claim π, wherein the periphery of the central circular absorption point of the first optical element is blackened. , 〇 ~ 19. A storage device comprising: 一光源產生器,使產生一光束; 一第一分光元件,係分為一訊號光與一參考光束; -第二分光元件’設於-第二傅立葉透鏡之光 側’使該訊號光通過; 第透鏡,设於该第二分光元件之光輸出侧; 一儲存媒介,設於該第-透鏡之聚焦位置,直 ^過該第-透鏡之訊號光和該參考光束细彡成的干涉^ 案記錄於該儲存媒介上;及 圓 一光偵測器,使感應從該儲存媒介繞射的光束,該 17 1354987 100年9月8日修正替4頁 光^測器與該第二分光元件間設有一第i傅五棄透鏡 四傅立葉透鏡及一第二濾光元件,使該參考光束形 哲!!生f*經邊第二傅立葉透鏡、該第二濾光元件及該 第四傅立葉透鏡後被該光偵測器接收。 20·如申請專利範圍第19所述之儲存裝置,其中該第一分光 元件及該第二分光元件為一偏極化分光元件。 21.如申4專利範圍第19項所述之儲存裝置,其中該儲存媒 介為一碟片狀儲存媒介。 、 22„!°申凊專利範圍第21項所述之儲存裝置,其中該光偵測 器為一互補性氧化金屬半導體偵測器(CMOS Sens0r),當 該參考光束射向該儲存媒介,並重建還原為一編碼物體零 光束,該編碼物體光束再經過該第一透鏡、該第二分光 元件而被没於該第二分光元件一側之互補性氧化金屬 導體j貞測器(CMOS Sensor)所接收。 23. 如申請專利範圍第22項所述之儲存裝置,其中該互補性 氧化金屬半導體偵測器(CM〇s Sens〇r)包括一訊號處理 器,使將一末端訊號提升一位階。 24. 如申請專利範圍第19項所述之儲存裝置,其中該參考光 束係為偏振相位共軛參考光束。 25. f申請專利範圍第19項所述之儲存裝置,其中該光偵测 器為了感光耦合元件(CCD),當該參考光束射向該儲存媒 介,並重建還原為一編碼物體光束,該編碼物體光束再 經過該第一透鏡、該第二分光元件而被設於該第二分光 元件一側之感光耦合元件(CCD)所接收。 26. 如*申請專利範圍第19項所述之儲存裝置,其中該第三傅 立葉透鏡和第四傅立葉透鏡係使讀取該光偵測器的光訊 號像素匹配(pixel match)。 ⑧ 18 1354987 π如申請專利範圍第19項所述之儲射置 -第三分光元件、一第一 Π存裝置 -第三反射元件 光:沾二反射元件及 射入該第一反射元ί 分光元件後 第一 ^元件反射該參考光束經該從該 存媒介上’而當讀取時,該參考 ’亥儲 件反射該參考光束經該第三反射元射元 28. 如申請專利範圍第項所述之儲存震置省存媒介上。 光元件係為一偏極化分光元件。 /、该第三分 29. 如申請專利範圍第19項所述之儲存裝置,其 鏡為一光儲存透鏡(storage lens)。 、該第—透a light source generator for generating a light beam; a first beam splitting element divided into a signal light and a reference beam; - a second beam splitting element 'located on the light side of the second Fourier lens to pass the signal light; a first lens disposed on a light output side of the second beam splitting element; a storage medium disposed at a focus position of the first lens, and an interference pattern formed by the signal light of the first lens and the reference beam Recorded on the storage medium; and a round-light detector to sense the light beam diffracted from the storage medium, the 17 1354987 September 8, 100 correction between the 4-page optical detector and the second splitting element There is an i-four-five lens four-Fourier lens and a second filter element to make the reference beam shape philosopher! The second foliar lens, the second filter element, and the fourth Fourier lens are received by the photodetector. The storage device of claim 19, wherein the first beam splitting element and the second beam splitting element are a polarizing beam splitting element. 21. The storage device of claim 19, wherein the storage medium is a disk-shaped storage medium. The storage device of claim 21, wherein the photodetector is a complementary oxidized metal semiconductor detector (CMOS Sens0r), when the reference beam is directed toward the storage medium, Reconstruction is reduced to a zero beam of a coded object, and the coded object beam passes through the first lens, the second beam splitting element, and the complementary oxidized metal conductor j detector (CMOS Sensor) on the side of the second beam splitter element 23. The storage device of claim 22, wherein the complementary metal oxide semiconductor detector (CM〇s Sens〇r) comprises a signal processor for raising a terminal signal by one order 24. The storage device of claim 19, wherein the reference beam is a polarization phase conjugate reference beam. 25. The storage device of claim 19, wherein the photodetector For the photosensitive coupling element (CCD), when the reference beam is directed to the storage medium and reconstructed and restored to a coded object beam, the coded object beam is passed through the first lens and the second beam splitting element. The storage device according to the invention of claim 19, wherein the third Fourier lens and the fourth Fourier lens system are for reading The optical signal of the photodetector is matched by a pixel match. 8 18 1354987 π The storage-third spectroscopic element, a first storage device, and a third reflective element light according to claim 19 of the patent application scope. After the second reflective element and the first reflective element are incident on the first reflective element, the first component reflects the reference beam through the medium, and when read, the reference 'the shelf reflects the reference beam The third reflecting element element 28. is stored on the storage device according to the scope of the patent application. The optical element is a polarization polarizing element. /, the third point 29. The storage device according to item 19, wherein the mirror is a light storage lens.
TW96145092A 2007-11-28 2007-11-28 Storage device TWI354987B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96145092A TWI354987B (en) 2007-11-28 2007-11-28 Storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96145092A TWI354987B (en) 2007-11-28 2007-11-28 Storage device

Publications (2)

Publication Number Publication Date
TW200923930A TW200923930A (en) 2009-06-01
TWI354987B true TWI354987B (en) 2011-12-21

Family

ID=44728846

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96145092A TWI354987B (en) 2007-11-28 2007-11-28 Storage device

Country Status (1)

Country Link
TW (1) TWI354987B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI412031B (en) * 2010-03-29 2013-10-11 Univ Nat Chiao Tung Collinear holographic storage apparatus and method

Also Published As

Publication number Publication date
TW200923930A (en) 2009-06-01

Similar Documents

Publication Publication Date Title
US8786923B2 (en) Methods and systems for recording to holographic storage media
JP4156911B2 (en) Optical information recording medium, optical information recording apparatus, and optical information reproducing apparatus
US20050036182A1 (en) Methods for implementing page based holographic ROM recording and reading
US20050270609A1 (en) Holographic recording system having a relay system
US20120026856A1 (en) Optical information record/reproduction apparatus and reproduction apparatus
EP2674944A2 (en) Optical information recording apparatus, optical information recording method, optical information reproducing apparatus and optical information reproducing method
JP2007149253A (en) Optical pickup device for holography
JP2013109795A (en) Optical information recording device, optical information reproduction device, optical information recording/reproduction device, optical information recording method, optical information reproduction method, and optical information recording/reproduction method
TWI354987B (en) Storage device
TWI334137B (en) Compatible optical pickup and optical recording and/or reproducing apparatus employing the same
JP2009076171A (en) Optical information recording and reproducing device
US7746752B2 (en) Servo controlling method of optical information processing apparatus and optical information recording and reproducing apparatus
JP2006220933A (en) Optical information recording method and apparatus using holography
JP2001084637A (en) Single objective lens optical pickup head
JP2008130137A (en) Information recording device and information reproducing device
JP2007148110A (en) Optical information recording and reproducing apparatus
JP5868494B2 (en) Optical information recording / reproducing apparatus, optical information recording / reproducing method, and reproducing apparatus
JP6077110B2 (en) Optical information reproducing apparatus and adjustment method
CN101465140B (en) Holographic recording medium and pickup for this medium
JP2005025906A (en) Device and method for recording/reproducing optical information
WO2014083619A1 (en) Optical information recording and playback device and optical information recording and playback method
US20080107859A1 (en) Optical information recording medium
JP2004279191A (en) Inclination sensor, inclination measurement device, optical pickup device, and optical disk device
TWI327314B (en) Integrated holographic read-write system
JP2007058043A (en) Optical information recording method and medium

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees