TWI354560B - Flavivirus ns1 subunit vaccine - Google Patents

Flavivirus ns1 subunit vaccine Download PDF

Info

Publication number
TWI354560B
TWI354560B TW099138145A TW99138145A TWI354560B TW I354560 B TWI354560 B TW I354560B TW 099138145 A TW099138145 A TW 099138145A TW 99138145 A TW99138145 A TW 99138145A TW I354560 B TWI354560 B TW I354560B
Authority
TW
Taiwan
Prior art keywords
virus
flavivirus
protein
mva
dengue
Prior art date
Application number
TW099138145A
Other languages
Chinese (zh)
Other versions
TW201113034A (en
Inventor
Paul Howley
Sonja Layrer
Mary Jane Cardosa
Magdeline Sia Henry Sum
Original Assignee
Bavarian Nordic As
Venture Technologies Sdn Bhd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bavarian Nordic As, Venture Technologies Sdn Bhd filed Critical Bavarian Nordic As
Priority to TW099138145A priority Critical patent/TWI354560B/en
Publication of TW201113034A publication Critical patent/TW201113034A/en
Application granted granted Critical
Publication of TWI354560B publication Critical patent/TWI354560B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Description

六、發明說明:Sixth, the invention description:

t 明所屬領J 發明領域 本發明係有關黃病毒之NS1蛋白或其部分,特別是登革熱 病毒。一黃病毒之NS1蛋白或部分可用於預防接種以對抗該黃 病毒和許多其它黃病毒。本發明特別有關一種登革熱病毒亞型 之NS1蛋白或其部分(特別是亞型2),可用於預防接種以對抗來 自所有亞型之登革熱病毒。本發明更有關包含一種編碼一黃病 毒NS1或其部分之表現卡匣的DNA、包含該DNA之載體以及含有 或表現一黃病毒NS1之疫苗。 【先前技術1 發明背景FIELD OF THE INVENTION The present invention relates to NS1 proteins of flavivirus or portions thereof, particularly dengue viruses. The NS1 protein or portion of a flavivirus can be used for vaccination against the flavivirus and many other flaviviruses. The invention particularly relates to a NS1 protein of a dengue virus subtype or a portion thereof (particularly subtype 2) which can be used for vaccination against dengue viruses from all subtypes. More specifically, the present invention relates to a DNA comprising a marker of a yellow virus NS1 or a portion thereof, a vector comprising the DNA, and a vaccine comprising or expressing a flavivirus NS1. [Prior Art 1 Background of the Invention]

登革熱之病原體是登革熱病毒,其屬於黃病毒屬黃病毒科 (Burke和Monath,2001)。一特別重要之黃病毒的亞群係稱之 為由蚊子攜帶的黃病毒’即經蚊子傳播的黃病毒。除上所提及 之登革熱病毒之外’此群還包含諸如西尼羅河病毒、日本腦炎 病毒和黃熱病毒之其它重要的病毒(病毒領域,由FieldsB.N 編輯 ’ Lippincott-Raven 出版杜,第 3 版 1996,ISBN. 0-7817-0253-4第931-1034頁)。由這些病毒傳播之典型的疾 病係由西尼羅河病毒、日本腦炎病毒引起之西尼羅河熱和西尼 羅河腦炎、由黃熱病毒引起之黃熱病以及由登革熱病毒引起之 登革熱、登革出血熱(DHF;見下文)和登革熱休克綜合症狀。 登革熱病毒由三種結構性蛋白質形成之包封的、單股、正 股RNA病毒:外殼蛋白(C) ’其形成一種結合病毒基因組之核 1354560 殼體,其被其中附有Μ(膜)和E(封套)蛋白之脂肪雙層圍繞。 該基因組將近llkb長且包含一個編碼約3400胺基酸殘基之多 蛋白前想的單一開放讀碼架構。個體的病毒蛋白係藉細胞和病 毒的蛋白酶之作用,產生自此前趨物。該三種結構性蛋白(C ' Μ和E)係由該多蛋白之N-端部分衍生而來且接著七個非結構性 蛋白:NS卜 NS2A、NS2B、NS3、NS4A、NS4B 和 NS5 (Lindenbach 和 Rice , 2001) 〇 存在於所有黃病毒中之糖蛋白NS1似乎是病毒生存能力 所不可或缺的。登革熱病毒NS1係由受感染之哺乳動物細胞分 泌而來’其呈可溶之六聚體型式(Flamand等人,1999)。此非 共價鍵結的六聚體錯合物係由3個二聚體次單元形成且具 3l〇kDa之分子量。如其仍是被感染的細胞表面唯一的病毒固有 蛋白時’對於NS1蛋白輸出至細胞膜而言,二聚化係不可或缺 的。 哺乳動物細胞中,而非昆蟲細胞株中可支持登革熱感染, 部分的傳遞NS1被釋放於細胞外周圍。細胞外之NS1不是以可 溶性蛋自形式分泌(呈 一較高六聚的寡聚體型式存在),就是呈 與微:粒子而非病毒粒子聯結形式分泌。此外,已發現NS1於受 ^革熱病毒感染之病人之血清中循環,此暗示了 NS1的分泌在 S病毒感染人類宿主上可能是一重要因素。在黃病毒的感染期 間’ MSI蛋白誘發一強烈抗體反應來幫助清除宿主中之感染病 毒’其可能係透過補體調節路徑(Schlesinger, J. J.等人,1987) 和抗體依賴性細胞之細胞毒性(ADCC) (Schlesinger,J. J.等 人,1993)。 4 1354560 t *The pathogen of dengue is the dengue virus, which belongs to the Flaviviridae family (Burke and Monath, 2001). A particularly important subgroup of flaviviruses is called a flavivirus carried by mosquitoes, a mosquito-borne flavivirus. In addition to the dengue virus mentioned above, 'this group also contains other important viruses such as West Nile virus, Japanese encephalitis virus and yellow fever virus (virus field, edited by FieldsB.N' Lippincott-Raven Publishing Du, 3rd edition 1996, ISBN. 0-7817-0253-4, pp. 931-1034). Typical diseases transmitted by these viruses are West Nile fever and West Nile encephalitis caused by West Nile virus, Japanese encephalitis virus, yellow fever caused by yellow fever virus, and dengue fever and dengue hemorrhagic fever caused by dengue virus ( DHF; see below) and dengue shock syndrome. An encapsulated, single-strand, positive-strand RNA virus formed by three structural proteins of the dengue virus: coat protein (C) 'which forms a core 1354560 shell that binds to the viral genome, which is attached to the sputum (membrane) and E The (envelope) protein is surrounded by a fat bilayer. The genome is nearly llkb long and contains a single open reading frame architecture that envisions a multi-protein of approximately 3400 amino acid residues. The individual viral proteins are produced by the action of cellular and viral proteases from the predecessor. The three structural proteins (C ' Μ and E) are derived from the N-terminal portion of the polyprotein followed by seven non-structural proteins: NS NS2A, NS2B, NS3, NS4A, NS4B, and NS5 (Lindenbach and Rice, 2001) The glycoprotein NS1 found in all flaviviruses seems to be indispensable for virus viability. The dengue virus NS1 is secreted by infected mammalian cells and is in a soluble hexamer form (Flamand et al., 1999). This non-covalently bound hexamer complex is formed from three dimeric subunits and has a molecular weight of 3 l〇kDa. If it is still the only viral intrinsic protein on the surface of the infected cell, the dimerization system is indispensable for the export of the NS1 protein to the cell membrane. In mammalian cells, non-insect cell lines can support dengue infection, and part of the delivered NS1 is released outside the cell. Extracellular NS1 is not secreted in the form of soluble eggs (presenting a higher hexamer oligomeric form), but is secreted in combination with micro: particles rather than virions. Furthermore, it has been found that NS1 circulates in the serum of patients infected with the genovirus, suggesting that the secretion of NS1 may be an important factor in the infection of human hosts by S virus. During infection with flaviviruses, 'MSI proteins induce a strong antibody response to help clear the infectious virus in the host', which may pass through the complement regulatory pathway (Schlesinger, JJ et al., 1987) and antibody-dependent cellular cytotoxicity (ADCC). (Schlesinger, JJ et al., 1993). 4 1354560 t *

登革熱與其四種血清類型,登革熱病毒血清類型1 (Den-D 至登革熱血清類型4 (Den-4),對於黃病毒屬感染人類方面係 非常重要的,其產生之疾病的範圍從似流行性感冒症狀至嚴重 的或致命的疾病,伴隨休克之登革熱出血熱。登革熱之爆發一 直是人口密集、具有大量蚊子傳染媒介之熱帶與亞熱帶區域之 重要的公共衛生問題。 因為經蚊子傳播之黃病毒引起之登革熱感染與其它疾病 之散布的關係,已經導致世界上許多地方更致力於研發可預防 登革熱(DF)與登革出血熱(dhf)之登革熱疫苗以及可用於保護 已接種疫苗之個體免於因某些或全部經蚊子傳播之黃病毒引 起之感染的疫苗。 雖然大部分之DF病例在第一次感染四種血清類型中之任 何一種後出現徵兆,但是大部分之DHF病例是發生在患者受到 第二次感—第-次感染不同血清類型之登革熱病毒時。此觀 察報σ產生了此假說’ gp於—適當的間隔,以不同病毒血清類 5L依序感染具有對抗__種登革熱血清類型之抗體之個體,可能 會導致特4數量的病例。抗體依賴性增高(綱)在登革熱 以及其匕具有封套之病毒方面已在活體外獲得証明,且在_ 之疾病發展上被視為一重要的機制。 亦可注意到,dhf 四)病毒血清類型一 方性DHF之區域中, DHF病例在較年長的族群中較少 DHF通常出現在地理位置上具有多種(三或 起傳播之區域。在諸如東南亞國家具有地 ’特定年紀的發病率在兒童中較高,而許多 血清廣泛的增加, 。此大致上符合針對登革熱之 顯不出自然的感染可引起保護性免疫。此現 。此現 5 1354560 象與由諸如A型肝炎病毒之病毒感染中所觀察到的不同。臨床 秩事之觀察顯示出,病人有可能會遭受二次的 DHF(Nimmannitya等人,1990),然而這是極罕見的,且難於精 確的鑑定導致第二次與後來感染的血清類型。目前為止,還未 有報告指出在相同個體中有四種感染,僅管事實上全部四種登 革熱病毒血清類型於同一地區傳播。此暗示著,在本質上,於 同一個體中,遭受二或三種登革熱病毒血清類型感染可能會產 生父叉反應之抗體或甚至一種交又反應之細胞毒性淋巴反Dengue fever and its four serotypes, dengue virus serotype 1 (Den-D to dengue serotype 4 (Den-4), is very important for the flavivirus infection of humans, and the range of diseases it produces is from influenza Symptoms to severe or fatal diseases, accompanied by shock dengue hemorrhagic fever. The outbreak of dengue fever has been an important public health problem in tropical and subtropical regions with dense populations and a large number of mosquito vectors, caused by mosquito-borne flaviviruses. The spread of dengue infection and other diseases has led to more efforts in many parts of the world to develop dengue vaccines that prevent dengue fever (DF) and dengue hemorrhagic fever (dhf) and to protect individuals who have been vaccinated from Vaccines caused by some or all of the mosquito-borne flavivirus infections. Although most DF cases show signs after first infecting any of the four serotypes, most DHF cases occur in patients. Secondary sensation - the first time when different dengue viruses of different serotypes are infected. This hypothesis is generated 'gp--appropriate interval, infecting individuals with antibodies against __ dengue serotypes in order to infect different viral sera 5L, may result in a specific number of cases. Antibody-dependent increase (class) It has been proven in vitro in dengue fever and its enveloped virus, and is considered an important mechanism in the development of disease. It can also be noted that dhf IV) is in the region of viral serotype DHF. DHF cases in the older population are less likely to have multiple DHF locations (three or regions of transmission). In countries such as Southeast Asia, the incidence of specific age is higher in children, and many sero-wide The increase, which is generally consistent with the natural infection of dengue fever, can cause protective immunity. This is now 5 1354560 is different from that observed in viral infections such as hepatitis A. Clinical rank Observations show that patients may experience secondary DHF (Nimmannitya et al., 1990), but this is extremely rare and difficult to be precise. The type of serotype that leads to the second and subsequent infections. So far, there have been no reports of four infections in the same individual, except that virtually all four dengue virus serotypes are transmitted in the same area. Essentially, in the same individual, two or three dengue virus serotype infections may produce antibodies to the paternal reaction or even a reactive cytotoxic lymphoid reaction.

應。此可能藉由本質上剩餘之登革熱病毒血清類型來調控或保 護預防感染。 目前還不存有經認可之登革熱疫苗。現今,登革熱病毒感 染的預防係依賴控制主要的蚊子宿主埃及黑斑蚊。殺蟲劑耐受 性、科技和經濟支持的缺少會使得當地衛生部門維持有效的蚊 子控制計劃’且宿主蚊子和登革熱病毒兩者之持續地理上的傳 播使其特別無法以目前之蚊子控制計劃來預防。所以,發展安should. This may regulate or protect against infection by the type of dengue virus sera that is essentially left. There are currently no approved dengue vaccines. Today, the prevention of dengue virus infection relies on the control of the main mosquito host, the black spot mosquito, Egypt. The lack of pesticide tolerance, technology and financial support will enable the local health sector to maintain an effective mosquito control program' and the continued geographical spread of both host and dengue viruses makes it particularly difficult to use current mosquito control programs. prevention. So, development

全又有效之疫苗來對抗登革熱病毒之全部四種血清類型,已被 WHO指定為優先考慮用於預防登革熱感染最有成本效益的方 式。WHO建議’對抗登革熱和dHF之理想的疫苗應是可預防由 所有凊類型所產生之感染,藉此連續地感染就不會發生。 主為化目的W〇 98/13500計劃使用-種會表現所有登革熱 病’ 3L之k原的重組經修飾的牛殖病毒触㈣圏,或使 用四種重組隨,其中每_重組_表現至少一種登革熱病毒亞 型之抗原。兩者方式均 從供非*好的疫苗來對抗所有的登革熱 病毋亞型。然而,希望提 種早一次單元疫苗,其在施用之 6A fully effective vaccine against all four serotypes of dengue virus has been designated by WHO as the most cost-effective way to prevent dengue infection. The WHO recommends that the ideal vaccine against dengue and dHF should be to prevent infections caused by all types of ticks, so that continuous infection will not occur. The main purpose of the W〇98/13500 program is to use a recombinant modified bovine virus touch (four) that expresses all dengue fever '3L k, or four recombination, each of which has at least one The antigen of the dengue virus subtype. Both methods are compatible with all dengue fever subtypes from non-*good vaccines. However, it is desirable to introduce an early unit vaccine, which is administered 6

S 後可產生一種可對抗多於一種黃病毒或多於一種登革熱病毒 血清類型,較佳是對抗所有登革熱病毒血清類型之免疫反應。 【發明内容】 發明概要 因此,本發明之標的係提供一種衍生自黃病毒或黃病毒亞 型之疫苗,其係安定的、易於生產,且誘導一種免疫反應,其 可保護經施打疫苗之個體不僅免於衍生成該疫苗之該黃病毒 或黃病毒亞型之感染,且免於其它黃病毒或黃病毒的感染。本 發明之一特定的標的係提供一種衍生自蚊子所傳播之黃病毒 之疫苗,其保護經施打疫苗之個體不僅免於衍生成該疫苗之蚊 子所傳播之黃病毒或黃病毒亞型之感染,且免於其它蚊子所傳 播之黃病毒或黃病毒亞型之感染。本發明之進一步標的係提供 一種衍生自一種登革熱病毒亞型之疫苗,且保護一個體免於所 有登革熱亞型之感染。 I:實施方式2 較佳實施例之詳細說明 這些目的已藉由提供黃病毒之NS1蛋白或其部分以及提 供各別包含編碼有黃病毒NS1蛋白或其一部分之表現卡匣之 DNA序列得到解決。明確地,對於提供一種衍生自經蚊子傳播 之黃病毒的疫苗之目的,可藉由提供經蚊子傳播之黃病毒之 NS1蛋白或其部分得到解決,該疫苗保護一個體不僅免於衍生 成該疫苗之經蚊子傳播之黃病毒的感染,且亦免於其它經蚊子 傳播之黃病毒之感染,特別是登革熱病毒,較佳是登革熱血清 類型2以及各別相對之DNA序列。更明確地,對於提供一種衍 生自經登革熱病毒亞型的疫苗之目的,可藉由提供登革熱病毒 =別是登革熱血清類型2和各別之_序列)之_蛋白或其 部分得到解決,該疫絲護-個體至少免於所有登革熱亞型: 感染’且較佳錢於其它黃病毒之感染(特別是諸如日本腦炎 病毒、黃熱病毒和西尼羅河病毒之經蚊子傳播之黃病毒)。 於實驗部分中被更詳細地顯示地,來自一登革熱病毒血清 類型之被重新合成(de novo)表現的NS1蛋白在疫苗接種後會 誘導一會與登革熱病毒血清類型1、2、3和4之NS1蛋白加上 來自黃病毒屬之其它成員(諸如曰本腦炎病毒、黃熱病毒和西 尼羅河病毒)的NS1產生交叉反應的抗體反應。因此,來自一 種登革熱病毒血清類型之NS1蛋白質係一通用的DHF次單元來 供用於同時保護對抗登革病毒之所有灰清類型以及進一步對 抗黃病毒屬之其他病毒。因為於此次單元疫苗策略中沒有涉及 E蛋白’不會有在隨後暴露於登革病毒的任一血清類型時之抗 體依賴性增高(ADE)的風險,而因此疫苗相關之DHF在登革熱 傳染的自然爆發期間應不會被誘發。 根據較佳實施例’本發明係有關一種包含一編碼至少—種 黃病毒NS1蛋白或其部分之表現卡匣的DNA。此文中之術語“至 少”意指該表現卡匣可進一步編碼額外的蛋白/胜肽,其可為分 離的蛋白/胜肽或接至該NS1蛋白或其部分,如於下所詳細定 義者。於本文中術s#,,DNA “指意任何類型之DNA,諸如單股DNA、 雙股DNA、線性或環狀DNA或呈質體之DNA或為一病毒基因組。 因為黃病毒係RNA病毒’所以編碼黃病毒NS1蛋白之DNA係諸 如cDNA或合成之DNA之非自然發生之DNA。 術語,,编碼黃病毒NS1*白或其邹分之表現切“意 於兴病毒NS1蛋白或其部分之編碼序 “立 (特別是轉錄之起_要素。有關此轉錄錄 核生物起動子/增強子。難之真核_子/増強子係人類巨^ 細胞病毒立即早期起動子/增強子以及如於實例部分 路’邊如U起動子、疫病毒最小起動子之疫病毒起動子。》 疫病毒最錢動子之序解於第2圖中且為相錢:9。,、 要的話,該表現卡E可進-步包含控制轉錄之終止的要素^ 如原核終止要素或真核多A訊號序列。 = 該表現卡E可僅表現黃病毒之NS1 *白或其部分或可表 現連同-或多種另外的黃病毒蛋白/胜肽之咖蛋白或其呷 分,其中該腹蛋白或其部分和該另外的蛋白/胜月太被生成^ 離蛋白/胜肽或融合蛋白/胜肽形式。於此說明書若沒有定義 則於本發明内文中之術語”胜肽“意指至少1〇個胺基酸較隹 20個胺基酸,更佳25個胺基酸之連續的胺基酸序列長列。 該另外的黃病毒蛋白並不是完整的£_蛋白因為此蛋白 似乎涉及了 DHF的發展。因此’假如該另外的黃病毒胜肽係街 生自E-蛋白,其應該要包含少於40個胺基酸,較佳係少於 胺基酸。假如衍生自E-蛋白之胺基酸序列長列與NS1蛋白或其 部分一起表現’則應可證實此胺基酸長列沒有包含涉及ADE # DHF生成之抗原決定位。 除了 NS1蛋白或其部分外,假如該表現卡匣亦表現呈八 蛋白/胜肚形式之另外的黃病毒蛋白/胜肽,則該表現卡厘在介 於該編碼MSI蛋白或其部分之序列與編碼另外的黃病毒蛋白< 序列間,可能包含一核糖體内入位(IRES)。IRES要素係習知此 技藝者所知悉者^ IRES要素之例子為小RNA病毒IRES要素或 C型肝炎病毒之5’未編碼區域。 佐擇地,編碼該NS1蛋白或其部分之核苗酸序列可被融合 至—編碼另外的黃病毒蛋白/胜肽之DNA序列,藉此,介在該 NS1蛋白或其部分與該另外的黃病毒蛋白/胜肽之間形成一融 合蛋白。設若該NS1蛋白或其部分與該另外的黃病毒蛋白/胜 月太欲被形成融合蛋白/胜肽之形式,則該各別之編碼序列被以 對準架構的融合(fused in frame)。 於較佳具體例中,在編碼該NS1蛋白或其部分之DNA序列 之前加上編碼E-蛋白之糖化訊號序列之序列。據此具體例,產 生了一融合蛋白’其包含融合至該NS1蛋白或其部分之E-蛋白 糖化訊號序列。如上所示,該E—蛋白衍生之胺基酸長列應是儘 可能的短’且其應該將此胺基酸長列會包含涉及Ade與DHF生 成之抗原決定位的可能排除在外。該E—蛋白之糖化訊號序列符 合此要求。 於一任擇之較佳具體例中,本發明之表現卡匣僅包含編碼 該NS1蛋白或其部分之黃病毒序列。因此,於較佳具體例中, 本發明之表現卡E不會表現任何來自其它黃病毒基因組部分 之其它胜肽/蛋白質,特別是NS2A或E蛋白。 於另一任擇的具體例中,本發明之DNA表現一 NS1蛋白或 其部分’其呈具有非衍生自黃病毒之蛋白/胜肽之融合蛋白形 式蛋白/胜月太包含非_黃病毒訊號序列或用於摘測或純化諸 如tag之經表現之融合蛋白的序列。 1354560 如本發明之較佳具體例中,於表現卡匣中之黃病毒序列的 一般結構簡介如下:在天然黃病毒感染期間,該病毒產生一種 單一的多蛋白,其之後先被宿主細胞之蛋白酶打斷,然後被病 毒編碼的蛋白酶打斷成下列蛋白:C、PrM和Μ、E、NS1、NS2A、 NS2B、NS3、NS4A、NS4B和NS5(蛋白質次序依多蛋白質前體蛋 白質排列)。所以,DNA序列,特別是編碼NS1蛋白或其部分 之cDNA序列必須額外加上"ATG"起始密碼子。於一較佳具體例 中’該起始ATG之後被加上一糖化訊號序列,藉此新合成之NS1 蛋白在内質網時被糖化。此訊號序列係習知此技藝者所知悉 者。最後,該編碼蛋白質之卡匣需要一個終止密碼子,其可以 是一個加在該編碼cDNA序列之蛋白質的3,終端之TAG。例如, 本發明所使用之"ATG+訊號序列"要素係衍生自E蛋白之疏水性 C-終端(最後28個胺基酸,其為登革熱病毒新天竺鼠品種(,,NGC 品種“,基因資料庫登錄號AF038403)以胺基酸M(ATG)為起 始)。本發明之一典型的表現卡匣示於第2圖且以序列編號9 和序列編號1 〇表示。 因此簡言之,此具體例有關一種包含一表現之卡匣之 DNA’該表現卡匣包含編碼_黃病毒NS1蛋白或其部分之序列, 其中該編碼序狀前加上—起始密碼子(“ATG”)與-編碼用於 糖化之訊號序列的序列,較佳係衍生自如上所定義之E蛋白以 及其中該編碼序列最後以-轉譯之終止密碼子(第1A、1C和2 圖、序列編號5-10)。 本發明之DNA序列編碼一黃病毒NS1病毒或其部分。術語 “黃病毒”意指任何之黃病毒。更佳地,術語“黃病毒,,意指諸如 11 1354560 西尼羅河病毒、日本腦炎病毒、黃熱病毒和登革熱病毒之經蚊 子傳播之黃病毒。衍生自一種以如本發明之DNA編碼之經蚊子 傳播的NS1蛋白或其部分應可保護經接種疫苗之個體不僅免於 衍生成該疫苗之病毒或病毒亞型之感染,且免於衍生成該疫苗 之其它經蚊子傳播之病毒或其它病毒亞型的感染。該NS1蛋白 可較佳係任何登革熱病毒亞型。更佳地,該NS1蛋白編碼序列 係衍生自一種諸如登革熱病毒新天竺鼠品種(,NGC品種“,基因 資料庫登錄號AF038403)之登革熱亞型2。術語“亞型,,和“血清 類型”在此發明書中可交換使用。術語,,NS1蛋白或其部分“中之 術語,,其部分“意指該NS1蛋白之胺基酸長列,其夠長以誘導一 特定免疫反應來對抗衍生成該”其部分“之NS1蛋白。假如該黃 病毒是一登革熱病毒,該胺基酸長列應是可在一經接種疫苗之 動物(包括人類)身上誘導產生對抗所有登革熱病毒亞型之nsi 蛋白之免疫反應的胺基酸長列。於實例部分中顯示熟悉此技蓺 人士如何能決定是否NS1蛋白或其部分誘導產生特定對所有登 熱亞型之免疫反應。根據一較佳具體例,該黃病毒序列編碼整 個NS1蛋白。S can produce an immune response against more than one flavivirus or more than one dengue virus serotype, preferably against all dengue virus serotypes. SUMMARY OF THE INVENTION Accordingly, the subject matter of the present invention provides a vaccine derived from a flavivirus or flavivirus subtype that is stable, easy to produce, and induces an immune response that protects the vaccinated individual It is not only free from the infection of the flavivirus or flavivirus subtype of the vaccine, but also from other flaviviruses or flaviviruses. A particular subject of the invention provides a vaccine derived from a flavivirus-borne flavivirus that protects a vaccinated individual from infection by a flavivirus or flavivirus subtype transmitted by a mosquito derived from the vaccine. And is free of infection by flavivirus or flavivirus subtypes transmitted by other mosquitoes. A further subject of the invention is to provide a vaccine derived from a subtype of dengue virus and to protect a body from infection by all dengue subtypes. I: Embodiment 2 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS These objects have been solved by providing a virulence NS1 protein or a portion thereof and providing a DNA sequence each comprising a expression cassette encoding a flavivirus NS1 protein or a portion thereof. Specifically, for the purpose of providing a vaccine derived from a mosquito-borne flavivirus, it can be solved by providing a mosquito-transmitted flavivirus NS1 protein or a part thereof, which protects a body from being derived from the vaccine It is infected by mosquito-borne flavivirus and is also free of infection by other mosquito-borne flaviviruses, especially dengue virus, preferably dengue serotype 2 and individual relative DNA sequences. More specifically, for the purpose of providing a vaccine derived from a dengue virus subtype, it can be solved by providing a dengue virus = other dengue serotype 2 and a separate _ sequence of the protein or part thereof. Silk Care - The individual is at least free of all dengue subtypes: Infected 'and better for other flavivirus infections (especially mosquito-borne flaviviruses such as Japanese encephalitis virus, yellow fever virus and West Nile virus). As shown in more detail in the experimental section, the NS1 protein from the de novo manifestation of a dengue virus serotype is induced after vaccination with dengue virus serotypes 1, 2, 3 and 4 The NS1 protein plus NS1 from other members of the Flavivirus genus, such as sputum encephalitis virus, yellow fever virus and West Nile virus, produces a cross-reactive antibody response. Thus, the NS1 protein from a dengue virus serotype is a universal DHF subunit for the simultaneous protection of all ash-types against dengue virus and further against other viruses of the genus Flavivirus. Because the E-protein in this unit vaccine strategy does not have the risk of antibody-dependent increase (ADE) in subsequent exposure to any serotype of dengue virus, vaccine-related DHF is transmitted in dengue fever. It should not be induced during a natural outbreak. According to a preferred embodiment, the invention relates to a DNA comprising a cassette which encodes at least a flavivirus NS1 protein or a portion thereof. The term "at least" as used herein means that the performance cassette further encodes an additional protein/peptide, which may be a separate protein/peptide or to the NS1 protein or portion thereof, as defined in detail below. In this article, s#,, DNA "refers to any type of DNA, such as single-stranded DNA, double-stranded DNA, linear or circular DNA or plastid DNA or a viral genome. Because of the flavivirus RNA virus' Therefore, the DNA encoding the flavivirus NS1 protein is a non-naturally occurring DNA such as cDNA or synthetic DNA. The term, the expression of the flavivirus NS1* white or its singularity is "cutting the virus NS1 protein or part thereof" The coding sequence "Essence (especially the origin of transcription). About this transcript nuclear activator / enhancer. Difficult eukaryotic _ sub / 増 strong sub-system human giant ^ cell virus immediate early promoter / enhancer and as The example part of the road 'such as the U starter, the epidemic virus minimum promoter of the epidemic virus promoter." The most viral mobilization of the epidemic virus solution in Figure 2 and for the money: 9., if necessary, the performance Card E may further include elements that control the termination of transcription, such as pronuclear termination elements or eukaryotic multiple A signal sequences. = The performance card E may only represent NS1 * white of the flavivirus or its part or may be expressed together with - or more An additional yellow virus protein/peptide protein or its fraction, The protein or portion thereof and the additional protein/Shengyue Tai are formed into a protein/peptide or a fusion protein/peptide form. The term "peptide" in the context of the present invention is not defined herein. Means that at least one amino acid is longer than 20 amino acids, more preferably a continuous amino acid sequence of 25 amino acids. The additional flavivirus protein is not a complete £_protein because of this protein It seems to involve the development of DHF. Therefore, if the additional flavivirus peptide is born from E-protein, it should contain less than 40 amino acids, preferably less than amino acids. If derived from E - the long sequence of the amino acid sequence of the protein is expressed together with the NS1 protein or a portion thereof, and it should be confirmed that the amino acid long column does not contain an epitope involved in the production of ADE # DHF. In addition to the NS1 protein or a portion thereof, The performance cardinal also exhibits an additional flavonoid/sheng peptide in the form of an octaprotein/span form, and the performance is between the sequence encoding the MSI protein or a portion thereof and encoding additional flavivirus protein < May contain a ribosome in place (IRES) IRES elements are known to those skilled in the art. Examples of IRES elements are the small RNA virus IRES element or the 5' uncoded region of hepatitis C virus. Alternatively, the nuclear acid sequence encoding the NS1 protein or a portion thereof Can be fused to a DNA sequence encoding an additional flavivirus protein/peptide, whereby a fusion protein is formed between the NS1 protein or a portion thereof and the additional flavivirus protein/peptide. If the NS1 protein or In part, the portion of the flavivirus protein/Shengyuetai is to be formed into a fusion protein/peptide, and the respective coding sequences are fused in frame. In a preferred embodiment A sequence encoding a glycated signal sequence encoding an E-protein is added before the DNA sequence encoding the NS1 protein or a portion thereof. According to this specific example, a fusion protein is produced which comprises an E-protein saccharification signal sequence fused to the NS1 protein or a portion thereof. As indicated above, the E-protein-derived amino acid long column should be as short as possible and it should be excluded from the long list of amino acids that would contain epitopes involved in Ade and DHF production. The E-protein glycation signal sequence meets this requirement. In a preferred embodiment of the invention, the performance cassette of the present invention comprises only the flavivirus sequence encoding the NS1 protein or a portion thereof. Thus, in a preferred embodiment, the performance card E of the present invention does not exhibit any other peptide/protein from other flavivirus genome portions, particularly NS2A or E proteins. In another optional embodiment, the DNA of the present invention exhibits an NS1 protein or a portion thereof which is a fusion protein form protein having a protein/peptide which is not derived from flavivirus/Shengyuetai contains a non-yellow virus signal sequence. Or for the extraction or purification of a sequence of a expressed fusion protein such as a tag. 1354560 In a preferred embodiment of the invention, the general structure of the flavivirus sequence in the expression cassette is as follows: during native flavivirus infection, the virus produces a single polyprotein followed by the host cell protease Interrupted and then disrupted by the virally encoded protease into the following proteins: C, PrM and Μ, E, NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 (protein sequence Dependent Protein Precursor Protein Arrangement). Therefore, the DNA sequence, particularly the cDNA sequence encoding the NS1 protein or a portion thereof, must be additionally appended with the "ATG" initiation codon. In a preferred embodiment, a glycosylated signal sequence is added after the initiation of the ATG, whereby the newly synthesized NS1 protein is saccharified in the endoplasmic reticulum. This sequence of signals is known to those skilled in the art. Finally, the cassette encoding the protein requires a stop codon, which can be a 3, terminal TAG of the protein added to the cDNA sequence. For example, the "ATG+ signal sequence" element used in the present invention is derived from the hydrophobic C-terminus of the E protein (the last 28 amino acids, which are dengue virus neonatal squirrels (,, NGC cultivar), genetic data The library accession number AF038403) starts with amino acid M (ATG). A typical performance card of the present invention is shown in Figure 2 and is represented by SEQ ID NO: 9 and SEQ ID NO: 1. Therefore, in short, this A specific example relates to a DNA comprising a cassette which exhibits a sequence encoding a flavivirus NS1 protein or a portion thereof, wherein the coding sequence is preceded by a start codon ("ATG") and - The sequence encoding the signal sequence for saccharification is preferably derived from an E protein as defined above and wherein the coding sequence is finally translated with a stop codon (Figs. 1A, 1C and 2, SEQ ID NO: 5-10). The DNA sequence of the present invention encodes a flavivirus NS1 virus or a portion thereof. The term "flavivirus" means any flavivirus. More preferably, the term "flavonoid" means, for example, 11 1354560 West Nile virus, Japanese encephalitis virus Yellow fever virus and A mosquito-borne flavivirus of dengue virus. A NS1 protein or a portion thereof derived from a mosquito-encoded mosquito encoded by the DNA of the present invention should protect the vaccinated individual from infection of the virus or virus subtype derived from the vaccine, and is exempt from the Other infections of mosquito-borne viruses or other viral subtypes of the vaccine. The NS1 protein may preferably be any dengue virus subtype. More preferably, the NS1 protein coding sequence is derived from a dengue subtype 2 such as the dengue virus neonatal squirrel breed (NGC variety, Gen. No. AF038403). The terms "subtype," and "serum type" are This invention is used interchangeably. The term "NS1 protein, or a portion thereof", means a long column of amino acids of the NS1 protein, which is long enough to induce a specific immune response against the NS1 protein derived from the "partial" portion thereof. . If the flavivirus is a dengue virus, the long list of amino acids should be a long list of amino acids that induce an immune response against the nsi protein of all dengue virus subtypes in vaccinated animals, including humans. It is shown in the Examples section how a person familiar with this technique can determine whether the NS1 protein or part thereof induces a specific immune response to all of the Dengya subtypes. According to a preferred embodiment, the flavivirus sequence encodes the entire NS1 protein.

簡言之,本發明最佳具體例之一係一種包含蝙碼有一經蚊Briefly, one of the best embodiments of the present invention is a mosquito containing a bat code.

子傳播之黃病毒NS1或其部分之表現卡匣之dna, 毒較佳係登革熱,更別是登革熱病毒亞型2,且其中^ 白或其部分之表現係由真核生物轉錄調節要素控制。 其中該黃病 NS1蛋 更佳地 是,本發明之DNA編碼一呈具有一糖化訊號序列之融合蛋白形 式之NS1蛋白或其部分。 / 本發明進一步提及包含有如本發明之DNA之栽體。術誶 % 12 1354560 • « 載體“意指任習知此藝人士知悉者。載體可以是諸如PBR322之 質體載體或pUC系列之載體。更佳地,該載體是一病毒載體。 於本發明之内文中,術語,,病毒的載體“或“病毒載體”意指包含 病毒基因組之感染性病毒。於此情況下,本發明之DNA是要被 選殖入該各別病毒載體之病毒基因組中。之後該重組的病毒基 因組被包裝起來,因此所獲得之重組載體可被用於感染細胞和 細胞株,特別是感染包括人類之動物的活體。如本發明之典型 的病毒載體是腺病毒載體、腸病毒載體或以腺相關之病毒 2(AAV2)為基礎之載體。最佳是痘病毒的載體。該痘病毒較佳 應是金絲雀症病毒、家禽癌病毒或牛癌病毒。更佳的是經修飾 的牛痘病毒 Ankara(MVA) (Sutter, G 等人,[1994],Vaccine 12·· 1032-40)。典型之MVA品種是MVA 575,其已寄存在歐洲 動物細胞培養收集中心,寄存號碼為ECACC V00120707。更佳 的是MVA-BN或其衍生物,其已述於在2001年11月22日,由 申清人巴代利亞日耳曼民族研究院GmbH (Bavarian Nordic Research InsUtute GmbH),以,,經修飾之牛痘Ankara病毒變 異體“為標題,於歐洲專利局提申之PCT申請案中。MVA-BN已 寄存於歐洲動物細胞培養收集中心中,寄存號碼為Ecacc V00083008。藉由使用MVA-BN或其衍生物,額外的技術問題已 經解決,俾提供一可對抗黃病毒之特別安全的病毒疫苗,因為 已顯示出MVA-BN病毒載體是一完全減毒病毒,其衍生自經修 飾之牛痘Ankara病毒且其特徵在於失去其於人類細胞株中有 效複製的旎力。由於缺少在人類中之複製能力,所以MVA BN 比任何其它已知之牛癌病毒品種還安全。於較佳具體例中,本The spread of the flavivirus NS1 or a part thereof of the sub-transfected flavivirus is preferably dengue, more preferably dengue virus subtype 2, and the expression of the white or part thereof is controlled by eukaryotic transcription regulating elements. Wherein the yellow disease NS1 egg is more preferably the DNA of the present invention encodes an NS1 protein or a portion thereof in the form of a fusion protein having a glycosidation signal sequence. / The present invention further refers to a vector comprising the DNA of the present invention.谇% 12 1354560 • The term "carrier" means any person known to the art. The carrier may be a plastid vector such as PBR322 or a vector of the pUC series. More preferably, the vector is a viral vector. In the context of the present invention The term "viral vector" or "viral vector" means an infectious virus comprising a viral genome. In this case, the DNA of the present invention is to be selected into the viral genome of the respective viral vector. The recombinant viral genome is then packaged so that the resulting recombinant vector can be used to infect cells and cell lines, particularly living organisms including human animals. A typical viral vector according to the invention is an adenoviral vector, an enterovirus vector or a vector based on adeno-associated virus 2 (AAV2). The best is the carrier of poxvirus. Preferably, the poxvirus is a canary virus, a poultry cancer virus or a bovine cancer virus. More preferred is the modified vaccinia virus Ankara (MVA) (Sutter, G et al, [1994], Vaccine 12·1032-40). A typical MVA variety is MVA 575, which is deposited at the European Animal Cell Culture Collection Center under the registration number ECACC V00120707. More preferably, MVA-BN or a derivative thereof, as described on November 22, 2001, is modified by the Bamarian Nordic Research InsUtute GmbH. The vaccinia Ankara virus variant "is titled in the PCT application filed by the European Patent Office. MVA-BN has been deposited in the European Animal Cell Culture Collection Center under the accession number Ecacc V00083008. By using MVA-BN or Derivatives, additional technical problems have been solved, providing a particularly safe viral vaccine against flaviviruses, as it has been shown that the MVA-BN viral vector is a completely attenuated virus derived from the modified vaccinia Ankara virus and It is characterized by loss of its ability to replicate efficiently in human cell lines. MVA BN is safer than any other known bovine cancer virus species due to the lack of replication capacity in humans. In a preferred embodiment,

C 13 1354560C 13 1354560

發明有關-種含有如本發明之_的隱,和mva bn衍生物 載體MVA BN之特徵、允許評估是否隱是嶋,或MVA BN 之衍生物的錢分析㈣㈣及允許獲得mva bn或其衍生物 之方法顯示於以下說明部分與實施例3中。 術語病毒之"衍生物",如寄存號碼ECACC v〇〇〇83_之病 毒的"衍生物"(即MVA.之衍生物),意指顯示至少一種該經 寄存品種之频,但在其基隨之_或多部分顯示差異之牛疫 病毒。較佳地,衍生物具有至少二個、更佳地衍生物具有至少 三個、更佳地具有下列四個MVA_BN之所有特徵^特別是,MVA BN 之衍生物基本上具有與jjVA-BN相同之複製特徵。與該寄存病 毒具相同複製特徵,,之病毒意指,在CEF細胞與細胞株BHK ' HeLa、HaCat和143B中,具有與已寄存之品種相似擴增比率之 病毒’且當以AGR129基因轉殖老鼠模型偵測時,其在活體内 顯示相似之複製。MVA-BN之特徵如下:The invention relates to a kind of cryptic containing the _, and the mva bn derivative carrier MVA BN, allowing evaluation of whether it is a sputum, or a manalysis of a derivative of MVA BN (4) (4) and allowing obtaining mva bn or a derivative thereof The method is shown in the following description section and in the third embodiment. The term "derivative" of the virus, such as the "derivative" of the virus of the registry number ECACC v〇〇〇83_ (i.e., a derivative of MVA.), means at least one frequency of the hosted species is indicated. But in its base _ or multiple parts show the difference between the vaccinia virus. Preferably, the derivative has at least two, more preferably all of the features of the derivative having at least three, more preferably the following four MVA_BN. In particular, the derivative of MVA BN has substantially the same identity as jjVA-BN Copy features. The same replication characteristics as the deposited virus, the virus means that in the CEF cells and cell lines BHK 'HeLa, HaCat and 143B, the virus has a similar amplification ratio to the registered variety' and when the AGR129 gene is transferred When the mouse model is detected, it shows a similar copy in vivo. The characteristics of MVA-BN are as follows:

-能在雞胚胎纖維母細胞(CEF)與幼倉鼠腎細胞株BHK (ECACC 85011433)中有效複製,但在人類細胞株HaCat中無複 製能力(Boukamp 等人,1988,J Cell Biol· 106(3): 76卜71), -無法在活體内複製, -相較於習知之MVA575(ECACC V00120707),在互刺激模 型中誘導較高之致免疫性和/或 -當相較於DNA-初次/牛痘病毒推升療法,在牛痘病毒初 次/牛痘病毒推升療法中誘導至少實質上相同位準之免疫力。 術語''無有效複製之能力"意指如本發明之病毒,在人類細 胞株HaCat中顯示少於1之複製率(Boukamp等人,1988,J Cell 14 1354560 • ·- Can replicate efficiently in chicken embryonic fibroblasts (CEF) and baby hamster kidney cell line BHK (ECACC 85011433), but not in human cell line HaCat (Boukamp et al., 1988, J Cell Biol 106 (3) ): 76b 71), - unable to replicate in vivo, - induces higher immunogenicity in the mutual stimulation model compared to the conventional MVA575 (ECACC V00120707) and / or - when compared to DNA - initial / Vaccinia virus push-up therapy induces at least substantially the same level of immunity in vaccinia virus primary/vaccinia virus push-up therapy. The term ''ability of no effective replication" means that the virus of the present invention exhibits a replication rate of less than 1 in the human cell strain HaCat (Boukamp et al., 1988, J Cell 14 1354560 •

Biol. 106(3): 761-71。較佳地,用作為本發明之載體之病毒 在人類細胞株HaCat中之擴增比率係〇.8或更少。一病毒之“擴 增比率,,係產生自一感染的細胞(輸出)的病毒相對於原來用於 在第一位置感染該細胞之數目(輸入)的比率(“擴增比率”)。介 於輸出與輸入間之比率為“1”定義為一擴增狀態,其中產生自該 • 感染的細胞之病毒的數目是相同於原來用於感染該細胞之數 目。此狀態暗示一個事實,即經感染的細胞容許病毒感染與病 毒複製。最佳的MVA載體,特別是MVA-BN和其衍生物’在HaCat • 細胞中不會有效複製。詳言之,MVA-BN在人類胚胎腎細胞株 293 (ECACC No. 85120602)中所顯示之擴增比率為〇. 05至 0.2。於人類骨肉瘤細胞株1436(£0丸0:仙.91112502)中,比 ·- 率係在0.0至0. 6之範圍内。至於人類子宮頸腺瘤細胞株HeLa (ATCC No. CCL-2)和人類角質細胞細胞株HaCat (Boukamp等 人,1988,J Cell Biol. 106(3): 761-71),其等之擴增比率 各別在0. 04至0.8和0. 02至0. 8之範圍内。MVA-BN在非洲綠 猴腎細胞(CV1: ATCC No. CCL-70)中之擴增比率為0.01至 • 〇· 06。因此,MVA-BN於任何測試的人類細胞株中均不會有效的 . 複製。 MVA-BN在雞胚胎纖維母細胞(CEF:初代培養)或幼倉鼠腎 細胞株BHK(ATCC No. CRL-1632)中之擴增比率明確地大於1。 如上之概述,大於“1”之比率意指有效地複製,因為相較於用於 感染細胞之病毒數目,從受感染的細胞產生之病毒數目增加 了。因此,病毒可很容易地以大於5〇〇之比率在CEF初代培養 中,且以大於50的比率在BHK細胞中繁殖與擴增。 15 在定義MVA-BN的上下文中,術語“在活體内無法複製,,意 指病毒無法在如下所述之人類與老鼠模型中複製。該“在活體内 無法複製,,較佳地可在不能產生成熟B和T細胞之老鼠中決定》 此種老鼠之例子為基因轉殖老鼠模型AGR129 (獲自Mark Sutter,瑞士蘇黎世大學病毒研究所)°此老鼠品種在IFN受 體類型I (IFN-α/β)和類型Π (IFN1)基因與RAG中具有基因 標的之苷擾。由於此等苷擾’該老鼠沒有1FN系統且無法產生 成熟的B和T細胞且就其本身而言係嚴重的免疫放棄以及高度 易受複製病毒的影響。除了 AGR129老鼠,任何其它無法產生B 和T細胞且就其本身而言係嚴重的免疫放棄以及高度易受複製 病毒的影響之老鼠品種均可使用。特別是,如本發明之病毒, 其在以腹内注射107 pfu之病毒而感染AGR129老鼠後之至少 45天,更佳係60天,最佳是90天的期間内不會毒殺該老鼠。 較佳地,該等顯示“在活體内無法複製”之病毒的進一步特徵 為,在以腹内注射107 pfu之病毒而感染AGR129老鼠後之45 天’更佳係60天,最佳是90天,沒有病毒可在該老鼠之器官 或組織中恢復。 根據致死刺激老鼠模型測得之結果,MVA-BN和其衍生物 較佳之特徵在於比已知之MVA 575品種具較高的致免疫性。於 此模型中’沒有接種疫苗之老鼠在以諸如西方儲備(WesternBiol. 106(3): 761-71. Preferably, the virus used as the vector of the present invention has an amplification ratio of 〇.8 or less in the human cell strain HaCat. The "amplification ratio of a virus, the ratio of the virus produced from an infected cell (output) relative to the number (input) used to infect the cell at the first location ("amplification ratio"). The ratio of the output to the input of "1" is defined as an amplification state in which the number of viruses generated from the infected cells is the same as the number originally used to infect the cells. This state implies a fact that is infected The cells allow viral infection and viral replication. The optimal MVA vector, particularly MVA-BN and its derivatives, does not replicate efficiently in HaCat• cells. In particular, MVA-BN is in human embryonic kidney cell line 293 ( The ratio of the amplification ratio shown in ECACC No. 85120602) is from 0.05 to 0.2. In the human osteosarcoma cell line 1436 (£0 pills 0: sen. 91112502), the ratio of the ratio is 0.0 to 0.6. Within the scope of human human cervical adenoma cell line HeLa (ATCC No. CCL-2) and human keratinocyte cell line HaCat (Boukamp et al., 1988, J Cell Biol. 106(3): 761-71), etc. The range of the amplification is in the range of 0.04 to 0.8 and 0.02 to 0.8. The amplification ratio of VA-BN in African green monkey kidney cells (CV1: ATCC No. CCL-70) is 0.01 to • 〇·06. Therefore, MVA-BN is not effective in any human cell strain tested. Copy. The amplification ratio of MVA-BN in chicken embryonic fibroblasts (CEF: primary culture) or baby hamster kidney cell line BHK (ATCC No. CRL-1632) is clearly greater than 1. As outlined above, greater than "1" The ratio means effective replication because the number of viruses produced from infected cells is increased compared to the number of viruses used to infect cells. Therefore, the virus can easily be found in CEF at a ratio greater than 5 〇〇. In culture, and multiply and expand in BHK cells at a ratio greater than 50. 15 In the context of defining MVA-BN, the term "cannot be replicated in vivo, means that the virus cannot be human and mouse models as described below. Copy in . This "cannot be replicated in vivo, preferably in mice that do not produce mature B and T cells". An example of such a mouse is the genetically transgenic mouse model AGR129 (available from Mark Sutter, Institute of Virology, University of Zurich, Switzerland) This mouse cultivar has a genetically-labeled glycosidic interference in the IFN receptor type I (IFN-α/β) and type Π (IFN1) genes and RAG. Because of this glucoside interference, the mouse does not have a 1FN system and cannot produce maturation. B and T cells, and for themselves, are severely immune to abandonment and highly susceptible to replicating viruses. Except for AGR129 mice, any other immune abandonment and height that are unable to produce B and T cells and are severe in their own right A mouse species susceptible to the replication virus can be used. In particular, the virus of the present invention is preferably at least 45 days after infection with AGR129 mice by intraperitoneal injection of 107 pfu of virus, preferably 60 days, preferably. The mouse is not poisoned for a period of 90 days. Preferably, the virus showing "unable to replicate in vivo" is further characterized by infection of AGR129 mice by intraperitoneal injection of 107 pfu of virus. The next 45 days 'better 60 days, the best is 90 days, no virus can be recovered in the organs or tissues of the mouse. According to the results of the lethal stimulating mouse model, the characteristics of MVA-BN and its derivatives are better. It is more immunogenic than the known MVA 575. In this model, 'no vaccinated mice are in Western reserves (Western

Reserve)品種L929 TK+或IHD-J之能充分複製之牛痘品種感 染後死亡。以能充分複製之牛痘病毒感染即為於致死刺激模型 之說明中所稱之“刺激。在刺激四天後,老鼠通常會被毒殺且 在藉由使用VERO細胞來做標準斑分析時,可在卵巢中測得病 1354560 毒效價。測定在沒有接種疫苗之老鼠和以如本發明之疫病毒接 種疫田之老鼠中之病毒效價。更明破地說,如本發明之病毒之 特徵為,於此測試中,在以102TCID5D/ml如本發明之病毒接種 後’於卵巢中之病毒效價相較於沒有接種之老鼠減少了至少 70% ’較佳1少8〇%,更佳至少90%。 • MVA-BN或其衍生物較佳特徵為,相較於以DNA-初次/牛痘 V 病毋推升療法,其於以牛痘病毒初次/牛痘病毒推升療法中可 ^ 誘導至少實質上相同之免疫位準。相較於以DNA-初次/牛痘病 毋推升療法,設若以牛痘病毒初次/牛痘病毒推升療法,在下 列兩種分析法(,,分析法1“和,,分析法2“)之任一個,較佳係兩者 並行中所測得之CTL反應係至少實質上相同時,則—牛痘病 毒被視為在相較於以DNA-初次/牛痘病毒推升療法,以牛痘病 毒初人/牛疫病毒推升療法可誘導至少實質上相同之免疫位 準。更佳的是,相較於DNA-初次/牛痘病毒推升療法 ,在施用 牛痘病母初次/牛痘病毒推升後,以至少一種分析法測得之CTL φ 反應係較尚的。最佳的是,CTL反應在下列兩種分析法中均較 问刀析法1:關於牛痘病毒初次/牛痘病毒推升投與法,藉由 腹内/主射1〇7 TCID5。如本發明中會表現鼠類多面體之牛痘病毒 (述於 Th〇mson 等人,1988, J. Immunol. 160,1717)來初次-免疫8週大之BALB/c (H-2d)老鼠,且在三週之後施用相同方 式相同數目之病毒來推升-免疫該老鼠。為此目的,去建構 一個會表現該多面體之重組牛疫病毒係必要的。建構此重組牛 痘病毋之方法係習於此技藝人士所知悉者,且於下文中詳細說 月之進行DNA初次/牛痘病毒推升療法時,初次之接種係以 17 1354560 肌肉内注射該老鼠50 Mg會表現與牛痘病毒相同抗原之DNA的 、 方式來進行;以與牛痘病毒初次/牛痘病毒推升投與完全相同 之方法’來進行牛痘病毒的推升投與。於上文中所引述Thomson 等人之公開案中,對表現多面體之DNA質體亦有說明。於兩個 療法中,對抗抗原決定位SYIPSAEKI、RPQASGVYM和/或 YPHFMPTNL的CTL反應之發展係在推升投與後的兩個星期進行 測定。CTL反應之測定較佳係使用ELISP0T分析(述於Reserve) Variety L929 TK+ or IHD-J can fully replicate the vaccinia variety and die after infection. The fully vaccinated vaccinia virus infection is called "stimulation" in the description of the lethal stimulation model. After four days of stimulation, the mice are usually poisoned and used in the standard spot analysis by using VERO cells. The virulence titer of the disease was measured in the ovary. The virus titer in the mice which were not vaccinated and the mice inoculated with the vaccination virus according to the present invention was determined. More specifically, the virus of the present invention is characterized by In this test, the virus titer in the ovary after inoculation with 102 TCID5D/ml as the virus of the present invention was reduced by at least 70% compared to the non-vaccinated mouse, preferably 1% less than 8%, more preferably at least 90%. %. MVA-BN or a derivative thereof is preferably characterized by at least substantially inducing vaccinia virus primary/vaccinia virus ascending therapy compared to DNA-primary/vaccinia V disease. The same immunological level. Compared with the DNA-primary/vaccinia sputum push-up therapy, if the vaccinia virus primary/vaccinia virus push-up therapy is used in the following two analytical methods (,, analytical method 1 ", and, analysis Method 2"), preferably When the CTL responses measured in parallel are at least substantially the same, then the vaccinia virus is considered to be boosted by the vaccinia virus primary/vaccine virus compared to the DNA-primary/vaccinia virus push-up therapy. At least substantially the same immunological level can be induced. More preferably, compared to the DNA-primary/vaccinia virus push-up therapy, measured by at least one assay after administration of the vaccinia mother's primary/vaccinia virus boost. The CTL φ reaction system is more preferred. The best one is that the CTL reaction is more than the following two methods: the vaccinia virus initial/vaccinia virus push-up administration method, by intra-abdominal/main shot 1〇7 TCID5. As shown in the present invention, a murine polyhedron vaccinia virus (described in Th〇mson et al., 1988, J. Immunol. 160, 1717) is used for the first time - immunization of 8 weeks old BALB/c (H- 2d) Rats, and after three weeks, the same number of viruses were administered in the same manner to boost-immunize the mouse. For this purpose, it is necessary to construct a recombinant bovine virus system that expresses the polyhedron. Constructing the recombinant vaccinia The method is known to those skilled in the art, and In the text, in detail, when the DNA is firstly/vaccinia virus push-up therapy, the initial inoculation is carried out by intramuscular injection of the mouse 50 Mg at 17 1354560, which will be expressed in the same way as the DNA of the same antigen as the vaccinia virus; / Vaccinia virus pushes the same method to carry out the promotion of vaccinia virus. In the publication of Thomson et al. cited above, the DNA plastids that express polyhedra are also described. The development of CTL responses against the epitopes SYIPSAEKI, RPQASGVYM and/or YPHFMPTNL was determined two weeks after the boost administration. The determination of the CTL reaction is preferably carried out using ELISP0T analysis (described in

Schneider 等人,1998,Nat· Med. 4,397-402 中)來進行, 且在下列實例部分中概述一種如本發明之特定病毒。如本發明 鲁 之病毒的特徵在於此實驗中,當以產生IFN_y之細胞數目/1〇6 脾細胞來評估時,由牛痘病毒初次/牛痘病毒推升投與所弓丨 起,對抗於上所提及之抗原決定位的CTL免疫反應實質上,較 佳至少與由DNA初次/牛痘病毒推升投與所引起的相同(亦可見 實驗部分)。分析法2:此分析法基本上對應於分析法丨^然而, 代替如分析法1中靜脈内投與1〇7 TCID5。牛痘病毒,於此分析 法中係以皮下投與108 TCID5。如本發明之牛痘病毒來供用於初 次免疫和推升免疫。如本發明之病毒的特徵在於此實驗中當 馨 以產生IFN-γ之細胞數目/1〇6脾細胞來評估時,對抗於上所提 及由牛痘病毒初次/牛痘病毒推升投與所引起之抗原決定位的 CTL免疫反應實質上,較佳至少與由DNA初次/牛痘病毒推升投 與所引起的相同(亦可見實驗部分)。 對於如何獲得具有如上所示之ΜνΑ—βΝ和其衍生物之特性 係習於此技藝人士所熟知者:欲獲得此一病毒之方法可包含下 列步驟: 18 1354560 * t -引入一個已知之牛痘病毒品種’較佳是MVA 574或MVA 575 (ECACC V00120707)至於其中該病毒能夠有效的複 製之非人類細胞中,其中該非人類細胞較佳係選自於 CEF細胞和細胞株BHK, -分離/豐富來自該等細胞之病毒粒子,以及 -分析所獲得之病毒是否具有至少一種如上所所欲之生 物特性,Schneider et al., 1998, Nat. Med. 4, 397-402), and a specific virus according to the present invention is outlined in the Examples section below. The characteristics of the virus according to the present invention are in this experiment, when evaluated by the number of cells producing IFN_y/1 〇 6 spleen cells, and the vaccinia virus priming/vaccinia virus is pushed up and attacked, against the upper side. The CTL immune response of the epitopes mentioned is substantially the same as that caused by the initial administration of the DNA/vaccinia virus (see also the experimental part). Analytical Method 2: This analysis basically corresponds to the analytical method. However, instead of intravenously administering 1〇7 TCID5 as in Analytical Method 1. Vaccinia virus, in this assay, was administered subcutaneously with 108 TCID5. The vaccinia virus of the present invention is used for primary immunization and boosting immunization. The characteristics of the virus according to the present invention are evaluated in this experiment when the number of cells producing IFN-γ/1〇6 spleen cells is evaluated against the above-mentioned vaccinia virus priming/vaccinia virus boosting administration. The CTL immune response of the epitope is substantially the same as that caused by the initial administration of the DNA/vaccinia virus (see also the experimental part). It is well known to those skilled in the art how to obtain the properties of ΜνΑ-βΝ and its derivatives as shown above: The method for obtaining this virus may comprise the following steps: 18 1354560 * t - introduction of a known vaccinia virus The cultivar 'preferably MVA 574 or MVA 575 (ECACC V00120707) is for a non-human cell in which the virus can be efficiently replicated, wherein the non-human cell is preferably selected from CEF cells and cell line BHK, - isolated/rich from The virions of the cells, and - whether the virus obtained by the assay has at least one biological property as desired above,

其中上述之步驟可任擇地重覆,直至獲得一 特徵之病毒。 具有所欲複製 有關將如本發明之DNA插入痘病毒DNA中之方 得重組痘病毒之方法是習於此技藝人士所熟知者。在 痘病毒中’如本發明之DNA的表現較佳是在痘病毒起 佳是牛痘病毒起動子之轉錄控制下,但並不是絕對的 明之DNA較佳是插入病毒基因組之非—必要區域。 &本發明之 另一個較佳具體例中,異源的核酸序列被插置在MVa基因系中 自然發生缺失的位置(揭示於PCT/EP96/02926中)。The above steps can optionally be repeated until a characteristic virus is obtained. Having the desired replication method for introducing a recombinant poxvirus into a poxvirus DNA, such as the DNA of the present invention, is well known to those skilled in the art. In the poxvirus, the performance of the DNA of the present invention is preferably under the transcriptional control of the vaccinia virus promoter, but it is not absolutely clear that the DNA is preferably a non-essential region inserted into the viral genome. & In another preferred embodiment of the invention, the heterologous nucleic acid sequence is inserted at a position where deletion occurs naturally in the MVa gene line (disclosed in PCT/EP96/02926).

法以及獲 〜重組牛 動子,更 。如本發 簡言之’本發明之最佳具體例係提供—種包含 巧戈α本發明 之DNA的載體,其中該載體是MVA_BN或其衍生物且其中士本 發明之DNA包含一編碼登革熱病毒,特別是登革熱病毒血生 型2之NS1蛋白或其部分之表現卡匣。 於一較佳具體例中,本發明係有關由如本發明 < DNA或如 本發明之載體所編碼之NS1蛋白或其部分。對於本 赞明之NS1 或其部分之定義,參照此說明書上文部分,其中本發明之 藉由該DNA表現的產物來定義。因此,下列有關如本 19 1354560The law as well as the ~ recombination of cattle, more. As a preferred embodiment of the present invention, a vector comprising the DNA of the present invention, wherein the vector is MVA_BN or a derivative thereof, and wherein the DNA of the present invention comprises a dengue virus encoding In particular, the performance of the NS1 protein of the dengue virus blood type 2 or a part thereof is defective. In a preferred embodiment, the invention relates to an NS1 protein or a portion thereof encoded by a DNA according to the invention < DNA or a vector according to the invention. For the definition of NS1 or a portion thereof of this specification, reference is made to the above section of the specification, wherein the invention is defined by the product of the DNA representation. Therefore, the following related as this 19 1354560

白質的簡要說明並不會被視為本發明之限制。簡言之,如本發 月之蛋白質可以是一個由任何黃病毒所編碼之經分離的NS1蛋 白或其部分。該NS1蛋白或其部分較佳係衍生自一登革熱病 毒更佳是衍生自登革熱病毒亞型2。本發明之蛋白質可能僅 ° S病毒NS1蛋白之胺基酸序列。於—較佳具體例中,該NS1 蛋白可能包含額外的胺基酸,其於該蛋白f之有效的表現上是 必要的。該胺基酸/胺基酸序列之例子已示於上文中且在蛋 白質的N端包括-個由被加入之ATG密碼子所編碼之甲硫氨 酸’以及-個自該E-蛋白之生之胺基酸序列其作 用為-用於糖化本發明之蛋料^其它訊號序列亦 包含於本發明之範圍内。於-任擇的具體例中,該顺胺基酸 序列或其部分可被融合至其它蛋白/胜狀。融合的夥伴之例子 係允許蛋白的鑑定之序列,諸如tag或其它黃病毒蛋白質或其 部分。 於-較佳具體财,本發明係有關作為疫苗之本發明的A brief description of the white matter is not to be construed as limiting the invention. Briefly, the protein as in this month may be a separate NS1 protein or portion thereof encoded by any flavivirus. Preferably, the NS1 protein or portion thereof is derived from a dengue virus subtype 2 derived from a dengue virus. The protein of the invention may only be the amino acid sequence of the S NS1 protein. In a preferred embodiment, the NS1 protein may comprise an additional amino acid which is essential for the efficient expression of the protein f. Examples of such amino acid/amino acid sequences are shown above and include at the N-terminus of the protein a methionine encoded by the ATG codon to which it is added, and - from the E-protein. The amino acid sequence functions as an egg material for saccharification of the present invention. Other signal sequences are also included in the scope of the present invention. In the optional embodiment, the cis-amino acid sequence or a portion thereof can be fused to other proteins/success. Examples of fused partners are sequences that allow for the identification of proteins, such as tags or other flavivirus proteins or portions thereof. In the preferred embodiment, the present invention relates to the present invention as a vaccine.

舰、載體或㈣蛋白或其部分。,,疫苗“是—種化合物即會誘 導特定反應之DNA、蛋白質 '載體或病毒。 根據-任擇的具趙例,本發明之,,疫苗“係、根據—登革熱病 毒敝蛋白或其-部分,其誘導對抗所有登革熱病毒亞型之脱 蛋白之免疫反應。特別是已顯示出,登革熱病毒亞型之咖昼 二==反Γ導產生一種對抗所有登革熱病毒亞型 之NS1蛋白之免疫反應’較佳亦可對抗其它經蚊子傳播主: 如上所述,本發明之發明人發現,本發 病毒之NS1 20Ship, carrier or (iv) protein or part thereof. , the vaccine "is a compound that induces a specific reaction of DNA, protein 'vector or virus. According to the optional example, the invention, the vaccine "system, according to - dengue virus prion protein or its - part It induces an immune response against deproteinization of all dengue virus subtypes. In particular, it has been shown that the dengue virus subtype of the curry two == anti-sputum produces an immune response against all dengue virus subtypes of the NS1 protein 'better against other mosquito-transmitting hosts: as mentioned above, this The inventor of the invention discovered that the virus of the NS1 20

1354560 • I1354560 • I

蛋白或其部分會誘導產生對抗其它黃病毒之NS1蛋白之免疫反 應。如上所指,“黃病毒,,較佳係經蚊子傳播之黃病毒。換言之, 本發明之㈣人發現,於本案__任擇的具體例中如本發明之 經蚊子傳播之黃病毒的NS1蛋白或其部分,會誘導產生一種射 抗衍生成疫苗之經蚊子傳播之黃病毒的NS1蛋白以及對抗其它 經蚊子傳播之黃病毒的免疫反應。因此,衍生自經蚊子傳播之 κ病毋之疫田可用作為對抗—或多種經蚊子傳播之黃病毒的 疫苗生自黃病毒之載體”或於本文中相似之術語意指 斤才曰I 3本發明之嶋之載體(如疫病毒載體或質體)。因 此此術思域體鑲嵌物而不是載體骨架。“衍生自黃病毒之 載體,’之例子為諸如MVA之毒載體,其包含—表現卡g,該 、卡匣痘病毒起動子、一編碼黃病毒NS1蛋白或其部 分之序列’其中該編碼有黃病毒NS1蛋白或其部分之序列之前 加上一™密碼子和-蝙碼糖化訊號序列之序列以及其中顿 碼序例之終端為-轉譯之終止密瑪子。The protein or part thereof induces an immune response against the NS1 protein of other flaviviruses. As indicated above, "a flavivirus, preferably a mosquito-borne flavivirus. In other words, the (4) human of the present invention finds, in the specific case of the present invention, such as the NS1 of the mosquito-borne flavivirus of the present invention. The protein or part thereof induces an NS1 protein that is resistant to the mosquito-borne flavivirus derived from the vaccine and an immune response against other mosquito-borne flaviviruses. Therefore, it is derived from the mosquito-borne κ disease The field may be used as a carrier against the yellow virus of a plurality of mosquito-borne flaviviruses, or a similar term herein means a carrier of the invention (such as an epidemic viral vector or plastid). ). Therefore, the imaginary body inlay is not the carrier skeleton. "A vector derived from a flavivirus," an example of which is a virulence vector such as MVA, which comprises - a performance card g, a calcivirus promoter, a sequence encoding a flavivirus NS1 protein or a portion thereof, wherein the coding The sequence of the flavivirus NS1 protein or a portion thereof is preceded by a sequence of a TM codon and a - bat saccharification signal sequence, and wherein the terminal of the transcript sequence is a translation-terminated terminator.

因此,具本發明之_,載體或似蛋白之疫苗可用作為 I抗廣泛黃病毒或至少黃病毒亞型之單-次軍元疫苗。因 或載Γ來自㈣、綱之nsi ^«部分的臟 ’或者疋來自該黃病毒或亞型之Ns 1蛋白或其部分可 =作為物电㈣,衍生自 Α熱病毒亞型2之疫苗可作為對抗亞型1、3和4以及對抗 亞型2之疫苗。复以及對抗 毒之其它黃病毒保護—個體來對抗諸如西尼羅河病 於一較佳具體例中,本發明之腦被作成疫苗。投與含有 21 1354560 本發明之真核生物表現卡匣之裸露的DNA,特別是肌肉内注射 · DNA,可導致由該表現卡匣所編碼之蛋白質的表現,此為熟悉 此技藝人士所知悉者。該蛋白曝露於免疫系統,且產生一特定 之免疫反應。 於一任擇的具體例中,疫苗之接種係藉由投與本發明之載 體,特別是病毒載體,更佳是痘病毒載體,最佳是牛痘病毒載 體如MVA載體來進行。 在以牛痘病毒為基礎之疫苗的製備方面,本發明之病毒被 轉換成生理可接受之型式》此製備係根據在製備用於對抗天花 · 之癌病毋·疫田之經驗來進行。(述於Stickl,H. enriching, [1974] Dtsch. med. Wschr. 99,2386-2392)。例如,將經純Thus, a vector or a protein-like vaccine having the present invention can be used as a single-volume vaccine against I extensive yellow flavivirus or at least a flavivirus subtype. The vaccine derived from the sputum virus subtype 2 can be derived from the (four), the nsi ^« part of the dirty ' or the Ns 1 protein from the flavivirus or subtype or a part thereof can be used as the electric (IV) As a vaccine against subtypes 1, 3 and 4 and against subtype 2. Complex and other flavivirus protection against virulence - the individual is against a disease such as West Nile. In a preferred embodiment, the brain of the present invention is vaccinated. Administration of naked DNA containing 21 1354560 of the eukaryotic expression cassette of the present invention, particularly intramuscular injection of DNA, can result in the expression of the protein encoded by the expression cassette, as is known to those skilled in the art. . The protein is exposed to the immune system and produces a specific immune response. In a preferred embodiment, the vaccination of the vaccine is carried out by administering a vector of the present invention, particularly a viral vector, more preferably a poxvirus vector, preferably a vaccinia virus vector such as an MVA vector. In the preparation of a vaccinia virus-based vaccine, the virus of the present invention is converted into a physiologically acceptable form. This preparation is based on the experience in preparing a cancerous field against smallpox. (described in Stickl, H. enriching, [1974] Dtsch. med. Wschr. 99, 2386-2392). For example, it will be pure

化之病毒儲存在-80。〇以5xl08TCID5e/ml之效價配方於約10mM 三經甲基氨基甲烷(Tris)、140 mM NaCl pH 7. 4中。在製備疫 苗劑方面’如1〇2 -108個病毒粒子在10〇 ml,存在有2%蛋白 腺和1%人類白蛋白之磷酸鹽緩衝的食鹽水(pBS)中被凍乾於安 瓶中’較佳是玻璃安瓿。任擇地,該疫苗劑可以逐步冷凍乾燥 配方中之病毒來產生。此配方可包含諸如甘露醇、葡萄聚糖、 · 糖、甘氨酸、乳糖或聚乙烯吡咯烷酮之額外的添加物或諸如抗 氧化劑或惰性氣體、安定劑或適合活體内投與之蛋白質(如人 類血清蛋白)之其它添加物。之後將玻璃安瓿密封且其可儲存 於4°C和室溫之下數個月。然而,只要無必要存在時,安瓿較 佳係儲放於低於-20°C之溫度下。接種時,將可該凍乾物溶於 〇· 1至0. 5毫升之液態溶液中,較佳是生理食鹽水或Tris緩衝 夜’以全身性或局部投與,即藉由非口服、肌肉内或其它從業 22 人士已知之投與方式投與。投與模式、劑量和投與之數目可由 熟悉此技藝人士予以最佳化。痘病毒載體之最佳投與方式是皮 下或肌肉内投與。 設若該疫苗是包含本發明之DNA的MVA-BN載體或其珩生 物,則本發明之一特定具體例係有關一種疫苗套組,該套組包 含本發明之MVA-DN病毒載體,其供用於第一小玻璃瓶/容器中 之第一接種疫苗(„初次“)以及於第二小玻璃瓶/容器中之第二 接種疫苗(,,推升“)。 設若該疫苗是包含本發明之DNA的MVA-BN載體或其珩生 物,則本發明之一特定具體例係有關在第一次接種時(“初次接 種”)與第二次接種時(“推升接種”)投與一治療有效量之疫苗 因此在疫苗具體例中,本發明係有關一種包含本發明之 MA、載體或NS1蛋白或其部分之疫苗,以及該DNA、疫苗或蛋 白質用於製備疫苗之用途。根據較佳具體例,本發明係有關該 DNA、疫苗或蛋白質用於製備疫苗之用途,其中該NS1蛋白或 其部分、由該DNA或該載體編碼之NS1蛋白質或其部分係來自 一種登革熱亞型,以及其中該DNA、該載體或該NS1蛋白或其 部分被用作為對抗所有登革熱病毒亞型之疫苗。最佳之登革熱 病毒亞型係亞型2。 本發明更有關一種用於治療或預防黃病毒感染之方法,其 包含於包括人類之需要治療或預防黃病毒感染的動物身上接 種如上述之DNA、如上述之載體或如上述之NS1蛋白或其部分。 特別地,本發明係有關一種如上述之方法,其中該NS1蛋白或 其部分或由該DNA或該載體編碼之NS1蛋白或其部分係來自一 種登革熱病毒亞型,且其中該DNA、該載體或該NS1蛋白或其 部分被用作為對抗所有登革熱亞型之疫苗。 本發明之簡要說明 一種DNA,其包含一編碼有至少一種黃病毒NS1蛋白或其部 分之表現卡匣。 如上述之DNA,其中該表現卡匣包含真核生物轉錄調節要素 和編碼一種黃病毒NS1蛋白或其部分之序列。 如上述之DNA,其中該編碼黃病毒之NS1蛋白或其部分之序 列之前面加上一 ATG密碼子和一編碼糖化訊號序列之序列,以 及其中該編碼序列係以一轉譯之終止密碼子結束。 如上述之DNA,其中該真核生物之轉錄調節要素係痘病毒起 動子。 如上述之DNA,其中該黃病毒係一種經蚊子傳播之黃病毒。 如上述之DNA,其中該黃病毒係登革熱病毒。 如上述之DNA,其中該登革熱病毒係登革熱病毒亞型2。 一種載體,其包含如上述之DNA。 如上述之載體,其中該載體係一痘病毒載體。 如上述之載體,其中該痕病毒係一牛疫病毒,特別是經修 飾的牛癌病毒Ancara (MVA)。 MVA-BN 或其衍生物,特別是 MVA 575 (ECACC V00120707), 最佳是 MVA-BN (V00083008)。 一種NS1蛋白或其部分,其由如上述DNA或如上述載體所 編碼。 如上述之DNA,如上述之載體或如上述之NS1蛋白係作為疫 1354560 苗。 如上述之DNA、載體或NS1蛋白,其中該NS1蛋白或其部分 或由該DNA或該載體所編碼之NS1蛋白或其部分係來自一種經 蚊子傳播之黃病毒,其中該DNA、該載體、該NS1蛋白或其部 分被用作為一種對抗衍生成疫苗(即該DNA、該載體或該NS1或 其部分)之經蚊子傳播之黃病毒或對抗其它經蚊子傳播的黃病 毒之疫苗。 如上述之DNA、載體或NS1蛋白,其中該NS1蛋白或其部分 或由該DNA或該載體所編碼之NS1蛋白或其部分係來自一種登 革熱病毒亞型,其中該DNA、該載體、該NS1蛋白或其部分被 用作為一種對抗所有登革熱病毒亞型之疫苗。較佳地衍生成該 疫苗之登革熱病毒係登革熱病毒亞型2。 一種疫苗,其包含如上述之DNA,如上述之載體、如上述之 NS1蛋白。 一種如上述之DNA,如上述之載體、如上述之NS1蛋白之用 途,供用於製備疫苗。 如上述之用途,其中該NS1蛋白或其部分或由該DNA或該 載體所編碼之NS1蛋白或其部分係來自一種登革熱病毒亞型, 其中該DNA、該載體、該NS1蛋白或其部分被用作為一種對抗 所有登革熱病毒亞型之疫苗。 如上述之用途,其中該NS1蛋白或其部分或由該DNA或該 載體所編碼之NS1蛋白或其部分係來自一種經蚊子傳播之黃病 毒,其中該DNA、該載體或該NS1蛋白或其部分被用作為一種 對抗衍生成疫苗(即該DNA、該載體或該NS1或其部分)之經蚊 25 1354560 子傳播的黃病毒以及對抗其它經蚊子傳播的黃病毒之疫苗。 -種用於治療或預防-黃病毒感染之方法,其包含接種如 上述之腦,如上述之載體、如上述之NS1蛋白或其部分至— 需要治療或預防該黃病毒感染之動物,包括人類。 如上述之方法’其t該NS1蛋白或其部分或由該職或該 載體所編瑪之NS1蛋白或其部分係來自—種登革熱病毒亞型, 其中該腦、該載體、㈣S1蛋白或其部分被用作為—種對抗 所有登革熱病毒亞型之疫苗。The virus is stored at -80. 〇 was formulated at a titer of 5xl08TCID5e/ml in about 10 mM Tris, 140 mM NaCl pH 7.4. In the preparation of vaccines, '1〇2-108 virions are lyophilized in ampoules in 10〇ml, phosphate buffered saline (pBS) with 2% protein gland and 1% human albumin. 'It is better to be a glass ampoule. Optionally, the vaccine can be produced by gradual freeze-drying of the virus in the formulation. The formulation may comprise additional additives such as mannitol, dextran, sugar, glycine, lactose or polyvinylpyrrolidone or such as antioxidants or inert gases, stabilizers or proteins suitable for in vivo administration (eg human serum albumin) Other additives. The glass ampoule is then sealed and it can be stored at 4 ° C and room temperature for several months. However, as long as it is not necessary, the ampoule is better stored at temperatures below -20 °C. When inoculated, the lyophilizate can be dissolved in a liquid solution of 〇·1 to 0.5 ml, preferably physiological saline or Tris buffer night, by systemic or local administration, that is, by parenteral or intramuscular. Or other investment methods known to those involved in the work of 22 people. The number of modes of administration, dosage, and administration can be optimized by those skilled in the art. The optimal mode of administration of poxvirus vectors is subcutaneous or intramuscular administration. If the vaccine is an MVA-BN vector comprising the DNA of the present invention or a purine thereof, a specific specific example of the present invention relates to a vaccine kit comprising the MVA-DN viral vector of the present invention, which is for use in a first vaccination ("first") in the first vial/container and a second vaccination in the second vial/container (", push up"). If the vaccine is a DNA comprising the present invention The MVA-BN vector or its neoplasm, a specific specific example of the present invention relates to the administration of a therapeutically effective treatment at the time of the first vaccination ("primary vaccination") and the second vaccination ("push vaccination"). The vaccine according to the invention is therefore in the case of a vaccine, the invention relates to a vaccine comprising the MA, the vector or the NS1 protein of the invention or a part thereof, and the use of the DNA, vaccine or protein for the preparation of a vaccine. According to a preferred embodiment The invention relates to the use of the DNA, vaccine or protein for the preparation of a vaccine, wherein the NS1 protein or a portion thereof, the NS1 protein encoded by the DNA or the vector, or a portion thereof, is derived from a dengue subtype, and The DNA, the vector or the NS1 protein or a portion thereof is used as a vaccine against all dengue virus subtypes. The best dengue virus subtype is subtype 2. The present invention is more related to the treatment or prevention of flavivirus infection. A method comprising, in an animal comprising a human being in need of treatment or prevention of a flavivirus infection, inoculation of a DNA as described above, a vector as described above or an NS1 protein as described above or a portion thereof. In particular, the present invention relates to a A method wherein the NS1 protein or a portion thereof or the NS1 protein encoded by the DNA or the vector or a portion thereof is derived from a dengue virus subtype, and wherein the DNA, the vector or the NS1 protein or a portion thereof is used as a counteracting Vaccine of dengue subtype. Brief Description of the Invention A DNA comprising a performance cassette encoding at least one flavivirus NS1 protein or a portion thereof, such as the DNA described above, wherein the expression cassette comprises eukaryotic transcriptional regulatory elements And a sequence encoding a flavivirus NS1 protein or a portion thereof, such as the DNA described above, wherein the NS1 protein encoding a flavivirus or a portion thereof The sequence is preceded by an ATG codon and a sequence encoding a glycosylated signal sequence, and wherein the coding sequence ends with a translation stop codon. The DNA as described above, wherein the eukaryotic transcriptional regulatory element is a poxvirus The DNA of the above, wherein the flavivirus is a mosquito-borne flavivirus, such as the DNA described above, wherein the flavivirus is a dengue virus, such as the DNA described above, wherein the dengue virus is a dengue virus subtype 2. A vector comprising the DNA as described above, wherein the vector is a poxvirus vector, such as the vector described above, wherein the marker is a bovine virus, particularly a modified bovine cancer Ancara (MVA). MVA-BN or its derivatives, especially MVA 575 (ECACC V00120707), preferably MVA-BN (V00083008). An NS1 protein or a portion thereof, which is encoded by DNA as described above or as described above. The DNA as described above, such as the above vector or the NS1 protein line as described above, is used as the seedling of 1354560. A DNA, vector or NS1 protein as described above, wherein the NS1 protein or a portion thereof or the NS1 protein encoded by the DNA or the vector or a portion thereof is derived from a mosquito-borne flavivirus, wherein the DNA, the vector, the DNA The NS1 protein or a portion thereof is used as a vaccine against a mosquito-borne flavivirus derived from a vaccine (i.e., the DNA, the vector or the NS1 or a portion thereof) or against other mosquito-borne flaviviruses. A DNA, vector or NS1 protein as described above, wherein the NS1 protein or a portion thereof or the NS1 protein encoded by the DNA or the vector or a portion thereof is derived from a dengue virus subtype, wherein the DNA, the vector, the NS1 protein Or a portion thereof is used as a vaccine against all dengue virus subtypes. The dengue virus-based dengue virus subtype 2 is preferably derived from the vaccine. A vaccine comprising DNA as described above, such as the vector described above, such as the NS1 protein described above. A DNA such as the above, such as the above-described vector, such as the above-described NS1 protein, is used for the preparation of a vaccine. The use as described above, wherein the NS1 protein or a portion thereof or the NS1 protein or a portion thereof encoded by the DNA or the vector is derived from a dengue virus subtype, wherein the DNA, the vector, the NS1 protein or a portion thereof is used As a vaccine against all dengue virus subtypes. The use as described above, wherein the NS1 protein or a portion thereof or the NS1 protein encoded by the DNA or the vector or a portion thereof is derived from a mosquito-borne flavivirus, wherein the DNA, the vector or the NS1 protein or a portion thereof It is used as a flavivirus for the transmission of a vaccine (i.e., the DNA, the vector or the NS1 or a portion thereof), and a vaccine against other mosquito-borne flaviviruses. a method for treating or preventing a flavivirus infection, comprising vaccinating a brain as described above, a vector such as the above, an NS1 protein as described above or a part thereof to an animal in need of treatment or prevention of the flavivirus infection, including humans . The method as described above, wherein the NS1 protein or a portion thereof or the NS1 protein or a portion thereof encoded by the vector or the vector is derived from a dengue virus subtype, wherein the brain, the vector, the (4) S1 protein or a portion thereof It is used as a vaccine against all dengue virus subtypes.

如上述之用途’其中該NS1蛋白或其部分或由該臟或該載 體所編碼之NS1蛋白或其部分係來自_種經蚊子傳播之黃病 毒’其中該DNA、該載體或該NS1蛋白或其部分被用作為一種對 抗衍生成疫苗(即該DMA 1載體或該_或其料)之經蚊子傳 播的黃病毒以及對抗其它經蚊子傳播的黃病毒之疫苗。 實施例Use as described above, wherein the NS1 protein or a portion thereof or the NS1 protein encoded by the viscera or the vector or a portion thereof is derived from a mosquito-borne flavivirus, wherein the DNA, the vector or the NS1 protein or Partially used as a mosquito-borne flavivirus against a derivative vaccine (ie, the DMA 1 vector or the material or its material) and against other mosquito-borne flaviviruses. Example

下列之實施例將可進-步例示本發明。其等由熟悉該項技 藝者充分了解。所提供之實施例不可被解釋成,本發明所提供 之技術的實施限於此等貫施例。 實施例1: mBN07之構成 1. NS1抗原之詳細說明(第1圖) 此實施列關於來自新天竺老鼠C品種-NGC品種(例如:基 因庫序列AF038403)之血清類型2的NS1。因為黃病毒之NS1 蛋白係被產生成多蛋白前體的部分,因此在對應DMA方面,該 NS1基因之前面不是,,ATG “起始密碼子。 因此,編碼該NS1蛋白之cDNA序列必須加上一"ATG"起始 26 1354560 • · 密碼子。之後接著加上一訊號序列,藉此新合成的NS1蛋白在 内質網中會被糖化。最後,該蛋白質-编碼卡匣需要一個終止 密碼子且在此實施例中,TAG係加在該蛋白質編碼cDNA序列的 3’终端》用於本發明之實施例中之"ATG+訊號序列"要素係來自 E蛋白質的疏水性C-终端(至少28個胺基酸,對NGC品種而言 . 係胺基酸M(ATG)起始)。 ' 第1A圖顯示作為本發明之實施例之精確的訊號序列+NS1 φ 序列(亦可參見序列編號5和6)。該“訊號序列+NS1”核苷酸編 碼序列係藉由使用下列之引子,以RT-PCR擴增來自登革熱NGC RNA基因組而得: D2NS卜1上面: 5’ -ACAdM7T7IiGAAI£AATTCACGTAGCACCTCA-3’(序列編號 · 4) 斜體字部分:Bgl II内切限制酶辨識位置。 在下面劃線的是起始密碼子。 φ D2NS卜2下面: 5, -AATJM7rTCTA£IAGGCTGTGACCAAGGAGTT-3’(序列蝙號 3) ^ 斜體字部分·· Bgl II内切限制酶辨識位置。 在下面劃線的是終止密碼子。 依製造業者所建議之儀器’該RT_pCR擴增可使用來自The following examples will further illustrate the invention. They are fully understood by those familiar with the art. The embodiments provided are not to be construed as limiting the implementation of the technology provided by the invention to such embodiments. Example 1: Composition of mBN07 1. Detailed description of NS1 antigen (Fig. 1) This example relates to NS1 of serotype 2 from the Scorpio mouse C-NGC variety (e.g., gene library sequence AF038403). Since the NS1 protein of the flavivirus is produced as part of the polyprotein precursor, the NS1 gene is not preceded by the ATG "start codon" in terms of DMA. Therefore, the cDNA sequence encoding the NS1 protein must be added. One "ATG" Start 26 1354560 • Codon. This is followed by a signal sequence whereby the newly synthesized NS1 protein is glycosylated in the endoplasmic reticulum. Finally, the protein-encoding cassette requires a termination. Codon and in this embodiment, the TAG is added to the 3' terminus of the protein-encoding cDNA sequence. The "ATG+ signal sequence" element used in the embodiment of the present invention is a hydrophobic C-terminal derived from E protein. (At least 28 amino acids, for NGC varieties. Starting with amino acid M (ATG). ' Figure 1A shows the exact signal sequence + NS1 φ sequence as an embodiment of the invention (see also SEQ ID NO: 5 and 6). The "signal sequence + NS1" nucleotide coding sequence was obtained by RT-PCR amplification of the dengue NGC RNA genome by using the following primers: D2NS Bu 1 above: 5' -ACAdM7T7IiGAAI £AATTCACGTAGCACCTCA-3' (SEQ ID NO: 4) Italicized part: Bgl II endostriction restriction enzyme recognition position. Underlined is the start codon. φ D2NS 2 2 below: 5, -AATJM7rTCTA£IAGGCTGTGACCAAGGAGTT-3' (sequence s horn 3) ^ Italicized part · Bgl II endonuclease restriction enzyme recognition position. Underlined is the stop codon. According to the manufacturer's recommended instrument 'This RT_pCR amplification can be used from

Roche Molecular Biochemical 之 Titan 〇ne 打、咖 組(目錄號碼1-939-823)來進行。然而,基本上任何商業化套 未商業化之RT-PCR套組均可代替使用。 、北*或 27 1354560 之後,該RT-PCR產物可被選殖進入出現於許多商業上可 得之細菌選殖質體中之任何多數選殖位置的BamH丨位置,然而 於此貫施例中,其係被選殖進入ρΑΠ中,以選殖成pAF7D2NSl-Roche Molecular Biochemical's Titan 〇ne playing, coffee group (catalog number 1-939-823). However, essentially any commercially available set of uncommercial RT-PCR kits can be used instead. After North* or 27 1354560, the RT-PCR product can be colonized into the BamH丨 position of any of the most selected colonies in many commercially available bacterial selections, however, in this example , the line was selected into ρΑΠ to be selected into pAF7D2NSl-

見第1B和1C圖關於pAF7D2NSl之詳細序列。第id圖顯示MSI 胺基酸序列和含有加上來自E蛋白之C-端胺基酸編碼序列之訊 號序列的NS1之疏水性墨點。短的N-端疏水性區域指的是訊 號序列。 2. NS1表現卡匣之細節(第2圖) 為表現來自諸如金絲雀痘、家禽痘、牛痘或MVA之痘病毒 病毒載體的''訊號序列+NS1",在其cDNA的5’端上需要加上、产 病毒起動子。當所有痘病毒合成的RNA係以病毒編碼的酵素(其 不需polyA額外訊序列來進行此功能)來多腺嘌呤化時,則多 腺嘌呤化訊號序列非為必須的。任何痘病毒起動子均可用於表 現此卡匣。第2圖與序列編號9與10顯示作為本發明之實施 例的11痘病毒起動子+訊號序列+NS1"卡匣之核苷酸序列。 關於本發明所使用之例子,該"訊號序列+NS1"進一步係<吏 用引子OBN338和OBN345,藉由PCR從NS1質體選株擴增而來。 oBN345引子包含殖癌病毒最小的起動子要素5’至在選殖質體 内之標的序列的核苷酸序列。供〇BN345引子結合之質體榡的 序列係在該訊號序列起始密碼子的上流將近40個核苷酸處。 此係用於確定RNA的轉錄在該訊號序列ATG起始密碼子之前包 含一長列非蛋白質編碼序列。 具有Ps起動子之PCR引子: OBN338·· 5,-TTGTTAGCAGCCGGATCGTAGACTTAATTA (30)(序列編 % 28 1354560 * * 號1) oBN345: 5’-caaaaaattgaaattttattttttttttttggaatata^ataaaa ACACGATAATACCATGG -3’(序列編號 2) 下面劃線的核誓酸代表該痘病毒最小的起動子序列。 用於該PCR擴增反應的首五個循環的黏合溫度係以 OBN345結合至選殖載體中相同序列的核苷酸序列來計算。 3.整合NS1表現卡匣至MVA中(第3圖) 該PCR擴增的產物以平口鈍端選擇進入質體pbnx〇7的平 切口為終端的Xho I位置(參見第3a圖)以形成質體pbn41(參 見第3a圖)。pBN41係用於以同源重組,將11痘起動子+訊號序 列+NS1”卡匣整合至MVA的缺失位置2之載體。 pBN41(參見第3a圖)的基本特徵如下: 質體骨架係來自.Stratagene之 pBluescript SK-plus(Genbank VB0078)。 -D2F1:缺失2側面1同源重組臂。此代表從MVA基因資料庫 序列U94848之20117至20717之核誓酸序列。 -PPr:痘病毒起動子。 -NPT 11:新黴素破轉換酶蛋白質編碼序列(基因資料庫v〇〇618 之蛋白質編碼序列)。 IRES.來自腦心肌炎病毒之核糖體内入序列(Jang等人, 1989,基因資料庫M16802)。 -EGFP:經提升的綠螢光蛋白質編碼序列(基因資料庫序列 U57609之蛋白質編碼序列-核苷酸675至核苷酸1394)» 29 1354560 -NS1:來自登革熱NGC品種之“訊號序列+NS1”蛋白質編碼序 列。 -D2F2:缺失2側面2同源重組臂。此代表從MVA基因資料庫 序列U94848之20719至21343核誓酸序列。See Figures 1B and 1C for the detailed sequence of pAF7D2NS1. The id diagram shows the MSI amino acid sequence and the hydrophobic ink dot containing NS1 plus the signal sequence from the C-terminal amino acid coding sequence of the E protein. A short N-terminal hydrophobic region refers to a signal sequence. 2. Details of the NS1 performance cassette (Figure 2) is the ''signal sequence + NS1" from the poxvirus vector such as canarypox, poultry pox, vaccinia or MVA, on the 5' end of its cDNA Need to add, produce a virus promoter. A multi-adenosine signal sequence is not required when all of the poxvirus-synthesized RNAs are multi-adenosed with virally encoded enzymes that do not require the polyA additional sequence to perform this function. Any pox virus promoter can be used to express this cassette. Fig. 2 and SEQ ID NOs: 9 and 10 show the nucleotide sequence of the 11 poxvirus promoter + signal sequence + NS1 " cassette as an example of the present invention. With respect to the examples used in the present invention, the "signal sequence + NS1" is further derived from the NS1 plastid clone by PCR using primers OBN338 and OBN345. The oBN345 primer contains the nucleotide sequence of the minimal promoter element 5' of the cancer virus to the target sequence within the selected plastid. The sequence of the plastoquinone that binds to the BN345 primer is approximately 40 nucleotides upstream of the start codon of the signal sequence. This is used to determine that transcription of RNA contains a long list of non-protein coding sequences prior to the ATG start codon of the signal sequence. PCR primer with Ps promoter: OBN338·· 5,-TTGTTAGCAGCCGGATCGTAGACTTAATTA (30) (sequence % 28 1354560 * * No. 1) oBN345: 5'-caaaaaattgaaattttattttttttttttggaatata^ataaaa ACACGATAATACCATGG -3' (sequence number 2) underlined The nuclear sinus acid represents the smallest promoter sequence of the pox virus. The first five cycles of the binding temperature for the PCR amplification reaction were calculated by binding the OBN345 to the nucleotide sequence of the same sequence in the selection vector. 3. Integrate the NS1 performance cassette into the MVA (Fig. 3). The PCR amplified product was selected as the terminal Xho I position (see Figure 3a) with a flat blunt end selected into the plaque of the plastid pbnx〇7 (see Figure 3a). Body pbn41 (see Figure 3a). pBN41 was used to integrate the 11 acne promoter + signal sequence + NS1" cassette into the vector of deletion position 2 of MVA by homologous recombination. The basic characteristics of pBN41 (see Fig. 3a) are as follows: The plastid skeleton is derived from. Stratagene's pBluescript SK-plus (Genbank VB0078) -D2F1: deletion of the 2 flanking 1 homologous recombination arm. This represents the nuclear sinus acid sequence from 20117 to 20617 of the MVA gene library sequence U94848. -PPr: Poxvirus promoter. -NPT 11: Neomycin disruption enzyme protein coding sequence (protein coding sequence of gene library v〇〇618) IRES. Ribosome in vivo sequence from encephalomyocarditis virus (Jang et al., 1989, Gene Database M16802) -EGFP: Elevated green fluorescent protein coding sequence (protein coding sequence of gene library sequence U57609 - nucleotide 675 to nucleotide 1394) » 29 1354560 -NS1: "Signal sequence + from dengue NGC variety" NS1" protein coding sequence. -D2F2: deletion 2 flank 2 homologous recombination arm. This represents the nuclear sinus acid sequence from 20719 to 21343 of the MVA gene library sequence U94848.

AmpR: pBluescript之氨比西林抗性基因。 3. 1藉由同源重組將登革熱"痘起動子+訊號序列+NS1"插入MVA 之缺失位置 3.1 · 1藉由同源重組整至MVA基因組 上述整合載體pBN41係用於以於pBN41的側面1和側面2 臂以及該MVA基因組内相同的標的序列間之同源重組,將該登AmpR: pBluescript is an aminopyrazine resistance gene. 3. 1 by the homologous recombination of dengue & acne promoter + signal sequence + NS1 " insertion of MVA deletion position 3.1 · 1 by homologous recombination to the MVA genome The above integration vector pBN41 is used for the side of pBN41 Homologous recombination between the 1 and the lateral 2 arms and the same target sequence within the MVA genome

革熱NS1表現卡匣且加上報告卡匣(痘起動子+NPT II-IRES-EGFP)整合至該MVA基因組。此係藉由轉染該線性的 整合載體至之則已受低量重覆的Mva感染(MOI,例如,每細胞 〇.〇1感染單位)之雞胚胎纖維母細胞(CEF)内來達成。在感染 48小時後或當該感染已到達融合時,製備病毒萃取液且將其儲 存於-20。(:中以備所欲之重組MVA(rMVA)的選擇與選殖純化時 用。 3.1.2 rMVA的選擇以及選株的純化 非-重組MVA的排除(空的載體病毒)以及rMVA的擴增係藉 由在G418的存在下(G4〗8的數量必須最佳化至決定不會殺死 CEF細胞之最高劑量)以低Μ0Ι《染融合雞胚胎纖維母(CEF)細 胞來達成。任何不含與經整合的町π基因的病毒在被加入 』胞維持培養液之G418的存在下將不會複製顧8會抑制腦 複製’但因為CEF細胞將呈不動的非複製的狀態,所以其等將 30 1354560 • · 不受G418的影響。由於該提升的螢光綠蛋白質的表現所以 被rMVAs感染之Cef細胞可在登光顯微鏡下觀察到。 得自該同源重組步驟之病毒萃取物必須依序地稀釋且用 於在G418的存在下感染未經處理的cef細胞,並覆蓋以低熔 點之洋菜膠。感染2天之後,將該被感染之洋菜膠板置於螢光 ' 顯微鏡下觀察經感染細胞之單一綠色清晰成像。將該等標示起 • 來且取出含該被感染成清晰成像之細胞的洋菜膠栓,並置於含 無菌細胞維持培養液之1511)1微離心管中。藉由在—2〇〇c冷凍 ® -融解該管3次而讓病毒從該洋菜膠栓中釋出。 該最好的選殖株或該等選殖株進一步於洋菜膠下以pCR 分析來選殖純化直至無空白的載體污染的跡象(3到30回的選 ' 殖純化)。之後該等選殖株被擴增以供進一步進行嚴苛測式來 - 校正插入的配置、外來起動子基因卡匣的序列證明以及以 RT-PCR的表現分析。在此等分析之後,僅有一個選殖株會在 G418選擇下被進一步擴增,俾便製備一主要的儲備液供進一步 的特徵與致免疫性的研究。 ® 具有於本發明中所述之被插入登革熱表現卡匣之重組 MVA稱為mBN07。第3b圖顯示在mBN07中插入的外來序列之配 置。 4.以MVA來表現真正的NS1 來自該重組MVA(mBN07)之NS1蛋白的表現係藉由標準的 西方點墨法分析,在沒有變性的情況下確認。第4圖顯示在經 純化的mBN07被用於感染哺乳動物組織培養細胞(例如BHK-21 細胞,Μ0Ι每細胞1.0感染單元)之後,NS1表現的結果。粗糙 31 1354560 的蛋白質萃取物係在感染24-30小時之後從該等經感染的細胞 製備而來’此時將部分萃取物與含有2_毓基乙醇(2-ME)或不含 2-ME的SDS-PAGE凝膠裝載緩衝液混合。作為正控制組之該等 樣本加上來自以登革熱NGC品種(蚊子細胞株)感染之細胞的蛋 白質萃取物係於SDS-PAGE凝膠中以電泳來分離,且之後被墨 點於硝基纖維素膜上。以一抗登革熱NS1單株抗體來探測該膜。 第4圖顯示’由mBN07表現之NS1係以抗-登革熱NS1單 株抗體來辨識’且形成與來自經登革熱感染之細胞之NS1相似 的正確的二聚型式(比較沒有煮沸的 '不含2-ME之mBN07巷與 鲁 沒有煮沸的、不合2-ME之DEN2巷)。第4圖顯示,該二聚型 式於變性的情況下分開成單體型式(參見經煮沸的、含2-ME之 mBN07 巷)。 於被mBN07感染之細胞中表現之NS1亦可以在西方點墨分 析法中,由經合併復原_之病人的血清,以及具有可與登革熱 之全部四種血清類型產生交互反應之單株抗體來辨識。此證明 了由mBN07表現的NS1係產生致免疫性。 實施例2:由mBN07所表現之NS1對於非血清類型2的登革熱病 · 毒與日本腦炎之NS1的交又免疫原性 1.由mBN07表現之NS1對復原中之病人的血清致反應性 測試的結果具有下列可能性’ mBN07表現的NS1可被證實 之前受過登革熱病毒感染之個體於復原中的血清辨識出來。來 自68個具有對抗登革熱病毒封套蛋白質之抗體之個體的血清 (藉由免疫墨點圖對照由登革熱血清類型1至4製成之真正的 抗原)被選擇用於測試對照由mBN07感染的細胞萃取液製備成 32 1354560 « · 與作為控制組之MVA-GFP感染的細胞萃取液之免疫墨點條帶。 令該含抗原之細胞以不含2毓基己醇之樣本緩衝液處理且不加 熱。關於68位個體之測試的血清,在免疫墨點圓中有(91 2%) 與由mBN07表現之BN07 NS1反應。該等血清進一步被分析對 全部四種登革熱病毒血清類型以及日本腦炎病毒之NS1的反應 (JEV)。結果示於表1中。54個血清與全部的登革熱病毒血清 類型和日本腦炎病毒(JEV)之NS1反應,而該等54個血清中之 53個(98. 2%)亦與由mBN07表現之NS1反應。七(7)個血清對至 少一種登革熱病毒血清類型之NS1具專一性,且不會與jev之 NS1反應。該7個血清亦與由mBN07表現之NS1反應。另外7 個血清僅與JEV的NS1反應,而不與任何登革熱病毒血清類型 之NS1反應,然而該等JEV專一的血清中之2個(28. 6%)亦會 與由mBN07表現的NS1反應。 表1: BN07 NS1 陰性 BN07 NS1 陽性 真正DEN NS1陽性 0% (0/7) 100% (7/7) 真正 DEN & JEV NS1 陽性 1.85% (1/54) 98.15% (53/54) 真正JEV NS1陽性 71.43% (5/7) 28.57% (2/7) 抗血清對真正的NS1與由mBN07表現的NS1之反應的比 較。括弧中:測試為陽性之樣本數目/測試樣本之總數。DEN = 登革熱,JEV=曰本腦炎病毒。 亦對相同的68個血清分析其對前膜(premembrane)之蛋 白質的反應性。依發明人之經驗,抗體對前膜比抗體對NS1或 E具較高的專一性。因此,已受登革熱感染過之病人將會產生 會辨識登革熱病毒前膜,而不是JEV前膜之抗體,反之亦然。 33 順著該等方式之分析將提供個體之感染歷史之較佳預報。表2 顯示’來自22個人之血清單獨與真正的登革熱前膜蛋白質反 應’因此推測該22個病人僅曾遭受登革熱病毒,而不是JEV 的感染。該等22個血清全部與由mBN07表現之NS1反應。其 它22個病人已證實之前曾有被登革熱與JEV兩者感染,再者 所有22個血清亦與由mBN〇7表現之NS1反應。於此系列中, 亦存在有21個已證實之前只被jEv感染之病人(即使該等血清 已具有對抗登革熱E之交叉反應的抗體)。任擇地,該21個JEV 反應者中的17個(82%)與由mBN07表現之NS1反應。在整組中 只有3個血清不與登革熱或JEV任一者反應,而該等當中僅有 1個與mBN07表現的NS1反應。對此,最有可能的理由係抗體 的效價太低以致於無法藉由免疫墨點法測得。 表2: 真正DEN prM陽性 BN07 NS1 陰性 BN07 NS1 陽性 〇% (0/22) 100% (22/22) 真正 DEN & JEV prM— 陽性 〇% (0/22) 100% (22/22) 真正JEV prM陽性 19.0% (5/7) 81.0% (17/21) PrM陰性 66. 7°/〇(2/3) 33.3%(1/3) 抗血清對真正的前膜與„^|\1〇7!^1之反應的比較。括弧中: 測s式為陽性之樣本數目/測試樣本之總數。DEN =登革熱,JEV =曰本腦炎病毒。 於表2中之資料亦清楚地顯示,對於6個不會與mBN07 表現之NS1反應之血清,4個係來自之前曾受JEV,而不是登 革熱的感染之個體。剩下的2個測不到對登革熱或JEV任一者 1354560 • · 之前膜蛋白的抗體,可能是效價太低。 2. κιΒΝ07接種之兔子且測試免疫後血清對登革熱病毒與日本腦 炎病毒之免疫墨點圖與EL ISA分析 根據如下所示本發明之接種程序,以皮下途徑免疫三隻無 特定病原體之兔子。於第〇天,以一瓶用無菌水配製成丨毫升 • 之冷凍-乾燥的疫苗(Ixl0e8 TCID50 BN07冷凍-乾燥的疫苗) . 來接種每一隻免子,之後於第28天再次接種。取在第一次接 種前(預先採血)之血液樣本,且在第二次接種1〇天後再取一 ® 次。 第〇天=預先採血,接著第1次接種 第28天=第2次接種 第38天=血液取樣 、 迴毬預先採血與旁,祷待之血渣斜吞革熱血清類创2之备疝 墨點圖 第5圖顯示1:200稀釋之血清被測試於在無變性情況 ^ 下,藉由SDS PAGE所分離之登革熱2病毒抗原的免疫墨點圖 條帶與未受感染之G6/36細胞的控制條帶。結果清楚地顯示 出’在以mBN07接種時’全部的兔子均產生相對高效價之抗-脱 抗體,其與由登革熱血清類型2感染之組織培養蚊子細胞所產 生之真正的NS1產生交又反應。 在接種之則取得之血清不會與免疫墨點圖上任何登革熱 蛋白質反應。G. NS1 showed a sputum and a reporter card (pox promoter + NPT II-IRES-EGFP) was integrated into the MVA genome. This is achieved by transfecting the linear integration vector into chicken embryonic fibroblasts (CEF) which have been infected with low amounts of Mva (MOI, e.g., per cell 〇.1 infection unit). The virus extract was prepared 48 hours after infection or when the infection had reached confluence and stored at -20. (: The choice of recombinant MVA (rMVA) for selection and purification in the preparation. 3.1.2 Selection of rMVA and purification of selected plants Non-recombinant MVA exclusion (empty vector virus) and amplification of rMVA This is achieved by infecting fusion chicken embryonic fibroblast (CEF) cells in the presence of G418 (the number of G4 8 must be optimized to the highest dose that will not kill CEF cells). The virus with the integrated π gene will not replicate in the presence of G418 added to the cytoplasmic culture medium, and will inhibit the brain replication', but because the CEF cells will be in a non-replicating state, they will 30 1354560 • · Not affected by G418. Cef cells infected with rMVAs can be observed under the Dengguang microscope due to the enhanced expression of fluorescent green proteins. The virus extract from this homologous recombination step must be sequential Diluted and used to infect untreated cef cells in the presence of G418 and covered with low melting acacia gum. After 2 days of infection, the infected acacia seeds were placed under a fluorescent 'microscope Single green of infected cells Xi imaging. The Flag and the like and to remove containing • from the infected cells into a clear image of the agar gel plug, and placed in a sterile cell maintenance-containing culture solution of 1511) in a microcentrifuge tube. The virus was released from the gelatin plug by soaking the tube 3 times at -2〇〇c. The best selected strains or the selected strains were further purified by pCR analysis under acacia until no signs of contamination with the blank (3 to 30 rounds of selection). The selected strains are then amplified for further stringency testing - alignment of the inserted configuration, sequence identification of the foreign promoter gene cassette, and performance analysis by RT-PCR. After these analyses, only one of the selected strains was further expanded under the selection of G418, and a major stock solution was prepared for further study of the characteristics and immunogenicity. The recombinant MVA having the dengue performance cassette described in the present invention is called mBN07. Figure 3b shows the configuration of the foreign sequence inserted in mBN07. 4. Real NS1 by MVA The expression of the NS1 protein from this recombinant MVA (mBN07) was confirmed by standard Western blotting analysis without denaturation. Figure 4 shows the results of NS1 expression after purified mBN07 was used to infect mammalian tissue culture cells (e.g., BHK-21 cells, 1.00Ι 1.0 cells per cell). The protein extract of Rough 31 1354560 was prepared from the infected cells 24 to 30 hours after infection. 'At this time, some extracts were contained with 2-mercaptoethanol (2-ME) or 2-ME-free. The SDS-PAGE gel loading buffer was mixed. These samples, which are positive control groups, plus protein extracts from cells infected with the dengue NGC variety (mosquito cell line) were separated by electrophoresis in an SDS-PAGE gel, and then spotted on nitrocellulose. On the membrane. The membrane was probed with a monoclonal antibody against dengue NS1. Figure 4 shows that the NS1 line expressed by mBN07 is recognized by anti-dengue NS1 monoclonal antibody and forms the correct dimeric pattern similar to NS1 from dengue-infected cells (compared to no boiled '2-free ME's mBN07 Lane and Lu are not boiled, not in 2-ME DEN2 Lane). Figure 4 shows that the dimeric form is divided into monomeric forms in the case of denaturation (see the boiled, 2-ME mBN07 lane). NS1 expressed in cells infected with mBN07 can also be identified in Western blotting analysis by serum from patients with combined recovery and individual antibodies with interaction with all four serotypes of dengue fever. . This demonstrates that the NS1 line expressed by mBN07 produces immunogenicity. Example 2: NS1 expressed by mBN07 for non-serum type 2 dengue disease and toxicity and immunogenicity of NS1 of Japanese encephalitis 1. Serum reactivity test of NS1 expressed by mBN07 in reconstituted patients The results have the following possibility that NS1 expressed by mBN07 can be confirmed by the sera recovered from dengue virus-infected individuals. Serum from 68 individuals with antibodies against dengue virus envelope proteins (by immunoblotting plots against real antigens made from dengue serotypes 1 to 4) was selected for testing control cell extracts infected with mBN07 Prepared as 32 1354560 « · Immune dot strip with cell extract as MVA-GFP infected as control group. The antigen-containing cells were treated with sample buffer containing no decylhexanol and were not heated. Serum for the test of 68 individuals, (91 2%) in the circle of immune dots reacted with BN07 NS1 expressed by mBN07. These serums were further analyzed for the response of all four dengue virus serotypes and NS1 of Japanese encephalitis virus (JEV). The results are shown in Table 1. 54 sera were reacted with all dengue virus serotypes and NS1 of Japanese encephalitis virus (JEV), and 53 of these 54 sera (98. 2%) also reacted with NS1 expressed by mBN07. Seven (7) sera are specific for NS1 of at least one dengue virus serotype and do not react with jev NS1. The 7 sera also reacted with NS1 expressed by mBN07. The other 7 sera only reacted with NS1 of JEV and did not react with any NS1 of the dengue virus serotype, however 2 of these JEV-specific sera (28.6%) also reacted with NS1 expressed by mBN07. Table 1: BN07 NS1 negative BN07 NS1 positive true DEN NS1 positive 0% (0/7) 100% (7/7) true DEN & JEV NS1 positive 1.85% (1/54) 98.15% (53/54) true JEV NS1 positive 71.43% (5/7) 28.57% (2/7) Comparison of antiserum to true NS1 response to NS1 expressed by mBN07. In brackets: The number of samples tested positive / the total number of test samples. DEN = dengue, JEV = sputum encephalitis virus. The same 68 sera were also analyzed for their reactivity to the protein of the premembrane. According to the experience of the inventors, the antibody has a higher specificity for the anterior membrane than the antibody for NS1 or E. Therefore, patients who have been infected with dengue will develop antibodies that recognize the dengue virus anterior membrane rather than the JEV anterior membrane and vice versa. 33 Analysis along these lines will provide a better forecast of the individual's infection history. Table 2 shows that serum from 22 individuals reacted alone with the true dengue pro-membrane protein' so it is speculated that the 22 patients had only suffered from dengue virus, not JEV infection. These 22 sera all reacted with NS1 expressed by mBN07. Twenty-two patients had previously been infected with both dengue and JEV, and all 22 sera also responded to NS1 by mBN〇7. In this series, there were also 21 patients who had previously been confirmed to be infected only with jEv (even if the serum had antibodies that cross-reacted against dengue E). Optionally, 17 of the 21 JEV responders (82%) reacted with NS1 expressed by mBN07. Only 3 sera in the entire group did not react with either dengue or JEV, and only 1 of these responded to NS1 expressed by mBN07. The most likely reason for this is that the antibody titer is too low to be measured by the immunoblotting method. Table 2: True DEN prM positive BN07 NS1 negative BN07 NS1 positive 〇% (0/22) 100% (22/22) True DEN & JEV prM—positive 〇% (0/22) 100% (22/22) Real JEV prM positive 19.0% (5/7) 81.0% (17/21) PrM negative 66. 7°/〇 (2/3) 33.3% (1/3) Antiserum to true anterior membrane with „^|\1 Comparison of the responses of 〇7!^1. In brackets: The number of samples with positive s test / the total number of test samples. DEN = dengue, JEV = sputum encephalitis virus. The data in Table 2 also clearly shows that For 6 sera that did not respond to NS1 in mBN07, 4 were from individuals who had previously been infected with JEV, not dengue. The remaining 2 were not detected for either dengue or JEV 1354560 • before Membrane protein antibody may be too low in potency. 2. κιΒΝ07 inoculated rabbit and tested immunized serum against dengue virus and Japanese encephalitis virus, immuno dot map and EL ISA analysis according to the inoculation procedure of the present invention as shown below, Three rabbits without specific pathogens were immunized subcutaneously. On the third day, a bottle of sterile water was used to prepare 丨ml• of the frozen-dried Miao (Ixl0e8 TCID50 BN07 freeze-dried vaccine). Inoculate each donkey, then inoculate again on the 28th day. Take the blood sample before the first inoculation (pre-collection), and in the second inoculation 1 Take one more time after the day. Day 3 = pre-blood collection, then the first vaccination on the 28th day = the second vaccination on the 38th day = blood sampling, back to the blood collection and the side, the blood of the prayer Figure 5 shows a 1:200 dilution of serum tested in a non-denaturing condition, the immunological dot plot of the dengue 2 virus antigen isolated by SDS PAGE Control strips with uninfected G6/36 cells. The results clearly show that 'when inoculated with mBN07' all rabbits produced relatively high titer anti-de-antibody against tissues infected with dengue serotype 2 The true NS1 produced by the culture of mosquito cells produces a cross-reaction. The serum obtained at the time of inoculation does not react with any dengue protein on the immune dot map.

免疫後之血清被滴定成丨:1〇〇〇、1:2〇〇〇1:4〇〇〇、丨:1〇 1.10 、1.10 ,且被測試於無-變性情況下,藉由SDS PAGE 35 1354560 所分離之登革熱2病毒抗原的免疫墨點條帶以及未受C6/36之 細胞的控制條帶。參見第6圖三隻兔子之滴定终定被計算成 1:10000 免疫前與免疫後之血清被滴定成1:10-1 2、1:10-3、1:10-4、 1:10 、1:10 6、1:10·5 ’且被測試於間接IgG ELISA。井係以 1:250稀釋之登革熱2與未受感染之C6/36的細胞溶解物塗覆。 表3 1:1(T2 1:103 1:104 1 · 1 n-6 7 1:10 -〇. 012 0. 006 0. 007 0.623 0.127 0.02 0.004 0.001 -〇 〇03 -0.012 〇 -0.001 -0.003 〇 -〇'〇〇1 0.402 0.06 -0.007 0.008 -0.003 〇'〇〇2 -0.008 0.03 -0.002 0.005 -0.002 -〇 〇〇〇 0^907 0.224 0,038 0.011 -〇. QQi 〇〇3 兔子#1 兔子#2 兔子#3The immunized serum was titrated into 丨: 1〇〇〇, 1:2〇〇〇1:4〇〇〇, 丨:1〇1.10, 1.10, and was tested in the absence-denatility case by SDS PAGE 35 1354560 Immune dot strips of dengue 2 virus antigen isolated and control strips of cells not subjected to C6/36. See Figure 6 for the titration of three rabbits. The titration is calculated to be 1:10000. The serum before and after immunization is titrated to 1:10-1 2, 1:10-3, 1:10-4, 1:10, 1:10 6, 1:10·5 ' and tested in indirect IgG ELISA. The well was coated with 1:250 diluted dengue 2 and uninfected C6/36 cell lysate. Table 3 1:1 (T2 1:103 1:104 1 · 1 n-6 7 1:10 -〇. 012 0. 006 0. 007 0.623 0.127 0.02 0.004 0.001 -〇〇03 -0.012 〇-0.001 -0.003 〇 -〇'〇〇1 0.402 0.06 -0.007 0.008 -0.003 〇'〇〇2 -0.008 0.03 -0.002 0.005 -0.002 -〇〇〇〇0^907 0.224 0,038 0.011 -〇. QQi 〇〇3 Bunny #1 Bunny #2 Rabbit #3

Pre Post Pre Post Pre Post 1:10'Pre Post Pre Post Pre Post 1:10'

0.003 -0.002 〇〇T 36 1 在不同稀釋下,每一隻兔子在免疫前與免疫後之灰清的 ELISA吸光讀數(pre =免疫前的血清,p〇st =免疫後的血清)。 關於每一隻兔子免疫後之滴定結果示於第7圖中。針對每 一隻兔子免疫後之企清所評估之終點效價係1: 1〇〇〇。 2 2預先操血與免痠後血清掛登革熱病喜血清類剞1、_ 以及日木腦炎病毒免痏黑點圄潘丨钴 3 每一隻兔子血清在1:1000之稀釋濃度下被測試於在非一 變性情況下,藉由SDS PAGE所分離之登革熱1、2、3、4的免 4 疫墨點條帶上與JE病毒抗原+未受C6/36之細胞的控制條帶 5 由mBN07疫苗免疫之兔子誘出辨識真正的登革熱病毒 6 上。第8圖顯示,每一隻兔子免疫後血清與來自登革熱血清類 型1、3和4之NS1反應且與日本腦炎免疫墨點反應。 7 3.結論 ^54560 血清類型2 NS1之抗體。 -當於免疫墨點法分析與ELISA中之終點為1:10 -4和 1:10 β時,可觀察到很高的免疫反應。 一於該兔子中被誘出之抗體與所有其它登革熱血清類型 (1、3 & 4)交又反應。 一該抗體亦與來自諸如JEV之異源病毒的NS1交叉反應。 實施例3:於選定之細胞株中之MVA-BN載體病毒之成長動力 學、於活體内之複製以及免疫學的資料 如於說明書章節中所指出,本發明之DNA較佳係被插入 MVA-BN癌病毒的载體或其衍生物中。下列實施例更詳細的描 迷MVA-BN。所揭示之實施例允許熟習此技藝者識別mva-BN和 其衍生物。 I細胞株之成長動力學: 為描繪MVA-BN之特性,將此品種的成長動力學與其它特性 已被描繪出之MVA作比較。 此實驗之進行係藉由比較於隨後所列出之原始細胞與細胞 株中之下列病毒的成長動力學: MVA-BN (病毒儲備#23,18. 02. 99未經處理的,滴定成 2> 〇 X 107 TCIDso/ml); 由Altenburger描繪特性之MVA(美國專利第5, 185, 146號) 且另外稱為MVA-HLR;0.003 -0.002 〇〇T 36 1 ELISA absorbance reading of pre-immunization and post-immunization graying of each rabbit at different dilutions (pre = pre-immune serum, p〇st = post-immune serum). The titration results after immunization of each rabbit are shown in Fig. 7. The endpoint titer evaluated by Qiqing for each rabbit immunization was 1:1〇〇〇. 2 2 pre-operative blood and acid-free serum hang dengue fever hi serum 剞 1, _ and Japanese cerebral encephalitis virus free black spots 圄 Pan 丨 3 each rabbit serum was tested at a dilution of 1:1000 In the case of non-denatured, the strips of dengue 1, 2, 3, and 4 of the dengue separated by SDS PAGE were banded with JE virus antigen + control strips of cells not subjected to C6/36 5 by mBN07 vaccine Immunized rabbits were induced to recognize the true dengue virus 6 on it. Figure 8 shows that each rabbit immunized serum reacted with NS1 from dengue serotypes 1, 3 and 4 and reacted with Japanese encephalitis immune dots. 7 3. Conclusion ^54560 Antibody to serotype 2 NS1. - A high immune response was observed when the endpoints in the immunoblot analysis and ELISA were 1:10 -4 and 1:10 β. The antibody that was elicited in the rabbit reacted with all other dengue serotypes (1, 3 & 4). One such antibody also cross-reacts with NS1 from a heterologous virus such as JEV. Example 3: Growth kinetics of MVA-BN vector virus in selected cell lines, replication in vivo, and immunological data. As indicated in the specification section, the DNA of the present invention is preferably inserted into MVA- A carrier of BN cancer virus or a derivative thereof. The following examples describe MVA-BN in more detail. The disclosed embodiments allow those skilled in the art to recognize mva-BN and its derivatives. Growth kinetics of I cell lines: To characterize the MVA-BN, the growth kinetics of this variety were compared to other MVAs that have been characterized. This experiment was carried out by comparing the growth kinetics of the following viruses in the original cells and cell lines listed: MVA-BN (virus reserve #23, 18.02. 99 untreated, titrated into 2&gt ; 107X 107 TCIDso/ml); MVA characterized by Altenburger (US Patent No. 5, 185, 146) and additionally referred to as MVA-HLR;

由 Anton Mayr 描繪·特性之 MVA(passage 575)(Mayr 等人, [1975] Infection 3; 6-14)且另外稱為 MVA-575 (ECACC V00120707);以及 37 1354560 於國際專利申請案PCT/EP01/02703(WO 01/68820)中描繪特 性之 MVA-Vero(病毒儲備,passage 49,#20, 22.03.99 未經 處理的,滴定成 4, 2 X 107 TCIDso/ml)。 所使用之原始的細胞以及細胞株為: CEF雞胚胎纖維母細胞(從SPF卵中新鮮配置);MVA (passage 575) characterized by Anton Mayr (Mayr et al., [1975] Infection 3; 6-14) and otherwise known as MVA-575 (ECACC V00120707); and 37 1354560 in International Patent Application PCT/EP01 The characteristic MVA-Vero (viral reserve, passage 49, #20, 22.03.99 untreated, titrated to 4, 2 X 107 TCIDso/ml) is depicted in /02703 (WO 01/68820). The original cells and cell lines used were: CEF chicken embryonic fibroblasts (freshly configured from SPF eggs);

HeLa 人類子宮頸腺瘤(表皮),ATCC No. CCL-2; 143B 人類骨肉瘤 TK-,ECACC No. 91112502;HeLa human cervical adenoma (epidermal), ATCC No. CCL-2; 143B human osteosarcoma TK-, ECACC No. 91112502;

HaCaT人類角質細胞細胞株,Boukamp等人,1988, J Cell Biol 106(3): 761-771; BHK 幼倉鼠腎,ECACC 85011433;HaCaT human keratinocyte cell line, Boukamp et al, 1988, J Cell Biol 106(3): 761-771; BHK baby hamster kidney, ECACC 85011433;

Vero 非洲綠猴腎纖維素母細胞,ECACC 85020299; CV1非洲綠猴腎纖維母細胞,ECACC 87032605。 在感染方面,以5 X 105細胞/井之濃度將不同細胞種入6-井-盤中,且於 37°C,5% C〇2 下,於 DMEM (Gibco,Cat. No· 61965-026)加上2% FCS中培育至隔夜。將細胞培養液移除且 令細胞在將近moi 0. 05下,於37°C、5%C〇2中感染1個小時(在 感染方面,假定細胞數目在隔夜後加倍)。對於不同細胞類型 之每一感染所用之細胞數目為5 X 104 TCIDso以及此稱為輸入。 之後以DMEM清洗細胞三個,最後加入1毫升DMEM、2% FCS且 將該盤留在37。(:,5%C〇2下培育96個小時(4天)。藉由將該盤 置於-80°C下冷凍,來終止感染以供滴定分析用。 2.滴定分析(與疫苗病毒專一的抗體免疫染色) 為滴定病毒之數目,以1 X 1〇4細胞/井之濃度,將測試細 胞(CEF)種在 96-井-盤上,RPMKGibco, Cat. No. 61870-010)、 38 1354560 • · 7% FCS、1% 抗生素/抗黴菌素(Gibc〇, Cat No. 15240-062)中, 且於37°C,5% COz下培育至隔夜❶將包含感染實驗之6-井-盤 冷凍/融化3次,且使用RPMI成長培養液豨釋ΗΓ1至l(T2。將 病毒稀釋液分散至測試細胞上且在37°C,5% C〇2下培育5天, 以允許CPE (細胞病態作用)發展。將測試細胞固定(丙酮/甲醇 • 1:1)10分鐘’以PBS清洗並以ι:ι〇〇〇配置於培育緩衝液中, 與多株的牛痘病毒專一性抗體在室溫下一起培育(QuartettVero African green monkey kidney cellulose mother cell, ECACC 85020299; CV1 African green monkey kidney fibroblast, ECACC 87032605. In terms of infection, different cells were seeded into a 6-well-dish at a concentration of 5 X 105 cells/well at 37 ° C, 5% C 〇 2 in DMEM (Gibco, Cat. No. 61965-026 ) Plus 2% FCS to grow overnight. The cell culture medium was removed and the cells were infected for 1 hour at 37 ° C, 5% C 〇 2 at near moi 0. 05 (in terms of infection, the number of cells was assumed to double after overnight). The number of cells used for each infection of different cell types is 5 X 104 TCIDso and this is called input. The cells were then washed three times with DMEM, and finally 1 ml of DMEM, 2% FCS was added and the plate was left at 37. (:, 96 hours (4 days) at 5% C〇2. The infection was terminated for titration analysis by freezing the plate at -80 ° C. 2. Titration analysis (specific with vaccine virus) Antibody immunostaining) To quantify the number of viruses, test cells (CEF) were seeded on 96-well-plate at a concentration of 1 X 1〇4 cells/well, RPMKGibco, Cat. No. 61870-010), 38 1354560 • · 7% FCS, 1% antibiotic/antimycotic (Gibc〇, Cat No. 15240-062), and incubated at 37 ° C, 5% COz to overnight ❶ will contain the infection of the 6-well - The plate was frozen/thawed 3 times and RPMI growth medium was used to release ΗΓ1 to 1 (T2. The virus dilution was dispersed onto the test cells and incubated at 37 ° C, 5% C 〇 2 for 5 days to allow CPE ( Cell morbidity) development. The test cells were fixed (acetone/methanol • 1:1) for 10 minutes' washed with PBS and placed in incubation buffer at ι:ι〇〇〇, with multiple vaccinia virus-specific antibodies. Cultivate together at room temperature (Quartett

Berlin,Cat. No. 9503-2057)1 個小時。在以 PBS(Gibco,Cat. • No. 20012-019)清洗2次之後,加入以1:1000配置於培育緩 衝液中之HPR偶合的-抗-兔子抗體(Promega Mannheim, Cat. No. W4011),在室溫下歷時1個小時。再次以PBS清洗兩次, : 且與染色溶液(10 ml PBS + 200 μΐ配置於100%乙醇中之〇- • 二甲氧基聯苯胺飽合溶液+ 15 μΐ新鮮配置的Η2〇2) —起培育 至可觀察到棕色斑點(2個小時)。將染色溶液移除,加入PBS 以終止染色反應。每個顯示棕色斑點的井表示對CPE陽性,以 及使用Kaerber之方程式來計算效價(TCID50為基礎之分 Φ 析)(Kaerber,G. 1931. Arch. Exp. Pathol. Pharmakol. 162, 480)。 該病毒一方面被用於以低重覆性感染,即0.05感染單元/ 每細胞(5 X 104 TCID5。)來感染CEF與BHK之複製組,其被預期 對MVA寬容的,而另一方面,感染CV—1、Vero、Hela、143B 與HaCat之複製,其被預期對MVA非寬容的。之後,將該病毒 接種體除移,且清洗該細胞三次’以移除任何殘留未被吸收的 病毒。當病毒萃取物被製備好時’使感染持續4天’且之後於 39 1354560 CEF細胞上滴定。表1和第1圖顯示滴定分析的結果,此處所 給之值係感染4天後所產生之病毒的總量。 其顯示,所有的病毒均如預期般於CEF(雞胚胎纖維母細胞) 細胞中適當的被擴增’因為此係對所有MVA均寬容的的細胞 株。此外’其顯示,所有的病毒均於BHK (幼倉鼠腎細胞株) 細胞中適當的被擴增。MVA-Vero表現最佳,因為BHK係一寬 容的細胞株。 有關於Vero細胞(猴子之腎細胞株)中的複製,MVA-Vero 如預期般適當的擴增,即高於輸入1000倍。MVA-HLR和 · MVA-575分別適當的擴增以高於33倍和10倍輸入的增加。相 較於其它,僅MVA-BN被發現沒有在該等細胞中適當地被擴增, 即僅高於輸入2-倍的增加。 : 又關於於CV1細胞(猴子之腎細胞株)中之複製,其發現, : MVA-BN於此細胞株中大量的減少。其顯示低於輸入之200-倍 的減少。MVA-575亦沒有擴增至高於輸入之位準,亦顯示稍微 負的擴增,即低於輸入之16-倍的減少。MVA-HLR最佳,擴增 高於輸入之30-倍的增加,接著是MVA-Vero,具有高於輸入之 · 5-倍的增加。 最重要的是比較各種病毒於人類細胞株之成長動力學。有 關於143B細胞(人類骨癌細胞株)中之有效的複製,其顯示, MVA-Vero是唯一一個顯示擴增高於輸入(3-倍的增加)β所有其 它病毒沒有擴增高於輸入,但在MVA-HLR以及MVA-BN和 MVA-575兩者間具有很大的差異。MVA-HLR係"廣範圍的"(低 於輸入1倍的減少),如MVA-BN顯示最小的減少(低於輸入之 40 300倍的減少),接著是MVA-575 (低於輸入59倍的減少)。 簡言之,就於人類143B細胞中之減少而言,MVA-BN是較優的。 再者,有關在HeLa細胞(人類子宮頸癌細胞)中的複製,其 顯示MVA-HLR於此細胞株中擴增良好,甚至比於寬容的BHK細 胞中來的好(Hela =高於輸入之125倍的增加;BHK =高於輸 入之88倍的增加),MVA-Vero亦於此細胞株中擴增(高於輸入 27倍的增加)。然而,MVA-BN以及較小範圍的MVA-575於該等 細胞中係減少的(MVA-BN =低於輸入29倍的減少,而MVA-575 =低於輸入6倍的減少)。 有關在HaCat細胞(人類角質細胞細胞株)中之複製,其顯 示’ MVA-HLR於此細胞中擴增良好(高於輸入55-倍的增加)。 MVA-Vero適當的和MVA-575兩者顯示於此細胞株中擴增(分別 為高於輸入之1. 2和1. 1倍的增加)。然而,MVA-BN是唯一個 呈現減少(低於輸入之5-倍的減少)。 結論說明了,於此群病毒中,MVA-BN是最減少的病毒品種: 藉由於人類胚胎腎細胞(293: ECACC No. 85120602)中顯示0.05 至0.2的擴增比率(資料沒有併入表1中),MVA-BN於人類細胞 株中顯示出極端的減少。其進一步顯示,於143B細胞中約〇· 0 之擴增比率;於HeLa細胞中約〇.〇4之擴增比率;於HaCat細 胞中約0.22之擴增比率。此外,MVA-BN於CV1中顯示約0.0 之擴增比率。僅於Vero細胞中,擴增可被觀察到(比率為 2.33),然而當其於諸如BHK和CEF之寬容的細胞株中,不一 定是相同的延伸(比較表1)。因此,僅知道MVA-BN於所有的人 類細胞株(143B、Hela、HaCat和293)中顯示小於1之擴增比 1354560 率〇 MVA-575顯示與mva-BN相似的量變曲線,但不是如同 MVA-BN般的減少》 MVA-HLR於所有測試細胞(143B細胞除外)中均擴增良好。 因此’其於所有測試細胞株中(143B細胞除外)可被視為複製充 足的。於某一情況下,其在人類細胞株(HeLa)中之擴增甚至比 於寬容的細胞株(BHK)尹還好。 “”MVA-Vero於所有細胞株中確實顯示出擴增,然而比 MVA-HLR所顯示的範圍小(忽略143B的結果)。不過,就減少而 言,其不可以被視為與MVA-BN或MVA-575相同“種類,,者。 3.於活體内之複製 假如,一些MVA品種於活體内明確地複製,對於不同MVA品 種在活體内的複製可藉由使用遺傳工程老鼠模型AGR129來檢 測。此老鼠品種在IFN受體類型I (IFN-α/β )與類型II (IFN-γ ) 基因以及RAG中具有標的被破壞之基因。由於該等破壞,此老 鼠沒有IFN系充,且無法產生成熟之8與1'細胞,因此嚴重免 疫放棄的以及非常容許複製病毒。以107pfu之M VA-BN、MVA-HLR 或MVA572來免疫(i.p.)六個老鼠群組(在德國被用於120, 〇〇〇 個人上)且每天監控臨床現象。以MVA HLR或MVA 572接種之 全部老鼠分別在28至60天内死亡。屍體檢驗時,在主要器官 中存在一個嚴重病毒感染之普遍現象,且藉由標準斑分析時, 從卵巢中可重新找到MVA(108pfu)。相反的,以相同劑量之 MVA-BNC對應於被寄存之品種ECACC V00083008)接種後之老鼠 存活90天以上,且無mva可從器官或組織中重新找到。 42 1354560 • · 當一起取得活體外與活體内之數據時,研究明顯示顯示’ MVA-BN比母體和商業的MVA_HLR品種較嚴重的減少。 4.不同品種之MVA在刺激免疫反應上亦不同。 複製充足的品種之牛痘於老鼠中會誘導免疫反應,而高 劑量下係致命的。雖然MVA係高度減少的,且在哺乳動細胞上 • 的複製方面具有一降低的能力, 然而不同品種之MVA間在減低 上有差異存在。的確,MVA BN比其它MVA品種出現較多的減 少’甚至是母體品種MVA 575。為決定在降低方面的差異是否 ® 會影響mva誘導保護性免疫反應的效力,於是在致死牛痘刺激 模型中比較不同劑量的MVA BN與MVA 575。保護的位準的量測 係藉由在刺激4天後,於卵巢牛痘中所決定之效價的降低,同 ·_ 時此允許量化評估不同劑量與不同品種之MVA。 . 致死刺激模型 以不同劑量(102、104 或 10BTCID5〇/ml)的 MVABN 或 MVA 575 免疫(i.p.)特定無病原體之6-8-週大的雌性BALB/c(H-2d)鼠 (n=5)。MVA-BN和MVA-575已於CEF細胞上繁殖,且已經藏糖 ® 純化並於Tris中配方成7.4。三週後,該鼠接受一增加之相同 劑量的MVA與MVA品種,兩週之後接著以牛痘之複製充足的品 種進行致死刺激(i.p. )。WR-L929 TK+品種或IHD-J品種均可 作為複製充足的牛痘病毒(縮寫“rVV”)。控制組之老鼠接受—$ 慰劑。保護作用可藉由在刺激4天後,以標準斑分析所決定於 卵巢中之效價的減少量來量測。於此,在刺激後第4天犧牲# 老鼠,且將卵巢移除,於PBS(lml)中均質化且使用VER0細^ > 以標準斑分析來決定病毒效價(Thomson等人,1998,了 43 1354560Berlin, Cat. No. 9503-2057) 1 hour. After washing twice with PBS (Gibco, Cat. • No. 20012-019), HPR-coupled anti-rabbit antibody (Promega Mannheim, Cat. No. W4011) at 1:1000 in incubation buffer was added. , lasted for 1 hour at room temperature. Wash again twice with PBS, and with the staining solution (10 ml PBS + 200 μΐ in 100% ethanol in 〇- • dimethoxybenzidine saturation solution + 15 μΐ freshly prepared Η2〇2) Incubated to observe brown spots (2 hours). The staining solution was removed and PBS was added to terminate the staining reaction. Each well showing a brown spot indicates positive for CPE, and the Kaerber equation is used to calculate the titer (TCID50-based Φ analysis) (Kaerber, G. 1931. Arch. Exp. Pathol. Pharmakol. 162, 480). The virus was used on the one hand to infect a replication group of CEF and BHK with a low repetitive infection, ie 0.05 infected units per cell (5 X 104 TCID5.), which is expected to be tolerant to MVA, and on the other hand, Replication of CV-1, Vero, Hela, 143B and HaCat, which is expected to be non-tolerant to MVA. Thereafter, the virus inoculum was removed and the cells were washed three times to remove any residual unabsorbed virus. When the virus extract was prepared, the infection was allowed to continue for 4 days and then titrated on 39 1354560 CEF cells. Table 1 and Figure 1 show the results of the titration analysis, where the values given are the total amount of virus produced after 4 days of infection. It shows that all viruses are appropriately amplified in CEF (chicken embryonic fibroblast) cells as expected because this is a cell strain that is tolerant to all MVA. Furthermore, it showed that all viruses were appropriately amplified in BHK (baby hamster kidney cell line) cells. MVA-Vero performed best because BHK is a tolerant cell line. Regarding replication in Vero cells (kidney kidney cell line), MVA-Vero amplifies as appropriate as expected, ie 1000 times higher than the input. Appropriate amplification of MVA-HLR and MVA-575, respectively, increased by more than 33 fold and 10 fold input. Compared to the others, only MVA-BN was found to be not properly amplified in these cells, i.e., only a 2-fold increase over the input. : Regarding the replication in CV1 cells (kidney kidney cell strain), it was found that: MVA-BN was greatly reduced in this cell line. It shows a 200-fold reduction below the input. MVA-575 also did not amplify to a level above the input and also showed a slightly negative amplification, which is a 16-fold reduction below the input. The MVA-HLR is optimal, with an amplification that is 30-fold higher than the input, followed by MVA-Vero, which has a 5-fold increase above the input. The most important thing is to compare the growth kinetics of various viruses in human cell lines. Regarding the efficient replication in 143B cells (human bone cancer cell lines), it was shown that MVA-Vero was the only one showing amplification higher than the input (3-fold increase) β all other viruses did not amplify higher than the input, However, there is a big difference between MVA-HLR and MVA-BN and MVA-575. The MVA-HLR system "wide range" (less than 1 fold reduction in input), such as MVA-BN shows minimal reduction (less than 40 300 times reduction of input), followed by MVA-575 (below input) 59 times reduction). In short, MVA-BN is superior in terms of reduction in human 143B cells. Furthermore, regarding replication in HeLa cells (human cervical cancer cells), it was shown that MVA-HLR amplifies well in this cell line, even better than in tolerant BHK cells (Hela = higher than input) A 125-fold increase; BHK = an 88-fold increase over the input), MVA-Vero was also amplified in this cell line (a 27-fold increase over the input). However, MVA-BN and a smaller range of MVA-575 were reduced in these cells (MVA-BN = a 29-fold decrease from the input, while MVA-575 = a 6-fold decrease from the input). Regarding replication in HaCat cells (human keratinocyte cell line), it was shown that 'MVA-HLR was well amplified in this cell (a 55-fold increase over the input). Both MVA-Vero and MVA-575 were shown to be amplified in this cell line (1.2 and 1.1 times higher than the input, respectively). However, MVA-BN is the only reduction in presentation (a 5-fold reduction from the input). The conclusions indicate that MVA-BN is the most reduced virus species in this group of viruses: by the human embryonic kidney cells (293: ECACC No. 85120602) showing an amplification ratio of 0.05 to 0.2 (data not included in Table 1) Medium), MVA-BN showed an extreme decrease in human cell lines. It further shows an amplification ratio of about 〇·0 in 143B cells; an amplification ratio of about 〇.4 in HeLa cells; and an amplification ratio of about 0.22 in HaCat cells. In addition, MVA-BN showed an amplification ratio of about 0.0 in CV1. In Vero cells alone, amplification was observed (ratio 2.33), however, when it was in tolerant cell lines such as BHK and CEF, it was not necessarily the same extension (Comparative Table 1). Therefore, it is only known that MVA-BN shows an amplification ratio of less than 1 in all human cell lines (143B, Hela, HaCat, and 293). The ratio of MVA-575 shows a similar quantitative curve to mva-BN, but not like MVA. -BN-like reduction" MVA-HLR amplifies well in all test cells except 143B cells. Therefore, it is considered to be sufficient for replication in all tested cell lines (except 143B cells). In some cases, its amplification in human cell lines (HeLa) is even better than that of a tolerant cell line (BHK). "MVA-Vero did show amplification in all cell lines, however it was smaller than the range shown by MVA-HLR (ignoring the results of 143B). However, in terms of reduction, it cannot be considered to be the same as MVA-BN or MVA-575. 3. Reproduction in vivo If some MVA varieties are clearly replicated in vivo, for different MVA Reproduction of the cultivar in vivo can be detected by using the genetically engineered mouse model AGR129. This mouse cultivar has been disrupted in the IFN receptor type I (IFN-α/β) and type II (IFN-γ) genes and RAG. The gene. Due to such damage, the mouse has no IFN-based charge and is unable to produce mature 8 and 1' cells, so it is severely immune to abandonment and is very resistant to replication. 107 pfu of M VA-BN, MVA-HLR or MVA572 To immunize (ip) six groups of mice (used in Germany on 120, sputum individuals) and monitor clinical symptoms daily. All mice vaccinated with MVA HLR or MVA 572 died within 28 to 60 days. At the time, there is a common phenomenon of serious viral infection in the main organs, and MVA (108 pfu) can be found again from the ovary by standard spot analysis. Conversely, the same dose of MVA-BNC corresponds to the registered variety. ECACC V00 083008) Rats after vaccination survived for more than 90 days, and no mva can be re-discovered from organs or tissues. 42 1354560 • · When data from both in vitro and in vivo were obtained together, the study showed that 'MVA-BN is more than the parent and Commercial MVA_HLR varieties are more severely reduced. 4. Different varieties of MVA are also different in stimulating immune response. Copying sufficient varieties of vaccinia induces immune response in mice, while high doses are fatal. Although MVA is highly reduced And there is a reduced ability in the replication of mammalian cells. However, there is a difference in the reduction of MVA between different varieties. Indeed, MVA BN has more reduction than other MVA varieties' even the parent variety MVA 575. In order to determine whether the difference in reduction would affect the efficacy of mva in inducing a protective immune response, different doses of MVA BN and MVA 575 were compared in a lethal vaccinia stimulation model. The level of protection was measured by After 4 days of stimulation, the titer determined in the ovarian vaccinia is reduced, and this allows quantitative evaluation of MVA of different doses and different varieties. Death Stimulation Model Immune (ip) 6-8-week-old female BALB/c (H-2d) mice with specific pathogens at different doses (102, 104 or 10 BTCID5〇/ml) of MVABN or MVA 575 (n=5) MVA-BN and MVA-575 have been propagated on CEF cells and have been purified by sucrose® and formulated into 7.4 in Tris. After three weeks, the mice received an increase in the same dose of MVA and MVA varieties for two weeks. Then, lethal stimulation (ip) is carried out with a variety of vaccinia. The WR-L929 TK+ or IHD-J variety can be used as a fully replicated vaccinia virus (abbreviated “rVV”). Rats in the control group received - $ consolation. Protection can be measured by reducing the titer in the ovary as determined by standard spot analysis after 4 days of stimulation. Here, the mouse was sacrificed on the 4th day after the stimulation, and the ovaries were removed, homogenized in PBS (lml) and virus titer was determined using standard plaque analysis using VER0 fineness (Thomson et al., 1998, 43 1354560

Immunol. 160: 1717)。 在刺激4天後,藉由在卵巢rVV效價上100%的減少的評 斷,以104或10BTCID5D/ml之MVA-BN或MVA-575二種免疫接種 的老鼠係完全被保護的(第2圖)。該刺激病毒被清除了。然而, 在低劑量下可觀察到,MVA-BN或MVA-575所提供之保護的層度 不同。接受lfTTCIDw/inl之MVA 575二種免疫之老鼠無法受到 保護’其以高卵巢rVV效價來評價(平均3. 7xl07pfu+/- 2. 11 xlO7)。相反的,以相同劑量之MVA-BN接種之老鼠,在高卵巢 rVV效價方面(平均〇. 21 xi〇7pfu +/-〇. 287 xlO7)會誘導產生 _ 明顯的減少(96%)。接受安慰劑之控制組老鼠具平均病毒效價 5. 11 xl07pfu (+/- 3.59 xlO7)(第 2 圖)。 兩種MVA菌種在老鼠中均誘導產生對抗致死rw刺激之保 護性免疫反應。雖然兩種MVA菌種在較高劑量下的效力均相 當,但低於最佳劑量時其等之效力明顯的不同。在誘導對抗致 死rVV刺激之保護性免疫反應上,MVA-BN之強度大於其親本 品種MVA-575 ’此可由比較MVA-575與MVA-BN之增加的減少 而明白關係。 ® 4· MVA-BN於初次-推升接種療法 5.1.:以不同天花疫苗接種老鼠後,對MVA產生抗體 將MVA-BN的效力與其它MVA以及之前在根除天花時所用 的痘菌株比較。這些包括使用於CEF所產生和透過尾部割痕所 給的之Elstree和Wyeth vaccinia品種以及使用之前德國在 根除天花時所用MVA 572來單一免疫。此外,比較MVA_BN和 MVA 572兩者之疫苗前,接著以Elstree進行割痕。每一群使 44 1354560 用8隻BALB/c老鼠,且全部的MVA(lxl〇7 TCIDse)在第0週與 第3週時以皮下接種給予。推升免疫2週後,以牛痘(IHD J) 刺激该老鼠且於刺激4天後測定卵巢中之效價。所有疫苗和療 法引起100%保護。 使用該等不同疫苗或療法所誘導出之免疫反應,於動物中 • 刺激之前量測。使用量測中和抗體、T細胞增生、細胞激素產 物(IFN—γ與IL-4)和由T細胞產生之ΐρΝ_γ分析法。由MVA—βΝ 誘導之T細胞反應的位準,以ELIspot量測時一般係相等於其 籲 2 MVA和牛癌病毒,顯示生物-等效。在不同接種療法之後, 每週分析針對MVA之抗體的效價展現出,相較於其它接種療 法,以MVA-BN接種明顯地提高抗體的速度與大小(第丨丨圖)。 ·· 的確,相較於以MVA 572接種之老鼠,當以MVA—BN接種時, • 對MVA之抗體效價在第2、4與5週(在第4週推升後1週)時 明顯較高(P>〇.05)。在第4週推升接種之後,相較於接受痘菌 株Elstree或Wyeth之單一接種,於群中之抗體效量 亦明顯較问。此等結果清楚地顯示出,相較於以傳統的牛癌菌 ^ 株(Elstree和Wyeth)所作之典型單_接種,2個以mva—抓接 種者誘導較商的抗體反應,以及從區域^ 5證實此發現德-抓 比其它MVA菌株更具致免疫性。 5·2·.在心行性感冒刺激模型中,mva初次和推升療法產生與 DNA-初次MVA-推升療法相同位準的保護 將用以產生向活動性CTL反應之MVA初次-推升療法與已 被報導為最好的DNA初次應推升療法相比較。使用以由臟 載體或MVA BN編碼之鼠類多面體結構來評估不同療法且以 45 1354560 ELISP0T來比較CTL誘導的位準,同時將所量測得之反應活動 性作為以流行性感冒刺激之後所提供保護的程度。 結果 編碼鼠類多面體(10 CTL抗原決定位,包括流行性感冒、 卵白蛋白)之DNA質體已於前面說明(Th〇mson等人,1998】 Imnumol. 160: 1717)β此鼠類多面體被插入MVA_BN的缺失位 置II,於CEF細胞中增長,以蔗糖存化且於Tris中配方成邱 7.4。 疫苗接種步驟 於目前的研究中,使用無特定病毒之6-8週大的雄性 BALB/c (H-2d)老鼠。5隻老鼠群被用於ELISP0T分析,而每群 6隻老鼠被用於供流行性感冒刺激實驗。以不同的初次推升療 法,使用MVA或如於結果中詳述之編碼鼠類多面體之DNa來接 種该老鼠。在以DNA接種方面,先麻醉老鼠,再於麻醉下,於 四頭肌中注射50 之無内毒素的質體DNA (配於50 μΐ之PBS 中)。使用之初次免疫的進行係以靜脈内投與每隻老鼠1〇7 pfu 之MVA-BN或以皮下投與每隻老鼠l〇7pfu4 10*pfu之mva_bn。 推升免疫是於初次免疫3週後給予。質體DNA之推升係用與使 用DNA之初次免疫相同的方式來進行(參見上述内容)。為了要 建立CTL反應’於在使用流行性感冒CTL抗原決定位胜狀 (TYQRTRALV)、P. Berghei 抗原決定位胜肽(SYIPSAEKI)、巨大 細胞病毒胜肽抗原決定位(YPHFMPTNL)和/或LCV胜肽抗原決 定位(RPQASGVYM)做最後的推升免疫之2週後,於脾細胞上進 行標準的 ELISP0T 分析(Schneider 等人,1998,Nat. Med. 4; 46 1354560 » · 397-402)。在刺激實驗方面,將老鼠麻醉,以次-致死劑量之常 用的流行性感冒病毒,Mem71 (配置於50 ml之PBS中4. 5 xl〇 5 pfu)i. η.感染老鼠。感染後第5天,將肺移除且使用標準流行 性感冒斑分析法,於Madin-Darby氏狗腎小管細胞株中決定一 式二份之病毒效價。 . 結果: 單獨使用DNA疫苗,以老鼠多面體編碼的4H-2 d抗原決 定位所誘導之CTL係不足的,且對於p.Berghei (SYIPSAEKI) ® 之抗原決定位以及淋巴脈絡叢腦膜病毒(RPQASGVYM)兩者僅可 偵測到微量的反應。相反的,使用DNA初次MVA推升療法·(皮 下給予107 pfu MVA-BN),所誘導CTL明顯較高,對於SLY (8_ ' 倍的增加)而對RPQ (3-倍的增加),以及亦可觀察到對於鼠類Immunol. 160: 1717). After 4 days of stimulation, the mice immunized with either MVA-BN or MVA-575 at 104 or 10 BTCID5D/ml were completely protected by a 100% reduction in ovarian rVV titers (Fig. 2) ). The stimulating virus was cleared. However, it can be observed at low doses that the protection provided by MVA-BN or MVA-575 is different. MVA 575 mice immunized with lfTTCIDw/inl were unprotected' evaluated as high ovarian rVV titers (mean 3. 7 x 107 pfu +/- 2.11 x lO7). In contrast, mice vaccinated with the same dose of MVA-BN induced a significant decrease (96%) in terms of high ovarian rVV titers (mean 21 21 xi〇7 pfu +/- 〇. 287 xlO7). Rats in the control group receiving placebo had an average viral titer of 5. 11 xl07 pfu (+/- 3.59 xlO7) (Figure 2). Both MVA strains induced a protective immune response against lethal rw stimulation in mice. Although the efficacy of the two MVA strains at the higher doses is comparable, the efficacy of the two MVA strains is significantly different when compared to the optimal dose. On the protective immune response induced to combat lethal rVV stimulation, the intensity of MVA-BN is greater than that of its parental variety MVA-575', which is clearly related to the decrease in the increase in MVA-575 and MVA-BN. ® 4· MVA-BN in initial-push-inoculation therapy 5.1.: Production of antibodies against MVA after inoculation of mice with different smallpox vaccines The efficacy of MVA-BN was compared with other MVA and the previously used pox strains used in the eradication of smallpox. These include the use of the Elstree and Wyeth vaccinia varieties produced by CEF and transmitted through the tail cuts, and the single immunization of MVA 572 used in Germany before eradication of smallpox. In addition, before the vaccines of both MVA_BN and MVA 572 were compared, the cuts were followed by Elstree. Each group used 44 1354560 with 8 BALB/c mice, and all MVA (lxl〇7 TCIDse) were administered subcutaneously at weeks 0 and 3. Two weeks after the immunization was boosted, the mice were stimulated with vaccinia (IHD J) and the titer in the ovaries was measured 4 days after the stimulation. All vaccines and treatments cause 100% protection. The immune response induced by these different vaccines or therapies is measured in animals before stimulation. Neutralizing antibodies, T cell proliferation, cytokine products (IFN-γ and IL-4) and ΐρΝ_γ assays produced by T cells were used. The level of T cell response induced by MVA-βΝ is generally equivalent to its 2 MVA and bovine cancer virus when measured by ELIspot, showing bio-equivalent. After different vaccination therapies, the weekly titer of antibodies against MVA showed that the rate and size of the antibodies were significantly increased by MVA-BN vaccination compared to other inoculation methods (Figure )). · Indeed, compared to mice vaccinated with MVA 572, when vaccinated with MVA-BN, the antibody titer against MVA was evident at weeks 2, 4, and 5 (1 week after the 4th week) Higher (P>〇.05). After the booster vaccination in the fourth week, the antibody titer in the group was significantly higher than that of the single vaccination with the vaccinia strain Elstree or Wyeth. These results clearly show that compared to the typical single-vaccination with traditional bovine cancer strains (Elstree and Wyeth), two of the mva-catch vaccinators induced a more favorable antibody response, and from the region ^ 5 confirms that this finding is more immunogenic than other MVA strains. 5·2·. In the heart-stimulation model, mva's initial and push-up therapy produces the same level of protection as DNA-primary MVA-push therapy, which will be used to generate MVA primary-push-up therapy for active CTL response. Compared with the initial report of the DNA that has been reported to be the best. Different therapies were evaluated using a murine polyhedral structure encoded by a dirty vector or MVA BN and the CTL induced levels were compared at 45 1354560 ELISP0T, while the measured reaction activity was provided as a stimulus after influenza stimulation. The extent of protection. Results The DNA plastids encoding murine polyhedra (10 CTL epitopes, including influenza, ovalbumin) have been previously described (Th〇mson et al., 1998) Imnumol. 160: 1717) β This murine polyhedron was inserted The deletion position II of MVA_BN was grown in CEF cells, stored as sucrose and formulated into Qius 7.4 in Tris. Vaccination Steps In the current study, male BALB/c (H-2d) mice, 6-8 weeks old without specific virus, were used. Five mouse populations were used for ELISP0T analysis, and six mice per group were used for influenza stimulation experiments. The mice were inoculated with MVA or DNa encoding a murine polyhedron as detailed in the results, using different initial boosts. In the case of DNA inoculation, the mice were anesthetized and then anesthetized with 50 endotoxin-free plastid DNA (in 50 μL of PBS). The primary immunization used was performed by intravenously administering 1 〇7 pfu of MVA-BN per mouse or subcutaneously administering 1 p7 pfu4 10*pfu of mva_bn per mouse. Push-up immunity was given 3 weeks after the initial immunization. The push-up of plastid DNA is carried out in the same manner as the primary immunization using DNA (see above). In order to establish a CTL response, 'in the use of influenza CTL epitope TYQRTRALV, P. Berghei epitope peptide (SYIPSAEKI), giant cell virus peptide epitope (YPHFMPTNL) and / or LCV wins Two weeks after the final boosting of the peptide epitope (RPQASGVYM), a standard ELISP0T analysis was performed on splenocytes (Schneider et al., 1998, Nat. Med. 4; 46 1354560 » 397-402). In the stimulation experiment, the mice were anesthetized, and the mice were infected with a secondary-lethal dose of the commonly used influenza virus, Mem71 (4.6 x x 5 5 fufu in 50 ml of PBS). On day 5 post-infection, the lungs were removed and the virus titer in duplicate was determined in Madin-Darby's dog tubular cell line using standard epidemic plaque assay. RESULTS: The DNA vaccine alone was used, and the CTL lineage induced by the 4H-2 d epitope encoded by the mouse polyhedron was insufficient, and the epitope of p. Berghei (SYIPSAEKI) ® and lymphocytic plexus meningitis virus (RPQASGVYM) were used. Both can only detect a small amount of reaction. Conversely, using DNA initial MVA push-up therapy (subcutaneous administration of 107 pfu MVA-BN), the induced CTL was significantly higher, for SLY (8_' fold increase) and for RPQ (3-fold increase), and also Observable for rodents

·- 巨大細胞病毒(YPHFMPTNL)之第3抗原決定位的反應(第3A 圖)。然而’於一同型初次推升療法中皮下給予1〇7 pfu mva_bn 會誘導與採用MVA-BN之DNA相同的反應(第3A圖)。令人驚气 ^ 地,當使用一種MVA-BN (107 TCID50)免疫時,對於三個抗原 決定位所誘導之CTL的數目沒有明顯地不同,顯示出以MVa_bn 之第二次免疫不會明顯地增加CTL反應。 之前已顯示,對於使用其它菌株之MVA來接種時,特別若 與靜脈内免疫相較時,皮下投與1〇7 pfu MVA是最無效率之途 與病毒濃度(Schneider等人1998)。為了界定最佳免疫療 法,上述實驗以改變病毒數量或改變投與摸式來重覆進行。於 —實驗中,107pfu之MVA-BN疫苗係以靜脈内投與(第3B圖) 於另一實驗中,108 pfu之MVA-BN係以皮下投與(第%圖)。 47 1354560 於該等實驗中,相較於DNA初次MVA推升療法,MVA-ΒΝ初次 -推升免疫對全部三種CTL抗原決定位誘導較高的平均CTL數 目。且’不像皮下投與l〇7pfu之MVA-BN,以靜脈内投與l〇?pfu 之MVA-BN的免疫以及皮下投與i〇8 pfu明顯地提高CTL反應。 此清楚地指出,在事先對該載體具有免疫力的存在下,MVA-BN 可被用於提高CTL反應。 參考文獻- The reaction of the third epitope of the giant cell virus (YPHFMPTNL) (Fig. 3A). However, subcutaneous administration of 1〇7 pfu mva_bn in the same initial ascending therapy induces the same response as DNA using MVA-BN (Fig. 3A). Surprisingly, when immunized with one MVA-BN (107 TCID50), there was no significant difference in the number of CTLs induced by the three epitopes, indicating that the second immunization with MVa_bn would not be apparent Increase the CTL response. It has previously been shown that subcutaneous administration of 1〇7 pfu MVA is the most inefficient route to virus concentration when inoculated with MVA from other strains, especially in comparison to intravenous immunization (Schneider et al. 1998). In order to define the optimal immunotherapy, the above experiments were repeated to change the number of viruses or change the mode of administration. In the experiment, 107 pfu of the MVA-BN vaccine was administered intravenously (Fig. 3B). In another experiment, 108 pfu of MVA-BN was administered subcutaneously (Fig. %). 47 1354560 In these experiments, the MVA-ΒΝ initial-push-immunization induced a higher average number of CTLs for all three CTL epitopes than the initial MVA push-up therapy for DNA. Moreover, unlike MVA-BN administered subcutaneously at 7 pfu, immunization with MVA-BN administered intravenously with pfu and subcutaneous administration of i〇8 pfu significantly increased the CTL response. This clearly indicates that MVA-BN can be used to increase the CTL response in the presence of immunity to the vector in advance. references

Nimmannitya S ' Kalayanaroo S、Nisalak A 和 Innes B. 1990。 登革熱出血熱之第二次發作。Southeast Asian Journal of Tropical Medicine and Public Health, 21:699Nimmannitya S ' Kalayanaroo S, Nisalak A and Innes B. 1990. The second episode of dengue hemorrhagic fever. Southeast Asian Journal of Tropical Medicine and Public Health, 21:699

Burke DS和Monath TP. 2001 ’黃病毒。病毒領域,第四版, 由 David M Knipe 和 Peter M Howley 編輯。由 Lippincott Williams 和 Wilkins 發表,費城。第 1043-1125 頁Burke DS and Monath TP. 2001 'flavor virus. The Virus, Fourth Edition, edited by David M Knipe and Peter M Howley. Published by Lippincott Williams and Wilkins, Philadelphia. Page 1043-1125

Flamand Μ、Megret F、Mathieu Μ、LePault、Rey FA 和 Deubel V.,1999。登革熱病毒類型1非結構性的糖蛋白NS1係由哺乳 細胞所分泌,於糖化-依賴的形態中為可溶性的六聚體。j. Virol., 73:6104-6110Flamand Μ, Megret F, Mathieu Μ, LePault, Rey FA, and Deubel V., 1999. The dengue virus type 1 non-structural glycoprotein NS1 is secreted by mammalian cells and is a soluble hexamer in the glycosylation-dependent form. j. Virol., 73:6104-6110

Jang SK、Davies MV、Kaufman RJ 和 Wimmer E.,1989。藉由 於活想内’核糖體内入腦心肌炎病毒RNA之5’非轉譯區域來起 始蛋白質合成》J. Virol.,63:1651-60 48 13545(50Jang SK, Davies MV, Kaufman RJ and Wimmer E., 1989. Initiation of protein synthesis by the 5' untranslated region of the ribosome into the cerebral myocarditis virus RNA J. Virol., 63:1651-60 48 13545 (50)

Lindenbach BD和Rice CM.,2001,黃病毒與其複製。於病毒 領域,第四版。由David M Knipe與Peter M Howley編輯。 Lippincott Williams 與 Wilkins 發行,費城。第 991-1041 頁Lindenbach BD and Rice CM., 2001, flavivirus and its replication. In the field of viruses, fourth edition. Edited by David M Knipe and Peter M Howley. Lippincott Williams and Wilkins, Philadelphia. Page 991-1041

Schlesinger JJ、Brandriss MW 和 Walsh EE.,1987。藉由以 登革熱2病毒非-結構性的蛋白NS1免疫來保護老鼠免於罹患 登革熱 2 病毒腦炎。J. Gen. Virol.,68:853-7Schlesinger JJ, Brandriss MW and Walsh EE., 1987. The mice were protected from dengue 2 viral encephalitis by immunization with the dengue 2 virus non-structural protein NS1. J. Gen. Virol., 68: 853-7

Schesinger JJ、Foltzer Μ 和 Chapman S.,1993。對於黃熱 病毒NS1,抗體之Fc部分係保護老鼠免於罹患黃熱腦炎之決定 : 部位。Virology. 192: 132-41 本發明所述之技術與程序係熟悉分子生物與病毒,特別是有關 黃病毒病毒學與痘病毒之基因操作方面之從業人員所熟悉 者。所述之技術與程序之詳細内容可於下列文獻來源中找到: 分子選殖,實驗室手冊。第二版。由J. Sambrook,E. F. Fritsch 與 T. Maniatis 出版。Cold Spring Harbor Laboratory Press. 1989 病毒學方法手冊。由Br i an WJ Mahy與H i 11 ar 0 Kangro編輯。 Academic Press. 1996 分子病毒學:實用入門。由AJ Davison和RM Elliott編輯。 49 1354560 實用入門系列。IRL Press at Oxford University Press· Oxford 1993. Chapter 9 :牛痘病毒載醴之基因表現 分子生物目前的規則。發行人:John Wiley和Son Inc. 1998。 第16章,第IV節:於哺乳動物中使用牛痘病毒載體之蛋白質 的表現。抗想,實驗室手冊。由Har 1 ow和Dav i d Lane編輯。 Cold Spring Harbor Laboratory 出版,1988。 I:圖式簡單說明】 第1A圖:作為本發明之一實施例之登革熱NGC品種"訊 號序列+NS1" cDNA蛋白質編碼序列。在自然内文中之NS1基因 的開頭以一箭頭指示。重要之特徵係添加一 ATG起始密碼子和 一終止密碼子(於此實施例中為"TAG")。核苷酸序列數目參照 NGC品種基因組之位置(基因資料庫登錄號AF038403)。在第 1A圖中之核誓酸與胺基酸對應於序列編號5。該胺基酸分開示 於序列編號6。 第1B圖:含該登革熱NGC品種“訊號序列+NS1”蛋白質 編碼序列之質體PAF7NS1的圖表。 第1C圖:在質體pAF7内之NS1卡匣的核答酸序列續禾 出’以OBN345和〇BN338來PCR擴增此卡匣的起動子鍵結位薏 於第1C圖中之核苷酸與胺基酸序列對應於序列編號7。該咹我 酸分開示為序列編號8。 第1D圖:上面:登革熱NGC品種NS1胺基酸序列之 Kyte-Doolittle親水性墨點圖(登革熱NCG多蛋白基因資料庳 登錄號AF038403之胺基酸776至1127)。值高於零=疏水性 50 下面:含有衍生自E蛋白質之c-端的最後28個胺基酸之訊號 序列之登革熱NCG品種NS1胺基酸序列的Kyte-Doolittle親 水性墨點圖(胺基酸748至775)。全部之胺基酸序列代表登革 熱NCG多蛋白之胺基酸748至1127(基因資料庫登錄號 AF038403),此品種以“ATG”起始密碼子作為起始,但缺少終止 密碼子。Sig =訊號序列。值高於零=疏水性。 第2圖:"痘病毒起動子+訊號序列+奶丨"表現卡匣之核苷 酸序列。於第2圖中之核苷酸和胺基酸序列對應於序列編號9。 胺基酸分開示於序列編號1〇。簡言之,最小痘病毒早期/晚期 起動子要素控制登革熱病毒血清類型2之NS1蛋白的表現,其 中該NS1蛋白之N-端融合至E-蛋白質之28個C-端胺基酸。轉 譯終止於己插入核酸序列中之TAG終止密碼子。 第3A圖:將NS1表現卡匣選殖進入ρΒΝΧ〇7之平口終止的 Xho I位置(平口的鈍端選殖),以產生選殖株pBN41。ppr =痘 病毒起動子’ D2F1 =缺失2之側面1,NPT II =新黴素抗性基 因,IRES =核糖體内結合位置,EGFP =提升的綠螢光蛋白, NS1(於pBN41中)=訊號序列+NS1,D2F2=缺失2之側面2,Sig =訊號序列。AmpR =氨比西林抗性基因。Schesinger JJ, Foltzer Μ and Chapman S., 1993. For the yellow fever virus NS1, the Fc portion of the antibody protects the mouse from the yellow fever encephalitis decision: site. Virology. 192: 132-41 The techniques and procedures described herein are familiar to molecular organisms and viruses, particularly those familiar with the genetic manipulation of flaviviruses and poxviruses. The details of the techniques and procedures described can be found in the following literature sources: Molecular selection, laboratory manual. second edition. Published by J. Sambrook, E. F. Fritsch and T. Maniatis. Cold Spring Harbor Laboratory Press. 1989 Handbook of Virology Methods. Edited by Br i an WJ Mahy and H i 11 ar 0 Kangro. Academic Press. 1996 Molecular Virology: A Practical Introduction. Edited by AJ Davison and RM Elliott. 49 1354560 Practical Starter Series. IRL Press at Oxford University Press· Oxford 1993. Chapter 9: Gene Expression of Vaccinia Virus-Loaded Genes Current rules of molecular biology. Issuer: John Wiley and Son Inc. 1998. Chapter 16, Section IV: The performance of proteins using vaccinia virus vectors in mammals. Anti-Think, Laboratory Manual. Edited by Har 1 ow and Dav i d Lane. Published by Cold Spring Harbor Laboratory, 1988. I: BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a diagram showing the dengue heat NGC variety "signal sequence + NS1" cDNA protein coding sequence as an embodiment of the present invention. The beginning of the NS1 gene in the natural text is indicated by an arrow. An important feature is the addition of an ATG start codon and a stop codon ("TAG") in this example. The number of nucleotide sequences refers to the position of the NGC genomic genome (Gene Database Accession No. AF038403). The nuclear wicking acid and the amino acid in Fig. 1A correspond to SEQ ID NO: 5. The amino acid is shown separately in SEQ ID NO: 6. Figure 1B: A graph of the plastid PAF7NS1 containing the protein coding sequence for the dengue NGC variety "signal sequence + NS1". Figure 1C: The p-acid sequence of the NS1 cassette in plastid pAF7 is continued to 'PCR-amplify the promoter linkage of this cassette with OBN345 and 〇BN338. The nucleotides in Figure 1C The amino acid sequence corresponds to SEQ ID NO: 7. This acid is shown separately as SEQ ID NO: 8. Figure 1D: Top: Kyte-Doolittle hydrophilic dot map of the NS1 amino acid sequence of the dengue NGC variety (dengue NCG polyprotein gene data 庳 accession number AF038403 amino acid 776 to 1127). Value above zero = hydrophobicity 50. Below: Kyte-Doolittle hydrophilic dot map of the dengue NCG NS1 amino acid sequence containing the signal sequence of the last 28 amino acids derived from the c-terminus of the E protein (amino acid) 748 to 775). The entire amino acid sequence represents the amino acid 748 to 1127 of the dengue NCG polyprotein (Gene Database Accession No. AF038403), which starts with the "ATG" start codon but lacks a stop codon. Sig = signal sequence. The value is higher than zero = hydrophobic. Figure 2: "pox virus promoter + signal sequence + milk thistle" performance cardinal acid sequence. The nucleotide and amino acid sequences in Figure 2 correspond to SEQ ID NO: 9. The amino acid is shown separately in SEQ ID NO: 1. Briefly, the minimal/pox virus early/late promoter element controls the expression of the NS1 protein of dengue virus serotype 2, wherein the N-terminus of the NS1 protein is fused to the 28 C-terminal amino acids of the E-protein. The translation terminates in the TAG stop codon in the inserted nucleic acid sequence. Figure 3A: The NS1 expression cassette was cloned into the Xho I position of the phΒΝΧ〇7 terminus (the blunt end of the flat mouth) to produce the selected strain pBN41. Ppr = poxvirus promoter ' D2F1 = side 2 of deletion 2, NPT II = neomycin resistance gene, IRES = ribosome binding site, EGFP = elevated green fluorescent protein, NS1 (in pBN41) = signal Sequence + NS1, D2F2 = side 2 of deletion 2, Sig = signal sequence. AmpR = ampicillin resistance gene.

第3B圖:MVA (基因資料庫U94848)之Hin(i III圖,顯 示MVA的六個缺失的位址(-J-=缺失的接合點)。”ppr+NPT II + IRES+EGFP+PPr+NSl"卡匣被插入MVA之缺失2位置。PPr = 痘病毒起動子,NPT II =新黴素抗性基因(蛋白質編碼序列), IRES =核糖體内結合位置以及NS1=訊號序列+登革熱2 NGC品 種之NS1蛋白編碼序列。 1354560 第4圖:顯示具未感染細胞控制組之mBN07和真正登革熱 病毒血清類型2之免疫墨點圖,其以對抗登革熱病毒NS1蛋白 之單株抗體來探察。左邊之箭頭指天然NS1二聚物,而右邊之 箭頭指NS1單體,其於樣品沸騰後觀看。2ME = 2巯基乙醇。 第5圖:稀釋成1:200之血清被測試於,在無還原且無加 熱之情況下,以SDS PAGE所分離之登革熱病毒血清類型2抗 原之免疫墨點條帶上以及未受感染之C6/36細胞之控制條帶 上。 條帶1 =登革熱病毒血清類型2抗原條帶; 條帶2 =控制條帶;a =免疫前的血清,而b =血疫後的血 清。 第6圖:免疫後之血清被滴定至1:1000、1:2000、 1:4000、1:1(Γ4、1:1(Γ5、1:1(Γ6,且被測試於在無還原與無加 熱情況下,以SDS PAGE分離之後登革熱2病毒抗原之免疫墨 點條帶上以及未被感染之C6/36細胞的控制條帶上。注意:對 於兔子#1和#2,稀釋10—4之NS1帶雖然無法在掃描的照片上觀 察到,然而實際的條帶可由肉眼觀察到。1 =登革熱病毒血清 類型2抗原條帶,2 =控制條帶,A =兔子#1,B =兔子#2, 且C =兔子#3。 第7圖:對於全部三隻免子之免疫後的血清滴定量測之 ELISA吸收讀數的點。 第8圖:每隻被稀釋成1:1000之兔子血清被測試於,在 無還原與無加熱情況下,以SDS PAGE分離之登革熱1、2、3、 4+JE病毒抗原之免疫墨點條帶上以及未受感染之C6/36細胞的 52 1354560 控制條帶上。注意:對於具兔子#2血清之登革熱3與4之NSl 帶雖然無法在掃描的照片上觀察到,然而實際的條帶可由肉眼 觀察到。1 =登革熱病毒血清類型1抗原條帶,2=登革熱病毒血 清類型3抗原條帶,3=登革熱病毒血清類型4抗原,4=JE病毒 抗原條帶,而5=控制組。 【主要元件符號說明】 (無) 53 288135*4560 • « ggc att tgt gga ate ege tea gta aca aga ctg gaa aat ctg atg tgg Gly lie Cys Gly lie Arg Ser val Thr Arg Leu Glu Asn Leu Met Trp 85 90 95 aaa caa ata aca cca gaa ttg aat cac att eta tea gaa aat gag gtg Lys Gin lie Thr Pro Glu Leu Asn His lie Leu Ser Glu Asn Glu Val 100 105 110 aag ttg act att atg aca gga gac ate aaa gga ate atg cag gca gga Lys Leu Thr lie Met Thr Gly Asp lie Lys Gly lie Met Gin Ala Gly 115 120 125 336 384 aaa ega tet ctg cag ccc cag ccc act gag ctg aag tat tea tgg aaa Lys Arg Ser Leu Gin Pro Gin Pro Thr Glu Leu Lys Tyr Ser Trp Lys 130 135 140 432Figure 3B: Hin of MVA (Gene Library U94848) (i III map showing six missing addresses of MVA (-J-=missing junction).” ppr+NPT II + IRES+EGFP+PPr+ NSl" cassette is inserted into the deletion position of MVA. PPr = poxvirus promoter, NPT II = neomycin resistance gene (protein coding sequence), IRES = ribosome binding site and NS1 = signal sequence + dengue 2 NGC The NS1 protein coding sequence of the variety. 1354560 Fig. 4: Immunoblot map showing mBN07 and true dengue virus serotype 2 with uninfected cell control group, which was probed against monoclonal antibodies against dengue virus NS1 protein. The arrow refers to the natural NS1 dimer, while the arrow to the right refers to the NS1 monomer, which is viewed after the sample is boiled. 2ME = 2 mercaptoethanol. Figure 5: Serum diluted to 1:200 was tested, no reduction and no In the case of heating, the immune dot spots of the dengue virus serotype 2 antigen isolated by SDS PAGE were on the control strip of uninfected C6/36 cells. Band 1 = dengue virus serotype 2 antigen strip Band; strip 2 = control strip; a = Pre-epidemic serum, and b = serum after vaccination. Figure 6: Serum after immunization is titrated to 1:1000, 1:2000, 1:4000, 1:1 (Γ4, 1:1 (Γ5, 1 :1 (Γ6, and was tested on the control strips of dengue 2 virus antigen and the control strip of uninfected C6/36 cells after SDS PAGE separation without reduction and without heating. : For rabbits #1 and #2, the NS1 band diluted 10–4 could not be observed on the scanned photograph, but the actual band can be observed by the naked eye. 1 = Dengue virus serotype 2 antigen band, 2 = control Band, A = rabbit #1, B = rabbit #2, and C = rabbit #3. Figure 7: Point of ELISA absorption reading for serum titration after immunization of all three exons. : Each rabbit serum diluted to 1:1000 was tested on a strip of immunological dots of dengue 1, 2, 3, 4+ JE virus antigens separated by SDS PAGE without reduction and without heating. 52 1354560 control strips of uninfected C6/36 cells. Note: For NS1 bands with dengue 3 and 4 with rabbit #2 serum, although not The photographs are observed, but the actual bands can be observed by the naked eye. 1 = dengue virus serotype 1 antigen band, 2 = dengue virus serotype 3 antigen band, 3 = dengue virus serotype 4 antigen, 4 = JE virus antigen band, and 5 = control group. [Main component symbol description] (none) 53 288135*4560 • « ggc att tgt gga ate ege tea gta aca aga ctg gaa aat ctg atg tgg Gly lie Cys Gly lie Arg Ser Val Thr Arg Leu Glu Asn Leu Met Trp 85 90 95 aaa caa ata aca cca gaa ttg aat cac att eta tea gaa aat gag gtg Lys Gin lie Thr Pro Glu Leu Asn His lie Leu Ser Glu Asn Glu Val 100 105 110 aag ttg act Att atg aca gga gac ate aaa gga ate atg cag gca gga Lys Leu Thr lie Met Thr Gly Asp lie Lys Gly lie Met Gin Ala Gly 115 120 125 336 384 aaa ega tet ctg cag ccc cag ccc act gag ctg aag tat tea tgg aaa Lys Arg Ser Leu Gin Pro Gin Pro Thr Glu Leu Lys Tyr Ser Trp Lys 130 135 140 432

aca tgg ggc aaa geg aaa atg etc tet aca gag tet cat aac cag acc Thr Trp Gly Lys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr 145 150 155 160 480 ttt etc att gat ggc ccc gaa aca gca gaa tgc ccc aac aca aac aga Phe Leu lie Asp Gly Pro Glu Thr Ala Glu Cys Pro Asn Thr Asn Arg 165 170 175 get tgg aat teg ctg gaa gtt gaa gac tat ggc ttt gga gta ttc acc Ala Trp Asn Ser Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr 180 185 190 528 576 acc aat ata tgg eta aag ttg aga gaa aag cag gat gta ttc tgc gac Thr Asn lie Trp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp 195 200 205 624Aca tgg ggc aaa geg aaa atg etc tet aca gag tet cat aac cag acc Thr Trp Gly Lys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr 145 150 155 160 480 ttt etc att gat ggc ccc gaa aca gca gaa tgc ccc aac Aca aac aga Phe Leu lie Asp Gly Pro Glu Thr Ala Glu Cys Pro Asn Thr Asn Arg 165 170 175 get tgg aat teg ctg gaa gtt gaa gac tat ggc ttt gga gta ttc acc Ala Trp Asn Ser Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr 180 185 190 528 576 acc aat ata tgg eta aag ttg aga gaa aag cag gat gta ttc tgc gac Thr Asn lie Trp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp 195 200 205 624

tea aaa etc atg tea geg gee ata aaa gac aac aga gee gtc cat gee Ser Lys Leu Met Ser Ala Ala lie Lys Asp Asn Arg Ala Val His Ala 210 215 220 672 gat atg ggt tat tgg ata gaa agt gca etc aat gac aca tgg aag ata Asp Met Gly Tyr Trp lie Glu Ser Ala Leu Asn Asp Thr Trp Lys lie 225 230 235 240 gag aaa gee tet ttc ate gaa gtt aaa age tgc cac tgg cca aag tea Glu Lys Ala Ser Phe lie Glu Val Lys Ser Cys His Trp Pro Lys Ser 245 250 255 720 768 cac acc etc tgg agt aat gga gtg tta gaa agt gag atg ata att cca His Thr Leu Trp Ser Asn Gly Val Leu Glu Ser Glu Met lie lie Pro 260 265 270 3 816 1354560 aag aat ttc get gga cca gtg tea caa cac aac tac aga cca ggc tac 864Tea aaa etc atg tea geg gee ata aaa gac aac aga gee gtc cat gee Ser Lys Leu Met Ser Ala Ala lie Lys Asp Asn Arg Ala Val His Ala 210 215 220 672 gat atg ggt tat tgg ata gaa agt gca etc aat gac aca tgg Aag ata Asp Met Gly Tyr Trp lie Glu Ser Ala Leu Asn Asp Thr Trp Lys lie 225 230 235 240 gag aaa gee tet ttc ate gaa gtt aaa age tgc cac tgg cca aag tea Glu Lys Ala Ser Phe lie Glu Val Lys Ser Cys His Trp Pro Lys Ser 245 250 255 720 768 cac acc etc tgg agt aat gga gtg tta gaa agt gag atg ata cc His Thr Leu Trp Ser Asn Gly Val Leu Glu Ser Glu Met lie lie Pro 260 265 270 3 816 1354560 aag aat ttc Get gga cca gtg tea caa cac aac tac aga cca ggc tac 864

Lys Asn Phe Ala Gly Pro Val Ser Gin His Asn Tyr Arg Pro Gly Tyr 275 280 285 cat aca caa aca gca gga cca tgg cat eta ggt aag ett gag atg gac 912Lys Asn Phe Ala Gly Pro Val Ser Gin His Asn Tyr Arg Pro Gly Tyr 275 280 285 cat aca caa aca gca gga cca tgg cat eta ggt aag ett gag atg gac 912

His Thr Gin Thr Ala Gly Pro Tip His Leu Gly Lys Leu Glu Met Asp 290 295 300 ttt gat ttc tgc gaa gga acc aca gtg gtg gtg act gag gac tgt gga 960His Thr Gin Thr Ala Gly Pro Tip His Leu Gly Lys Leu Glu Met Asp 290 295 300 ttt gat ttc tgc gaa gga acc aca gtg gtg gtg act gag gac tgt gga 960

Phe Asp Phe Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly 305 310 315 320 aat aga gga ccc tet tta aga aca act act gee tet gga aaa etc ata 1008Phe Asp Phe Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly 305 310 315 320 aat aga gga ccc tet tta aga aca act act gee tet gga aaa etc ata 1008

Asn Arg Gly Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu lie 325 330 335Asn Arg Gly Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu lie 325 330 335

aca gaa tgg tgc tgc ega tet tgc aca tta cca ccg eta aga tac aga 1056Aca gaa tgg tgc tgc ega tet tgc aca tta cca ccg eta aga tac aga 1056

Thr Glu Trp Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg 340 345 350 ggt gag gac gga tgc tgg tac ggg atg gaa ate aga cca ttg aaa gag 1104Thr Glu Trp Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg 340 345 350 ggt gag gac gga tgc tgg tac ggg atg gaa ate aga cca ttg aaa gag 1104

Gly Glu Asp Gly Cys Trp Tyr Gly Met Glu lie Arg Pro Leu Lys Glu 355 360 365 aaa gaa gag aat ttg gtc aac tee ttg gtc aca gee tag 1143Gly Glu Asp Gly Cys Trp Tyr Gly Met Glu lie Arg Pro Leu Lys Glu 355 360 365 aaa gaa gag aat ttg gtc aac tee ttg gtc aca gee tag 1143

Lys Glu Glu Asn Leu Val Asn Ser Leu Val Thr Ala 370 375 380Lys Glu Glu Asn Leu Val Asn Ser Leu Val Thr Ala 370 375 380

<210> 6 <211> 380 <212> PRT <213>登革熱病毒觀2 <400> 6<210> 6 <211> 380 <212> PRT <213> Dengue Virus View 2 <400> 6

Met Asn Ser Arg Ser Thr Ser Leu Ser Val Ser Leu Val Leu Val Gly 15 10 15Met Asn Ser Arg Ser Thr Ser Leu Ser Val Ser Leu Val Leu Val Gly 15 10 15

Val Val Thr Leu Tyr Leu Gly Val Met Val Gin Ala Asp Ser Gly Cys 20 25 30Val Val Thr Leu Tyr Leu Gly Val Met Val Gin Ala Asp Ser Gly Cys 20 25 30

Val Val Ser Trp Lys Asn Lys Glu Leu Lys Cys Gly Ser Gly lie Phe 35 40 45 lie Thr Asp Asn Val His Thr Trp Thr Glu Gin Tyr Lys Phe Gin Pro 50 55 60Val Val Ser Trp Lys Asn Lys Glu Leu Lys Cys Gly Ser Gly lie Phe 35 40 45 lie Thr Asp Asn Val His Thr Trp Thr Glu Gin Tyr Lys Phe Gin Pro 50 55 60

Glu Ser Pro Ser Lys Leu Ala Ser Ala He Gin Lys Ala His Glu Glu 4 1354560 65 70 75 80Glu Ser Pro Ser Lys Leu Ala Ser Ala He Gin Lys Ala His Glu Glu 4 1354560 65 70 75 80

Gly lie Cys Gly lie Arg Ser Val Thr Arg Leu Glu Asn Leu Met Trp 85 90 95Gly lie Cys Gly lie Arg Ser Val Thr Arg Leu Glu Asn Leu Met Trp 85 90 95

Lys Gin lie Thr Pro Glu Leu Asn His lie Leu Ser Glu Asn Glu Val 100 105 noLys Gin lie Thr Pro Glu Leu Asn His lie Leu Ser Glu Asn Glu Val 100 105 no

Lys Leu Thr lie Met Thr Gly Asp lie Lys Gly lie Met Gin Ala Gly 115 120 125Lys Leu Thr lie Met Thr Gly Asp lie Lys Gly lie Met Gin Ala Gly 115 120 125

Lys Arg Ser Leu Gin Pro Gin Pro Thr Glu Leu Lys Tyr Ser Trp Lys 130 135 140Lys Arg Ser Leu Gin Pro Gin Pro Thr Glu Leu Lys Tyr Ser Trp Lys 130 135 140

Thr Trp Gly Lys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr 145 150 155 160Thr Trp Gly Lys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr 145 150 155 160

Phe Leu lie Asp Gly Pro Glu Thr Ala Glu Cys Pro Asn Thr Asn Arg 165 170 175Phe Leu lie Asp Gly Pro Glu Thr Ala Glu Cys Pro Asn Thr Asn Arg 165 170 175

Ala Trp Asn Ser Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr 180 185 190Ala Trp Asn Ser Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr 180 185 190

Thr Asn lie Trp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp 195 200 205Thr Asn lie Trp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp 195 200 205

Ser Lys Leu Met Ser Ala Ala He Lys Asp Asn Arg Ala Val His Ala 210 215 220Ser Lys Leu Met Ser Ala Ala He Lys Asp Asn Arg Ala Val His Ala 210 215 220

Asp Met Gly Tyr Trp He Glu Ser Ala Leu Asn Asp Thr Trp Lys lie 225 230 235 240Asp Met Gly Tyr Trp He Glu Ser Ala Leu Asn Asp Thr Trp Lys lie 225 230 235 240

Glu Lys Ala Ser Phe lie Glu Val Lys Ser Cys His Trp Pro Lys Ser 245 250 255Glu Lys Ala Ser Phe lie Glu Val Lys Ser Cys His Trp Pro Lys Ser 245 250 255

His Thr Leu Trp Ser Asn Gly Val Leu Glu Ser Glu Met He lie Pro 260 265 270His Thr Leu Trp Ser Asn Gly Val Leu Glu Ser Glu Met He lie Pro 260 265 270

Lys Asn Phe Ala Gly Pro Val Ser Gin His Asn Tyr Arg Pro Gly Tyr 275 280 285.Lys Asn Phe Ala Gly Pro Val Ser Gin His As Tyr Arg Pro Gly Tyr 275 280 285.

His Thr Gin Thr Ala Gly Pro Trp His Leu Gly Lys Leu Glu Met Asp 290 295 300His Thr Gin Thr Ala Gly Pro Trp His Leu Gly Lys Leu Glu Met Asp 290 295 300

Phe Asp Phe Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly 305 310 315 320Phe Asp Phe Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly 305 310 315 320

Asn Arg Gly Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu lie 5 1354560 325 330 335 Thr Glu Trp Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg 340 345 350 Gly Glu Asp Gly Cys Trp Tyr Gly Met Glu He Arg Pro Leu Lys Glu 355 360 365 Lys Glu Glu Asn Leu Val Asn Ser Leu Val Thr Ala 370 375 380 <210> 7 <211> 1296 <212> DNA ' <213〉登革麵番麵2 <220> <221> CDS <222> (50)..(1189) <220> <221> 引子_結合卩 <222> (12)..(32) <220> <2 21>引子一結合 <222> (1243)..(1273) <400> 7 ttttcctttg aaaaacacga taataccatg ggaattcccc cgatctgga atg aat tea Met Asn Ser 1 ege age acc tea ctg tet gtg tea eta gta ttg gtg gga gtc gtg aeg Arg Ser Thr Ser Leu Ser Val Ser Leu Val Leu Val Gly Val Val Thr 5 10 15 ctg tat ttg gga gtt atg gtg cag gcc gat agt ggt tgc gtt gtg age Leu Tyr Leu Gly Val Met Val Gin Ala Asp Ser Gly Cys Val Val Ser 20 25 30 35 tgg aaa aac aaa gaa ctg aag tgt ggc agt ggg att ttc ate aca gac Trp Lys Asn Lys Glu Leu Lys Cys Gly Ser Gly lie Phe lie Thr Asp 40 45 50 aac gtg cac aca tgg aca gaa caa tac aag ttc caa cca gaa tcc cct 58 106 154 202 250 6Asn Arg Gly Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu lie 5 1354560 325 330 335 Thr Glu Trp Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg 340 345 350 Gly Glu Asp Gly Cys Trp Tyr Gly Met Glu He Arg Pro Leu Lys Glu 355 360 365 Lys Glu Glu Asn Leu Val Asn Ser Leu Val Thr Ala 370 375 380 <210> 7 <211> 1296 <212> DNA ' <213> Dengue Noodles 2 <220><221> CDS <222> (50)..(1189) <220><221>Introduction_Combination卩<222> (12)..(32) <220><;221>Introduction-integration<222> (1243)..(1273) <400> 7 ttttcctttg aaaaacacga taataccatg ggaattcccc cgatctgga atg aat tea Met Asn Ser 1 ege age acc tea ctg tet gtg tea eta gta ttg gtg gga gtc Gtg aeg Arg Ser Thr Ser Leu Ser Val Ser Leu Val Leu Val Gly Val Val Thr 5 10 15 ctg tat ttg gga gtt atg gtg cag gcc gat agt ggt tgc gtt gtg age Leu Tyr Leu Gly Val Met Val Gin Ala Asp Ser Gly Cys Val Val Ser 20 25 30 35 tgg aaa aac aaa gaa ctg aag tgt ggc agt ggg att ttc ate aca gac Trp Lys A Sn Lys Glu Leu Lys Cys Gly Ser Gly lie Phe lie Thr Asp 40 45 50 aac gtg cac aca tgg aca gaa caa tac aag ttc caa cca gaa tcc cct 58 106 154 202 250 6

Asn Val His Thr Trp Thr Glu Gin Tyr Lys Phe Gin Pro Glu Ser Pro 55 60 65 tea aag eta get tea get ate cag aaa get cat gaa gag ggc att tgtAsn Val His Thr Trp Thr Glu Gin Tyr Lys Phe Gin Pro Glu Ser Pro 55 60 65 tea aag eta get tea get ate cag aaa get cat gaa gag ggc att tgt

Ser Lys Leu Ala Ser Ala lie Gin Lys Ala His Glu Glu Gly lie Cys 70 75 80 gga ate ege tea gta aca aga ctg gaa aat ctg atg tgg aaa caa ataSer Lys Leu Ala Ser Ala lie Gin Lys Ala His Glu Glu Gly lie Cys 70 75 80 gga ate ege tea gta aca aga ctg gaa aat ctg atg tgg aaa caa ata

Gly lie Arg Ser Val Thr Arg Leu Glu Asn Leu Met Trp Lys Gin lie 85 90 95 aca cca gaa ttg aat cac att eta tea gaa aat gag gtg aag ttg actGly lie Arg Ser Val Thr Arg Leu Glu Asn Leu Met Trp Lys Gin lie 85 90 95 aca cca gaa ttg aat cac att eta tea gaa aat gag gtg aag ttg act

Thr Pro Glu Leu Asn His lie Leu Ser Glu Asn Glu Val Lys Leu Thr 100 105 110 115 att atg aca gga gac ate aaa gga ate atg cag gca gga aaa ega tet lie Met Thr Gly Asp lie Lys Gly lie Met Gin Ala Gly Lys Arg Ser 120 125 130 ctg cag ccc cag ccc act gag ctg aag tat tea tgg aaa aca tgg ggcThr Pro Glu Leu Asn His lie Leu Ser Glu Asn Glu Val Lys Leu Thr 100 105 110 115 att atg aca gga gac ate aaa gga ate atg cag gca gga aaa ega tet lie Met Thr Gly Asp lie Lys Gly lie Met Gin Ala Gly Lys Arg Ser 120 125 130 ctg cag ccc cag ccc act gag ctg aag tat tea tgg aaa aca tgg ggc

Leu Gin Pro Gin Pro Thr Glu Leu Lys Tyr Ser Trp Lys Thr Trp Gly 135 140 145 aaa geg aaa atg etc tet aca gag tet cat aac cag acc ttt etc attLeu Gin Pro Gin Pro Thr Glu Leu Lys Tyr Ser Trp Lys Thr Trp Gly 135 140 145 aaa geg aaa atg etc tet aca gag tet cat aac cag acc ttt etc att

Lys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr Phe Leu lie 150 155 160 gat ggc ccc gaa aca gca gaa tgc ccc aac aca aac aga get tgg aatLys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr Phe Leu lie 150 155 160 gat ggc ccc gaa aca gca gaa tgc ccc aac aca aac aga get tgg aat

Asp Gly Pro Glu Thr Ala Glu Cys Pro Asn Thr Asn Arg Ala Trp Asn 165 170 175 teg ctg gaa gtt gaa gac tat ggc ttt gga gta ttc acc acc aat ataAsp Gly Pro Glu Thr Ala Glu Cys Pro Asn Thr Asn Arg Ala Trp Asn 165 170 175 teg ctg gaa gtt gaa gac tat ggc ttt gga gta ttc acc acc aat ata

Ser Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr Thr Asn lie 180 185 190 195 tgg eta aag ttg aga gaa aag cag gat gta ttc tgc gac tea aaa etcSer Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr Thr Asn lie 180 185 190 195 tgg eta aag ttg aga gaa aag cag gat gta ttc tgc gac tea aaa etc

Trp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp Ser Lys Leu 200 205 210 atg tea geg gee ata aaa gac aac aga gee gtc cat gee gat atg ggtTrp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp Ser Lys Leu 200 205 210 atg tea geg gee ata aaa gac aac aga gee gtc cat gee gat atg ggt

Met Ser Ala Ala lie Lys Asp Asn Arg Ala Val His Ala Asp Met Gly 215 220 225 tat tgg ata gaa agt gca etc aat gac aca tgg aag ata gag aaa geeMet Ser Ala Ala lie Lys Asp Asn Arg Ala Val His Ala Asp Met Gly 215 220 225 tat tgg ata gaa agt gca etc aat gac aca tgg aag ata gag aaa gee

Tyx Trp lie Glu Ser Ala Leu Asn Asp Thr Trp Lys lie Glu Lys Ala 230 235 240 tet ttc ate gaa gtt aaa age tgc. cac tgg cca aag tea cac acc etc 7 1354560Tyx Trp lie Glu Ser Ala Leu Asn Asp Thr Trp Lys lie Glu Lys Ala 230 235 240 tet ttc ate gaa gtt aaa age tgc. cac tgg cca aag tea cac acc etc 7 1354560

Ser Phe lie Glu Val Lys Ser Cys His Trp Pro Lys Ser His Thr Leu 245 250 255 tgg agt aat gga gtg tta gaa agt gag atg ata att cca aag aat ttc 874Ser Phe lie Glu Val Lys Ser Cys His Trp Pro Lys Ser His Thr Leu 245 250 255 tgg agt aat gga gtg tta gaa agt gag atg ata att cca aag aat ttc 874

Trp Ser Asn Gly Val Leu Glu Ser Glu Met lie lie Pro Lys Asn Phe 260 265 270 275 get gga cca gtg tea caa cac aac tac aga cca ggc tac cat aca caa 922Trp Ser Asn Gly Val Leu Glu Ser Glu Met lie lie Pro Lys Asn Phe 260 265 270 275 get gga cca gtg tea caa cac aac tac aga cca ggc tac cat aca caa 922

Ala Gly Pro Val Ser Gin His Asn Tyr Arg Pro Gly Tyr His Thr Gin 280 285 290 aca gca gga cca tgg cat eta ggt aag ett gag atg gac ttt gat ttc 970Ala Gly Pro Val Ser Gin His As Tyr Arg Pro Gly Tyr His Thr Gin 280 285 290 aca gca gga cca tgg cat eta ggt aag ett gag atg gac ttt gat ttc 970

Thr Ala Gly Pro Trp His Leu Gly Lys Leu Glu Met Asp Phe Asp Phe 295 300 305 tgc gaa gga acc aca gtg gtg gtg act gag gac tgt gga aat aga gga 1018Thr Ala Gly Pro Trp His Leu Gly Lys Leu Glu Met Asp Phe Asp Phe 295 300 305 tgc gaa gga acc aca gtg gtg gtg act gag gac tgt gga aat aga gga 1018

Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly Asn Arg Gly 310 315 320 ccc tet tta aga aca act act gcc tet gga aaa etc ata aca gaa tgg 1066Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly Asn Arg Gly 310 315 320 ccc tet tta aga aca act act gcc tet gga aaa etc ata aca gaa tgg 1066

Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu lie Thr Glu Trp 325 330 335 tgc tgc ega tet tgc aca tta cca ccg eta aga tac aga ggt gag gac 1114Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu lie Thr Glu Trp 325 330 335 tgc tgc ega tet tgc aca tta cca ccg eta aga tac aga ggt gag gac 1114

Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg Gly Glu Asp 340 345 350 355 gga tgc tgg tac ggg atg gaa ate aga cca ttg aaa gag aaa gaa gag 1162Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg Gly Glu Asp 340 345 350 355 gga tgc tgg tac ggg atg gaa ate aga cca ttg aaa gag aaa gaa gag 1162

Gly Cys Trp Tyr Gly Met Glu lie Arg Pro Leu Lys Glu Lys Glu Glu 360 365 370Gly Cys Trp Tyr Gly Met Glu lie Arg Pro Leu Lys Glu Lys Glu Glu 360 365 370

aat ttg gtc aac tcc ttg gtc aca gcc tagtagggat cgggggagct 1209Aat ttg gtc aac tcc ttg gtc aca gcc tagtagggat cgggggagct 1209

Asn Leu Val Asn Ser Leu Val Thr Ala 375 380 cactagtgga tccctccagc tegagaggne taattaatta agtetaegat ccggctgcta 1269 acaaagcccg aaaggaaget gagttgg 1296Asn Leu Val Asn Ser Leu Val Thr Ala 375 380 cactagtgga tccctccagc tegagaggne taattaatta agtetaegat ccggctgcta 1269 acaaagcccg aaaggaaget gagttgg 1296

<210> 8 <211> 380 <212> PRT <213〉登革熱病毒觀2 <400> 8<210> 8 <211> 380 <212> PRT < 213 > dengue virus view 2 <400>

Met Asn Ser Arg Ser Thr Ser Leu Ser Val Ser Leu Val Leu Val Gly 1 5 10 15 8 in 1354560 • ·Met Asn Ser Arg Ser Thr Ser Leu Ser Val Ser Leu Val Leu Val Gly 1 5 10 15 8 in 1354560 •

Val Val Thr Leu Tyr Leu Gly Val Met Val Gin Ala Asp Ser Gly Cys 20 25 30Val Val Thr Leu Tyr Leu Gly Val Met Val Gin Ala Asp Ser Gly Cys 20 25 30

Val Val Ser Trp Lys Asn Lys Glu Leu Lys Cys Gly Ser Gly lie Phe 35 40 45 lie Thr Asp Asn Val His Thr Trp Thr Glu Gin Tyr Lys Phe Gin Pro 50 55 60Val Val Ser Trp Lys Asn Lys Glu Leu Lys Cys Gly Ser Gly lie Phe 35 40 45 lie Thr Asp Asn Val His Thr Trp Thr Glu Gin Tyr Lys Phe Gin Pro 50 55 60

Glu Ser Pro Ser Lys Leu Ala Ser Ala lie Gin Lys Ala His Glu Glu 65 70 75 80Glu Ser Pro Ser Lys Leu Ala Ser Ala lie Gin Lys Ala His Glu Glu 65 70 75 80

Gly lie Cys Gly lie Arg Ser Val Thr Arg Leu Glu Asn Leu Met Trp 85 90 95Gly lie Cys Gly lie Arg Ser Val Thr Arg Leu Glu Asn Leu Met Trp 85 90 95

Lys Gin lie Thr Pro Glu Leu Asn His lie Leu Ser Glu Asn Glu Val 100 105 110Lys Gin lie Thr Pro Glu Leu Asn His lie Leu Ser Glu Asn Glu Val 100 105 110

Lys Leu Thr lie Met Thr Gly Asp lie Lys Gly lie Met Gin Ala Gly 115 120 125Lys Leu Thr lie Met Thr Gly Asp lie Lys Gly lie Met Gin Ala Gly 115 120 125

Lys Arg Ser Leu Gin Pro Gin Pro Thr Glu Leu Lys Tyr Ser Trp Lys 130 135 140Lys Arg Ser Leu Gin Pro Gin Pro Thr Glu Leu Lys Tyr Ser Trp Lys 130 135 140

Thr Trp Gly Lys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr 145 150 155 160Thr Trp Gly Lys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr 145 150 155 160

Phe Leu lie Asp Gly Pro Glu Thr Ala Glu Cys Pro Asn Thr Asn Arg 165 170 175Phe Leu lie Asp Gly Pro Glu Thr Ala Glu Cys Pro Asn Thr Asn Arg 165 170 175

Ala Trp Asn Ser Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr 180 185 190Ala Trp Asn Ser Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr 180 185 190

Thr Asn lie Trp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp 195 200 205Thr Asn lie Trp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp 195 200 205

Ser Lys Leu Met Ser Ala Ala lie Lys Asp Asn Arg Ala Val His Ala 210 215 220Ser Lys Leu Met Ser Ala Ala lie Lys Asp Asn Arg Ala Val His Ala 210 215 220

Asp Met Gly Tyr Trp lie Glu Ser Ala Leu Asn Asp Thr Trp Lys lie 225 230 235 240Asp Met Gly Tyr Trp lie Glu Ser Ala Leu Asn Asp Thr Trp Lys lie 225 230 235 240

Glu Lys Ala Ser Phe lie Glu Val Lys Ser Cys His Trp Pro Lys Ser 245 250 255Glu Lys Ala Ser Phe lie Glu Val Lys Ser Cys His Trp Pro Lys Ser 245 250 255

His Thr Leu Trp Ser Asn Gly Val Leu Glu Ser Glu Met He lie Pro .260 265 270 9 1354560His Thr Leu Trp Ser Asn Gly Val Leu Glu Ser Glu Met He lie Pro .260 265 270 9 1354560

Lys Asn Phe Ala Gly Pro Val Ser Gin His Asn Tyr Arg Pro Gly Tyr 275 280 285Lys Asn Phe Ala Gly Pro Val Ser Gin His As Tyr Arg Pro Gly Tyr 275 280 285

His Thr Gin Thr Ala Gly Pro Trp His Leu Gly Lys Leu Glu Met Asp 290 295 300His Thr Gin Thr Ala Gly Pro Trp His Leu Gly Lys Leu Glu Met Asp 290 295 300

Phe Asp Phe Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly 305 310 315 320Phe Asp Phe Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly 305 310 315 320

Asn Arg Gly Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu lie 325 330 335Asn Arg Gly Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu lie 325 330 335

Thr Glu Trp Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg 340 345 350Thr Glu Trp Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg 340 345 350

Gly Glu Asp Gly Cys Trp Tyr Gly Met Glu lie Arg Pro Leu Lys Glu 355 360 365Gly Glu Asp Gly Cys Trp Tyr Gly Met Glu lie Arg Pro Leu Lys Glu 355 360 365

Lys Glu Glu Asn Leu Val Asn Ser Leu Val Thr Ala 370 375 380Lys Glu Glu Asn Leu Val Asn Ser Leu Val Thr Ala 370 375 380

<210> 9 <211> 1227 <212> DNA <213>登革熱病毒類型2 <220><210> 9 <211> 1227 <212> DNA <213> Dengue virus type 2 <220>

<221>起動子 <222> (5)..(48) <223>最小度病赛起動子要素 <220><221>Starter <222> (5)..(48) <223> Minimal disease starter element <220>

<221> CDS <222> (85) . . (1224) <223> NS1 <400> 9 ctcgacaaaa aattgaaatt ttattttttt tttttggaat ataaataaaa acacgataat 60 accatgggaa ttccccgatc tgga atg aat tea ege age acc tea ctg tet 111<221> CDS <222> (85) . . . (1224) <223> NS1 <400> 9 ctcgacaaaa aattgaaatt ttattttttt tttttggaat ataaataaaa acacgataat 60 accatgggaa ttccccgatc tgga atg aat tea ege age acc tea ctg tet 111

Met Asn Ser Arg Ser Thr Ser Leu Ser 1 5 gtg tea eta gta ttg gtg gga gtc gtg aeg ctg tat ttg gga gtt atg 159Met Asn Ser Arg Ser Thr Ser Leu Ser 1 5 gtg tea eta gta ttg gtg gga gtc gtg aeg ctg tat ttg gga gtt atg 159

Val Ser Leu Val Leu Val Gly Val Val Thr Leu Tyr Leu Gly Val Met 10 10 15 20 25 gtg cag gcc gat agt ggt tgc gtt gtg age tgg aaa aac aaa gaa ctg Val Gin Ala Asp Ser Gly Cys Val Val Ser Trp Lys Asn Lys Glu Leu 30 35 40 aag tgt ggc agt ggg att ttc ate aca gac aac gtg cac aca tgg acaVal Ser Leu Val Leu Val Gly Val Val Thr Leu Tyr Leu Gly Val Met 10 10 15 20 25 gtg cag gcc gat agt ggt tgc gtt gtg age tgg aaa aac aaa gaa ctg Val Gin Ala Asp Ser Gly Cys Val Val Ser Trp Lys Asn Lys Glu Leu 30 35 40 aag tgt ggc agt ggg att ttc ate aca gac aac gtg cac aca tgg aca

Lys Cys Gly Ser Gly lie Phe lie Thr Asp Asn Val His Thr Trp Thr 45 50 55 gaa caa tac aag ttc caa cca gaa tcc cct tea aag eta get tea getLys Cys Gly Ser Gly lie Phe lie Thr Asp Asn Val His Thr Trp Thr 45 50 55 gaa caa tac aag ttc caa cca gaa tcc cct tea aag eta get tea get

Glu Gin Tyr Lys Phe Gin Pro Glu Ser Pro Ser Lys Leu Ala Ser Ala 60 65 70 ate cag aaa get cat gaa gag ggc att tgt gga ate ege tea gta aca lie Gin Lys Ala His Glu Glu Gly lie Cys Gly lie Arg Ser Val Thr 75 80 85 aga ctg gaa aat ctg atg tgg aaa caa ata aca cca gaa ttg aat cacGlu Gin Tyr Lys Phe Gin Pro Glu Ser Pro Ser Lys Leu Ala Ser Ala 60 65 70 ate cag aaa get cat gaa gag ggc att tgt gga ate ege tea gta aca lie Gin Lys Ala His Glu Glu Gly lie Cys Gly lie Arg Ser Val Thr 75 80 85 aga ctg gaa aat ctg atg tgg aaa caa ata aca cca gaa ttg aat cac

Arg Leu Glu Asn Leu Met Trp Lys Gin lie Thr Pro Glu Leu Asn His 90 95 100 105 att eta tea gaa aat gag gtg aag ttg act att atg aca gga gac ate lie Leu Ser Glu Asn Glu Val Lys Leu Thr lie Met Thr Gly Asp lie 110 115 120 aaa gga ate atg cag gca gga aaa ega tet ctg cag ccc cag ccc actArg Leu Glu Asn Leu Met Trp Lys Gin lie Thr Pro Glu Leu Asn His 90 95 100 105 att eta tea gaa aat gag gtg aag ttg act att atg aca gga gac ate lie Leu Ser Glu Asn Glu Val Lys Leu Thr lie Met Thr Gly Asp lie 110 115 120 aaa gga ate atg cag gca gga aaa ega tet ctg cag ccc cag ccc act

Lys Gly lie Met Gin Ala Gly Lys Arg Ser Leu Gin Pro Gin Pro Thr 125 130 135 gag ctg aag tat tea tgg aaa aca tgg ggc aaa geg aaa atg etc tetLys Gly lie Met Gin Ala Gly Lys Arg Ser Leu Gin Pro Gin Pro Thr 125 130 135 gag ctg aag tat tea tgg aaa aca tgg ggc aaa geg aaa atg etc tet

Glu Leu Lys Tyr Ser Trp Lys Thr Trp Gly Lys Ala Lys Met Leu Ser 140 145 150 aca gag tet cat aac cag acc ttt etc att gat ggc ccc gaa aca gcaGlu Leu Lys Tyr Ser Trp Lys Thr Trp Gly Lys Ala Lys Met Leu Ser 140 145 150 aca gag tet cat aac cag acc ttt etc att gat ggc ccc gaa aca gca

Thr Glu Ser His Asn Gin Thr Phe Leu lie Asp Gly Pro Glu Thr Ala 155 160 165 gaa tgc ccc aac aca aac aga get tgg aat teg ctg gaa gtt gaa gacThr Glu Ser His Asn Gin Thr Phe Leu lie Asp Gly Pro Glu Thr Ala 155 160 165 gaa tgc ccc aac aca aac aga get tgg aat teg ctg gaa gtt gaa gac

Glu Cys Pro Asn Thr Asn Arg Ala Trp Asn Ser Leu Glu Val Glu Asp 170 175 180 185 tat ggc ttt gga gta ttc acc acc aat ata tgg eta aag ttg aga gaaGlu Cys Pro Asn Thr Asn Arg Ala Trp Asn Ser Leu Glu Val Glu Asp 170 175 180 185 tat ggc ttt gga gta ttc acc acc aat ata tgg eta aag ttg aga gaa

Tyr Gly Phe Gly Val Phe Thr Thr Asn lie Trp Leu Lys Leu Arg Glu 190 195 200 aag cag gat gta ttc tgc gac tea aaa etc atg tea geg gcc ata aaaTyr Gly Phe Gly Val Phe Thr Thr Asn lie Trp Leu Lys Leu Arg Glu 190 195 200 aag cag gat gta ttc tgc gac tea aaa etc atg tea geg gcc ata aaa

Lys Gin Asp Val Phe Cys Asp Ser Lys Leu Met Ser Ala Ala lie Lys 11 7831354560 205 210 215 gac aac aga gcc gtc cat gcc gat atg ggt tat tgg ata gaa agt gca Asp Asn Arg Ala Val His Ala Asp Met Gly Tyr Trp lie Glu Ser Ala 220 225 230 etc aat gac aca tgg aag ata gag aaa gcc tet ttc ate gaa gtt aaa Leu Asn Asp Thr Trp Lys lie Glu Lys Ala Ser Phe lie Glu Val Lys 235 240 245 age tgc cac tgg cca aag tea cac acc etc tgg agt aat gga gtg tta Ser Cys His Trp Pro Lys Ser His Thr Leu Trp Ser Asn Gly Val Leu 250 255 260 265 gaa agt gag atg ata att cca aag aat ttc get gga cca gtg tea caa Glu Ser Glu Met lie lie Pro Lys Asn Phe Ala Gly Pro Val Ser Gin 270 275 280 cac aac tac aga cca ggc tac cat aca caa aca gca gga cca tgg cat His Asn Tyr Arg Pro Gly Tyr His Thr Gin Thr Ala Gly Pro Trp His 285 290 295 eta ggt aag ett gag atg gac ttt gat ttc tgc gaa gga acc aca gtg Leu Gly Lys Leu Glu Met Asp Phe Asp Phe Cys Glu Gly Thr Thr Val 300 305 310 gtg gtg act gag gac tgt gga aat aga gga ccc tet tta aga aca act Val Val Thr Glu Asp Cys Gly Asn Arg Gly Pro Ser Leu Arg Thr Thr 315 320 325 act gcc tet gga aaa etc ata aca gaa tgg tgc tgc ega tet tgc aca Thr Ala Ser Gly Lys Leu lie Thr Glu Trp Cys Cys Arg Ser Cys Thr 330 335 340 345 tta cca ccg eta aga tac aga ggt gag gac gga tgc tgg tac ggg atg Leu Pro Pro Leu Arg Tyr Arg Gly Glu Asp Gly Cys Trp Tyr Gly Met 350 355 360 gaa ate aga cca ttg aaa gag aaa gaa gag aat ttg gtc aac tee ttg Glu lie Arg Pro Leu Lys Glu Lys Glu Glu Asn Leu Val Asn Ser Leu 365 370 375 gtc aca gcc tag Val Thr Ala 380 831 879 927Lys Gin Asp Val Phe Cys Asp Ser Lys Leu Met Ser Ala Ala lie Lys 11 7831354560 205 210 215 gac aac aga gcc gtc cat gcc gat atg ggt tat tag ata gaa agt gca Asp Asn Arg Ala Val His Ala Asp Met Gly Tyr Trp lie Glu Ser Ala 220 225 230 etc aat gac aca tgg aag ata gag aaa gcc tet ttc ate gaa gtt aaa Leu Asn Asp Thr Trp Lys lie Glu Lys Ala Ser Phe lie Glu Val Lys 235 240 245 age tgc cac tgg cca aag tea cac acc Et t t t ag ag g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g Lys Asn Phe Ala Gly Pro Val Ser Gin 270 275 280 cac aac tac aga cca ggc tac cat aca caa aca gca gga cca tgg cat His Asn Tyr Arg Pro Gly Tyr His Thr Gin Thr Ala Gly Pro Trp His 285 290 295 eta ggt aag Tett gag atg gac ttt gat ttc tgc gaa gga acc aca gtg Leu Gly Lys Leu Glu Met Asp Phe Asp Phe Cys Glu Gly Thr Thr Val 300 305 310 gtg gtg act gag gac tgt gga aat aga gga ccc tet tta aga aca act Va l Val Thr Glu Asp Cys Gly Asn Arg Gly Pro Ser Leu Arg Thr Thr 315 320 325 act gcc tet gga aaa etc ata aca gaa tgg tgc tgc ega tet tgc aca Thr Ala Ser Gly Lys Leu lie Thr Glu Trp Cys Cys Arg Ser Cys Thr 330 335 340 345 tta cca ccg eta aga tac aga ggt gag gac gga tgc tgg tac ggg atg Leu Pro Pro Leu Arg Tyr Arg Gly Glu Asp Gly Cys Trp Tyr Gly Met 350 355 360 gaa ate aga cca ttg aaa gag aaa gaa gag Aat ttg gtc aac tee ttg Glu lie Arg Pro Leu Lys Glu Lys Glu Glu Asn Leu Val Asn Ser Leu 365 370 375 gtc aca gcc tag Val Thr Ala 380 831 879 927

975 1023 1071 1119 1167 1215975 1023 1071 1119 1167 1215

<210> 10 12 1227 1354560 '^ <211> 380<210> 10 12 1227 1354560 '^ <211> 380

<212> PRT ' <213> Dengue virus type 2 <400> 10<212> PRT ' <213> Dengue virus type 2 <400> 10

Met Asn Ser Arg Ser Thr Ser Leu Ser Val Ser Leu Val Leu Val Gly 15 10 15Met Asn Ser Arg Ser Thr Ser Leu Ser Val Ser Leu Val Leu Val Gly 15 10 15

Val Val Thr Leu Tyr Leu Gly Val Met Val Gin Ala Asp Ser Gly Cys 20 25 30Val Val Thr Leu Tyr Leu Gly Val Met Val Gin Ala Asp Ser Gly Cys 20 25 30

Val Val Ser Trp Lys Asn Lys Glu Leu Lys Cys Gly Ser Gly lie Phe 35 40 45 lie Thr Asp Asn Val His Thr Trp Thr Glu Gin Tyr Lys Phe Gin Pro - 50 55 60Val Val Ser Trp Lys Asn Lys Glu Leu Lys Cys Gly Ser Gly lie Phe 35 40 45 lie Thr Asp Asn Val His Thr Trp Thr Glu Gin Tyr Lys Phe Gin Pro - 50 55 60

Glu Ser Pro Ser Lys Leu Ala Ser Ala lie Gin Lys Ala His Glu Glu 65 70 75 80Glu Ser Pro Ser Lys Leu Ala Ser Ala lie Gin Lys Ala His Glu Glu 65 70 75 80

Gly lie Cys Gly lie Arg Ser Val Thr Arg Leu Glu Asn Leu Met Trp 85 90 95Gly lie Cys Gly lie Arg Ser Val Thr Arg Leu Glu Asn Leu Met Trp 85 90 95

Lys Gin lie Thr Pro Glu Leu Asn His lie Leu Ser Glu Asn Glu Val 100 105 110Lys Gin lie Thr Pro Glu Leu Asn His lie Leu Ser Glu Asn Glu Val 100 105 110

Lys Leu Thr lie Met Thr Gly Asp lie Lys Gly lie Met Gin Ala Gly 115 120 125Lys Leu Thr lie Met Thr Gly Asp lie Lys Gly lie Met Gin Ala Gly 115 120 125

Lys Arg Ser Leu Gin Pro Gin Pro Thr Glu Leu Lys Tyr Ser Trp Lys 130 135 140Lys Arg Ser Leu Gin Pro Gin Pro Thr Glu Leu Lys Tyr Ser Trp Lys 130 135 140

Thr Trp Gly Lys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr 145 150 155 160Thr Trp Gly Lys Ala Lys Met Leu Ser Thr Glu Ser His Asn Gin Thr 145 150 155 160

Phe Leu lie Asp Gly Pro Glu Thr Ala Glu Cys Pro Asn Thr Asn Arg 165 170 175Phe Leu lie Asp Gly Pro Glu Thr Ala Glu Cys Pro Asn Thr Asn Arg 165 170 175

Ala Trp Asn Ser Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr 180 185 190Ala Trp Asn Ser Leu Glu Val Glu Asp Tyr Gly Phe Gly Val Phe Thr 180 185 190

Thr Asn lie Trp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp 195 200 205Thr Asn lie Trp Leu Lys Leu Arg Glu Lys Gin Asp Val Phe Cys Asp 195 200 205

Ser Lys Leu Met Ser Ala Ala lie Lys Asp Asn Arg Ala Val His Ala 210 215 220Ser Lys Leu Met Ser Ala Ala lie Lys Asp Asn Arg Ala Val His Ala 210 215 220

Asp Met Gly Tyr Trp lie Glu Ser Ala Leu Asn Asp Thr Trp Lys lie 13 1354560 , 225 230 235 240Asp Met Gly Tyr Trp lie Glu Ser Ala Leu Asn Asp Thr Trp Lys lie 13 1354560 , 225 230 235 240

Glu Lys Ala Ser Phe lie Glu Val Lys Ser Cys His Trp Pro Lys Ser 245 250 255Glu Lys Ala Ser Phe lie Glu Val Lys Ser Cys His Trp Pro Lys Ser 245 250 255

His Thr Leu Trp Ser Asn Gly Val Leu Glu Ser Glu Met lie lie Pro 260 265 270His Thr Leu Trp Ser Asn Gly Val Leu Glu Ser Glu Met lie lie Pro 260 265 270

Lys Asn Phe Ala Gly Pro Val Ser Gin His Asn Tyr Arg Pro Gly Tyr 275 280 285Lys Asn Phe Ala Gly Pro Val Ser Gin His As Tyr Arg Pro Gly Tyr 275 280 285

His Thr Gin Thr Ala Gly Pro Trp His Leu Gly Lys Leu Glu Met Asp 290 295 300His Thr Gin Thr Ala Gly Pro Trp His Leu Gly Lys Leu Glu Met Asp 290 295 300

Phe Asp Phe Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly 305 310 315 320 Asn Arg Gly Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu lie 325 330 335 Thr Glu Trp Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg 340 345 350 Gly Glu Asp Gly Cys Trp Tyr Gly Met Glu lie Arg Pro Leu Lys Glu 355 360 365 Lys Glu Glu Asn Leu Val Asn Ser Leu Val Thr Ala 370 375 380Phe Asp Phe Cys Glu Gly Thr Thr Val Val Val Thr Glu Asp Cys Gly 305 310 315 320 Asn Arg Gly Pro Ser Leu Arg Thr Thr Thr Ala Ser Gly Lys Leu lie 325 330 335 Thr Glu Trp Cys Cys Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Arg 340 345 350 Gly Glu Asp Gly Cys Trp Tyr Gly Met Glu lie Arg Pro Leu Lys Glu 355 360 365 Lys Glu Glu Asn Leu Val Asn Ser Leu Val Thr Ala 370 375 380

1414

Claims (1)

1354560 *1354560 * 妙.r V降(更)正本 第99138145號專利申請士甲請專莉霸菌蔭定昼至日期 七、申請專利範圍: 1. 一種用於治療或預防黃病毒感染之藥學組成物,該藥學 組成物包含一痘病毒载體,該痘病毒載體帶有_包含有 一表現卡匣之DNA’該表現卡匣包含一轉錄調節要素和 —核酸序列,該核酸序列編碼一完整的黃病毒NS1蛋白 質或其抗原性抗原決定位,且其中該黃病毒感染係為 一種非衍生出該核酸序列或該N S1蛋白質或其抗原性抗 原決定位之另外的/額外的黃病毒及/或黃病毒血清型之 感染,且 10 前提是該痘病毒載體非如下所述:一種帶有一包含有— 表現卡IE之DNA的疫病毒載體,該表現卡匿包含一轉錄 調節要素和一序列,該序列編碼一完整的黃病毒NS1蛋 白質或其一抗原性抗原決定位並且選擇性地編碼另一 胜肽/蛋白質,該另一胜肽/蛋白質不是—完整的黃病毒 15 E-蛋白質且該殖病毒是經修飾的牛殖病毒安柯拉株 (MVA)具有下列性質的特徵: (i) 能在雞胚胎纖維母細胞(CEF)生殖複製,但在人類 角質細胞細胞株HaCat、人類骨肉瘤細胞株143B 及人類子宮頸腺瘤細胞株HeLa中無生殖複製能 20 力’ (ii) 無法在不能產生成熟B和T細胞之老鼠模型中複製; 以及 前提是該藥學組成物非如下所述:~種用於治療或預防 黃病毒感染之藥學組成物,包含一經修飾的牛癌病毒安 1 第别38〗45號專利申請案申請專利範圍修正本 修正曰期:100年9月27曰 柯拉株(MVA)病毒栽體,該河¥八病毒載體帶有一表現卡 匣,其中該表現卡匣包含一轉錄調節要素和一核酸序 列,該核酸序列編褐一登革病毒血清型2之完整的黃病 毒NS1蛋白質或其一抗原性抗原決定位並且選擇性地編 碼另一胜肽/蛋白質,該另一胜肽/蛋白質不是一完整的 κ病毋E-蛋白質,且其中該黃病毒感染係由選自於登革 病毒血明型1、登革病毒灰清型3、登革病毒血清型4、 曰本腦炎病毒,以及西尼羅河病毒之黃病毒所致之感 染。 2. 如申請專利範圍第!項之藥學組成物,其係用於治療或 預防-動物以額外地對抗—種衍生出該NS1蛋白質或其 抗原性抗原決定位的黃病毒及/或黃病毒血清型。 3. 如申請專利範圍第1或2項之藥學組成物,其中該黃病毒 係為一種經蚊子傳播之黃病毒。 4·如申請專利範’3項之藥學组成物,其中該經蚊子傳 播之黃病毒係為一登革病毒。 5·如申請專職圍第4項之藥學組成物,其中該登革病毒 係為登革病毒血清型2。 6. 如中請專職圍第1或2項之藥學組錢,其中該編碼黃 病毒之NS1蛋白質或其抗原性抗原決定位之核酸序列的 前面係有-個ATG密碼子和—編碼糖化喊序列之序 列,以及其中該編碼序列係由—轉譯終止密瑪子所終 止。 7. 如申請專利㈣第1或2項之藥學組成物,其中該轉錄調 1354560 第99138145號專利申請案申請專利範圍修正本修正日期:100年9月27日 節要素係為一痘病毒啟動子。 8. 如申請專利範圍第1或2項之藥學組成物,其中該痘病毒 載體被冷凍-乾燥。 9. 如申請專利範圍第1或2項之藥學組成物,其中該痘病毒 5 是經修飾的牛痘病毒安柯拉株(MVA)。 10. 如申請專利範圍第1或2項之藥學組成物,其中該NS1蛋 白質或其抗原性抗原決定位係衍生自一登革病毒血清 型,且其中該組成物係保護一個體以至少對抗由至少二 種登革病毒血清型所致之感染。 10 11 ·如申請專利範圍第1或2項之藥學組成物,其中該組成物 係保護一個體以對抗所有登革病毒血清型所致之感染。 12.如申請專利範圍第1或2項之藥學組成物,其中衍生出該 NS1蛋白質的黃病毒血清型和/或黃病毒係為登革病毒 血清型2。 15 13.如申請專利範圍第1或2項之藥學組成物,其中該另外的 /額外的黃病毒係選自於西尼羅河病毒、黃熱病病毒和 曰本腦炎病毒。 14. 如申請專利範圍第1或2項之藥學組成物,其中組成物係 供應用於初次接種或追加接種,或者初次接種及追加接 20 種兩者。 15. 如申請專利範圍第1或2項之藥學組成物,其中組成物係 被配製作為一套組,該套組包含該痘病毒載體,其位在 一供用於第一次接種(初次接種)的第一小瓶/容器中且 位在一供用於第二次接種(追加接種)的第二小瓶/容器 3 第99138145號專利申請案申請專利範圍修正本 修正曰期:1〇〇年9月27日 中。 16. —種帶有一;DNA之痘病毒載體於製備一組成物的用 途,該DNA包含一表現卡匣,該表現卡匣包含有一轉錄 調卽要素和一核酸序列,該核酸序列編碼一完整的黃病 毒NS1蛋白質或其一抗原性抗原決定位,該組成物係用 於治療或預防一動物來對抗非衍生出該核酸序列或NS1 蛋白質或其抗原性抗原決定位之另外的/額外的黃病毒 及/或黃病毒血清型,且 前提是該痘病毒載體非如下所述:一種帶有一包含有一 表現卡匣之DNA的痘病毒載體,該表現卡匣包含一轉錄 調節要素和一序列,該序列編碼一完整的黃病毒NS 1蛋 白質或其一抗原性抗原決定位並且選擇性地編碼另一 胜肽/蛋白質,該另一胜肽/蛋白質不是一完整的黃病毒 E-蛋白質且該痘病毒是經修飾的牛痘病毒安柯拉株 (MVA)具有下列性質的特徵: (i) 能在雞胚胎纖維母細胞(CEF)生殖複製,但在人類 角質細胞細胞株HaCat、人類骨肉瘤細胞株143B 及人類子宮頸腺瘤細胞株HeLa中無生殖複製能 力, (ii) 無法在不能產生成熟6和丁細胞之老鼠模型中複 製;以及 前提是該組成物非如下所述.一種用於治療或預防黃病 毒感染之藥學組成物,包含一牛痕病毒安柯拉株(MVA) 病毒載體,該MVA病毒載體帶有一表現卡匣,其中該表 1354560 • · 第99138145號專利申請案申請專利範圍修正本 修正日期:100年9月27日 5妙.r V Drop (more) Original Patent Application No. 99138145 A. Please apply for the patent scope: 1. A pharmaceutical composition for treating or preventing flavivirus infection. The composition comprises a poxvirus vector carrying a DNA comprising a cassette which comprises a transcriptional regulatory element and a nucleic acid sequence encoding a complete flavivirus NS1 protein or An antigenic epitope thereof, and wherein the flavivirus infection is an additional/additional flavivirus and/or flavivirus serotype that is not derived from the nucleic acid sequence or the N S1 protein or antigenic epitope thereof Infection, and 10 presuppose that the poxvirus vector is not as follows: an epidemic viral vector containing a DNA containing the expression card IE, the expression concealment comprising a transcriptional regulatory element and a sequence encoding a complete The flavivirus NS1 protein or one of its antigenic epitopes and selectively encodes another peptide/protein that is not a complete flavivirus 15 E-egg The virus is a modified bovine virus, Ankera strain (MVA), which has the following characteristics: (i) can replicate in chicken embryonic fibroblasts (CEF), but in human keratinocyte cell line HaCat, Human osteosarcoma cell line 143B and human cervical adenoma cell line HeLa have no reproductive replication energy 20 (') cannot replicate in a mouse model that does not produce mature B and T cells; and the premise is that the pharmaceutical composition is not as follows Said: ~ a pharmaceutical composition for the treatment or prevention of flavivirus infection, comprising a modified bovine cancer virus An 1 No. 38〗 No. 45 Patent Application Patent Revision Amendment This revision period: September 27, 100 a VAKura strain (MVA) virus vector, the river VIII virus vector carrying a performance cassette, wherein the expression cassette contains a transcriptional regulatory element and a nucleic acid sequence, and the nucleic acid sequence is browned into a dengue virus serotype 2 The intact flavivirus NS1 protein or an antigenic epitope thereof and selectively encodes another peptide/protein which is not a complete kappa 毋E-protein, and wherein Flavivirus infection blood out type 1, Dengue virus serotype 3 gray, infection by the dengue virus selected from dengue serotype 4 virus, said encephalitis virus, West Nile virus, and yellow caused by the virus. 2. If you apply for a patent scope! A pharmaceutically acceptable composition for use in the treatment or prophylaxis - an animal to additionally combat against a flavivirus and/or flavivirus serotype from which the NS1 protein or antigenic epitope thereof is derived. 3. The pharmaceutical composition according to claim 1 or 2, wherein the flavivirus is a mosquito-borne flavivirus. 4. The pharmaceutical composition of claim 3, wherein the mosquito-transmitted flavivirus is a dengue virus. 5. If the pharmacy composition of the fourth item of the full-time division is applied, the dengue virus system is dengue virus serotype 2. 6. If the pharmacy group of the NS1 protein or its antigenic epitope, which encodes the flavivirus, is preceded by an ATG codon and a coding glycation sequence. The sequence, and wherein the coding sequence is terminated by a translation termination Mimma. 7. For the pharmaceutical composition of claim 1 or 2 of the patent (4), wherein the transcriptional regulation is 1354560, and the patent application scope of the patent application is amended. The date of revision is: September 27, 100, the factor is a poxvirus promoter. . 8. The pharmaceutical composition according to claim 1 or 2, wherein the poxvirus vector is freeze-dried. 9. The pharmaceutical composition according to claim 1 or 2, wherein the poxvirus 5 is a modified vaccinia virus Ankera strain (MVA). 10. The pharmaceutical composition of claim 1 or 2, wherein the NS1 protein or antigenic epitope thereof is derived from a dengue virus serotype, and wherein the composition protects a body to at least At least two infections caused by dengue virus serotypes. The pharmaceutical composition according to claim 1 or 2, wherein the composition protects one body against infection by all dengue virus serotypes. 12. The pharmaceutical composition according to claim 1 or 2, wherein the flavivirus serotype and/or flavivirus line from which the NS1 protein is derived is dengue virus serotype 2. 15. The pharmaceutical composition of claim 1 or 2, wherein the additional/additional flavivirus is selected from the group consisting of West Nile virus, yellow fever virus and sputum encephalitis virus. 14. The pharmaceutical composition according to claim 1 or 2, wherein the composition is supplied for initial vaccination or additional vaccination, or for initial vaccination and addition of 20 species. 15. The pharmaceutical composition according to claim 1 or 2, wherein the composition is formulated as a set, the set comprising the poxvirus vector, which is used for the first vaccination (primary vaccination) The second vial/container in the first vial/container is located in a second vial/container for the second inoculation (additional inoculation). Patent Application No. 99138145 Patent Application Revision This revision period: September of the following year In the middle of the 27th. 16. The use of a nucleic acid poxvirus vector for the preparation of a composition comprising a expression cassette comprising a transcriptional regulatory element and a nucleic acid sequence encoding a complete A flavivirus NS1 protein or an antigenic epitope thereof, which is used to treat or prevent an animal against additional/extra flaviviruses that are not derived from the nucleic acid sequence or the NS1 protein or antigenic epitope thereof And/or a flavivirus serotype, and provided that the poxvirus vector is not as follows: a poxvirus vector comprising a DNA comprising a cassette, the expression cassette comprising a transcriptional regulatory element and a sequence, the sequence Encoding a complete flavivirus NS 1 protein or an antigenic epitope thereof and selectively encoding another peptide/protein which is not a complete flavivirus E-protein and the poxvirus is The modified vaccinia virus Ankera strain (MVA) has the following characteristics: (i) can replicate in chicken embryonic fibroblasts (CEF) but is fine in human keratinocytes HaCat, human osteosarcoma cell line 143B and human cervical adenoma cell line HeLa have no reproductive replication capacity, (ii) cannot replicate in a mouse model that does not produce mature 6 and butyl cells; and the premise is that the composition is not as follows The pharmaceutical composition for treating or preventing a flavivirus infection, comprising a cowmark virus Ankera strain (MVA) virus vector, the MVA virus vector carrying a performance cassette, wherein the table 1354560 • · 99138145 Patent Application for Patent Application Amendment Revision Date: September 27, 100 1010 20 現卡匣包含一轉錄調節要素和一核酸序列,該核酸序列 編碼一登革病毒血清型2之完整的黃病毒NS1蛋白質或 其一抗原性抗原決定位並且選擇性地編碼另一胜肽/蛋 白質,該另一胜肽/蛋白質不是一完整的黃病毒E-蛋白 質,且其中該黃病毒感染係由選自於登革病毒血清型 1、登革病毒血清型3、登革病毒血清型4、日本腦炎病 毒,以及西尼羅河病毒之黃病毒所致之感染。 17. 如申請專利範圍第16項之用途,其中該黃病毒感染係額 外地為一種衍生出該核酸或該N S1蛋白質或其抗原性抗 原決定位之黃病毒及/或黃病毒血清型的感染。 18. 如申請專利範圍第16或17項之用途,其中該黃病毒係為 一種經蚊子傳播之黃病毒。 19. 如申請專利範圍第18項之用途,其中該經蚊子傳播之黃 病毒係為一登革病毒。 20. 如申請專利範圍第19項之用途,其中該登革病毒係為登 革病毒血清型2。 21. 如申請專利範圍第16或17項之用途,其中該編碼黃病毒 之NS1蛋白質或其抗原性抗原決定位之核酸序列的前面 有一個ATG密碼子和一編碼糖化訊號序列之序列,以及 其中該編碼序列係由一轉譯終止密碼子所終止。 22. 如申請專利範圍第16或17項之用途,其中該轉錄調節要 素係為一痘病毒啟動子。 23. 如申請專利範圍第16或17項之用途, 其中該痘病毒載體 被冷凍-乾燥。 5 第99138145號專利申請案申請專利範圍修正本修正日期·· 100年9月27曰 24. 如申請專利範圍第16或17項之用途,其中該痘病毒是經 修飾的牛痘病毒安柯拉株(MVA)。 25. 如申凊專利範圍第16或π項之用途,其中該nsi蛋白質 或其抗原性抗原決定位係衍生自一登革病毒血清型且 其中組成物、藥劑或疫苗係保護一個體以至少對抗由至 少二種登革病毒血清型之感染。 26. 如申請專利第16或17項之用途,其中該組成物係保 護-個體以對抗由所有登革病毒灰清型之感染。 27·如申請專利範圍第16或17項之用途,其中衍生出該觀 蛋白質之黃病毒血清型和/或黃病毒係為登革病毒血清 型2。 28.如申請專利範圍第丨 外的黃病毒係選自於西其中該另外的/額 腦炎病毒。、羅小病毒、黃熱病病毒和日本 π.如申請專利範圍第‘切 用於初次接種或追途’-中該組成物係供 者。 ’或者初次接種及追加接種兩 瓜如申請專利範圍第16或 製作為-套組之用途,其中該組成物被配 供應用於帛-切I 3 H騎紐,其係位在一 位在-供應用於第二Γ次接種)的第一小瓶/容器中且 器。 人接種(追加接種)的第二小瓶/容 31.如申請專利範圍第 藥劑。 凡“項之用途’其中該組成物係一 1354560 第99138145號專利申請案申請專利範圍修正本 修正日期:100年9月27日 32.如申請專利範圍第16或17項之用途,其中組成物係一疫 1354560 第州撕45號專利輔案圖式替修正日期_100年9月 第2圖 wff^ovoslD^laolsllIXAEINBSI ΙΗζΊωαΙ |0父2512山-6 ruvoovwvoovooovoaLVOJ.WOEWWOXVOVavoDVDVOIAf.LHVJOVO.LLEWVaLOOVSJ.WVVOVOa.vicxLlvovaxvvo.LLWDVDOVOWJ.WVOVWOaLaLvaLD.LVWV08SC ,ΊυιΛω^ιοοιοωωΗνΜΟ IVSVIMWds^doIiMAO^iAAiHAfs 0rG<05D<<^06fem8H<<8^0^s<B8<0§s6^B<<<0<0p^<H0sy.BO<5o§6_RUBO&.595u<<OH-^o5D<h<6<<o<u<op^68<8H8< 6S -处 Isz QK一ϋ-1σ50υ>ί-,ω>ΙΝ>ΐΛΛΙ,,ΛΛϋΰ3α<0>5Λ91Λ-,ν-ΛΛ0Λ-,Λ-1 <u<osd^dE.8088<8sb6<58<<o<<<u53SB05E^OUO^Bn§ssutiyo§SEU^8feB-6-yG8rfBuyy86E6s § -洳餒m ISAWlsishJWNS-A .LyoIDJDJOLalDOilcD^DEWDECVyJwaLV^SU^w&uuutnessff 33sp5su8BSW,LWVJ,VJ,vvo£U.L.LLlI.LLiI,LLV.LL.LLVWDJJ.WVWV3v&:iu t Wv-Lmdoa IIJ-LONHWWlsISMVXO/wl^/WSA 父-ιωιαοιίοΊ-Γΐβονυν u<38808H<PE<a^yH8u<060<<H<aeofe<o<o<^yo6n^<<<<8a5§88^<05§3^<PE<sioBO<B<8uo60BO<uso^ L5 5/1220 The present cassette contains a transcriptional regulatory element and a nucleic acid sequence encoding a complete flavivirus NS1 protein of dengue virus serotype 2 or an antigenic epitope thereof and optionally encoding another peptide/ Protein, the other peptide/protein is not a complete flavivirus E-protein, and wherein the flavivirus infection is selected from the group consisting of dengue virus serotype 1, dengue virus serotype 3, dengue virus serotype 4 , Japanese encephalitis virus, and infection caused by the West Nile virus's flavivirus. 17. The use of claim 16, wherein the flavivirus infection is additionally an infection of a flavivirus and/or flavivirus serotype derived from the nucleic acid or the N S1 protein or antigenic epitope thereof . 18. The use of claim 16 or 17, wherein the flavivirus is a mosquito-borne flavivirus. 19. For the use of claim 18, wherein the mosquito-borne flavivirus is a dengue virus. 20. The use of claim 19, wherein the dengue virus is a dengue virus serotype 2. 21. The use of claim 16 or 17, wherein the nucleic acid sequence encoding the NS1 protein of the flavivirus or an antigenic epitope thereof is preceded by an ATG codon and a sequence encoding a glycated signal sequence, and wherein The coding sequence is terminated by a translation stop codon. 22. The use of claim 16 or 17, wherein the transcriptional regulatory element is a poxvirus promoter. 23. The use of claim 16 or 17, wherein the poxvirus vector is freeze-dried. 5 Patent Application No. 99138145, the scope of the patent application, the date of this amendment, · September, 2007, 曰24. 24. For the use of the scope of claim 16 or 17, wherein the poxvirus is a modified vaccinia virus Ankera strain (MVA). 25. The use of claim 16 or π, wherein the nsi protein or antigenic epitope thereof is derived from a dengue virus serotype and wherein the composition, agent or vaccine system protects a body to at least counteract Infected by at least two dengue virus serotypes. 26. The use of claim 16 or 17, wherein the composition protects the individual against infection by all dengue virus ash clear types. 27. The use of claim 16 or 17, wherein the flavivirus serotype and/or flavivirus derived from the protein is dengue virus serotype 2. 28. A flavivirus other than the scope of the patent application is selected from the group consisting of the additional/frontal encephalitis virus. , Luo Xiao virus, yellow fever virus and Japan π. If the patent application scope is 'cut for initial vaccination or recovery' - the composition is the supplier. 'Or the first vaccination and additional vaccination, such as the application for patent scope 16 or the production-set, where the composition is supplied for the 帛-cut I 3 H riding, the line is in one - The first vial/container for the second inoculation) is supplied. Second vial/capacity for human inoculation (additional inoculation) 31. For example, the scope of the patent application. Where the "use of the item" of the composition is a 1354560 Patent Application No. 99138145, the scope of application of the patent is amended. Date of revision: September 27, 100. 32. For the use of the scope of claim 16 or 17, wherein the composition Department 1 plague 1354560 State of the State tear 45 patent auxiliary plan for the revised date _100 September 2nd picture wff^ovoslD^laolsllIXAEINBSI ΙΗζΊωαΙ |0 parent 2512 mountain-6 ruvoovwvoovooovoaLVOJ.WOEWWOXVOVavoDVDVOIAf.LHVJOVO.LLEWVaLOOVSJ.WVVOVOa.viclLlvovaxvvo. LLWDVDOVOWJ.WVOVWOaLaLvaLD.LVWV08SC ,ΊυιΛω^ιοοιοωωΗνΜΟ IVSVIMWds^doIiMAO^iAAiHAfs 0rG<05D<<^06fem8H<<8^0^s<B8<0§s6^B<<<0<0p^<H0sy .BO<5o§6_RUBO&.595u<<OH-^o5D<h<6<<o<u<o^68<8H8<6S - Isz QKϋ-1σ50υ>ί-,ω>ΙΝ>ΐΛΛΙ,,ΛΛϋΰ3α<0>5Λ91Λ-,ν-ΛΛ0Λ-,Λ-1<u<osd^dE.8088<8sb6<58<<o<<<u<u53SB05E^OUO^Bn§ssutiyo§SEU^ 8feB-6-yG8rfBuyy86E6s § -洳馁m ISAWlsishJWNS-A .LyoIDJDJOLalDOilcD^DEWDECVyJwaLV^SU^w&uuut Sanceff 33sp5su8BSW, LWVJ, VJ, vvo £ULLLlI.LLiI, LLV.LL.LLVWDJJ.WVWV3v&:iu t Wv-Lmdoa IIJ-LONHWWlsISMVXO/wl^/WSA Parent-ιωιαοιίοΊ-Γΐβονυν u<38808H<PE<a^yH8u&lt ;060<<H<aeofe<o<o<^yo6n^<<<><8a5§88^<05§3^<PE<sioBO<B<8uo60BO<uso^ L5 5/12 ·*·69ε BSOOOVUVDXOaLi.oDxowaLsaLLXWDVDWDVtsI ^IWSOA/wosdwDCAC-'cldliuwcoaswl ll^owvl Αθεε VSVDVWOO-LVDDVOV::XLWV8J,vo80VI,oaLDaLS8v8VOJ.DOVOVOVJ,SWJOOOOV8V.LLVDVDaIJOivsooaLoaIoaLW03WJ,3JOVWV30JOX3DaLDV PS 11£ΕΊίοα0ο:ζ90αω1Λ>ΛΗ.ί9ωϋι,-αι*-α2ωΊ>ί01Ηδ1ί0<κ0 l°s J,:3w0vv0v\ALIJOIODD<s0va\awvD0J,0JOY3GV£acwaL0DI0aL0\f0v33vv00V^DaLca,LLVaLJJOV00ivc:>v3.u0ovv&£wiaLVD0aLVD0VD0VDEW3wv0vu HADdcAMHOSAdovzlN^d * 15ωΜωΊΛ9Ν35ΊΧΗΜ>ια5Η0°5ε V.LVDDVJOOOVOOVEWUVILDWDVUWUVOXOJSVDDVSJOEaL.LLWOVWDDIJ.W.LVEXLVOValowvDvilaLssaLwiDVOOJOXDUUVUVUVD.LOVfwDDOaLUVODaLU^s w^Awldsv^^l^slaNIVS^J^ADSavHAVttNa^ivvwsl-IeϋννννϋοννοαΙ,ναΙΙΙ.ΙΟ.ΙΟΟΟνννονονα.νοννοΕλΙνονοναΙννοχονΓΘΧΟνννΕνιΙνοαυ.νϋοοοΙ.ν.ΙνοοοαΙνοοδοοονονυννονη^ννανοοοοοοδ.ΙαΙνααο^u^sauzJAao^wttl^lAAINixIIADdoAa^AWIWNAAVtiNlNdo^a 35DMO<8P5^S^S6060<<50<USH^O<SBOO^<SH<6U6U3&<S<8^HUO^<BS<6^6S8^08^<<OMP&0<S03S6S0080 96S 1354560· * · 69ε BSOOOVUVDXOaLi.oDxowaLsaLLXWDVDWDVtsI ^ IWSOA / wosdwDCAC-'cldliuwcoaswl ll ^ owvl Αθεε VSVDVWOO-LVDDVOV :: XLWV8J, vo80VI, oaLDaLS8v8VOJ.DOVOVOVJ, SWJOOOOV8V.LLVDVDaIJOivsooaLoaIoaLW03WJ, 3JOVWV30JOX3DaLDV PS 11 £ ΕΊίοα0ο: ζ90αω1Λ > ΛΗ.ί9ωϋι, -αι * -α2ωΊ > ί01Ηδ1ί0 < κ0 l ° s J,: 3w0vv0v \ ALIJOIODD < s0va \ awvD0J, 0JOY3GV £ acwaL0DI0aL0 \ f0v33vv00V ^ DaLca, LLVaLJJOV00ivc: > v3.u0ovv & £ wiaLVD0aLVD0VD0VDEW3wv0vu HADdcAMHOSAdovzlN ^ d * 15ωΜωΊΛ9Ν35ΊΧΗΜ > ια5Η0 ° 5ε V.LVDDVJOOOVOOVEWUVILDWDVUWUVOXOJSVDDVSJOEaL .LLWOVWDDIJ.W.LVEXLVOValowvDvilaLssaLwiDVOOJOXDUUVUVUVD.LOVfwDDOaLUVODaLU ^ sw ^ Awldsv ^^ l ^ slaNIVS ^ J ^ ADSavHAVttNa ^ ivvwsl-IeϋννννϋοννοαΙ, ναΙΙΙ.ΙΟ.ΙΟΟΟνννονονα.νοννοΕλΙνονοναΙννοχονΓΘΧΟνννΕνιΙνοαυ.νϋοοοΙ.ν.ΙνοοοαΙνοοδοοονονυννονη ^ ννανοοοοοοδ.ΙαΙνααο ^ u ^ sauzJAao ^ wttl ^ lAAINixIIADdoAa^AWIWNAAVtiNlNdo^a 35DMO<8P5^S^S6060<<50<USH^O<;SBOO^<SH<6U6U3&<S<8^HUO^<BS<6^6S8^08^<<OMP&0<0<S03S6S0080 96S 1354560 ss
TW099138145A 2001-12-04 2001-12-04 Flavivirus ns1 subunit vaccine TWI354560B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099138145A TWI354560B (en) 2001-12-04 2001-12-04 Flavivirus ns1 subunit vaccine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099138145A TWI354560B (en) 2001-12-04 2001-12-04 Flavivirus ns1 subunit vaccine

Publications (2)

Publication Number Publication Date
TW201113034A TW201113034A (en) 2011-04-16
TWI354560B true TWI354560B (en) 2011-12-21

Family

ID=44909468

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099138145A TWI354560B (en) 2001-12-04 2001-12-04 Flavivirus ns1 subunit vaccine

Country Status (1)

Country Link
TW (1) TWI354560B (en)

Also Published As

Publication number Publication date
TW201113034A (en) 2011-04-16

Similar Documents

Publication Publication Date Title
KR101042458B1 (en) Flavivirus NS1 Subunit Vaccine
US8088391B2 (en) West nile virus vaccine
US10227385B2 (en) Chimeric poly peptides and the therapeutic use thereof against a flaviviridae infection
JP2005511042A5 (en)
US11638750B2 (en) Methods for generating a Zikv immune response utilizing a recombinant modified vaccina Ankara vector encoding the NS1 protein
KR20010022452A (en) Recombinant dimeric envelope vaccine against flaviviral infection
Schäfer et al. Pre-clinical efficacy and safety of experimental vaccines based on non-replicating vaccinia vectors against yellow fever
US20140205624A1 (en) Tetravalent and mixed head bivalent dengue vaccine
TWI354560B (en) Flavivirus ns1 subunit vaccine
TWI336626B (en) Flavivirus ns1 subunit vaccine

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees