TWI354460B - Methods and apparatus for determining, communicati - Google Patents
Methods and apparatus for determining, communicati Download PDFInfo
- Publication number
- TWI354460B TWI354460B TW095137936A TW95137936A TWI354460B TW I354460 B TWI354460 B TW I354460B TW 095137936 A TW095137936 A TW 095137936A TW 95137936 A TW95137936 A TW 95137936A TW I354460 B TWI354460 B TW I354460B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- interference
- report
- base station
- wireless terminal
- Prior art date
Links
Landscapes
- Mobile Radio Communication Systems (AREA)
Description
九、發明說明: 【發明所屬之技術領域】 本發明係關於一種無線通信系統,且更特定言之’係關 於一種在一無線通信系統中收集、量測、報告及/或使用 可用於干擾控制之資訊的方法及裝置。 【先前技術】 在無線多向近接通信系統中,無線終端機爭奪系統資源 以便在上行鏈路通道上與共同接收器通信。此情況之一實 例為蜂巢式無線系統中之上行鏈路通道,其中無線終端機 傳輸至基地台接收器。當無線終端機在上行鏈路通道上傳 輸時’其通常對整個系統(例如,相鄰基地台接收器)造成 干擾。由於無線終端機係分散的,控制其傳輸所產生之干 擾係挑戰性問題。 許多蜂巢式無線系統採取簡單策略來控制上行鏈路干 擾。舉例而言,CDMA語音系統(例如,IS-95)以如下方式 功率控制無線終端機,使其信號以大致相同之功率接收於 基地台接收器處《諸如lxRTT及lxEV-DO的目前技術狀態 之CDMA系統允許無線終端機以不同速率傳輸且以不同功 率接收於基地台處。然而,以分散方式控制干擾,其降低 總干擾位準而不精確控制彼等為系統中之最劣干擾源的無 線終端機。 干擾控制方法之此現存體限制無绛系統之上行鏈路容量 (uplink capacity)。 若基地台可具備可用於決定在傳輸發生時將在相鄰小區 115454.doc 1354460 及/或扇區中產生之信號干擾量且/或決定無線終端機由於 k號干擾而可能遭遇之干擾量的資訊,則其將係有用的。 若可用於干優決定之資訊可由一或多個無線终端機供應至 一基地台,則其將係特別需要的。 在自無線終端機至基地台通信干擾資訊時,一種類型之 報告在-特別時間比另—特料間處彳更佳地適合。適應 多種不同干擾報告類型之方法及裝置將係有益的。隨著種 類增加,控制信號傳輸耗用通常增加以支援且通信可用之 潛在選項。若方法及裝置針對使㈣傳輸耗用保持相對 低,而同時支援複數個干擾報告變化,則其將係有益的。 【發明内容】 各項實施例針對收集、量測、報告及/或使用可用於干 擾控制之資訊的方法及裝置。 在各項實施 <列中,1 線終端機接&一廣播上行鏈路干擾 報告請求,其傳送所請求之報告類型及/或基地台識別資 訊,例如,諸如局部唯一的小區識別符值之局部唯一的基 也口識別符。舉例而言,在一例示性實施例令,一基地台 附接點廣播-意欲用於複數個無線終端機之報告請求,該 複數個無線終端機使用該基地台附接點作為其當前服務附 接點。 無線終端機亦接收且量測自複數個基地台附接點傳輸之 :播參考信號’例如,信標及/或導頻信號。信標信號可 乍頻t號’例& ’單音調(single t_)。信標信號可具 兩個或兩個以上符號傳輸時段(例如,OFDM符號 ,I5454.d〇c 1354460 傳輸時段)之持續時間。然而,可使用其他類型之信標信 號’且k標信號之特別類型對於本發明不重要。 不同類型之所請求報告包含特定類型干擾報告(有時被 柄作特殊報告)及通用類型干擾報告。在一例示性實施例 中若干擾報告請求值係一第一值,例如,〇,則請求係 對於通用報告,且若報告請求值在除該第一值以外的—組 預疋值(例如,一組正整數值)内,則請求係對於特定報IX. INSTRUCTIONS: TECHNICAL FIELD OF THE INVENTION The present invention relates to a wireless communication system, and more particularly to a method for collecting, measuring, reporting, and/or using interference control in a wireless communication system. Method and device for information. [Prior Art] In a wireless multi-directional proximity communication system, a wireless terminal competes for system resources to communicate with a common receiver on an uplink channel. An example of this is an uplink channel in a cellular radio system in which a wireless terminal is transmitted to a base station receiver. When a wireless terminal is transmitting on an uplink channel, it typically interferes with the entire system (e.g., neighboring base station receivers). Since wireless terminals are decentralized, controlling the interference caused by their transmission is a challenging problem. Many cellular wireless systems employ simple strategies to control uplink interference. For example, a CDMA voice system (eg, IS-95) power controls a wireless terminal in such a manner that its signals are received at substantially the same power at the base station receiver, such as the current state of the art, such as lxRTT and lxEV-DO. CDMA systems allow wireless terminals to transmit at different rates and receive at different bases at different base stations. However, interference is controlled in a decentralized manner, which reduces the total interference level without accurately controlling the wireless terminals that are the worst interference sources in the system. This existing body of interference control methods limits the uplink capacity of the innocent system. If the base station is available, it can be used to determine the amount of signal interference that will be generated in the adjacent cell 115454.doc 1354460 and/or sector when the transmission occurs and/or determine the amount of interference that the wireless terminal may encounter due to k-type interference. Information, it will be useful. If the information available for the decision is available from one or more wireless terminals to a base station, it will be particularly desirable. In the case of communication interference information from the wireless terminal to the base station, one type of report is better suited to the special time than the other. Methods and apparatus adapted to a variety of different interference reporting types would be beneficial. As the variety increases, control signal transmission consumes a potential option that is typically increased to support and communication is available. It would be beneficial if the method and apparatus were to keep the (IV) transmission consumption relatively low while supporting multiple interference reporting changes. SUMMARY OF THE INVENTION Various embodiments are directed to methods and apparatus for collecting, measuring, reporting, and/or using information that can be used for interference control. In each implementation <column, a 1-line terminal interface&-a broadcast uplink interference report request transmits the requested report type and/or base station identification information, eg, such as a locally unique cell identifier value The local unique base identifier. For example, in an exemplary embodiment, a base station attachment point broadcasts - a request for a plurality of wireless terminals that are used by the plurality of wireless terminals to use the base station attachment point as their current service contact. The wireless terminal also receives and measures the transmitted reference signal 'e.g., beacon and/or pilot signals transmitted from a plurality of base station attachment points. The beacon signal can be t-numbered 'amplitude' and 'single t_'. The beacon signal may have a duration of two or more symbol transmission periods (e.g., OFDM symbols, I5454.d〇c 1354460 transmission period). However, other types of beacon signals can be used and the particular type of k-labeled signal is not critical to the invention. Different types of requested reports contain specific types of interference reports (sometimes handled as special reports) and generic type interference reports. In an exemplary embodiment, if the interference report request value is a first value, for example, 〇, the request is for a generic report, and if the report request value is at a group pre-value other than the first value (eg, Within a set of positive integer values), the request is for a specific report
告,且待用於特定報告中之選定基地台附接點具有對應於 報告請求值之基地台識別符。 特定類型干擾報告使當前服務的連接基地台附接點與對 應於所接收基地台識別符之選定之基地台附接點相關聯。 k用類型干擾報告使當前服務的基地台連接附接點與其他 未規定之基地台附接點(其廣播參考信號已由無線終端機 债測到)相關冑。在一些實施例中,對於通用類型干擾報 告,该報告所針對之當前服務基地台附接點不確定知道在The selected base station attachment point to be used in a particular report has a base station identifier corresponding to the report request value. The particular type of interference report associates the currently serving connected base station attachment point with the selected base station attachment point corresponding to the received base station identifier. The k-type interference report relates to the currently serving base station connection attachment point to other unspecified base station attachment points whose broadcast reference signals have been measured by the wireless terminal debt. In some embodiments, for a generic type of interference report, the current service base station attachment point for which the report is directed is not known to be
產生報告時使用哪一或哪些特別基地台附接點。通用報止 之子類型包含利用求和函數來產生報告的報告及利用最: 值函數來產生報告的報告。 在一些實施例中,有時使用時序資訊來決定報告子類 型。舉例而言’在—例示性實施例中,將循環時序結構 (⑽rnng timing structure)分割為在其期間—通用報告在 傳輸時係求和函數類型報告的時間及在其_ —通用報告 在傳輸時係最大值函數類型報告的時 σ 些實施例中,報告子類型在-循環預定時=的 H5454.doc ^54460 :標時槽(beaC_l〇t)之間交替。此預定時序結構有助於 (止列如)兩種子類型之通用報告。在一些實施例中,用以報 =子類型映㈣係的時序結構為無線终端機與當前服務扇 I附接點所已知,且因此不需要額外的耗用控制信號傳輸 種報告子類型’從而釋放有價值之空中鍵路㈣ 灿)貧源用於其他用途,例如,用以通信使用者資料。 余在一些實施例(例如,採用至少一些多扇區小區之一些 a施例)中,使㈣序資訊來決定用於所請求特定類型干 擾報告的選定附接點之扇區類型。舉例而言,在一例示性 實施例中’使用二釋不同扇區類型,使對特定類型報告之 報告結構化以致選定之基地台扇區附接點之扇區類型^一 預定循環時序結構内交替。在一些該等實施例中,一無線 終端機藉由組合來自報告請求之所接收基地台識別符與一 由該無線終端機接收到該請求的時間決定之扇區類型來決 定待用於請求特定類型報告中的選定附接點。 如以上所述,在各項實施财,在下行鏈路廣播報告請 求信號中通信之基地台識別符係局部唯一的識別符,例 如,局部唯-的小區識別符。另外,在一些實施例中,經 由請求信號時序而通信扇區識別符。在各項實施例中,瞭 解載波或音調塊(tone block)識別符,例如,其與當前服務 扇區附接點所使用之載波或音調塊識別符相同,且其不必 特定地在報告請求中信號傳輸。因此識別待用於特^請求 干擾報告中之選定附接點的耗用控制信號傳輸自其在識別 符傳送一系統唯-基地台附接點識別符的情況下另外需為 115454.doc 1354460 之量減少。藉由使用較少位元來通信該請求,保存有價值 之空中鏈路資㈣於其他料,例如,用以傳送使用者資 料。 無線終端機產生所請求報告(例如,特定報告、求和函 數類型通用報告及最大值函數類型通用報告中之一者), 且將所產生報告傳輸至當前連接附接點,_接點(例如) 經由分配至無線終端機供其專用的上行鏈路專用控制通道 區段發出請求》 雖然已在以上【發明内容】中論述各項實施例,但應瞭 解,不必所有實施例包含相同特徵,且以上所述之一些特 徵係不必要的但在一些實施例中可係需要的。在隨後之 【實施方式】中論述本發明之眾多額外特徵、實施例及益 處。 【實施方式】 現將描述根據各項實施例的收集、報告及使用可用於干 φ擾控制之資訊的方法及裳置。本發明之方法及裝置非常適 合供無線多向近接(例如,多使用者)通信系統使用。該等 系統可經實施為0FDM系統、CDMA系統或其他類型之無 線系統,其中關心來自一或多個傳輸器(例如,鄰近基地 台)之傳輸的信號干擾。 以下在圖1中所示的本發明之一蜂巢式纟線資料通信系 統⑽之情形下描述本發明之一例示性實施例。雖然使用 例不性蜂巢式無線系統來闡釋本發明,但本發明之範脅比 實例更廣泛且通常亦可適用於許多其他無線通信系統。 H5454.doc -10- 1354460 在無線資料通信系統中,空中鏈路資源通常包含頻寬、 時間或程式碼。輸送使用者資料及/或語音訊務之空中鏈 路貝源被稱為訊務通道。資料在訊務通道區段(簡稱為訊 務區段)中在訊務通道上通信。訊務區段可充當可用訊務 通道資源之基本或最小單位。下行鏈路訊務區段自基地台 輸送責料訊務至無線終端機,而上行鏈路訊務區段自無線 終端機輸送資料訊務至基地台。可於其中使用本發明之一 例不性系統為展頻〇FDM (正交分頻多工)多向近接系統, 其中訊務區段包含定義於有限時間間隔内之若干頻率音 調。 圖1為對根據各項實施例實施的例示性無線通信系統1〇〇 之說明。例示性無線通信系統10〇包含複數個基地台 (BS):基地台i 102、基地台M 114。小區i 1〇4係用於基地 台1 1〇2之無線覆蓋區域。38 1 102與位於小區1 104内的 複數個無線終端機(WT) : WT(1) 1〇6、WT(N) 108通信。 WT(1) 1〇6、WT(N) 108分別經由無線鏈路n〇、ι12耦接至 BS 1 102。同樣地,小區M 116係用於基地台M 114之無線 覆蓋區域。BS ·Μ 114與位於小區Μ 116内的複數個無線終 端機(WT) : WT(1,)118、WT(N,)120 通信。WT(1,)118、 WT(N ) 120分別經由無線鍵路122、124耦接至BS Μ 114。 WT(1 06、108、118、120)可為行動及/或固定無線通信設 備。有時被稱作行動節點(MN)之行動WT可在系統1〇〇中到 處移動’且可與對應於其所在小區之基地台通信。區域 134係小區1 104與小區Μ 116之間的邊界區域。在圖!之系 115454.doc -11 · 1354460Which special base station attachment point is used when generating the report. The subtype of the generic report contains a report that uses the summation function to generate the report and a report that uses the most: value function to generate the report. In some embodiments, timing information is sometimes used to determine the report subtype. For example, in the exemplary embodiment, the cyclic timing structure ((10) rnng timing structure is divided into the period during which the general report reports the summation function type report at the time of transmission and when the _-general report is transmitted Time σ of the maximum function type report In some embodiments, the report subtype alternates between H5454.doc ^54460: time slot (beaC_l〇t) when the cycle is scheduled. This predetermined timing structure facilitates the general reporting of the two subtypes. In some embodiments, the timing structure used to report the subtype mapping (four) is known to the wireless terminal and the current serving fan I attachment point, and thus does not require additional consumption control signal transmission type reporting subtypes' This frees valuable airborne links (4). The poor source is used for other purposes, for example, to communicate user data. In some embodiments (e.g., employing some of the at least some multi-sector cells), the (4) sequence information is used to determine the sector type for the selected attachment point for the particular type of interference report requested. For example, in an exemplary embodiment, 'using two different sector types to structure a report of a particular type of report such that the sector type of the selected base station attachment point is within a predetermined cyclic timing structure alternately. In some such embodiments, a wireless terminal determines to be used to request a particular by combining a received base station identifier from a report request with a sector type determined by the time at which the wireless terminal receives the request. The selected attachment point in the type report. As described above, in each implementation, the base station identifier communicated in the downlink broadcast report request signal is a locally unique identifier, e.g., a locally unique cell identifier. Additionally, in some embodiments, the sector identifier is communicated via the request signal timing. In various embodiments, the carrier or tone block identifier is known, eg, it is the same as the carrier or tone block identifier used by the current serving sector attachment point, and it need not be specifically in the report request Signal transmission. Therefore, the identification of the consumption control signal transmitted for the selected attachment point to be used in the request interference report is additionally required to be 115454.doc 1354460 if it transmits a system-only base station attachment point identifier in the identifier. The amount is reduced. By communicating the request with fewer bits, the valuable air link is saved (4) to other materials, for example, to transfer user data. The wireless terminal generates the requested report (eg, one of a specific report, a summation function type generic report, and a maximum function type generic report), and transmits the generated report to the current connection attachment point, _ contact (eg, Issuing a request via an uplink dedicated control channel section allocated to the wireless terminal for its own use. Although various embodiments have been discussed in the above [Disclosed Summary], it should be understood that not necessarily all embodiments include the same features, and Some of the features described above are not necessary but may be desirable in some embodiments. Numerous additional features, embodiments, and advantages of the present invention are discussed in the following [Embodiment]. [Embodiment] A method and an apparatus for collecting, reporting, and using information usable for dry disturbance control according to various embodiments will now be described. The method and apparatus of the present invention are well suited for use in wireless multi-directional proximity (e.g., multi-user) communication systems. Such systems may be implemented as an OFDM system, a CDMA system, or other type of wireless system in which signal interference from transmissions from one or more transmitters (e.g., adjacent base stations) is of interest. An exemplary embodiment of the present invention is described below in the context of one of the cellular tethered data communication systems (10) of the present invention shown in FIG. Although the invention is illustrated using an exemplary cellular wireless system, the present invention is broader than the examples and is generally applicable to many other wireless communication systems as well. H5454.doc -10- 1354460 In wireless data communication systems, air link resources typically contain bandwidth, time or code. The air link to transport user data and/or voice traffic is called the traffic channel. The data is communicated on the traffic channel in the traffic channel section (referred to as the traffic section). The traffic segment can act as the base or minimum unit of available traffic channel resources. The downlink traffic segment transports the traffic information from the base station to the wireless terminal, and the uplink traffic segment transmits the data traffic from the wireless terminal to the base station. An inexact system in which the present invention can be used is a spread spectrum 〇 FDM (Orthogonal Frequency Division Multiplexing) multi-directional proximity system in which the traffic section contains a number of frequency tones defined within a finite time interval. 1 is an illustration of an exemplary wireless communication system 1A implemented in accordance with various embodiments. The exemplary wireless communication system 10A includes a plurality of base stations (BS): a base station i 102 and a base station M 114. The cell i 1〇4 is used for the radio coverage area of the base station 1 1〇2. 38 1 102 is in communication with a plurality of wireless terminals (WT) located in cell 1 104: WT (1) 1 〇 6, WT (N) 108. WT(1) 1〇6, WT(N) 108 are coupled to BS 1 102 via wireless links n〇, ι12, respectively. Similarly, cell M 116 is used for the wireless coverage area of base station M 114. The BS · Μ 114 communicates with a plurality of wireless terminal units (WT) located in the cell Μ 116: WT (1,) 118, WT (N,) 120. WT(1,) 118, WT(N) 120 are coupled to BS Μ 114 via wireless keys 122, 124, respectively. The WT (1 06, 108, 118, 120) can be an active and/or fixed wireless communication device. A mobile WT, sometimes referred to as a mobile node (MN), can move around in system 1 and can communicate with a base station corresponding to the cell in which it is located. Region 134 is the boundary region between cell 1 104 and cell Μ 116. In the picture! Department 115454.doc -11 · 1354460
統中’小區經展示為單扇區小F ^ ^ &。多扇區小區亦係可能的 且又支极。基地台扇區之傳輸器可基於所傳輸資訊(例 如,通信-基地台識別符及/或扇區識別符之信標信號)而 得以識別。 網路節點126分別經由網路鏈路128、13〇耦接至bs i 及B S Μ 114。網路節點丨26亦經由網路鏈路13 2耦接至 其他網路節點/網際網路。網路鏈路128、13〇、132可為(例 士)光纖鏈路。網路節點126 (例如,路由器節點)為WT (例 如,WT(1) 1〇6)提供至其他節點之連接其他節點例如: 其他基地台、AAA伺服器節點、本籍代理節點、位於其當 前所在小區(例如小區丨104)之外的通信對等節點(例如, WT(N,)120)等。 圖2說明一根據各項實施例實施的例示性基地台2 〇 〇。例 示性BS 200可為圖1之BS (bs ! 102、bs Μ 114)之任一者 的更詳細表示。BS 200包含經由一匯流排214耦接在一起 的一接收器202、一傳輸器204、一處理器(例如, CPU)206、一 I/O介面 208、I/O設備 210,及一記憶體 212, 各種元件可在該匯流排上交換資料及資訊。另外,基地台 200包含一耦接至該接收器202之接收器天線216及一耦接 至該傳輸器204之傳輸器天線218。傳輸器天線218用於自 BS 200傳輸資訊(例如,下行鏈路訊務通道信號、信標信 號、導頻信號、指派信號、干擾報告請求訊息、干擾控制 指示符信號等)至WT 300 (參見圖3),而接收器天線216用 於自WT 300接收資訊(例如,上行鏈路訊務通道信號、對 115454.doc • 12- 1354460 於資源之WT請求、WT干擾報告等)。 記憶體212包含常式(routine) 22〇及資料/資訊224。處理 器206執行常式220且使用儲存於記憶體212中之資料/資訊 224以控制基地台200之總操作並實施方法。I/O設備210 (例如’顯示器、印表機、鍵盤等)向基地台管理者顯示系 統資訊且自該管理者接收控制及/或管理輸入。ι/〇介面2〇8 將基地台200耦接至電腦網路、其他網路節點、其他基地 φ 台2〇0及/或網際網路。因此,經由I/O介面2〇8,基地台200 可交換客戶資訊及其他資料以及(若須要)使至wt 3〇〇之信 號傳輸同步。另外,1/〇介面2〇8提供高速連接至網際網 路允許WT 300使用者經由基地台200在網際網路上接收 且/或傳輸資訊。接收器202處理經由接收器天線216而接 收之信號且自所接收信號擷取包含於其中的資訊内容。所 擷取資訊(例如,資料及通道干擾報告資訊)經由匯流,排214 通信至處理器206且儲存於記憶體212中。傳輸器2〇4經由 φ 天線218傳輸資訊(例如,資料、信標信號、導頻信號、指 、瓜1口號干擾報告睛求訊息、干擾控制指示符信號)至wt 300 〇 如以上所提及,處理器2〇6在儲存於記憶體212中之常式 220之私導下控制基地台2〇〇之操作。常式22〇包含通信常 式226及基地台控制常式228。基地台控制常式228包含一 排程器230、一下行鏈路廣播信號傳輸模组232、__WT報 告處理模組234、一報告請求模組236,及一干擾指示符模 組238。報告請求模組236可產生對於關於一在報告請求中 115454.doc • 13- 1354460 識別之特別BS扇區的特定干擾報告试 預定或固定報告排程所提供之時間:求。當BS在除由 資訊時,所產生報告請求經傳輸至一或夕時間處搜尋干擾 資料/資訊224包含下行鏈路廣播參考二固無線終端機。 終端機資料/資訊241、上行鏈路訊務:戒資訊24°、無線 m鍵路訊務通道資訊246、干擾 報“求資訊訊息248,及干擾控制指示符作號25〇 ^行鏈路廣播參考信號資訊㈣包含信標;號資訊说、The cell in the system is shown as a single sector small F ^ ^ & Multi-sector cells are also possible and supportive. The transmitter of the base station sector can be identified based on the transmitted information (e. g., the communication-base station identifier and/or the beacon signal of the sector identifier). Network node 126 is coupled to bs i and B S Μ 114 via network links 128, 13 respectively. Network node 26 is also coupled to other network nodes/internet via network link 132. Network links 128, 13A, 132 can be (those) fiber links. Network node 126 (e.g., a router node) provides connections to other nodes for WTs (e.g., WT(1)1〇6) such as: other base stations, AAA server nodes, home agent nodes, located at their current location A communication peer node (e.g., WT(N,) 120) or the like outside the cell (e.g., cell 丨 104). 2 illustrates an exemplary base station 2 实施 实施 implemented in accordance with various embodiments. The exemplary BS 200 can be a more detailed representation of any of the BSs (bs! 102, bs Μ 114) of FIG. The BS 200 includes a receiver 202 coupled via a bus 214, a transmitter 204, a processor (eg, CPU) 206, an I/O interface 208, an I/O device 210, and a memory. 212, various components can exchange data and information on the bus. In addition, the base station 200 includes a receiver antenna 216 coupled to the receiver 202 and a transmitter antenna 218 coupled to the transmitter 204. Transmitter antenna 218 is used to transmit information (eg, downlink traffic channel signals, beacon signals, pilot signals, assignment signals, interference report request messages, interference control indicator signals, etc.) from BS 200 to WT 300 (see 3), and receiver antenna 216 is used to receive information from WT 300 (eg, uplink traffic channel signals, pair 115454.doc • 12-1354460 WT requests for resources, WT interference reports, etc.). The memory 212 contains a routine 22 and a data/information 224. The processor 206 executes the routine 220 and uses the data/information 224 stored in the memory 212 to control the overall operation of the base station 200 and implement the method. I/O device 210 (e.g., 'display, printer, keyboard, etc.) displays system information to the base station manager and receives control and/or management inputs from the manager. The ι/〇 interface 2〇8 couples the base station 200 to a computer network, other network nodes, other bases, 〇2, and/or the Internet. Thus, via the I/O interface 2〇8, the base station 200 can exchange customer information and other data and, if necessary, synchronize the transmission of signals to wt3. In addition, the 1/〇 interface 2〇8 provides a high speed connection to the internet path allowing the WT 300 user to receive and/or transmit information over the internet via the base station 200. Receiver 202 processes the signals received via receiver antenna 216 and extracts the information content contained therein from the received signals. The retrieved information (e.g., data and channel interference report information) is communicated via bus 214 to processor 206 and stored in memory 212. The transmitter 2〇4 transmits information (for example, data, beacon signal, pilot signal, finger, melon slogan interference report message, interference control indicator signal) to the wt 300 via the φ antenna 218, as mentioned above The processor 2〇6 controls the operation of the base station 2 under the private control of the routine 220 stored in the memory 212. The routine 22 includes a communication routine 226 and a base station control routine 228. The base station control routine 228 includes a scheduler 230, a downlink broadcast signal transmission module 232, a __WT report processing module 234, a report request module 236, and an interference indicator module 238. The report request module 236 can generate the time provided for a particular interference report trial or fixed report schedule for a particular BS sector identified in the report request 115454.doc • 13-1354460: Seek. When the BS is in addition to the information, the generated report request is transmitted to the one or the eve time to search for the interference data/information 224 including the downlink broadcast reference two-wire wireless terminal. Terminal information/information 241, uplink communication: ring information 24°, wireless m-key traffic channel information 246, interference report “seeking information message 248, and interference control indicator number 25〇^link broadcast Reference signal information (4) contains beacons;
:頻:號資訊254,及指派信號資訊256。信標信號係相對 -功率的OFDM廣播信號中傳輸器功率集中於 個音調上持續短的持續時_如,兩個符號時間)。信桿 信號資訊252包含識別資訊258及功率位準資訊勝信J 識別資訊258可包含用以識別信標信號且使信標信號㈣ 定別200相關聯之資訊’例如’一或―組特定音調,其在 -重複下行鏈路傳輸間隔或循環中之一特定時間處包括信 標信號。信標功率位準資訊編包含定義傳輸信標信號之 功率位準的資訊。導頻信號可包含以適度高之功率位準 (例如,高於一般信號傳輸位準)廣播至WT的已知信號,其 通常用於識別基地台、與基地台同步並獲得通道估計值。 導頻信號資訊254包含識別資訊262及功率位準資訊264。 導頻識別資訊262包含用以識別導頻信號且使導頻信號與 特定基地台200相關聯之資訊。導頻功率位準資訊264包含 定義傳輸導頻信號之功率位準的資訊。提供關於信號傳輸 功率位準(例如,導頻及信標信號傳輸導頻位準)之資訊的 各種信號可經廣播以供無線終端機用於決定增益比率及/ 115454.doc -14- 或干擾報告。指派信號包含廣播上行鏈路及下行鏈路訊務 通道區段指派信號,其通常以高於一般信號傳輸位準之功 率位準傳輸以便到達其小區内的具有不良通道品質情況之 WT。指派信號傳輸資訊256包含識別資訊266及功率位準 k訊268。指派信號傳輸識別資訊266包含使下行鏈路時序 循環中特定時間處之特定音調與對於特定Bs 2〇〇之指派相 關聯的貧訊。指派功率位準資訊268包含定義傳輸指派信 號之功率位準的資訊。: Frequency: number information 254, and assignment signal information 256. The beacon signal is relative to the power-transmitted OFDM broadcast signal in which the transmitter power is concentrated on a tone for a sustained duration (e.g., two symbol times). The signal signal information 252 includes the identification information 258 and the power level information. The information 258 can include information (eg, a group or a specific tone) for identifying the beacon signal and correlating the beacon signal (4). It includes a beacon signal at a particular time in the -repetition downlink transmission interval or cycle. The beacon power level information contains information defining the power level of the transmitted beacon signal. The pilot signal can include known signals that are broadcast to the WT at moderately high power levels (e.g., above the general signal transmission level), which are typically used to identify the base station, synchronize with the base station, and obtain channel estimates. The pilot signal information 254 includes identification information 262 and power level information 264. Pilot identification information 262 includes information identifying the pilot signals and correlating the pilot signals with a particular base station 200. The pilot power level information 264 contains information defining the power level of the transmitted pilot signal. Various signals providing information about signal transmission power levels (eg, pilot and beacon signal transmission pilot levels) may be broadcast for use by the wireless terminal to determine the gain ratio and / or interference report. The assignment signal includes a broadcast uplink and downlink traffic channel segment assignment signal, which is typically transmitted at a power level higher than the normal signal transmission level to reach a WT in its cell with poor channel quality conditions. The assignment signal transmission information 256 includes identification information 266 and power level k signal 268. Assignment signal transmission identification information 266 includes a message that associates a particular tone at a particular time in the downlink timing cycle with an assignment for a particular Bs. The assigned power level information 268 contains information defining the power level of the transmission assignment signal.
無線終端機資料/資訊241包含複數組WT資料/資訊:WT 1資訊242、WT N資訊244。WT 1資訊242包含資料270、終 端機識別資訊272、干擾成本報告資訊274、所請求上行鏈 路訊務區段276,及經指派上行鏈路訊務區段278。資料 270包含與WT 1相關聯之使用者資料’例如,自WT1接收 的意欲由BS 200直接或間接通信至WT1之對等節點(例 如,WT N)之資料及資訊’其中WT i參與通信會話。資料 270亦包含最初源自WT1之對等節點(例如,WT n)的所接 收資料及貢訊。終端機識別資訊272包含使WT i與Bs相關 聯且由BS用以識別WT丨的38經指派識別符。干擾成本報 告資訊274包含已在反饋報告中自WT i轉發至BS 2〇〇之資 訊,該資訊識別WT 1將上行鏈路信號傳輸傳輸至通信系統 之干擾成本。所請求上行鏈路訊務區段276包含來自wti 對於由BS排程器230分配之上行鏈路訊務區段之請求,例 如,數目、類型及/或時間限制資訊。經指派上行鏈路訊 務區段278包含識別已由排程器23〇指派至WT 1之上行鏈路 II5454.doc 1354460The wireless terminal information/information 241 includes a complex array of WT data/information: WT 1 information 242, WT N information 244. The WT 1 information 242 includes data 270, terminal identification information 272, interference cost report information 274, requested uplink traffic segment 276, and assigned uplink traffic segment 278. The data 270 contains user data associated with WT 1 'eg, information and information received from WT 1 intended to be directly or indirectly communicated by the BS 200 to a peer node (eg, WT N) of WT 1 where WT i participates in the communication session . The data 270 also contains the received information and the tribute from the peer node (e.g., WT n) originally originating from WT1. Terminal identification information 272 includes a 38 assigned identifier that associates WT i with Bs and is used by the BS to identify the WT. The interference cost report information 274 contains the information that has been forwarded from the WT i to the BS 2 in the feedback report, which identifies the interference cost of the WT 1 transmitting the uplink signal transmission to the communication system. The requested uplink traffic segment 276 contains requests from the wti for the uplink traffic segment allocated by the BS scheduler 230, such as number, type, and/or time limit information. The assigned uplink traffic section 278 contains an identification identifying the uplink that has been assigned by the scheduler 23 to WT 1 II 5454.doc 1354460
訊務區段的資訊。 上行鏈路訊務通道資訊246包含複數個上行鏈路訊務通 道區段資訊組,該等資訊組包含關於可由BS排程器230指 派至請求上行鏈路空中鏈路資源的WT之區段的資訊。上 行鏈路訊務通道資訊246包含通道區段1資訊2 80及通道區 段N資訊282。通道區段1資訊280包含類型資訊284、功率 位準資訊286、定義資訊288,及指派資訊290。類型資訊 2 84包含定義區段1之特徵(例如,區段之頻率及時間範圍) 的資訊。舉例而言,BS可支援多種類型之上行鏈路區段, 例如’具有大頻寬但具有短時持續時間之區段及具有小頻 寬但具有長時持續時間之區段。功率位準資訊286包含定 義在使用上行鏈路區段i時WT將以其傳輸之規定功率位 準。疋義資訊288包含定義構成上行鏈路訊務通道區段1的 特疋頻率或音調及特定時間之資訊。指派資訊29〇包含與 上行鏈路訊務區段1相關聯之指派資訊,例如,經指派有 上行鏈路訊務通道區段丨之霤丁之識別符、待用於上行鏈路 訊務通道區段1中的編碼及/或調變機制。 用於一些實施例十之干擾報告請求資訊訊息248係待(例 如)作為錢訊息或作為針對特^ WT之訊息Μ傳輸的訊 息》BS 200可在共同控制通道上傳輸至WT3〇〇,從而^示 該资決定且報錢於通信系統中之—特別基地台傳^器 (例如’基地台扇區傳輸器)之干擾資訊。干擾報告請求資 訊訊息248通常包含基地台傳輸器識別資訊292,其識別冬 前經減用於干擾報告之特別基地台扇區。如以上所: 'H5454.doc • 16 - 1354460 述,一些基地台經實施為單扇區基地台。經過一段時間, BS 200可改變基地台識別資訊292以對應於相鄰傳輸器之 每一者且藉此獲得關於多個相鄰者之干擾資訊。 用於一些實施例(例如,其中至少一些上行鏈路訊務區 段未由基地台明確指派)中之干擾控制指示符信號25〇係由 BS 200廣播至WT 300以在干擾方面控制哪些wt可使用上 行鏈路訊務區段的信號。舉例而言,可使用多層級變數 (multi-level variable),其中每一層級指示BS 2〇〇想要多嚴 * 格地控制干擾。接收此信號之WT 300可使用此信號結合其 自身測得干擾來決定是否允許WT 300使用受控制之上行鍵 路訊務區段。 通#常式226實施由BS 200使用之各種通信協定且控制 使用者資料之總傳輸。基地台控制常式228控制1/〇設備 210、I/O介面2〇8、接收器2〇2、傳輪器2〇4之操作,且控 制BS 200之操作以實施本發明之方法。排程器23〇基於若 φ 干限制條件將在其控制之下的上行鏈路訊務區段分配至 WT 300 ••區段之功率要求' WT之傳輸功率容量,及對系 統之干擾成本。因此,排程器23〇在對下行鏈路傳輸排程 時可(且經常)使用來自所接收干擾報告之資訊。下行鏈路 廣播信號傳輸模組232使用包含下行鏈路廣播參考信號資 訊之資料/資訊224來產生且傳輸以已知功率位準傳輸的諸 如信標、導頻信號、指派信號’及/或其他共同控制信號 之廣播信號,該等廣播信號可由资3_於決定下行鍵路 通道品質及上行鏈路干擾位準。WT干擾報告處理模組以 115454.doc 17 1354460 使用包含自WT 3 00獲得的干擾成本報告資訊274之資料/資 訊224來處理、關聯且轉發上行鏈路干擾資訊至排程器 230。用於一些實施例中之報告請求模組236產生一連串干 擾報告請求訊息248以請求一連串上行鏈路干擾報告,每 一報告對應於其鄰近基地台中之一者。用於一些實施例中 之干擾指示符模組238產生(多層級)干擾控制指示符信號 250,該等信號經傳輸至WT 3〇〇以控制對一些上行鏈路訊 務通道區段之存取。Information in the traffic section. The uplink traffic channel information 246 includes a plurality of uplink traffic channel segment information groups including sections for WTs that can be assigned by the BS scheduler 230 to the WT requesting uplink air link resources. News. The uplink traffic channel information 246 includes channel segment 1 information 2 80 and channel segment N information 282. Channel segment 1 information 280 includes type information 284, power level information 286, definition information 288, and assignment information 290. Type information 2 84 contains information defining the characteristics of segment 1 (eg, the frequency and time range of the segments). For example, a BS can support multiple types of uplink segments, such as a segment having a large bandwidth but having a short duration and a segment having a small bandwidth but having a long duration. The power level information 286 includes a defined power level that the WT will transmit with when using the uplink segment i. Derogatory information 288 contains information defining the characteristic frequencies or tones and specific times that make up the uplink traffic channel segment 1. The assignment information 29 includes assignment information associated with the uplink traffic segment 1, for example, an identifier assigned to the uplink traffic channel segment, to be used for the uplink traffic channel The coding and/or modulation mechanism in section 1. The interference report request information message 248 used in some embodiments 10 is to be transmitted, for example, as a money message or as a message transmitted for the message WT. The BS 200 can transmit to the WT3 port on the common control channel, thereby The information is determined and reported to the communication system - the interference information of the special base station transmitter (for example, 'base station sector transmitter'). The interference report request message 248 typically includes base station transmitter identification information 292 that identifies the particular base station sector that was previously deducted for interference reporting. As mentioned above: 'H5454.doc • 16 - 1354460, some base stations are implemented as single-sector base stations. Over time, the BS 200 can change the base station identification information 292 to correspond to each of the adjacent transmitters and thereby obtain interference information for a plurality of neighbors. Interference control indicator signals 25 used in some embodiments (e.g., where at least some of the uplink traffic segments are not explicitly assigned by the base station) are broadcast by the BS 200 to the WT 300 to control which wts are available in terms of interference. Use the signal from the uplink traffic segment. For example, a multi-level variable can be used, where each level indicates that BS 2 wants to control interference more strictly. The WT 300 receiving this signal can use this signal in conjunction with its own measured interference to decide whether to allow the WT 300 to use the controlled uplink traffic segment. The common routine 226 implements various communication protocols used by the BS 200 and controls the total transmission of user data. The base station control routine 228 controls the operation of the 1/〇 device 210, the I/O interface 2〇8, the receiver 2〇2, the wheeler 2〇4, and controls the operation of the BS 200 to implement the method of the present invention. The scheduler 23 分配 allocates the uplink traffic section under its control to the power requirement of the WT 300 •• section, the transmission power capacity of the WT, and the interference cost to the system based on the φ dry constraint condition. Thus, scheduler 23 can (and often) use information from the received interference reports when scheduling downlink transmissions. The downlink broadcast signal transmission module 232 uses the data/information 224 containing downlink broadcast reference signal information to generate and transmit such as beacons, pilot signals, assignment signals 'and/or other transmissions at known power levels. The broadcast signals of the common control signals, which can determine the downlink channel quality and the uplink interference level. The WT Interference Report Processing Module processes, correlates, and forwards the uplink interference information to the scheduler 230 using the data/information 224 containing the interference cost report information 274 obtained from WT 3 00 at 115454.doc 17 1354460. The report request module 236 for use in some embodiments generates a series of interference report request messages 248 to request a series of uplink interference reports, each corresponding to one of its neighboring base stations. The interference indicator module 238 for use in some embodiments generates (multi-level) interference control indicator signals 250 that are transmitted to the WT 3 to control access to some of the uplink traffic channel segments. .
圖3說明一根據各項實施例實施的例示性無線終端機 3 00。例不性無線終端機3〇〇可為圖!之例示性系統無線通 信系統100之WT 106、1〇8、118、12〇之任—者的更詳細表 不。WT 300包含經由匯流排314耦接在一起的一接收器 302、一傳輸器304、I/O設備310、一處理器306(例如, cpu),及一記憶體312,各種元件可在該匯流排上交換資 料及貝訊。接收器302耦接至天線316 ;傳輸器3〇4耦接至 天線3 1 8。 自BS 200傳輸之下行鏈路信號經由天線316接 接收器搬處理。傳輸器3G4經由天線318將上行鏈路信 傳輸至BS扇。上行鏈路信號包含(例如)上行鏈路訊務 道信號及干擾成本報告。I/O設備310包含使用者介面 備,諸如麥克風、揚聲器、視訊攝影機、視訊顯示器、 盤、印表機、資料終端機顯示器#。I/O設備3 10可用以 WT_之操作者建立介面,例如,以允許操作者輸入針 對等節點之使用者資料、語音及/或視訊且允許操作者 H5454.doc -18- 比4460 測自對等節點(例如,另一WT 300)通信之使用者資料、語 音及/或視訊。 記憶體3 12包含常式320及資料/資訊322。處理器3〇6執 行帛式320且使用§己憶體312中之資料/資訊322來控制WT 3 00之基本操作並實施方法。常式32〇包含通信常式及 WT控制予式326。WT控制常式326包含一參考信號處理模 組332、一干擾成本模組334、一報告格式選擇模組329, φ 及一排程決策模組330。參考信號處理模組332包含一識別 模組336、一所接收功率量測模組338,及一通道增益比率 計算模組340。干擾成本模組334包含一濾波模組342、一 決定模組344,及一報告產生模組346。報告產生模組346 包含一量化模組348。 資料/資訊322包含下行鏈路廣播參考信號資訊349、無 線終端機資料/資訊352、上行鏈路訊務通道資訊354、所 接收干擾報告請求資訊訊息356、所接收干擾控制指示符 _ 信號358,及所接收廣播參考信號353。 下行鏈路廣播參考信號資訊349包含複數個下行鏈路廣 播參考仏號資訊組:基地台丨下行鏈路廣播參考信號資訊 350、基地台Μ下行鏈路廣播參考信號資訊35卜bs i下行 鏈路廣播參考信號資訊包含信標信號資訊36〇、導頻信號 資訊362,及指派信號傳輸資訊364。信標信號資訊360包 含識別資訊366 (例如,BS識別符及扇區識別符資訊)及功 率位準資Λ368導頻信號資訊3 62包含識別資訊370及功 率位準資訊372扣派信號傳輸資訊364包含識別資訊374 115454.doc 1354460 及功率位準資訊376。 無線終端機資料/資訊352包含資料382、終端機識別資 訊3 84、干擾成本報告資訊386、所請求上行鏈路訊務區段 388’及經指派上行鏈路訊務區段39〇。 上行鍵路訊務通道資訊354包含複數個上行鏈路訊務通 道資訊組:通道1資訊391、通道N資訊392。通道i資訊391 包含類型資訊393、功率位準資訊394、定義資訊395,及 指派貧訊396。排程模組33〇回應於所接收報告請求及使用 者資料而控制傳輸干擾報告(例如,根據預定排程,則所 請求干擾報告)之排程。 所接收干擾報告請求資訊訊息356包含一基地台識別符 397 〇 圖4說明一根據各項實施例實施的例示性系統4〇〇,其將 用以闡釋本發明之各種特徵。系統400包含彼此相鄰之第 一、第一及第二小區404、406、408 »第一小區404包含一 φ 包含一第一基地台扇區傳輸器之第一基地台(BSS〇) 410 , 及一連接至888。41〇之無線終端機42〇。第二小區4〇6包含 一包含一第二基地台扇區傳輸器之第二基地台(BSSi) 412。第三小區408包含一包含一第三基地台扇區傳輸器之 第三基地台(BSS2) 414 »如可看出,在BSS(^WT 42〇之間 傳輸之信號經受通道增益gQ。在388丨與WT 42〇之間傳輸之 信號經受通道增益gl。在6882與WT 42〇之間傳輸之信號經 受通道增益g2。 假定WT 420連接至BSS〇 41〇以使用BSS〇4l〇作為其附接 115454.doc •20. 點。増益比率自Ra. s WT 1至WT 420之通道增益與自Bss WT42G之通道增益之比率nFIG. 3 illustrates an exemplary wireless terminal set 300 implemented in accordance with various embodiments. An example of a wireless terminal can be a picture! A more detailed description of the WT 106, 1, 8, 118, 12 of the exemplary system wireless communication system 100. The WT 300 includes a receiver 302 coupled via a bus 314, a transmitter 304, an I/O device 310, a processor 306 (e.g., a CPU), and a memory 312 at which various components can be coupled. Exchange information and Beixun. The receiver 302 is coupled to the antenna 316; the transmitter 3〇4 is coupled to the antenna 3 18 . The downlink signal from the BS 200 transmission is processed by the receiver via the antenna 316. Transmitter 3G4 transmits the uplink signal to the BS fan via antenna 318. The uplink signal includes, for example, an uplink traffic signal and an interference cost report. I/O device 310 includes user interface such as a microphone, speaker, video camera, video display, disc, printer, data terminal display #. The I/O device 3 10 can be used to establish an interface with the operator of the WT_, for example, to allow the operator to input user data, voice and/or video for the other nodes and allow the operator to measure H5454.doc -18- User data, voice, and/or video communicated by a peer node (eg, another WT 300). The memory 3 12 includes the routine 320 and the data/information 322. Processor 〇6 executes 320320 and uses the data/information 322 in § 192 to control the basic operation of WT 00 and implement the method. The routine 32 〇 includes a communication routine and a WT control 326. The WT control routine 326 includes a reference signal processing module 332, an interference cost module 334, a report format selection module 329, φ, and a scheduling decision module 330. The reference signal processing module 332 includes an identification module 336, a received power measurement module 338, and a channel gain ratio calculation module 340. The interference cost module 334 includes a filter module 342, a decision module 344, and a report generation module 346. The report generation module 346 includes a quantization module 348. The data/information 322 includes downlink broadcast reference signal information 349, wireless terminal data/information 352, uplink traffic channel information 354, received interference report request information message 356, and received interference control indicator_signal 358, And the received broadcast reference signal 353. The downlink broadcast reference signal information 349 includes a plurality of downlink broadcast reference nickname information groups: base station downlink broadcast reference signal information 350, base station Μ downlink broadcast reference signal information 35 bs i downlink The broadcast reference signal information includes beacon signal information 36, pilot signal information 362, and assignment signal transmission information 364. The beacon signal information 360 includes identification information 366 (eg, BS identifier and sector identifier information) and power level information 368 pilot signal information 3 62 including identification information 370 and power level information 372 deduction signal transmission information 364 Contains identification information 374 115454.doc 1354460 and power level information 376. The wireless terminal data/information 352 includes data 382, terminal identification information 3 84, interference cost report information 386, requested uplink traffic segment 388', and assigned uplink traffic segment 39. The uplink traffic channel information 354 includes a plurality of uplink traffic channel information groups: channel 1 information 391 and channel N information 392. Channel i information 391 includes type information 393, power level information 394, definition information 395, and assignment information 396. The scheduling module 33 controls the scheduling of the transmission interference report (e.g., the requested interference report based on the predetermined schedule) in response to the received report request and the user profile. The received interference report request information message 356 includes a base station identifier 397. Figure 4 illustrates an exemplary system implemented in accordance with various embodiments that will be used to illustrate various features of the present invention. The system 400 includes first, first, and second cells 404, 406, 408 adjacent to each other. The first cell 404 includes a first base station (BSS) 410 including a first base station sector transmitter. And a wireless terminal 42 connected to 888.41〇. The second cell 4〇6 includes a second base station (BSSi) 412 including a second base station sector transmitter. The third cell 408 includes a third base station (BSS2) 414 including a third base station sector transmitter. As can be seen, the signal transmitted between the BSS (^WT 42〇 is subjected to the channel gain gQ. The signal transmitted between 丨 and WT 42〇 is subjected to channel gain gl. The signal transmitted between 6882 and WT 42〇 is subjected to channel gain g2. It is assumed that WT 420 is connected to BSS〇41〇 to use BSS〇4l〇 as its attachment. 115454.doc • 20. Point. Benefit ratio from Ra. s WT 1 to WT 420 channel gain to channel gain from Bss WT42G n
Gi = gi/g〇 疒二疋功率位準自第…第二及第三bss傳輪信標 =,則自基地台BSSo、BSSl、BSS2接收之信標信號之所 接收功率(PB)可用以如下決定増益比率: G〇=g〇/g〇=l=PB〇/PB〇 Gi = gi/g〇=PB,/PB〇 G2 = g2/go PB2/PB〇 以下論述㈣中於根據各項實施例的上行鏈路訊務通道 之操作上。在例示性系統中,組成上行鏈路訊務通道之訊 務區段可定義於不同頻率及時間範圍内以便適合在一組不 同無線通道上且在不同設備限制條件下操作的廣泛類別之 無線終端機。圖6為垂直軸102八上之頻率對水平軸1〇4八上 之時間之圖表100A。圖6說明上行鏈路訊務通道中之兩種 訊務區段。表示為A 1 06A之訊務區段佔用之頻率範圍係表 示為B 108A之訊務區段佔用之頻率範圍的兩倍。上行鏈路 訊務通道中之訊務區段可在與基地台通信之無線終端機之 間動態地共用。排私模組(其係基地台之部分)可根據通常 隨時間變化之使用者訊務需求、設備限制條件及通道情況 而將訊務通道區段快速指派至不同使用者。因此在逐區段 (segment-by-segment)基礎上在不同使用者之間有效共用且 動態分配上行鏈路訊務通道。在圖6中說明訊務區段之動 態分配’其中區段A藉由基地台排程器指派至使用者#丨且 區段B經指派至使用者#2。 H5454.doc -21 - 1354460 在例示性系統中,在指派通道中輸送訊務通道區段之指 派資訊’該指派通道包含一系列指派區段。每一訊務區段 與一對應之唯一指派區段相關聯,該指派區段傳送可包含 無線终端機之識別符亦及待用於彼訊務區段中之編碼及調 變機制的指派資訊。圖7為垂直軸202A上之頻率對水平軸 204A上之時間之圖表200A。圖7展示兩個指派區段Α· 206Α及Β’ 208Α,其分別傳送上行鏈路訊務區段a 210Α及 ^ B 2 12 A之指派資訊。指派通道係共用通道資源。無線終端 機接收在指派通道中傳送之指派資訊且隨後根據指派資訊 在上行鏈路訊務通道區段上傳輸。 基地台排程器230基於若干考慮而分配訊務區段。一限 制條件為訊務通道之傳輸功率要求不應超過無線終端機之 傳輸功率容量。因此,可為在較弱上行鏈路通道上操作之 無線終端機分配佔用例示性系統中之較窄頻率範圍的訊務 區段,以便瞬時功率要求不具嚴重限制性。同樣地,亦可 • 為產生較大干擾量的無線終端機分配包含較小頻率範圍之 訊務區段,以便減小由無線終端機產生之瞬時干擾之影 響。藉由基於無線終端機對系統之干擾成本對無線終端機 之傳輸排程來控制總干擾,該等干擾成本在下文中加 義。 無線終端機自所接收下行鍵路廣播信號來決定其對系統 之干擾成本。在-實施例中,無線終端機以干擾報告:形 式報告其對基地台之干擾成 ^ 卞擾成本,其隨後使上行鏈路排程 朿控制上行鏈路干擾。在另警 力貫施例中,基地台廣播一干 115454.doc -22. 擾控制指示符,且無線終 ^ ^ 機將其干擾成本與所接收指示 =較^便用適當方式(例如,具有低於由該控制指示 1曰不準之上行鏈路傳輪成本的行動體可傳輸,而具 有超過由該控制指示符指示 日丁之成本水準之干擾成本的行動 體將抑制傳輸)決定其上行鏈路傳輸資源。 現將描述可考慮之例示性干擾成本。 考慮—標記為W無線終端機。假定該無線終端機連接Gi = gi / g 〇疒 power level from the ... second and third bss pass beacon =, then the received power (PB) of the beacon signal received from the base station BSSo, BSSl, BSS2 can be used The benefit ratio is determined as follows: G〇=g〇/g〇=l=PB〇/PB〇Gi = gi/g〇=PB,/PB〇G2 = g2/go PB2/PB〇The following discussion (4) is based on The operation of the uplink traffic channel of an embodiment. In an exemplary system, the traffic segments that make up the uplink traffic channel can be defined in different frequencies and time ranges to accommodate a wide range of wireless terminals operating on a different set of wireless channels and under different device constraints. machine. Figure 6 is a graph 100A of the time on the vertical axis 102 eight versus the horizontal axis 1 〇 4 八. Figure 6 illustrates two traffic segments in the uplink traffic channel. The frequency range occupied by the traffic section indicated as A 1 06A is expressed as twice the frequency range occupied by the traffic section of B 108A. The traffic segments in the uplink traffic channel can be dynamically shared between the wireless terminals communicating with the base station. The privilege module (which is part of the base station) can quickly assign traffic channel segments to different users based on user traffic requirements, device constraints, and channel conditions that typically change over time. Therefore, the uplink traffic channel is effectively shared and dynamically allocated between different users on a segment-by-segment basis. The dynamic allocation of the traffic segments is illustrated in Figure 6 where segment A is assigned to user #丨 by the base station scheduler and segment B is assigned to user #2. H5454.doc -21 - 1354460 In an exemplary system, the assignment information of a traffic channel segment is transmitted in an assigned channel. The assigned channel contains a series of assigned segments. Each traffic segment is associated with a corresponding unique assigned segment, the assigned segment transmitting an assignment identifier that can include an identifier of the wireless terminal and a coding and modulation mechanism to be used in the traffic segment . Figure 7 is a graph 200A of the time on the vertical axis 202A versus the time on the horizontal axis 204A. Figure 7 shows two assignment sections Α 206 Α and Β ' 208 Α which respectively transmit assignment information for uplink traffic segments a 210 Α and ^ B 2 12 A. Assign channels to share channel resources. The wireless terminal receives the assignment information transmitted in the assigned channel and then transmits on the uplink traffic channel segment based on the assignment information. The base station scheduler 230 allocates traffic segments based on a number of considerations. A limitation condition is that the transmission power requirement of the traffic channel should not exceed the transmission power capacity of the wireless terminal. Thus, a wireless terminal that operates on a weaker uplink channel can be assigned a traffic segment that occupies a narrower frequency range in the exemplary system so that the instantaneous power requirements are not severely limited. Similarly, it is also possible to allocate a traffic section containing a smaller frequency range for a wireless terminal that generates a larger amount of interference in order to reduce the influence of transient interference generated by the wireless terminal. The total interference is controlled by the transmission schedule of the wireless terminal based on the interference cost of the wireless terminal to the system, and the interference costs are hereinafter emphasized. The wireless terminal determines the interference cost to the system from the received downlink key broadcast signal. In an embodiment, the wireless terminal reports its interference to the base station as a interference cost in the form of an interference report: which then causes the uplink schedule to control the uplink interference. In the case of another police force, the base station broadcasts a 115454.doc-22. disturbance control indicator, and the wireless terminal uses its interference cost and the received indication = in a proper manner (for example, has a lower An action body indicating that the uplink transmission cost is not allowed by the control may be transmitted, and an action body having an interference cost exceeding a cost level indicated by the control indicator will suppress transmission) determining its uplink Transfer resources. Exemplary interference costs that may be considered will now be described. Consider - marked as a W wireless terminal. Assume that the wireless terminal is connected
至基地台凡。表示Gek,其係此無線終端機與基地台私之間 的通道增益,k=〇, 1,…,N],其中N為系統中基地台之總 數目。 在例示性系統中,無線終端機w。在上行鏈路訊務區段上 傳輸之功率量通常係自無線終端機w。至基地台凡之無線通 道之情況、頻率範圍,及對訊務區段上碼率之選擇的函 數。區段之頻率範圍及對碼率之選擇決定由行動體使用之 傳輸功率,其係直接引起干擾之量.假定基地台接收器解 • 碼訊務區段所要求之SNR需要訊務區段之每音調之接收功 率pR (其係對碼率之選擇及通道情況之函數,行動終端機 在該4通道情況下操作)。此係關於無線終端機之每音調 之傳輸功率Ρτ,如下: PR = PTG0,0 由此無線終端機在相鄰基地台k處產生的每音調之干擾 可隨後計算如下: G0kTo the base station. Represents Gek, which is the channel gain between the wireless terminal and the base station private, k = 〇, 1, ..., N], where N is the total number of base stations in the system. In an exemplary system, a wireless terminal w. The amount of power transmitted on the uplink traffic segment is typically from the wireless terminal w. The status of the wireless channel to the base station, the frequency range, and the choice of the code rate on the traffic segment. The frequency range of the segment and the choice of the code rate determine the transmission power used by the mobile unit, which directly causes the amount of interference. It is assumed that the SNR required by the base station receiver to solve the code segment requires the traffic segment. The received power pR per tone (which is a function of the choice of bit rate and channel conditions, the mobile terminal operates in the 4-channel case). This relates to the transmission power Ρτ of each tone of the wireless terminal, as follows: PR = PTG0,0 The interference per tone generated by the wireless terminal at the adjacent base station k can then be calculated as follows: G0k
Pi,k = PtG〇,ic = Pr 〇 'J η η 115454.doc • 23 - 1354460 表不W G。。。自此表達式,由無線終端機所。在基地台^ 處產生之干擾㈣與其傳輸功率以及通道增益與基地台k 及與其自身基地台之比率成比例。因此〜被稱為無線 终端機w。對基地台尽之干擾成本。 >概括此概念,由無線終端機產生的對所有相鄰基地台之 每音調之總干擾為:Pi,k = PtG〇,ic = Pr 〇 'J η η 115454.doc • 23 - 1354460 Table W G. . . Since this expression, by the wireless terminal. The interference generated at the base station (4) is proportional to its transmission power and channel gain and the ratio of the base station k and its own base station. Therefore ~ is called wireless terminal w. The cost of interference to the base station. > To summarize this concept, the total interference generated by the wireless terminal for each tone of all neighboring base stations is:
N • = ΡΑ〇^ +G^ +- + ^) = PR = ρκ^ ^0,0 因此,“0,1.....Γ〇’ν}為無線終端機叫對整個系統之干 擾成本^ 注意由行動體%產生的對基地台足之合計瞬時干擾實際 上由化》給出係有用的,其中係訊務區段之頻率範 圍。 現將描述在-些實施例中決定干擾成本之方法。在一例 示性實施例中,例示性系統1〇〇中之每一基地台1〇2、ιΐ4 以較尚功率廣播無線終端機可偵測且解碼之週期性參考信 號參考彳5唬包含信標、導頻或其他共同控制信號。參考 h號可具有用以識別基地台之小區及扇區的唯一型樣。 在例示性OFDM系統1〇〇中,信標或導頻信號可用作參考 信號。信標信號係特殊〇FDM符號,其中大部分傳輸功率 集中於少量音調上。彼等高功率音調之頻率位置指示基地 台之識別符。導頻信號可具有特殊跳躍型樣(hopping pattern),其亦唯一地規定基地台1〇2之識別符。因此,在 115454.doc -24· 1354460 及/或導頻信號識別基地台扇ι 在CDMA糸統中,導頻信號可用作參考信號。例如,在 系統f ’導頻係具有特定時間偏移作為基地台之織 別符的已知展頻序列。. σ 雖然以上所述之心㈣統⑽❹信標或導頻作號來 為路徑損耗估計提供參考信號,但本發明適用於可使用直 他技術來提供參考信號之廣泛多種系統中。N • = ΡΑ〇^ +G^ +- + ^) = PR = ρκ^ ^0,0 Therefore, “0,1.....Γ〇'ν} is the interference cost of the wireless terminal to the entire system. ^ Note that the total instantaneous interference to the base station generated by the actor % is actually useful, which is the frequency range of the traffic segment. It will be described in some embodiments to determine the interference cost. In an exemplary embodiment, each base station 1 〇 2, ι 4 of the exemplary system 1 以 includes a periodic reference signal reference 彳 5 可 detectable and decodable by the wireless broadcast terminal. Beacons, pilots, or other common control signals. The reference h may have a unique type to identify the cells and sectors of the base station. In an exemplary OFDM system, a beacon or pilot signal may be used. Reference signal. The beacon signal is a special 〇FDM symbol, in which most of the transmission power is concentrated on a small number of tones. The frequency position of these high-power tones indicates the identifier of the base station. The pilot signal can have a special hopping pattern. ), which also uniquely specifies the identifier of the base station 1〇2 Thus, at 115454.doc -24· 1354460 and/or the pilot signal identifying the base station fan in the CDMA system, the pilot signal can be used as a reference signal. For example, in the system f 'the pilot system has a specific time offset a known spread spectrum sequence as a weaver of the base station. σ Although the above-mentioned heart (4) system (10) ❹ beacon or pilot number provides a reference signal for path loss estimation, the present invention is applicable to the use of straight-through Technology to provide a wide range of systems for reference signals.
以已知功率傳輸參考信號。可以不同功率傳輸不同參考 不同基地台102、114可將不同功率位準用於相同類 型之 > 考仏號,只要此等功率為行動終端機已知的。 無線終端機106首先接收參考信號以獲得基地台102之識 別符。隨後,無線終端機⑽量測參考信號之所接收功 率,且#算自基地台1〇2至無線終端機1〇6之通道增益。注 忍’在給定位置處,無線終端機可能能夠自多個基地台 102、114接收參考信號。另一方面,無線終端機可能不能 夠自整個系統中之所有基地台接收參考信號。在例示性系 統中,無線終端機%監視其連接的基地台奂之%,〇,及基 地σ *之G〇,k (若其可接收對應的參考信號卜因此,無線 終端機所。為-組基地台維護干擾成本{^}之一陣列,無線 終端機%可接收該組基地台之參考信號。 注意,無線终端機106可藉由組合來自多個參考信號之 估汁來導出干擾成本。舉例而言,在例示性〇fdm系統丨 中,無線終端機1〇6可使用信標與導頻來得出(ro d之估 計0 115454.doc 25- 1354460 干擾成本{ra,k}之資訊將用以控制上行鏈路干擾且増加 總系統容量。上行鏈路訊務通道可用於兩個模式中,:以 下描述干擾成本在兩個模式中之使用。 應指出,無線終端機106、108量測來自下行鏈路參考信 號之通道增益資m,而+擾係對干擾在對上行鍵路之影響 方面將具有之成本的量測。無線终端機1〇6與基地台ι〇2之 間的下行鏈路及上行鏈路之通道増益The reference signal is transmitted at a known power. Different References Can Be Transmitted for Different Powers Different base stations 102, 114 can use different power levels for the same type of > test number as long as such power is known to the mobile terminal. The wireless terminal 106 first receives the reference signal to obtain the identifier of the base station 102. Subsequently, the wireless terminal (10) measures the received power of the reference signal, and # is calculated from the channel gain of the base station 1〇2 to the wireless terminal unit 1〇6. Note that at a given location, the wireless terminal may be able to receive reference signals from multiple base stations 102,114. On the other hand, the wireless terminal may not be able to receive reference signals from all base stations in the entire system. In the exemplary system, the wireless terminal unit monitors the % of the base station to which it is connected, 〇, and the base σ * G 〇, k (if it can receive the corresponding reference signal, therefore, the wireless terminal station. The group base station maintains an array of interference costs {^}, and the wireless terminal unit % can receive the reference signals of the group of base stations. Note that the wireless terminal unit 106 can derive the interference cost by combining the estimates from the plurality of reference signals. For example, in an exemplary 〇fdm system, the wireless terminal unit 〇6 can use the beacon and the pilot to derive (the estimate of the ro d 0 115454.doc 25- 1354460 interference cost {ra,k} will be Used to control uplink interference and increase total system capacity. The uplink traffic channel can be used in two modes: The following describes the use of interference cost in two modes. It should be noted that the wireless terminal 106, 108 measures The channel gain from the downlink reference signal is m, and the + disturbance is a measure of the cost of the interference in the impact on the uplink. The downlink between the wireless terminal 1〇6 and the base station ι〇2 Link and uplink Zo benefits
移除短期變化之效應,可(且在4實施射=== 下行鏈路參考信號之通道增益之估計值 求平均值(例如使 用低通濾波之形式),以獲得干擾成本{rGk}之估計值。 現將論述所決定干擾成本在排定操作模式令之使用。在 一特別例不性操作模式中,上行鏈路訊務區段之每一者由 基地台明確指派以使得一上行鏈路訊務區段僅由至多一無 線終端機使用。在例示性0FDM系統中,由於訊務區段彼 此正交’故在此模式中在上行鏈路訊務區段中通常不存在The effect of removing short-term changes can be (and in 4 implementations === the estimated value of the channel gain of the downlink reference signal is averaged (eg in the form of low-pass filtering) to obtain an estimate of the interference cost {rGk} The value of the determined interference cost is now discussed in the scheduling mode of operation. In a particular mode of operation, each of the uplink traffic segments is explicitly assigned by the base station to enable an uplink. The traffic segment is only used by at most one wireless terminal. In the exemplary OFDM system, since the traffic segments are orthogonal to each other, there is usually no such presence in the uplink traffic segment in this mode.
小區内干擾。 為有助於在基地台102處排程,根據本發明,每一無線 終端機1G6、1G8將-連$干擾報告發送至與無線終端機連 接之基地台102。在—些實施例中,該等報告指示計算出 之干擾成本{rG,k}。在極端狀況下,報告係包含干擾成本 {r〇,k}之整個陣列的控制訊息。然而,為減少信號傳輸耗 用,在一實施例中僅傳輸陣列{r〇k)之量化版本。如下文 所列出,存在若干方式來量κ{γμ}。 •報告所有{r〇,k}之和r(),tc)tai。 115454.doc -26 - 1354460 報〇 {rG,k}之最大值及與該最大值相關聯之指數让。 •週期性地逐個報告{ra,k}及相關聯之指數!^ 使用)里位準來報告r〇,k。舉例而言,使用兩個位準 來指示rQ k是強還是弱。 在接收該或該等干擾報告後,基地台作為干擾資訊之一 函數對訊務區段排程(例如,指派p 一排程策略係將所有 排定無線終端機所產生之總干擾限制至一預定臨限值。另 • 一排程策略係根據無線終端機之所報告{rG k}將無線終端 機分類為若干群組,以致較佳為具有大干擾成本之群組指 派L έ較小頻率範圍之訊務區段以便減小所產生之瞬時干 擾的影響。 考慮一實施例,其中每一基地台1 〇2知道其相鄰組,亦 即,出於干擾之觀點而決定為相鄰者之基地台U4之組 等。在一基本實施例中,基地台1〇2僅試圖控制對相鄰基 地台之總干擾。該基本實施例在幾乎所有干擾可針對相鄰 φ 基地台(小區Χ)中之一特別者的意義上可係粗略的,例 如,由於所有排定無線終端機可靠近小區X。在此狀況 下,小區X在此時間瞬間經受嚴重干擾。在另一時間瞬間 處,干擾可集甲於一不同的相鄰基地臺上,在該種狀況 下’小區X經受少許干擾。因此,在總干擾控制之以上實 施例中’對一特別相鄰基地台之干擾可具有較大變化。為 了避免使小區間(intercell)干擾不穩定,基地台1〇2可須在 產生之總干擾中留下充分餘量以補償該較大變化。 在一增強實施例中,基地台102在共同控制通道上廣播 115454.doc •27· 1354460 一訊息以指導無線終端機106、108決定且報告關於一特別 基地台A之干擾成本。因此,無線终端機^(j=〇,〗,2,…) 將發送r』,k之報告。經過一段時間,基地台1〇2對其相鄰組 之每一成員重複此過程,且決定干擾該等基地台之每一者 的無線終端機106、108之組。一旦完成此分類,基地台 102便可同時將上行鏈路訊務區段分配至干擾不同基地台 之無線終端機1〇6、108之一支組,藉此減小針對任何特^ • 基地台的干擾之變化。有利地,由於干擾具有較小變化, 故基地台102可允許產生較大總干擾而不會嚴重影響系統 穩定性,從而增加系統容量^在小區1〇4内部之無線終端 機106、108引起對相鄰基地台114之可忽略干擾且因此可 在任何時間予以排程。 現將論述干擾成本在用於一些而不必所有實施例中的非 排定操作模式中之使用。 在此非排定模式中,上行鏈路訊務區段之每一者並非由 φ 基地台102明確指派。結果,一上行鏈路訊務區段可由多 個無線終端機106、108使用。在CDMA系統中,由於上行 鍵路訊務區段並非彼此正交,故在此模式中在上行鏈路訊 務區段中通常存在小區内干擾。 在此模式中’每一無線終端機1〇6、1〇8對於其是否要使 用上行鍵路訊務區段及(若如此)使用哪一資料速率及功率 作出其自身排程決策。為幫助減少過量干擾且維護系統穩 定性,根據各項實施例,基地台廣播干擾控制指示符。每 一無線終端機106、108將參考位準與其干擾成本比較且決 115454.doc -28- 定其排程決策^ 在實施例中’干擾控制指示符可為多層級變數,且每 一層級指示基地台102想要多嚴格地控制總干擾。舉例而 。,δ廣播最低位準時,則允許無線終端機 106、108之每 者使用處於速率之每一者的訊務通道區段之每一者。當 廣播最高位準時’則僅干擾成本極低之無線終端機106、 1 08可使用訊務通道區段。當廣播中等位準時,則干擾成 本較低之無線終端機106、1〇8可使用所有訊務通道區段, 較佳為包含較大頻率範圍之訊務區段,而干擾成本較高之 無線終端機106、108僅可使用由較小頻率範圍組成且處於 較低資料速率之訊務區段。基地台102可動態地改變所廣 播之干擾控制位準以控制小區1 〇4之無線終端機丨〇6、1 〇8 對其他基地台產生之干擾量。 圖5 (包括圖5A、圖5B及圖5C之組合)為根據各項實施例 的操作一無線終端機(例如,行動節點)之例示性方法之流 程圖1000。操作開始於步驟1〇〇2,其中對無線終端機開機 且初始化。操作自步驟1002進行至步驟1〇〇4、步驟1〇〇6且 經由連接節點B 1005進行至步驟1 008。 在步驟1004中,操作無線終端機以自當前基地台扇區連 接接收信標及導頻信號。操作自步驟10〇4進行至步驟 1〇1〇。在步驟10 1〇中,無線終端機為當前基地台扇區連接 量測所接收信標信號之功率(PB〇)及所接收導頻通道信號之 功率(pp〇)。操作自步驟1010進行至步驟1012。在步驟1〇12 中’無線終端機自所接收信標信號導出當前連接基地台扇區 115454.doc •29- 1354460 傳輸器貧訊,例如,BSS一SLOPE及BSS一SECTORTYPE。步 驟1012包含子步1〇13。在子步1〇13中’無線終端機決定— 一田别連接基地台扇區及正使用之音調塊相關聯之功率傳 輸層(tier)位準。 在步驟1006中,無線終端機自一或多個干擾基地台扇區 接收信標信號1006。操作自步驟1〇〇6進行至步驟Μ。對 每一干擾基地台扇區(例如,干擾基地台扇區;(BSSi))執行 後續操作 1014、1016、ion 在步驟1014中,無線終端機為干擾基地台扇區量測所接 收信標信號之功率(PBi)。操作自步驟1〇14進行至步驟 1016。在步驟1016中,無線終端機自所接收信標信號導出 干擾基地口扇區傳輸器資訊,例如,Bigg—slope及 bss—sectortype。步驟 1016包含子步 1017。在子步 1〇17 中,無線終端機決定一與干擾基地台扇區及正使用之音調 塊相關聯之功率傳輸層位準。 操作自步驟1012及步驟1016進行至步驟1〇18。在步驟 1018中,無線終端機使用子步1〇2〇之方法或子步1〇22之方 法來計算通道增益比率。 在子步1020中,無線終端機使用信標信號資訊來計算通 道增益比率Gr子步1G2()包含子步觀,其中無線終端機 計算 Gi=PBi/PB0。 在子步1022中,無線終端機使用信標信號資訊及導頻信 號-貝訊來計算通道增益比率Gi。子步1〇22包含子步1〇26, 其中無線終端機計算GePBAPPoHcj^Zo),其中K=用於層〇 115454.doc -30· 1354460 位準/用於層〇音調 ’且z0=用於當前 音調塊的每音調之傳輸器功率信標參考 塊的每音調之傳輸器導頻信號參考位準 基地台扇區連接傳輸器音調塊的與音調塊之功率傳輸層位 準相關聯之功率換算因數。 操作自步驟HH8經由連接節點A 1〇42進行至步驟购, 其中無線終端機產生一或多個干擾報告。 返回至步驟麵,在步驟麵中,操作無線終端機以接 收廣播負載因數資訊。因此’在例示性實施例中,無線終 端機自當前服務基地纟扇區傳輸Μ發送之廣㈣訊接收 當前服務基地台扇區之負載因數資m终端機可自當 前或干擾服務基地台扇區傳輸器所發 擾服務基地台扇區之負載因數資訊。雖數 展示為自當前服務基地台扇區接收Μ旦或者,負載因數資 訊可自其他節點接收且/或預儲存於無線終端機中。對於 在考慮中的每—基地台扇區,操作進行至步驟刪。在步 驟刪中,無線終端機決;t是否自所接收信號成功恢復了 負載因數。若自所接收信號成功恢復了負載因數,則操作 進行至步驟1030’其中無線終端機儲存負載因數。舉例而 言,負載因數b〇=用於當前服務基地台扇區之負載因數, 且負載因數¥用於干擾基地台區k之負載因數。若未自所 接收信號成功恢復負载因數,則操作進行至步驟ι〇32,其 中無線終端機將負載因數設定A ^ 攻灯兵軌L1数〇又疋為丨。獲得負載因數(% 1032 > b, 1034 .....^ 如8、...、1〇4〇),其中每一負 載因數源自步驟1030及步驟1〇32中之—者 115454.doc 31 · 1354460 返回至步驟1043,在步驟1043中,無線終端機產生一或 多個干擾報告。步驟1043包含子步1〇44及子步1〇48。在子 步1044中,無線終端機產生一將一特定干擾基地台扇區之 干擾傳送至服務基地台扇區的特定類型報告。步驟1〇44包 含子步1046。在子步1046中,無線終端機計算報告值 = (b0/Z0)/(Gk*bk/Zk) ’其中b〇係當前服務BSS之負載因數, 且\係該報告所對應之干擾BSS之負載因數,對於i=k, Gk=Gi,且Z〇係用於當前BSS連接傳輸器音調塊的與音調塊 之功率傳輸層位準相關聯之功率換算因數,且心係用於該 報告所對應之干擾基地台扇區的與音調塊之功率傳輸屬位 準相關聯之功率換算因數。 在子步1048中,無線終端機(例如)使用來自干擾基地台 扇區之測得信標信號之每一者的資訊(包含使用負载因數 資訊及功率換算因數資訊)來產生一將一或多個干擾BSS之 干擾之資訊傳送至服務BSS的通用類型報告。 在—些實施例中,步驟1043包含量化。 操作自步驟1043進行至步驟1050,其中操作無線終端機 以將報告傳輸至充當該無線終端機之當前附接點的當前服 務基地台扇區。在一些實施例中,報告之傳輸係回應於來 自服務基地台扇區之請求。在一些實施例中,所傳輸之報 告之類型(例如,特定或通用)係回應於來自基地台扇區的 識別報告之類型之所接收信號傳輸。在一些實施例中,對 與一特別基地台扇區相關聯之干擾進行報告的一特別特定 類型報告之傳輸係回應於一識別該特別基地台扇區之所接 115454.doc -32- 丄 收基地台信號。在各項實施例中,根據無線終端機所遵循 的報告排程(例如作為專用控制通道結構之部分)而週期性 地傳輸干擾報告。在-些該等實施例中,對於所傳輪之至 少-些干擾報告,基地台不會信號傳輸任何用以選擇報告 的報告選擇資訊。 在t實施例中,系統包含複數個功率傳輸層位準(例 如’三個),該等位準具有一與每_層位準相關聯之不同 _功率換算因數。舉例而言,在一例示性實施例中,0 之 功率換算因數與層位準0音調塊相關聯,而6 dB之功率換 算因數與層1位準音調塊相關聯,且12 dB之功率換算因數 與層2音調塊相關聯。在一些實施例中,每一附接點對應 ;基地口扇區傳輸器及一音調塊,且每_附接點咖傳 輸器音調塊可與一功率傳輸層位準相關聯。在-些實施例 存在複數個下行鍵路音調塊,例如’三個音調塊(音Interference in the small area. To facilitate scheduling at the base station 102, in accordance with the present invention, each of the wireless terminals 1G6, 1G8 transmits an Interference Report to the base station 102 that is connected to the wireless terminal. In some embodiments, the reports indicate the calculated interference cost {rG,k}. In extreme cases, the report contains control messages for the entire array of interference costs {r〇,k}. However, to reduce signal transmission overhead, only one quantized version of the array {r〇k) is transmitted in one embodiment. As listed below, there are several ways to quantify κ {γμ}. • Report all {r〇,k} and r(), tc)tai. 115454.doc -26 - 1354460 The maximum value of {rG,k} and the exponential associated with this maximum. • Periodically report {ra,k} and associated indices!^ using the level to report r〇,k. For example, two levels are used to indicate whether rQ k is strong or weak. After receiving the interference report, the base station schedules the traffic segment as a function of the interference information (for example, assigning a scheduling policy to limit the total interference generated by all scheduled wireless terminals to one) The threshold is predetermined. Another • The scheduling strategy classifies the wireless terminals into groups according to the reported {rG k} of the wireless terminal, so that it is better to assign L έ smaller frequencies to groups with large interference costs. Range of traffic segments to reduce the effects of transient interference generated. Consider an embodiment in which each base station 1 知道 2 knows its neighboring group, that is, it is determined to be a neighbor from the point of view of interference. A group of base stations U4, etc. In a basic embodiment, base station 1〇2 only attempts to control the total interference to neighboring base stations. The basic embodiment can be used for adjacent φ base stations in almost all interferences (cellsΧ In the sense that one of the special persons can be roughly, for example, since all scheduled wireless terminals can be close to the cell X. In this case, the cell X experiences severe interference at this time instant. At another time instant, Interference can be set On a different adjacent base station, in this case 'cell X experiences a little interference. Therefore, in the above embodiment of the total interference control, the interference to a particular neighboring base station may have a large change. To avoid inter-cell interference instability, the base station 1 2 may have to leave sufficient margin in the total interference generated to compensate for this large variation. In an enhanced embodiment, the base station 102 is in a common control channel. The broadcast 115454.doc • 27· 1354460 a message to direct the wireless terminal 106, 108 to determine and report the interference cost for a particular base station A. Therefore, the wireless terminal ^(j=〇, 〗, 2, ...) Sending a report of r, k. After a period of time, the base station 1〇2 repeats the process for each of its neighboring groups and determines the group of wireless terminals 106, 108 that interfere with each of the base stations. Once this classification is completed, the base station 102 can simultaneously allocate the uplink traffic section to one of the groups of wireless terminals 1, 6 and 108 that interfere with different base stations, thereby reducing the number of base stations for any special base station. The disturbance of the station. Advantageously, since the interference has less variation, the base station 102 can allow for greater total interference without severely affecting system stability, thereby increasing system capacity. The wireless terminals 106, 108 within the cell 1〇4 are caused to Neighboring base station 114 can ignore interference and can therefore be scheduled at any time. The use of interference cost in some, but not necessarily all, non-scheduled modes of operation will now be discussed. Each of the uplink traffic segments is not explicitly assigned by the φ base station 102. As a result, an uplink traffic segment can be used by multiple wireless terminals 106, 108. In CDMA systems, due to uplinks The link traffic segments are not orthogonal to each other, so intra-cell interference typically occurs in the uplink traffic segment in this mode. In this mode, 'each wireless terminal 1, 、6, 〇8 makes its own scheduling decision as to whether it wants to use the uplink traffic segment and, if so, which data rate and power to use. To help reduce excessive interference and maintain system stability, according to various embodiments, the base station broadcasts an interference control indicator. Each wireless terminal 106, 108 compares the reference level with its interference cost and determines its scheduling decision. In an embodiment, the interference control indicator can be a multi-level variable, and each level indication The base station 102 wants to control the total interference more strictly. For example. The delta broadcasts the lowest level, allowing each of the wireless terminals 106, 108 to use each of the traffic channel segments at each of the rates. When the broadcast is at the highest level, then the wireless terminal 106, 108, which only interferes with the extremely low cost, can use the traffic channel segment. When the broadcast is in the middle level, the wireless terminal devices 106, 1 8 having lower interference costs can use all the traffic channel segments, preferably the traffic segments including the larger frequency range, and the wireless devices with higher interference costs. The terminal sets 106, 108 can only use traffic segments that are comprised of smaller frequency ranges and are at a lower data rate. The base station 102 can dynamically change the interference control level of the broadcast to control the amount of interference generated by the wireless terminals 丨〇6, 1 〇8 of the cell 1 对4 to other base stations. Figure 5 (comprising the combination of Figures 5A, 5B, and 5C) is a flowchart 1000 of an exemplary method of operating a wireless terminal (e.g., a mobile node) in accordance with various embodiments. The operation begins in step 1 , 2, where the wireless terminal is powered on and initialized. Operation proceeds from step 1002 to step 1〇〇4, step 1〇〇6 and proceeds to step 1 008 via connection node B 1005. In step 1004, the wireless terminal is operated to receive beacon and pilot signals from the current base station sector connection. The operation proceeds from step 10〇4 to step 1〇1〇. In step 10, the wireless terminal measures the power of the received beacon signal (PB 〇) and the power of the received pilot channel signal (pp 〇) for the current base station sector connection. Operation proceeds from step 1010 to step 1012. In step 1〇12, the wireless terminal derives the currently connected base station sector from the received beacon signal. 115454.doc • 29-1354460 Transmitter information, for example, BSS-SLOPE and BSS-SECTORTYPE. Step 1012 includes substeps 1 and 13. In substep 1〇13, the 'wireless terminal determines' the power transfer tier level associated with the base station sector and the tone block being used. In step 1006, the wireless terminal receives the beacon signal 1006 from one or more interfering base station sectors. The operation proceeds from step 1〇〇6 to step Μ. Performing subsequent operations 1014, 1016, ion for each interfering base station sector (e.g., interfering base station sector; (BSSi)). In step 1014, the wireless terminal unit measures the received beacon signal for the interfering base station sector. Power (PBi). Operation proceeds from step 1 to step 14 to step 1016. In step 1016, the wireless terminal derives interference base station sector transmitter information, such as Bigg_slope and bss_sectortype, from the received beacon signal. Step 1016 includes substep 1017. In substep 1 〇 17, the wireless terminal determines a power transmission layer level associated with the interfering base station sector and the tone block being used. Operation proceeds from step 1012 and step 1016 to step 1〇18. In step 1018, the wireless terminal uses the method of substep 1〇2〇 or substep 1〇22 to calculate the channel gain ratio. In substep 1020, the wireless terminal uses the beacon signal information to calculate the channel gain ratio Gr. Substep 1G2() contains a substep view in which the wireless terminal calculates Gi = PBi / PB0. In substep 1022, the wireless terminal uses the beacon signal information and the pilot signal, the beacon, to calculate the channel gain ratio Gi. Substep 1〇22 includes substeps 1〇26, where the wireless terminal calculates GePBAPPoHcj^Zo), where K=for layer 454115454.doc -30· 1354460 level/for layer 〇 tone' and z0=for Transmitter of each tone of the current tone block of the transmitter power beacon reference block. Transmitter pilot signal reference level base station sector connection transmitter tone block is associated with the power transfer layer level of the tone block. Factor. Operation proceeds from step HH8 via the connection node A 1 〇 42 to the step purchase, wherein the wireless terminal generates one or more interference reports. Return to the step surface where the wireless terminal is operated to receive broadcast load factor information. Therefore, in the exemplary embodiment, the wireless terminal transmits the coverage factor of the current serving base station sector from the current service base, the sector transmission, and the transmission of the current service base station sector. The terminal device can be from the current or interfering service base station sector. The load factor information of the sector of the service base station transmitted by the transmitter. Although the number is shown to be received from the current serving base station sector, the load factor information may be received from other nodes and/or pre-stored in the wireless terminal. For each base station sector under consideration, the operation proceeds to step deletion. In the step of deleting, the wireless terminal decides; t whether the load factor is successfully recovered from the received signal. If the load factor is successfully recovered from the received signal, then operation proceeds to step 1030' where the wireless terminal stores the load factor. For example, the load factor b〇 = the load factor for the current serving base station sector, and the load factor ¥ is used to interfere with the load factor of the base station k. If the load factor is not successfully recovered from the received signal, the operation proceeds to step ι 〇 32, in which the wireless terminal sets the load factor A ^ the number of the squadron L1 to 丨. Obtain the load factor (% 1032 > b, 1034 ..... ^ such as 8, ..., 1〇4〇), where each load factor is derived from step 1030 and step 1〇32 - 115454. Doc 31 · 1354460 Returning to step 1043, in step 1043, the wireless terminal generates one or more interference reports. Step 1043 includes substeps 1 and 44 and substeps 1 and 48. In substep 1044, the wireless terminal generates a particular type of report that conveys interference from a particular interfering base station sector to the serving base station sector. Step 1 〇 44 contains substep 1046. In sub-step 1046, the wireless terminal calculates a report value = (b0/Z0) / (Gk * bk / Zk) 'where b is the load factor of the current serving BSS, and \ is the load of the interfering BSS corresponding to the report Factor, for i=k, Gk=Gi, and Z〇 is the power conversion factor associated with the power transmission layer level of the tone block of the current BSS connection transmitter tone block, and the heart is used for the report The power conversion factor of the interference base station sector that is associated with the power transmission of the tone block. In sub-step 1048, the wireless terminal, for example, uses information from each of the measured beacon signals of the interfering base station sector (including the use of load factor information and power scaling factor information) to generate one or more The information of the interference that interferes with the BSS is transmitted to the general type report of the serving BSS. In some embodiments, step 1043 includes quantification. Operation proceeds from step 1043 to step 1050, where the wireless terminal is operated to transmit the report to the current serving base station sector that serves as the current attachment point for the wireless terminal. In some embodiments, the reported transmission is in response to a request from a serving base station sector. In some embodiments, the type of report transmitted (e.g., specific or generic) is a response to the received signal transmission of the type of identification report from the base station sector. In some embodiments, the transmission of a particular type of report reporting interference associated with a particular base station sector is responsive to an identification of the particular base station sector 115454.doc -32- Base station signal. In various embodiments, the interference report is periodically transmitted based on the reporting schedule followed by the wireless terminal (e.g., as part of a dedicated control channel structure). In some of these embodiments, the base station does not signal any report selection information for selecting a report for at least some of the interference reports. In the t embodiment, the system includes a plurality of power transfer layer levels (e. g., 'three), the levels having a different _ power scaling factor associated with each level level. For example, in an exemplary embodiment, a power scaling factor of 0 is associated with a layer level 0 tone block, and a 6 dB power scaling factor is associated with a layer 1 level tone block, and a 12 dB power conversion The factor is associated with the layer 2 tone block. In some embodiments, each attachment point corresponds to a base port sector transmitter and a tone block, and each _ attachment point coffee tone block can be associated with a power transmission layer level. In some embodiments there are a plurality of downlink key tone blocks, such as 'three tone blocks (sound)
調塊0、音調塊1、吾锏Λ- A 曰調塊2),每一音調塊具有i 13個相連 #㈣勻間隔之音調。在一些實施例中,由不同基地台扇區 傳輸益使用之同一音調塊(例如,音調塊〇)具有與不同基地 台扇區傳輸器相關聯之不同的功率傳輸層位準。無線終端 機(例如,自經由其信標信號傳送之資訊,使用具有循環 2輸型樣的音調位置及/或時間位置來識別一對應於基地 。扇區傳輸器及音調塊之特別附接點)可使用所儲存資訊 f使經識別附接點與—特別功率傳輸層位準及用於一特別 音調塊之功率換算因數相關聯。 在一實施例t,負載因數(例如,bk)係大於或等於〇且 Π 5454.doc •33- J於或等於一之值。在一些實施例中,該值自基地台扇區 通彳°至無線終端機,表示複數個位準(例如,0 dB、 -1 dB、-2 HTi、 , -3 dB、-4 dB、-6 dB、-9 dB、負無窮犯) 中之一者。 在一些實施例中,不考慮與正使用之音調塊相關聯之功 率傳輸層,以相同功率自基地台扇區傳輸器傳輸信標信 號,然而,其他下行鏈路信號(例如,導頻信號)受與用於 基地台扇區傳輸器之音調塊相關聯的功率傳輸層影響。在 一些實施例中,參數κ為大於或等於6 dB之值。舉例而言, 在一例示性實施例中’參數K=23 8 dB-7.2 dB = 16.6 dB。 S 8展示根據各項實施例實施的例示性通信系統8 〇 〇 β 例不性通信系統800包含多個小區:小區1 802、小區Μ 804例示性系統800為(例如)例示性正交分頻多工 展頻無線通信系統’諸如多向近接〇FDm系統。例示性系 統800之每一小區8〇2、8〇4包含三個扇區。根據各項實施 例,尚未被細分成多個扇區之小區(N=1)、具有兩個扇區 之小區(N=2)及具有3個以上扇區之小區(N>3)亦係可能 的。每一扇區支援一或多個載波及/或下行鏈路音調塊。 在一些實施例中’每一下行鏈路音調塊具有對應之上行鏈 路音調塊。在一些實施例中,至少一些扇區支援三個下行 鍵路音調塊。小區802包含一第一扇區(扇區1 810)、一第 二扇區(扇區2 812),及一第三扇區(扇區3 814)。同樣地, 小區Μ 804包含一第一扇區(扇區1 U2)、一第二扇區(扇區 2 824),及一第三扇區(扇區3 826)。小區1 802包含一基地 115454.doc -34- 1354460Tuning block 0, tone block 1, 锏Λ 锏Λ - A 曰 曰 block 2), each tone block has i 13 connected # (four) evenly spaced tones. In some embodiments, the same tone block (e.g., tone block) used by different base station sectors has different power transfer layer levels associated with different base station transmitters. A wireless terminal (eg, from information transmitted via its beacon signal, using a tone position and/or time position having a cyclic 2 output pattern to identify a particular attachment point corresponding to the base. Sector Transmitter and Tone Block The stored information f can be used to correlate the identified attachment point with a particular power transmission layer level and a power scaling factor for a particular tone block. In an embodiment t, the load factor (e.g., bk) is greater than or equal to 〇 and Π 5454.doc • 33-J is at or equal to a value of one. In some embodiments, the value is from the base station sector to the wireless terminal, representing a plurality of levels (eg, 0 dB, -1 dB, -2 HTi, , -3 dB, -4 dB, - One of 6 dB, -9 dB, negative infinity. In some embodiments, the beacon signal is transmitted from the base station transmitter at the same power regardless of the power transport layer associated with the tone block being used, however, other downlink signals (eg, pilot signals) Affected by the power transport layer associated with the tone block used for the base station sector transmitter. In some embodiments, the parameter κ is a value greater than or equal to 6 dB. For example, in an exemplary embodiment the 'parameter K = 23 8 dB - 7.2 dB = 16.6 dB. S8 shows an exemplary communication system 8 implemented in accordance with various embodiments. The 不β example communication system 800 includes a plurality of cells: Cell 1 802, Cell 804 Illustrative System 800 is, for example, an exemplary orthogonal frequency division A multiplexed spread spectrum wireless communication system such as a multi-directional proximity 〇 FDm system. Each cell 8 〇 2, 8 〇 4 of the exemplary system 800 contains three sectors. According to various embodiments, cells that have not been subdivided into multiple sectors (N = 1), cells with two sectors (N = 2), and cells with more than three sectors (N > 3) are also possible. Each sector supports one or more carriers and/or downlink tone blocks. In some embodiments 'each downlink tone block has a corresponding uplink tone block. In some embodiments, at least some of the sectors support three downlink key tone blocks. Cell 802 includes a first sector (sector 1 810), a second sector (sector 2 812), and a third sector (sector 3 814). Similarly, cell 804 includes a first sector (sector 1 U2), a second sector (sector 2 824), and a third sector (sector 3 826). Cell 1 802 contains a base 115454.doc -34- 1354460
台(BS)(基地台1 806)及每一扇區810、812、814中之複數 個無線終端機(WT)。扇區1 8 1 0包含分別經由無線鏈路 840、842 耦接至 BS 806 之 WT(1) 836 及WT(N) 838 ;扇區2 812包含分別經由無線鏈路848、850耦接至BS 806之 界丁(厂)844及%1'(1^) 846;扇區:3 814包含分別經由無線鏈 路856、85 8耦接至88 806之\¥1'(1,,) 852及〜耶'丨)854。同 樣地,小區Μ 804包含基地台Μ 808及每一扇區822、824、 826中之複數個無線終端機(WT)。扇區1 822包含分別經由 無線鏈路880、882耦接至BS Μ 808之WT(lm') 868及 WT(NM") 870 ;扇區2 824包含分別經由無線鏈路884、886 耦接至 BS Μ 808 之 WT(r'"') 872 及 WT(N'"M) 874;扇區3 826包含分別經由無線鏈路888、890耦接至BS Μ 808之 WT(1MMM) 876及 WT(Nmn,)878。 系統800亦包含一分別經由網路鏈路862、864耦接至BS1 806及BS Μ 808之網路節點860。網路節點860亦經由網路 鏈路866耦接至其他網路節點(例如,其他基地台、ΑΑΑ伺 服器節點、中間節點、路由器等)及網際網路。網路鏈路 8 62、864、866可為(例如)光纖電纜。每一無線終端機(例 如,WT(1) 836)包含一傳輸器以及一接收器。至少一些無 線終端機(例如,WT(1) 836)係(例如)使用基地台扇區附接 點之行動節點,其可移動穿過系統800且可經由無線鏈路 與WT當前所在之小區中的基地台通信。無線終端機 (WT)(例如,WT(1) 836)可經由基地台(例如,BS 806)及/ 或網路節點860與對等節點(例如,系統800中或系統800外 115454.doc -35- 1354460 之其他WT)it信。WT(例如,WT⑴836)可為行動通信設 備’諸如蜂巢式電話、具有無線數據機之個人資料助理、 具有無線數據機之膝上型電腦、具有無線數據機之資料終 端機等》 現將描述一例示性4位元下行鏈路信標比率報告 (DLBNR4)。該信標比率報告提供資訊,該資訊係來自一A station (BS) (base station 1 806) and a plurality of wireless terminals (WT) in each of the sectors 810, 812, 814. Sector 1 8 1 0 includes WT(1) 836 and WT(N) 838 coupled to BS 806 via wireless links 840, 842, respectively; sector 2 812 includes coupling to BS via wireless links 848, 850, respectively 806, Ding (factory) 844 and %1' (1^) 846; sector: 3 814 includes \¥1'(1,,) 852 coupled to 88 806 via wireless links 856, 85 8 respectively ~ ye '丨) 854. Similarly, cell 804 includes base station 808 and a plurality of wireless terminals (WTs) in each of sectors 822, 824, 826. Sector 1 822 includes WT (lm') 868 and WT (NM") 870 coupled to BS 808 via wireless links 880, 882, respectively; sector 2 824 is coupled to via wireless links 884, 886, respectively. WT(r'"') 872 and WT(N'"M) 874 of BS 808 808; sector 3 826 includes WT (1MMM) 876 coupled to BS 808 via wireless links 888, 890, respectively WT (Nmn,) 878. System 800 also includes a network node 860 coupled to BS1 806 and BS 808 via network links 862, 864, respectively. Network node 860 is also coupled to other network nodes (e.g., other base stations, server nodes, intermediate nodes, routers, etc.) and the Internet via network link 866. Network links 8 62, 864, 866 can be, for example, fiber optic cables. Each wireless terminal (e.g., WT (1) 836) includes a transmitter and a receiver. At least some wireless terminals (e.g., WT (1) 836) are, for example, mobile nodes using base station sector attachment points that are movable through system 800 and may be in a cell in which the WT is currently located via a wireless link Base station communication. A wireless terminal (WT) (e.g., WT (1) 836) may be connected to a peer node via a base station (e.g., BS 806) and/or network node 860 (e.g., system 800 or system 800 outside 115454.doc - 35- 1354460 other WT) it letter. The WT (eg, WT (1) 836) may be a mobile communication device such as a cellular phone, a personal data assistant with a wireless data modem, a laptop with a wireless data modem, a data terminal with a wireless data modem, etc. An exemplary 4-bit downlink beacon ratio report (DLBNR4). The beacon ratio report provides information from the
服務基地台扇區且來自一或多個其他干擾基地台扇區之所 接收測得下行鏈路廣播信號(例如,信標信號及/或導頻信 號)之-函數。在品質方面,信標比率報告可用以估計资 與其他基地台扇區之相對接近度。信標比率報告可(且在 二實施例中確實)在服務B8扇區處用於控制WT之上行鏈 路速率,以防止對其他扇區之過量干擾。在—些實施例 中’信標㈣報告基於兩個因素··⑴所估計之通道增益比 率,表示為仏,及(丨丨)負載因數,表示為h。A function that receives base station sectors and receives measured downlink broadcast signals (e.g., beacon signals and/or pilot signals) from one or more other interfering base station sectors. In terms of quality, the beacon ratio report can be used to estimate the relative proximity of the capital to other base station sectors. The beacon ratio report can be used (and indeed in the second embodiment) to control the uplink link rate of the WT at the serving B8 sector to prevent excessive interference to other sectors. In some embodiments, the 'beacon (iv) report is based on two factors (1) estimated channel gain ratio, expressed as 仏, and (丨丨) load factor, expressed as h.
•在-些實施例中’將通道增益比率定義如下。在當前連 接之音調塊中’在—些實施例中,WT決定自资至任何干 擾基地台扇㈣㈣i)之上行鏈路通道增益與自资至服務 之通道增益之比率的—估計值。&比率表示為G·。通 常,上行鏈路通道增益比率在资處並非直接可量測的。 然而’由於上行鏈路及下行鍵路路徑增益通常對稱,故可 藉由比較來自服務BSS及干擾BSS之下行鏈路信號之相對 所接收功率來估計該比率。參考下行鍵路信號之—可能選 擇為下行鏈路信標信號,由於其可以極低㈣予以偵測, 故其非常適合用於此用途。在一些實施例中,信標信號比 115454.doc •36· 1354460 來自基地台扇區之其他下行 傳輸功率位準。此外,信標信號之:徵=的每音調: =序=對於㈣及量測信標信號係不必要的。舉例而 立句)1實&财標信號為高功率f頻(例如,單 曰調)、兩個0聰符號傳輸時段寬的信號。因此在某此位 置處,WT能夠偵測且量測來自基 甘 D项匕之彳§標信號, :中其他下行鏈路廣播信號(例如,導頻信號)之價測及/或• In some embodiments, the channel gain ratio is defined as follows. In the currently connected tone block, in some embodiments, the WT determines the estimated value of the ratio of the uplink channel gain to the channel gain of the self-funded to the service from any of the interference base station fans (4) (4) i). The & ratio is expressed as G·. In general, the uplink channel gain ratio is not directly measurable at the expense. However, since the uplink and downlink link path gains are generally symmetrical, the ratio can be estimated by comparing the relative received power of the downlink signals from the serving BSS and the interfering BSS. The reference downlink signal—possibly selected as the downlink beacon signal—is very suitable for this purpose because it can be detected at very low (four). In some embodiments, the beacon signal ratio is 115454.doc • 36· 1354460 from other downlink transmission power levels of the base station sector. In addition, the beacon signal: every tone of the sign = = order = for (four) and measuring the beacon signal is not necessary. For example, the 1) real & financial signal is a high-power f-frequency (for example, single-tone), and two signals with a wide transmission period of 0. Therefore, at a certain location, the WT can detect and measure the price of the other downlink broadcast signals (e.g., pilot signals) from the base signal of the G.
-測可能不可行。使用信標信號,上行鏈路路徑比可由 GMBi/PBo給出,其中叫及pB〇分別為分別來自干擾及服 務基地台扇區的測得所接收信標功率。 由於通常相當不頻繁地傳輸信標,尤其在功率快速改變 之衰退環境中,對信標信號之功率量測可能不提供對平均 通道增S之㈣準確之表^舉例而言,在—些實施例 中,為912個OFDM符號傳輸時段之每一信標時槽傳輸一信 標信號,該信標信號佔用2個連續〇FDM符號傳輸時段的持 續時間且對應於基地台扇區之下行鏈路音調塊。 另一方面’常常比信標信號頻繁得多地傳輸導頻信號, 例如,在一些實施例中,在一信標時槽之912.個OFDM符號 傳輸時段中的896個時段期間傳輸導頻信號。若WT可偵測 到來自B S扇區之導頻信號,則其可自測得所接收導頻信號 而非使用信標信號量測來估計所接收信標信號強度◊舉例 而言,若WT可量測干擾BS扇區之所接收導頻功率pPi,則 其可自所估計PB^KZiPPi估計所接收信標功率PBi,其中κ 為干擾扇區之信標與導頻功率之標稱比率(nominal 115454.doc •37- 1354460 ”對於BS扇區之每一者相同,且Zi為依扇區而定 之換鼻因數。 同樣地若來自服務BS之導頻信號功率在WT處彳量 ,J則所接收信標功率ΡΒ〇可自關係式(所估計 ° 〇 ?〇)估计,其中Ζ〇及ΡΡ〇分別為換算因數及來自服 務基地台扇區之測得所接收導頻功率。- Measurement may not be feasible. Using the beacon signal, the uplink path ratio can be given by GMBi/PBo, where pB〇 is the measured received beacon power from the interference and serving base station sectors, respectively. Since the beacons are usually transmitted quite infrequently, especially in a decaying environment where the power is rapidly changing, the power measurement of the beacon signal may not provide an accurate estimate of the average channel. For example, in some implementations In the example, a beacon signal is transmitted for each beacon time slot of the 912 OFDM symbol transmission period, the beacon signal occupies the duration of two consecutive 〇FDM symbol transmission periods and corresponds to the downlink of the base station sector. Tone block. On the other hand 'often the pilot signal is transmitted much more frequently than the beacon signal, for example, in some embodiments, the pilot signal is transmitted during 896 periods of 912. OFDM symbol transmission periods of a beacon slot . If the WT can detect the pilot signal from the BS sector, it can self-measure the received pilot signal instead of using the beacon signal measurement to estimate the received beacon signal strength. For example, if the WT can Measure the received pilot power pPi of the interfering BS sector, which can estimate the received beacon power PBi from the estimated PB^KZiPPi, where κ is the nominal ratio of the beacon to the pilot power of the interfering sector (nominal 115454.doc •37- 1354460 ” is the same for each of the BS sectors, and Zi is the sector-dependent nose-changing factor. Similarly, if the pilot signal power from the serving BS is measured at the WT, J is The received beacon power ΡΒ〇 can be estimated from the relationship (estimated ° 〇?〇), where Ζ〇 and ΡΡ〇 are the scaling factor and the measured received pilot power from the serving base station sector, respectively.
2觀察;&所接收導頻信號強度對應於服務基地台扇區 :里測,且所接收信標信號強度對應於干擾基地台扇區可 里測,則信標比率可自(下式)估計:2 observation; & the received pilot signal strength corresponds to the serving base station sector: the measured, and the received beacon signal strength corresponds to the interference base station sector can be measured, then the beacon ratio can be from (the following formula) estimate:
Gi=PBi/(PP〇 κ Z〇 )。 據觀察,若導頻強度在服務扇區與干擾扇區中均可量 測’則信標比率可自(下式)估計:Gi=PBi/(PP〇 κ Z〇 ). It has been observed that if the pilot strength can be measured in both the serving sector and the interfering sector, then the beacon ratio can be estimated from (the following):
Gi^PPi K Zi/(PP〇 κ Z〇 )=PPi Zi/(PP〇 z〇 } 0Gi^PPi K Zi/(PP〇 κ Z〇 )=PPi Zi/(PP〇 z〇 } 0
換算因數k、ZjZp可為系統常數,或可由wt自來自bs之 其他資訊推斷。在—些實施例中,換算因數(K、Zi' Z。)中 之-些為系統常數且換算因數(K、zi、z。)中之—些由WT 自來自BS之其他資訊推斷。 在一些在不同載波上具有不同功率位準之多載波系& 十’換算因數&及2。係下行鏈路音調塊之函數。舉例而 言,-例示性BSS具有三個功率層位準,且該三個:力率芦 位準中之-者與對應於一 BSS附接點之每一下行鏈路音二 塊相關聯。在-些該等實施例中,三個功率層位準中:― 不同者與BSS之不同音調塊之每一者相關聯。繼續:: 例,對於給;t的BSS,每-功率層位準與 H5454.doc -38- 2 例如,bssP〇werN〇minaI0、及 /SP〇WerN〇minaI2中之一者)相關聯,且導頻通道信號以-目對於-用於音調塊之標稱bss功率位準的相對功率位準 (例如,高於音調塊正使用之標稱bss功率位準Μ叫傳 輸,然而,不管信標係自哪—音調塊傳輸,用於㈣的信 標每音調之相對傳輸功率位準係、相同的,例如高於功率層 〇塊所使用之率位準(bssPowerNominal〇) 23·8 dB。因The scaling factors k, ZjZp can be system constants or can be inferred from wt from other information from bs. In some embodiments, some of the scaling factors (K, Zi' Z.) are system constants and the scaling factors (K, zi, z.) are inferred by the WT from other information from the BS. In some multi-carrier systems & ten's conversion factors & and 2 with different power levels on different carriers. A function of a downlink tone block. By way of example, an exemplary BSS has three power layer levels, and the three: power rate re-levels are associated with each downlink tone block corresponding to a BSS attachment point. In some of these embodiments, three power level levels are: - different ones are associated with each of the different pitch blocks of the BSS. Continuing:: For example, for the BSS of t; the per-power level is associated with H5454.doc -38-2, for example, one of bssP〇werN〇minaI0, and /SP〇WerN〇minaI2, and The pilot channel signal is transmitted in a relative power level for the nominal bss power level of the tone block (eg, higher than the nominal bss power level yoke transmission being used by the tone block, however, regardless of the beacon From which-tone block transmission, for the relative transmission power level of the beacon per tone of (4), the same, for example, higher than the power level block used by the power layer block (bssPowerNominal〇) 23·8 dB.
此,在此實例中,對於給定的Bss,信標傳輪功率在音調 塊之每一者中將㈣’而導頻傳輸功率不同,例如,不同 音调塊之導頻傳輸功率對應於不同功率層位準。用於此實 例之一組換算因數將為k=23.8_72 dB,其為用於層0的信 標功率與導頻功率之比率,且Zi經設定為干擾扇區之層與 層〇扇區之功率之相對標稱功率。Thus, in this example, for a given Bss, the beacon transmission power will be (four)' in each of the tone blocks and the pilot transmission power is different, for example, the pilot transmission power of different tone blocks corresponds to different powers. Level level. The set conversion factor for this example would be k = 23.8_72 dB, which is the ratio of beacon power to pilot power for layer 0, and Zi is set to the layer of the interfering sector and the layer of the sector. The relative nominal power of the power.
在一些實施例中,根據服務BSS中如何使用當前連接之 曰調塊(如服務BSS之bssSectorType所決定)而自所儲存資 訊(例如,圖9之表格900)決定參數2:(^舉例而言,若當前 連接之音調塊由服務BSS用作層〇音調塊,則Z〇=l ;若當前 連接之音調塊由服務BSS用作層1音調塊,則In some embodiments, parameter 2 is determined from stored information (e.g., table 900 of FIG. 9) based on how the current connected bar is used in the serving BSS (as determined by the bssSectorType of the serving BSS): (^ for example If the currently connected tone block is used as a layered tone block by the serving BSS, then Z〇=l; if the currently connected tone block is used by the serving BSS as the layer 1 tone block, then
Z0=bssP〇werBackoff〇l ;若當前連接之音調塊由服務BSS 用作層 2音調塊,則 Z〇=bssPowerBackoff02。 圖9包含例示性功率換算因數表格9〇〇。第一行9〇2將音調 塊之使用列出為層〇音調塊、層1音調塊或層2音調塊。第二 行904將與每—層(〇、1、2)音調塊相關聯之換算因數分別列 出為(1、bssPowerBackoffOl、bssPowerBackoff〇2)。在一些 115454.doc •39· 1354460 實施例中,bssPowerBackoffOl 為 6 dB 而 bssPowerBackoff02 為 12 dB 0 在一些實施例中’ DCCH DLBNR4報告可為通用信標比 率報告及特殊信標比率報告中之一者。在一些該等實施例 中,下行鏈路訊務控制通道(例如’ DL.TCCH.FLASH通道) 在一信標時槽_發送一特殊訊框,該特殊訊框包含一"對 DLBNR4報告之請求欄位"。該欄位可由月良務BSS用以控制 選擇。舉例而言,若該欄位經設定為零,則WT報告通用 • 信標比率報告;否則’ WT報告特殊信標比率報告。 根擄:各項實施例,若WT將傳輸至當前連接中的服務 BSS,則通用信標比率報告量測WT將對所有干擾信標或 ”最靠近,,的千擾信標產生之相對干擾成本。根據一些實施 例,若WT將傳輸至當前連接中的服務BSS,則特殊信標比 率報告量測WT將對一特定BSS產生之相對干擾成本°該特 定BSS係使用在特殊下行鏈路訊框之對DLBNR4之請求欄 位中接收到的資訊而指示之B S S。舉例而言’在一些實施 例中,特定BSS係如下BSS:其bssSlope等於”對DLBNR4報 告之請求欄位”之值(例如,以不帶正負號的整數格式),且 其 bssSectorType 等於 mod(ulUltraslotBeaconslotIndex,3), 其中ulUltraslotBeaconslotlndex係當前連接之超時槽 (ultraslot)内的信標時槽之上行鏈路指數。在一些例示性 實施例中,在一超時槽内存在18個具指數(indexed)之信標 時槽。 在各項實施例中,自計算出的通道增益比率G 1、 115454.doc • 40- G2、…如下決定通用與特殊信標比率。wt接收一在下行 鏈路廣播系統次通道中發送之上行鏈路負載因數,且自圖 ίο之上行鏈路負載因數表格950決定一變數b〇。表格95〇包 含第一行952,其列出可用於上行鏈路負載因數之八個不 同值(0、1、2、3、4、5、6、7);第二行954,其列出分別 用於以dB為單位之b值的對應值(〇、a、_2、_3、_4、_6、 -9、負無窮)。對於其他BSSi,WT試圖在當前連接之音調 塊中自在BSS i之下行鏈路廣播系統次通道中發送之上行 鏈路負載因數接收bi。若WT不能夠接收UL.載因數bi,則 WT設定 bi=l。 在一些實施例中,在單載波操作中,WT計算以下功率比 率作為通用信標比率報告:當ulUltrasl〇tBeac〇nsl〇tIndex為 偶數時 ’ MG丨b丨+G2b2+".),或當ulultrasl〇tBeac〇nsl〇tIndex 為奇數時 ’ b〇/maX(G丨b,,G2b2,…),其中 ulultrasl〇tBeac〇nsl〇tIndex 係當前連接之超時槽内的信標時槽之上行鏈路指數,且運 算"表示正常加法。當需要發送特定信標比率報告時, 在一些實施例中,WT計算b〇/(GkBk),其中指數k表示特定 BSS k。在一些實施例中,在一超時槽内存在i ^個具指數 之信標時槽。 .圖11為根據各項實施例的說明一用於4位元下行鏈路信 標比率報告(DLBNR4)的例示性格式之表格11〇(^第—^ n〇2列出該報告可傳送之16個各種位元型樣,而第二行 1104列出對應於每一位元型樣而報告的所報告功率比率, 例如自-3 dB至26 dB變化。無線終端機藉由選擇及通信最 M5454.doc -41 - 1354460 接近所決定報告值之DLBNR4表格項^報告通用及特定信 標比率報告。儘管在此例示性實施例中,通用及特定信標 比率報告對DLBNR4使用相同表格,但在一些實施例中, 可使用不同表格。Z0=bssP〇werBackoff〇l ; If the currently connected tone block is used by the serving BSS as a layer 2 tone block, then Z〇=bssPowerBackoff02. Figure 9 contains an exemplary power conversion factor table 9A. The first line, 9〇2, lists the use of the tone block as a layered tone block, a layer 1 tone block, or a layer 2 tone block. The second row 904 lists the scaling factors associated with each of the layer (〇, 1, 2) tone blocks as (1, bssPowerBackoffOl, bssPowerBackoff〇2). In some 115454.doc •39· 1354460 embodiments, bssPowerBackoffOl is 6 dB and bssPowerBackoff02 is 12 dB 0 In some embodiments, the 'DCCH DLBNR4 report can be one of a generic beacon ratio report and a special beacon ratio report. In some such embodiments, the downlink traffic control channel (eg, 'DL.TCCH.FLASH channel') transmits a special frame in a beacon time slot, the special frame containing a " report to DLBNR4 Request field ". This field can be used by the monthly service BSS to control the selection. For example, if the field is set to zero, the WT reports a generic beacon ratio report; otherwise the 'WT reports a special beacon ratio report. Roots: In various embodiments, if the WT will transmit to the serving BSS in the current connection, the universal beacon ratio report measures the relative interference that the WT will generate for all interfering beacons or "closest," perturbation beacons. Cost. According to some embodiments, if the WT is to transmit to the serving BSS in the current connection, the special beacon ratio reports the relative interference cost that the WT will generate for a particular BSS. The particular BSS is used in the special downlink. A BSS indicated by the information received in the request field of DLBNR4. For example, 'in some embodiments, a particular BSS is a BSS whose bssSlope is equal to the value of the "request field for DLBNR4 report" (eg , in unsigned integer format), and its bssSectorType is equal to mod(ulUltraslotBeaconslotIndex,3), where ulUltraslotBeaconslotlndex is the uplink index of the beacon time slot in the currently connected time slot (ultraslot). In some exemplary In an embodiment, there are 18 indexed beacon slots in a timeout slot. In various embodiments, the self-calculated channel gain ratios G1, 115454. Doc • 40- G2, ... determines the general to special beacon ratio as follows: wt receives an uplink load factor transmitted in the downlink channel of the downlink broadcast system, and determines from the uplink load factor table 950 of Figure ίο The variable b〇. Table 95〇 contains a first row 952 listing eight different values (0, 1, 2, 3, 4, 5, 6, 7) available for the uplink load factor; , which lists the corresponding values for b values in dB (〇, a, _2, _3, _4, _6, -9, negative infinity). For other BSSis, the WT attempts to be in the currently connected tone block. The uplink load factor transmitted in the secondary channel of the downlink broadcast system under BSS i receives bi. If the WT is unable to receive the UL.load factor bi, the WT sets bi = 1. In some embodiments, in single carrier operation In the WT, the following power ratio is calculated as the general beacon ratio report: when ulUltrasl〇tBeac〇nsl〇tIndex is even, ' MG丨b丨+G2b2+".), or when ulultrasl〇tBeac〇nsl〇tIndex is odd ' b〇/maX(G丨b,,G2b2,...), where ulultrasl〇tBeac〇nsl〇tIndex Is the uplink index of the beacon time slot in the timeout slot of the current connection, and the operation " indicates normal addition. When a specific beacon ratio report needs to be sent, in some embodiments, the WT calculates b〇/(GkBk ), where the index k represents a specific BSS k. In some embodiments, there are i^ indexed beacon slots in a timeout slot. Figure 11 is a table 11 illustrating an exemplary format for a 4-bit downlink beacon ratio report (DLBNR4) in accordance with various embodiments (^第^^2 listing the report for transmission) Sixteen different bit patterns, while the second row 1104 lists the reported power ratios reported for each bit pattern, for example from -3 dB to 26 dB. The wireless terminal selects and communicates most. M5454.doc -41 - 1354460 A DLBNR4 table entry near the determined report value reports the general and specific beacon ratio report. Although in this exemplary embodiment, the generic and specific beacon ratio reports use the same table for DLBNR4, In some embodiments, different tables may be used.
圖12為一根據各項實施例實施的例示性正交分頻多工 (OFDM)無線通信系統8000 (例如,OFDM展頻多向近接無 線通信系統)之圖式。例示性無線通信系統8000包含經由 一回程網路(backhaul network)搞接在一起之複數個基地台 及複數個無線終端機(例如,行動節點)。例示性基地台(基 地台1 8002、基地台2 8004、基地台3 8006、基地台4 8008)及例示性無線終端機1 (WT1) 80 10展示於圖12中。12 is a diagram of an exemplary orthogonal frequency division multiplexing (OFDM) wireless communication system 8000 (e.g., an OFDM spread spectrum multi-directional proximity wireless communication system) implemented in accordance with various embodiments. The exemplary wireless communication system 8000 includes a plurality of base stations and a plurality of wireless terminals (e.g., mobile nodes) that are coupled together via a backhaul network. An exemplary base station (base station 1 8002, base station 2 8004, base station 3 8006, base station 4 8008) and an exemplary wireless terminal set 1 (WT1) 80 10 are shown in FIG.
基地台1 8002為三扇區基地台,其包含一基地台扇區S0 (BSS 0) 8012、一基地台扇區 SI (BSS 1) 8014,及一基地 台扇區S2 (BSS2) 8016。每一基地台扇區(8012、8014、 8016)具有對應的標稱層0功率位準(BSS 0標稱層0功率位 準8018、BSS 1標稱層0功率位準8020、BSS 2標稱層0功率 位準8022)。基地台2 8004為三扇區基地台,其包含一基地 台扇區 SO (BSS 0) 8024、一基地台扇區 SI (BSS 1) 8026, 及一基地台扇區S2 (BSS2) 8028。每一基地台扇區(8024、 8026、8028)具有對應的標稱層0功率位準(BSS 0標稱層0 功率位準8030、BSS 1標稱層0功率位準8032、BSS 2標稱 層0功率位準8034)。基地台3 8006為三扇區基地台,其包 含一基地台扇區SO (BSS 0) 8036、一基地台扇區SI (BSS 1) 8038,及一基地台扇區S2 (BSS 2) 8040。每一基地台扇 115454.doc •42· :二、咖、_。)具有對應的標稱層〇功 ::功率位準_、BSS1標稱層。功率位準_、 △ ^且稱層〇功率位準8046)。基地台48〇〇8為單扇區基地 °八具有一標稱層〇功率位準8048。 每一標稱層〇功率#進料_ & t ㈣應於—與對應的基地台扇區傳 二 用之T行鏈路音調塊中之-者相關聯的功率位 1 -些實施例中,每一下行鏈路音調塊與一對應的上 订鏈路音調塊相關聯。在此例示性實施例中,每一基地A 扇區對應於-或多個實體附接點,每一實體附接點對應; :下订鏈路/上行鏈路音調塊對。對於一使用(例如)對應於 夕個實體附接點之多個下行鍵路音調塊來通信下行鍵路使 时資料的基地台扇區傳輸器,標稱層0功率位準與具有 最南功率位準之下行鏈路音調塊相關聯。另外,在相對於 層〇音調塊功率位準之標稱功率位準中涉及其他下行鍵路 曰調塊且彼等音調塊之標稱功率位準具有較低值。舉例 而言’對於給定的BSS,W音調塊具有比層〇音調塊更低 的功率位準’且層2音調塊具有比層i音調塊更低的功率位 準。 圖13說明圖12之例示性系統_〇,且提供對應於基地台 扇區之每一者的額外細節以說明各種特徵。此例示性實施 例表示一使用三個非重疊的下行鏈路音調塊(音調塊〇、音 調塊1及音調塊2)之無線通信系統。舉例而言,在一些實 施例中,每一下行鏈路音調塊對應於113個OFDM音調,且 該3個音調塊之組合對應於5 MH0統。在此例示性實施例 1 i5454.doc •43· 中,信標信號由BSS傳輸至每一音調塊中,且信標以一相 對於層0功率位準之功率位準予以通信;$而,導頻信號 及使用者資料信號可或不可傳輸至給定的音調塊中,且導 頻/使用者資料信號由基地台扇區以一相對於對應的音調 塊之功率層位準之功率位準予以傳輸。每―基地台扇區每 信標時槽每音調塊傳輸一信標信號。在此例示性實施例 中扇區類型決定哪一音調塊為層〇音調塊;層1及層2音 調塊在使用時亦藉由與扇區類型之關聯予以決定。 方塊805 0♦曰示,對於基地台i 8〇〇2之Bss 〇 :⑴音 凋塊0與層功率位準〇相關聯,且在音調塊〇中通信信標、 導頻及使用者貧料信號,(ii)音調塊丨與層功率位準丨相關 聯,且在音調塊1中通信信標、導頻及使用者資料信號, (in)曰調塊2與層功率位準2相關聯,且在音調塊2中通信信 裇、導頻及使用者資料信號。方塊8〇52指示,對於基地台 1 80〇2之BSS 1 8014:⑴音調塊〇與層功率位準2相關聯, 且在音調塊0中通信信標、導頻及使用者資料信號,(ii)音 6周塊1與層功率位準〇相關聯,且在音調塊丨中通信信標、 導頻及使用者資料信號’(Hi)音調塊2與層功率位準丨相關 聯,且在音調塊2中通信信標、導頻及使用者資料信號。 方塊8054指示’對於基地台1 8〇〇2之BSS 2 8016 :⑴音調 塊0與層功率位準1相關聯,且在音調塊〇中通信信標、導 頻及使用者資料信號,(ii)音調塊1與層功率位準2相關 聯,且在音調塊1中通信信標、導頻及使用者資料信號, (in)音調塊2與層功率位準〇相關聯,且在音調塊2中通信信 115454.doc -44 - 1354460 標、導頻及使用者資料信號。 方塊805 6指示,對於基地台2 8004之BSS 0 8024 :⑴音 調塊〇與層功率位準0相關聯,且在音調塊〇中通信信標、 導頻及使用者資料信號,(ii)音調塊1與層功率位準1相關 聯’且在音調塊1中通信信標、導頻及使用者資料信號, (iii)音調塊2與層功率位準2相關聯,且在音調塊2中通信信 標、導頻及使用者資料信號。方塊8058指示,對於基地台 2 8004之BSS 1 8026 :⑴音調塊〇與層功率位準2相關聯, 且在音調塊0中通信信標、導頻及使用者資料信號,(ii)音 調塊1與層功率位準0相關聯,且在音調塊1中通信信標、 導頻及使用者資料信號,(iii)音調塊2與層功率位準1相關 聯’且在音調塊2中通信信標、導頻及使用者資料信號。 方塊8060指示,對於基地台2 8004之BSS 2 8028 :⑴音調 塊〇與層功率位準1相關聯,且在音調塊〇中通信信標、導 頻及使用者資料信號,(ii)音調塊1與層功率位準2相關 聯’且在音調塊1中通信信標、導頻及使用者資料信號, (iii)音調塊2與層功率位準〇相關聯,且在音調塊2中通信信 標、導頻及使用者資料信號。 方塊8062指示,對於基地台3 8006之BSS 0 8036 :⑴音 調塊〇與層功率位準0相關聯,且在音調塊0中通信信標、 導頻及使用者資料信號,(ii)音調塊1與層功率位準1相關 聯,且在音調塊1中通信信標、導頻及使用者資料信號, (iii)音調塊2用於信標信號傳輸而不用於導頻及使用者資料 信號傳輸》方塊8064指示,對於基地台3 8006之BSS 1 115454.doc -45- 1354460 803 8 : (i)音調塊〇用於仏標乜號傳輸而不用於導頻及使用 者資料信號傳輸’(Η)音調塊1與層功率位準0相關聯’且 在音調塊1中通信信標、導頻及使用者資料信號,(iii)音調 塊2用於信標信號傳輸而不用於導頻及使用者資料信號傳 輸。方塊8066指示,對於基地台3 8006之BSS 2 8040 :⑴ 音調塊0用於信標信號傳輸而不用於導頻及使用者資料信 號傳輸,(ii)音調塊1用於信標信號傳輸而不用於導頻及使 用者資料信號傳輸’(iii)音調塊2與層功率位準〇相關聯, 且在音調塊2中通信信標、導頻及使用者資料信號》 方塊8068指示’對於基地台4 8008之BSS:⑴音調塊〇與 層功率位準0相關聯,且在音調塊〇中通信信標、導頻及使 用者資料信號,(ii)音調塊1與層功率位準1相關聯,且在 音調塊1中通信信標、導頻及使用者資料信號,(iii)音調塊 2與層功率位準2相關聯,且在音調塊2中通信信標、導頻 及使用者資料信號。 圖14為圖12及13中所述之例示性系統8〇〇〇的圖式,其包 含由WT 8010接收且處理之例示性信號傳輸以用於說明根 據各項實施例的例示性信標比率報告方法。在圖14之實例 中,無線終端機80 1 〇具有一使用音調塊i實體附接點的與 BSS 8016之無線連接807(^關於在連接8〇7〇上通信之信標 比率報告,BSS 8016為服務BSS,有時表示為BSS。在此 實例中’出於 WT 8010 之觀點,bSS 8012、8〇26、8〇36、 8008表不干擾基地台扇區,有時表示為 無線終端機自服務BSS 8016接收且處理在音調塊i中通 H5454.doc -46· 1354460 信之信標信號8078及導頻音調信號8〇76。注音,wt丄 8010相對於BSS 8016音調塊1附接點係時序同步的,且因 此可準確里测導頻通道。無線終端機分別自每一干擾 BSS (8012、8026、8036、8008)接收且處理在音調塊!中 通信之信標信號(8072、8〇82、8〇86、8〇9〇卜例如,使用 早音調、與其他下行鏈路廣播信號(諸如導頻信號)相比較 以相對高的每音調之傳輸功率位準傳輸且具有兩個連續 OFDM符號傳輸時段之持續時間的信標信號比導頻信號可 更易於偵測(例如,在較長範圍内),且不需要準確量測精 確的時序同步。另外,分別自BSS (8〇16、8〇12、_、 8036、8008)之每一者通信上行鏈路負載因數資訊信號 (8080、8074、8084、8088、8〇92)。此等上行鍵路負載因 數資訊信號_〇、8074、8084、圓、8〇92)係作為廣播 信號予以通信,但可或不可成功恢復,例如,由於其每音 調之傳輸功率位準低於信標之每音調之傳輸功率位準。在 不可成功恢復上行鏈路負載因數的情況下,在信標比率報 告計算中使用預設值(例如,值丨)。 現將描述例示性通用信標比率報告的產生,所產生的通 用信標比率報告經由專用控制通道區段在連接8〇7〇上通 信。 服務BSS (BSS〇)係BSS 8016。PP()係所接收導頻信號 8076之無線終端機測得功率β干擾bss^bss 8〇12 , ^ PB,係所接收信標信號8〇72之測得功率。干擾bsS2係 8026,且PB2係所接收信標信號8〇82之測得功率。干擾 115454.doc •47· 1354460 BSS3係BSS 8036,且PB3係所接收信標信號8〇86之測得功 率。干擾BSS4係BSS 8008,且Pi係所接收信標信號8〇9〇 之測得功率。上行鏈路負載因數(b〇、bl、b2、b3、Μ)(若 成功恢復)分別自信號(8080、8074、8084、8088、8092)恢 復。每一 b之值大於或等於零且小於或等於丨。若給定的b 不可恢復,則使用預設值1。因為音調塊81〇2用於 導頻及使用者資料信號傳輸’所以指示符函數= 1。因為 音調塊1由BSS 8026用於導頻及使用者資料信號傳輸,所 以指不符函數12=1。因為音調塊i並未由Bss 8036用於導 頻及使用者資料信號傳輸,所以指示符函數l3=〇。因為音 調塊1由BSS 8008用於導頻及使用者資料信號傳輸,所以 指不符函數14=1。 κ為用於層0音調塊的信標通道與導頻通道之每音調之傳 輸功率之比率,該比率為系統之常數。因為Bss 8016之音 δ周塊1為層2音調塊,所以z〇=bssPowerbackoff02 β因為BSS 8012之 a δ周塊1 為層 1 音調塊,所以 z1=:bssP〇werbackoffO 1。 因為BSS 8026之音調塊1為層〇音調塊,所以Z2=1。因為 13 = 〇 ’所以Z3係不相關的。因為BSS 8008之音調塊1為層1 曰調塊’所以Z4=bssPowerbackoff01。 在考慮η個干擾基地台扇區的一般狀況下,第一類型之通 用信標比率報告 G4b4/Z4*I4+."Gnbn/Zn*In),且第二類型之通用信標比率報告 = (b〇/Z〇)/(max(G1b1/Z1*Il5 G2b2/Z2*I2, G3b3/Z3*l3} G4b4/Z4*l4, ...,Gnbn/Zn*In)),其中 115454.doc -48-The base station 1 8002 is a three-sector base station including a base station sector S0 (BSS 0) 8012, a base station sector SI (BSS 1) 8014, and a base station sector S2 (BSS2) 8016. Each base station sector (8012, 8014, 8016) has a corresponding nominal layer 0 power level (BSS 0 nominal layer 0 power level 8018, BSS 1 nominal layer 0 power level 8020, BSS 2 nominal Layer 0 power level 8022). The base station 2 8004 is a three-sector base station including a base station sector SO (BSS 0) 8024, a base station sector SI (BSS 1) 8026, and a base station sector S2 (BSS2) 8028. Each base station sector (8024, 8026, 8028) has a corresponding nominal layer 0 power level (BSS 0 nominal layer 0 power level 8030, BSS 1 nominal layer 0 power level 8032, BSS 2 nominal Layer 0 power level 8034). The base station 3 8006 is a three-sector base station including a base station sector SO (BSS 0) 8036, a base station sector SI (BSS 1) 8038, and a base station sector S2 (BSS 2) 8040. Each base table fan 115454.doc •42· : Second, coffee, _. ) has a corresponding nominal layer :: work :: power level _, BSS1 nominal layer. The power level _, △ ^ and the layer 〇 power level 8046). The base station 48〇〇8 is a single sector base. The eight has a nominal layer power level of 8048. Each nominal layer 〇 power #feed _ & t (d) shall be - the power bit associated with the one of the corresponding T-line link tone blocks of the corresponding base station sector - in some embodiments Each downlink tone block is associated with a corresponding uplink link tone block. In this exemplary embodiment, each base A sector corresponds to - or multiple entity attachment points, each entity attachment point corresponding to: a subscribed link/uplink tone block pair. For a base station sector transmitter that communicates downlink link timing data, for example, using a plurality of downlink key tone blocks corresponding to the physical attachment points of the entity, the nominal layer 0 power level has the southernmost power The link tone block is associated with the level. In addition, other downstream key modulates are involved in the nominal power level relative to the layer tone block power level and the nominal power levels of the tone blocks have lower values. For example, for a given BSS, the W tone block has a lower power level than the layer 〇 tone block and the layer 2 tone block has a lower power level than the layer i tone block. Figure 13 illustrates the exemplary system of Figure 12, and provides additional details corresponding to each of the base station sectors to illustrate various features. This illustrative embodiment shows a wireless communication system that uses three non-overlapping downlink tone blocks (tone block, tone block 1 and tone block 2). For example, in some embodiments, each downlink tone block corresponds to 113 OFDM tones, and the combination of the three tone blocks corresponds to a 5 MH0 system. In this illustrative embodiment 1 i5454.doc • 43·, the beacon signal is transmitted by the BSS into each tone block, and the beacon is communicated with a power level relative to the layer 0 power level; The pilot signal and the user profile signal may or may not be transmitted to a given tone block, and the pilot/user profile signal is at a power level relative to the power layer level of the corresponding tone block by the base station sector. Transmit. Each beacon station transmits a beacon signal per tone block per beacon slot. In this exemplary embodiment, the sector type determines which tone block is a layered tone block; the layer 1 and layer 2 tone blocks are also determined by association with the sector type when used. Block 805 0 ♦ shows that for the base station i 8 〇〇 2 Bss 〇: (1) tone block 0 is associated with the layer power level ,, and in the tone block 通信 communication beacon, pilot and user poor material The signal, (ii) the tone block 丨 is associated with the layer power level ,, and the beacon, pilot and user profile signals are communicated in the tone block 1, (in) the 曰 block 2 is associated with the layer power level 2 And the signal block, the pilot, and the user profile signal are communicated in the tone block 2. Blocks 8〇52 indicate that for the base station 1 80〇2, the BSS 1 8014: (1) tone block is associated with the layer power level 2, and the beacon, pilot, and user profile signals are communicated in the tone block 0, ( Ii) 6-week block 1 is associated with the layer power level, and the communication beacon, pilot and user profile signals '(Hi) tone block 2 are associated with the layer power level in the tone block ,, and The beacon, pilot and user profile signals are communicated in tone block 2. Block 8054 indicates 'for BSS 2 8016 of base station 1 8 2: (1) tone block 0 is associated with layer power level 1 and communicates beacon, pilot and user profile signals in tone block, (ii) The tone block 1 is associated with the layer power level 2, and the beacon, pilot and user profile signals are communicated in the tone block 1, (in) tone block 2 is associated with the layer power level, and in the tone block 2 communication letter 115454.doc -44 - 1354460 standard, pilot and user data signals. Block 805 6 indicates that for BSS 0 8024 of base station 2 8004: (1) tone block 相关 is associated with layer power level 0, and beacon, pilot and user profile signals are communicated in tone block ,, (ii) tone Block 1 is associated with layer power level 1 and communicates beacon, pilot and user profile signals in tone block 1, (iii) tone block 2 is associated with layer power level 2, and in tone block 2 Communication beacons, pilots and user profile signals. Block 8058 indicates that for base station 2 8004, BSS 1 8026: (1) tone block 相关 is associated with layer power level 2, and beacon, pilot, and user profile signals are communicated in tone block 0, (ii) tone block 1 associated with layer power level 0, and communicating beacon, pilot and user profile signals in tone block 1, (iii) tone block 2 associated with layer power level 1 'and communicating in tone block 2 Beacon, pilot and user profile signals. Block 8060 indicates that for base station 2 8004, BSS 2 8028: (1) tone block 相关 is associated with layer power level 1, and communicates beacon, pilot, and user profile signals in tone block ,, (ii) tone block 1 associated with layer power level 2' and communicating beacon, pilot and user profile signals in tone block 1, (iii) tone block 2 associated with layer power level ,, and communicating in tone block 2 Beacon, pilot and user profile signals. Block 8062 indicates that for base station 3 8006, BSS 0 8036: (1) tone block 相关 is associated with layer power level 0, and beacon, pilot, and user profile signals are communicated in tone block 0, (ii) tone block 1 associated with layer power level 1, and communicating beacon, pilot and user profile signals in tone block 1, (iii) tone block 2 for beacon signal transmission and not for pilot and user profile signals Transmission" block 8064 indicates that for base station 3 8006, BSS 1 115454.doc -45-1354460 803 8 : (i) tone block 〇 is used for 乜 乜 transmission and not for pilot and user data signal transmission ' ( Η) Tone block 1 is associated with layer power level 0' and communicates beacon, pilot and user profile signals in tone block 1, (iii) tone block 2 is used for beacon signal transmission and not for pilot and User data signal transmission. Block 8066 indicates that for base station 3 8006, BSS 2 8040: (1) tone block 0 is used for beacon signal transmission and not for pilot and user profile signal transmission, and (ii) tone block 1 is used for beacon signal transmission without use. The pilot and user data signal transmission '(iii) tone block 2 is associated with the layer power level ,, and the communication beacon, pilot and user profile signals are communicated in tone block 2, block 8068 indicating 'for the base station 4 8008 BSS: (1) tone block 相关 is associated with layer power level 0, and communicates beacon, pilot and user profile signals in tone block ,, (ii) tone block 1 is associated with layer power level 1 And communicating the beacon, pilot and user profile signals in the tone block 1, (iii) the tone block 2 is associated with the layer power level 2, and communicating the beacon, pilot and user data in the tone block 2 signal. 14 is a diagram of an exemplary system 8A illustrated in FIGS. 12 and 13 including exemplary signal transmissions received and processed by WT 8010 for illustrating exemplary beacon ratios in accordance with various embodiments. Reporting method. In the example of FIG. 14, the wireless terminal set 80 1 〇 has a wireless connection 807 with the BSS 8016 using the tone block i physical attachment point (^About the beacon ratio report for communication on the connection 8〇7〇, BSS 8016 In order to serve the BSS, it is sometimes expressed as BSS. In this example, 'from the perspective of WT 8010, bSS 8012, 8〇26, 8〇36, 8008 do not interfere with the base station sector, sometimes expressed as a wireless terminal. The serving BSS 8016 receives and processes the H5454.doc -46· 1354460 beacon signal 8078 and the pilot tone signal 8〇76 in the tone block i. The phonetic, wt丄8010 is compared with the BSS 8016 tone block 1 attachment point timing. The pilot channel is synchronized, and thus the pilot channel can be accurately measured. The wireless terminal receives and processes the beacon signals (8072, 8〇82) communicated in the tone block! from each of the interfering BSSs (8012, 8026, 8036, 8008). , 8〇86, 8〇9〇, for example, using early tones, compared to other downlink broadcast signals (such as pilot signals), transmitted at a relatively high transmission power level per tone and having two consecutive OFDM symbols Beacon signal for the duration of the transmission period than the pilot The number can be more easily detected (for example, over a longer range) and does not require accurate measurement of accurate timing synchronization. In addition, each from BSS (8〇16, 8〇12, _, 8036, 8008) The uplink communication load factor information signals (8080, 8074, 8084, 8088, 8〇92) are communicated. These uplink key load factor information signals _〇, 8074, 8084, circle, 8〇92) are used as broadcast signals. Communication, but may or may not be successfully recovered, for example, because its transmission power level per tone is lower than the transmission power level per beacon of the beacon. In the case where the uplink load factor cannot be successfully recovered, the beacon ratio A preset value (eg, value 丨) is used in the report calculation. The generation of an exemplary universal beacon ratio report will now be described, the resulting generic beacon ratio report being communicated over the connection 8经由7〇 via the dedicated control channel segment. The service BSS (BSS〇) is the BSS 8016. The PP() is the wireless terminal that receives the pilot signal 8076. The measured power β interference bss^bss 8〇12 , ^ PB is the measurement of the received beacon signal 8〇72. Power. Interference bsS2 is 8026, and the PB2 system receives The measured power of the signal 8〇82. Interference 115454.doc •47· 1354460 BSS3 is the BSS 8036, and the measured power of the received beacon signal 8〇86 of the PB3 system. The interference BSS4 is the BSS 8008, and the Pi system receives The measured power of the beacon signal 8〇9〇. The uplink load factor (b〇, bl, b2, b3, Μ) (if successfully recovered) is recovered from the signals (8080, 8074, 8084, 8088, 8092), respectively. The value of each b is greater than or equal to zero and less than or equal to 丨. If the given b is not recoverable, the default value of 1 is used. Since the tone block 81〇2 is used for pilot and user data signal transmission, the indicator function = 1. Since tone block 1 is used by BSS 8026 for pilot and user data signal transmission, it means that the function 12 = 1. Since the tone block i is not used by the Bss 8036 for pilot and user data transmission, the indicator function l3 = 〇. Since tone block 1 is used by BSS 8008 for pilot and user data signal transmission, it means that the function 14 = 1. κ is the ratio of the transmission power of the beacon channel for the layer 0 tone block to the per tone of the pilot channel, which is a constant of the system. Since Bss 8016 sound δ week block 1 is a layer 2 tone block, z〇=bssPowerbackoff02 β because BSS 8012 a δ week block 1 is a layer 1 tone block, so z1=:bssP〇werbackoffO 1 . Since the tone block 1 of the BSS 8026 is a layered tone block, Z2=1. Because 13 = 〇 ', the Z3 system is irrelevant. Since the tone block 1 of the BSS 8008 is a layer 1 曰 block, so Z4 = bssPowerbackoff01. In the general case of considering n interfering base station sectors, the first type of universal beacon ratio report G4b4/Z4*I4+."Gnbn/Zn*In), and the second type of universal beacon ratio report = ( B〇/Z〇)/(max(G1b1/Z1*Il5 G2b2/Z2*I2, G3b3/Z3*l3} G4b4/Z4*l4, ..., Gnbn/Zn*In)), of which 115454.doc - 48-
Gi=PB1/PB〇^PB1/(PP〇*K*Z〇) ° g2=pb2/pb〇或 pb2/(pp0*k*z〇)。 G3=PB3/PB〇或 pb3/(PP〇*k*Z〇)。 G4=PB4/PB〇或 pb4/(pp0*k*z〇)。Gi=PB1/PB〇^PB1/(PP〇*K*Z〇) ° g2=pb2/pb〇 or pb2/(pp0*k*z〇). G3=PB3/PB〇 or pb3/(PP〇*k*Z〇). G4=PB4/PB〇 or pb4/(pp0*k*z〇).
Gn=PBn/PB〇或 PBn/(PP0*K*Z〇)。 對於考慮4個干擾基地台扇區的圖14之特定狀況,第一類 型之通用信標比率報告=(b0/Z0)/(Glbl/Zl*Il + G2b2/Z2*l2 + G3b3/Z3*I3 + G4b4/Z,I4),且第二類型之通用信標比率報告 ^bo/ZoVCmaxCG^^Z!*!,, G2b2/Z2*I2s G3b3/Z3*l3, 0^4/Ζ4*Ι4)) > 其中Gn=PBn/PB〇 or PBn/(PP0*K*Z〇). For the specific case of Figure 14 considering four interfering base station sectors, the first type of universal beacon ratio report = (b0/Z0) / (Glbl / Zl * Il + G2b2 / Z2 * l2 + G3b3 / Z3 * I3 + G4b4/Z, I4), and the second type of universal beacon ratio report ^bo/ZoVCmaxCG^^Z!*!,, G2b2/Z2*I2s G3b3/Z3*l3, 0^4/Ζ4*Ι4)) > where
GfPBJPBo 或 ΡΒΑΡΡ^Κ^Ζ。)。 g2=pb2/pb〇或 ρβ2/(ρρ〇*κ*ζ〇) 〇 G3=PB3/PB0或 PB3/(PP0*K*Z〇) 〇 〇4=ΡΒ4/ΡΒ0或 pb4/(pp0*k*z0)。 另外,因為I丨=1,I2=l , I3=0且Id,所以可將通用信標比 率報告方程式簡化為:第一類型之通用信標比率報告 ^bo/ZoWGh/Zi+GA/Zz+G^/Zd,且第二類型之通用信 標比率報告=(1>0/20)/(11^(〇11)1/乙1,〇21)2/乙2,〇41?4/乙4)),其中 G^PBi/PB。或 PBAPP^K^Zo)。 g2=pb2/pb0或 pb2/(pp〇*k*z〇)。 g4=pb4/pb〇或 pb4/(pp0*k*z0)。 圖15為圖12及13中所述之例示性系統8〇〇〇的圖式,其包 含由WT 8 010接收且處理之例示性信號傳輸以用於說明根 據各項實施例的例示性信標比率報告方法。在圖丨5之實例 中’無線終端機8010具有兩個同時的(c〇ncurrent)無線連 115454.doc •49- 1354460 接.一使用音調塊1實體附接點的與Bss 8〇16之第一無線 連接8070,及一使用音調塊丨實體附接點的與Bss 8〇26之 第二實體連接8071。關於在連接8〇7〇上通信之信標比率報 告,BSS 8016係服務BSS ,有時表示為BSS〇,且Bss 8012、8026、8036、8008表示干擾基地台扇區,有時表示 為BSSi。關於在連接8071上通信之信標比率報告,Bss 8 026係服務BSS’有時表示為BSS〇,且BSS 8012、8016、 803 6、800 8表示干擾基地台扇區,有時表示為BSSi。 先刖關於圖14所述之相同信號可由WT 8010用來產生一 用於連接8070之信標比率報告。另外,來自bss 8026的音 調塊1中之導頻信號8083可由WT 8010用來產生一用於連接 8 0 7 0之信標比率報告。 在考慮η個干擾基地台扇區的一般狀況下,第一類型之 通用信標比率報告 Wbo/ZoVWAWZ^L + Gzbz/Zz^^ + Gsbh/ Ζ3*Ι3 + 04ΐ34/Ζ4*Ι4+··.〇ηΙ>η/Ζη*Ιη),且第二類型之通用信標比 率報告 ybo/ZoVOaxiGAi/Z^Ii,G2b2/Z2*I2,G3b3/Z3*I3, G4b4/Z4*I4,…,Gnbn/Zn*In)),其中GfPBJPBo or ΡΒΑΡΡ^Κ^Ζ. ). G2=pb2/pb〇 or ρβ2/(ρρ〇*κ*ζ〇) 〇G3=PB3/PB0 or PB3/(PP0*K*Z〇) 〇〇4=ΡΒ4/ΡΒ0 or pb4/(pp0*k* Z0). In addition, since I丨=1, I2=l, I3=0 and Id, the general beacon ratio reporting equation can be simplified to: the first type of universal beacon ratio report ^bo/ZoWGh/Zi+GA/Zz+ G^/Zd, and the second type of universal beacon ratio report = (1 > 0/20) / (11 ^ (〇 11) 1 / B, 〇 21) 2 / B 2, 〇 41 4 / B 4)), where G^PBi/PB. Or PBAPP^K^Zo). G2=pb2/pb0 or pb2/(pp〇*k*z〇). G4=pb4/pb〇 or pb4/(pp0*k*z0). 15 is a diagram of an exemplary system 8A illustrated in FIGS. 12 and 13 including exemplary signal transmissions received and processed by WT 8 010 for illustrating exemplary beacons in accordance with various embodiments. Ratio reporting method. In the example of FIG. 5, 'the wireless terminal 8010 has two simultaneous (c〇ncurrent) wireless connections 115454.doc • 49-1354460. The first use of the tone block 1 physical attachment point and the Bss 8〇16 A wireless connection 8070, and a second entity connection 8071 of the Bss 8 〇 26 using a tone block 丨 physical attachment point. Regarding the beacon ratio report for communication on the connection 8, BSS 8016 is a service BSS, sometimes denoted as BSS, and Bss 8012, 8026, 8036, 8008 represents an interfering base station sector, sometimes denoted as BSSi. Regarding the beacon ratio report for communication on the connection 8071, the Bss 8 026 system BSS' is sometimes denoted as BSS, and the BSSs 8012, 8016, 803 6, 800 8 represent interfering base station sectors, sometimes denoted as BSSi. The same signal as described above with respect to Figure 14 can be used by WT 8010 to generate a beacon ratio report for connection 8070. In addition, pilot signal 8083 from tone block 1 of bss 8026 can be used by WT 8010 to generate a beacon ratio report for connection to 8070. In the general case of considering n interfering base station sectors, the first type of universal beacon ratio report Wbo/ZoVWAWZ^L + Gzbz/Zz^^ + Gsbh/ Ζ3*Ι3 + 04ΐ34/Ζ4*Ι4+··.〇 ΙΙ>η/Ζη*Ιη), and the second type of universal beacon ratio report ybo/ZoVOaxiGAi/Z^Ii, G2b2/Z2*I2, G3b3/Z3*I3, G4b4/Z4*I4,..., Gnbn/Zn *In)), where
GfPBJPBo 或 PBAPP^K^Zo)或(ΡΡ^Ζ,νβΡ^Ζ。)。 g2=pb2/pb〇或 ρβ2/(ρρ〇*κ*ζ〇)或(ΡΡ2*Ζ2)/(ΡΡ0*Ζ0)。 g3=pb3/pb0或 ρβ3/(ρρ〇*κ*ζ〇)或(ΡΡ3*Ζ3)/(ΡΡ0*Ζ0)。 g4=pb4/pb0或ΡΒ4/(ΡΡ0*Κ*Ζ〇)或(ΡΡ4*Ζ4)/(ΡΡ0*Ζ0) »GfPBJPBo or PBAPP^K^Zo) or (ΡΡ^Ζ, νβΡ^Ζ.). G2=pb2/pb〇 or ρβ2/(ρρ〇*κ*ζ〇) or (ΡΡ2*Ζ2)/(ΡΡ0*Ζ0). G3=pb3/pb0 or ρβ3/(ρρ〇*κ*ζ〇) or (ΡΡ3*Ζ3)/(ΡΡ0*Ζ0). G4=pb4/pb0 or ΡΒ4/(ΡΡ0*Κ*Ζ〇) or (ΡΡ4*Ζ4)/(ΡΡ0*Ζ0) »
Gn=PBn/PB〇或 ΡΒη/(ΡΡ0*Κ*Ζ0)或(ΡΡη*Ζη)/(ΡΡ〇*Ζ〇)。 對於關於連接1 8070考慮4個干擾基地台扇區的圖15之 115454.doc -50- 特定狀況,第一類型之通用信標比率報告 ^bo/ZoViGh/Z^h + GAVZ^h+GAVZ^Ij + GAVZ^h)且 第二類型之通用信標比率報告^bo/ZoVCmaxeh/Zi%, G2b2/Z2*I2, G3b3/Z3*I3, G4b4/Z4*I4)),其中 其中 BSS 8016 係 BSS〇 ’ BSS 8012 係 BSS,,BSS 8026 係 BSS2,BSS 8036 係BSS3 且 BSS 8008 係 BSS4,且考慮導頻 信號資訊之可用性,Gn=PBn/PB〇 or ΡΒη/(ΡΡ0*Κ*Ζ0) or (ΡΡη*Ζη)/(ΡΡ〇*Ζ〇). For the 115454.doc -50- specific situation of Figure 15 considering the connection of 1 8070 considering 4 interfering base station sectors, the first type of universal beacon ratio report ^bo/ZoViGh/Z^h + GAVZ^h+GAVZ^ Ij + GAVZ^h) and the second type of universal beacon ratio report ^bo/ZoVCmaxeh/Zi%, G2b2/Z2*I2, G3b3/Z3*I3, G4b4/Z4*I4)), where BSS 8016 is BSS 〇' BSS 8012 is a BSS, BSS 8026 is a BSS2, BSS 8036 is a BSS3, and BSS 8008 is a BSS4, and considering the availability of pilot signal information,
GrPBVPB。或 PBAPP^K^Zo)。 g2=pb2/pb0或pb2/(pp0*k*z〇)或(PP2*Z2)/(PP0*Z0)。 g3=pb3/pb0或pb3/(pp0*k*z0)。 g4=pb4/pb。或 pb4/(pp0*k*z0)。 另外’因為I丨=1,12 = 1,13 = 0且14=1,所以可將通用信標比 率報告方程式簡化為:第一類型之通用信標比率報告 ^bo/ZoVCGh/Z丨+ G2b2/Z2 + G4b4/Z4),且第二類型之通用信 標比率報告=〇0/20)/(11^\(〇11)1/21,〇21)2/22,〇4134/24)),其中GrPBVPB. Or PBAPP^K^Zo). G2=pb2/pb0 or pb2/(pp0*k*z〇) or (PP2*Z2)/(PP0*Z0). G3=pb3/pb0 or pb3/(pp0*k*z0). G4=pb4/pb. Or pb4/(pp0*k*z0). In addition, because I丨=1,12=1,13=0 and 14=1, the general beacon ratio reporting equation can be simplified as: the first type of universal beacon ratio report ^bo/ZoVCGh/Z丨+ G2b2 /Z2 + G4b4/Z4), and the second type of universal beacon ratio report = 〇 0 / 20) / (11 ^ \ (〇 11) 1/21, 〇 21) 2 / 22, 〇 4134 / 24)) ,among them
GfPBVPB。或 PBWPPoTZo)。 G2=PB2/PB。或 PB2/(PP0*K*Z。)或(PP2*Z2)/(PP0*Z0)。 g4=pb4/pb。或 pb4/(pp0*k*z0)。 對於關於連接2 8071考慮4個干擾基地台扇區的圖15之 特定狀況,第一類型之通用信標比率報告 =(b〇/Z〇)/(G1b,/Z1*I1+G2b2/Z2*I2+G3b3/Z3*l3+G4b4/Z4*l4), 且第二類型之通用信標比率報告Kbo/ZoVCmaxeAi/Z^Ib G2b2/Z2*I2, G3b3/Z3*I3, G4b4/Z4*I4)),其中 其中 BSS 8026 係 BSS〇,BSS 8016 係 BSS,,BSS 8012 係 BSS2 ’ BSS 8036係 BSS3且 BSS 8008係 BSS4,且考慮導頻 I15454.doc -51- 1354460 信號資訊之可用性,GfPBVPB. Or PBWPPoTZo). G2 = PB2 / PB. Or PB2/(PP0*K*Z.) or (PP2*Z2)/(PP0*Z0). G4=pb4/pb. Or pb4/(pp0*k*z0). For the specific case of Figure 15 considering connection 2 8071 considering 4 interfering base station sectors, the first type of universal beacon ratio report = (b〇/Z〇) / (G1b, /Z1*I1+G2b2/Z2* I2+G3b3/Z3*l3+G4b4/Z4*l4), and the second type of universal beacon ratio report Kbo/ZoVCmaxeAi/Z^Ib G2b2/Z2*I2, G3b3/Z3*I3, G4b4/Z4*I4) ), wherein BSS 8026 is BSS〇, BSS 8016 is BSS, BSS 8012 is BSS2 'BSS 8036 is BSS3 and BSS 8008 is BSS4, and considering the availability of pilot information I15454.doc -51- 1354460 signal information,
GfPBWPB。或 ΡΒΑΡΡ^Κ^Ζ。)或(PP^ZJ/iPPc^Zo)。 g2=pb2/pb〇或 pb2/(pp〇*k*z〇)。 g3=pb3/pb〇或 pb3/(pp0*k*z0)。 g4=pb4/pb〇或 pb4/(pp0*k*z〇)。 另外,因為1〗=1,12=1 , 13 = 〇且Id ,所以可將通用信標比 率報告方程式簡化為:第一類型之通用信標比率報告 一(b〇/Z〇)/(Gib丨/Zi + G2b2/Z2 + G4b4/Z4),且第二類型之通用信 φ 標比率報告""(bo/ZoVOaxCGh/Z!,G2b2/Z2, G4b4/Z4)),其中 GpPBWPB。或 ΡΒΑΡΡζκ^Ζο)或(PP^ZiVRP^Zo)。 G2=PB2/PB〇或 PB2/(pp〇*k*Z。)。 G4=PB4/PB〇或 PB4/(PP0*K*Z〇)。 在一些實施例中,若可自兩個來源恢復可靠的導頻信號 資訊,則無線終端機試圖使用導頻信號來獲得通道增益比 率(例如,Gi)。若不可能自兩個來源恢復可靠的導頻信號 資訊,則無線終端機試圖使用來自服務基地台扇區之導頻 乜號及來自其他基地台扇區之信標信號來獲得通道增益比 鲁率。 圖1 6為圖1 2及1 3中所述之例示性系統8〇〇〇的圖式,其包 3由WT 8010接收且處理之例示性信號傳輸以用於說明根 據各項實施例的例示性信標比率報告方法。在圖16之實例 中,無線終端機8010具有一使用音調塊丨實體附接點的與 BSS 8016之第一無線連接8〇〇1,及一使用音調塊2實體附 接點的與BSS 8026之第二同時無線連接8〇〇3。關於在連接 8001上通信之信標比率報告,BSS 8〇16係服務bss,有時 115454.doc •52- 1354460 表示為BSS〇’且BSS 8012、8026、8036、8008表示干擾基 地台扇區,有時在提及時表示為BSSi,例如,BSSi、 BSS2、BSSs、BSS4。關於在連接8003上通信之信標比率報 告,BSS 8026係服務BSS,有時表示為BSS〇,且BSS 8012、8016、8036、8008表示干擾基地台扇區,有時表示 為BSSi,例如,BSSt、BSS2、BSS3、BSS4。 無線終端機自BSS 8016接收且處理在音調塊1與音調塊2 中通信之信標信號8011及在音調塊1中通信之導頻音調信 號8009。注意,WT 1 8010相對於BSS 8016音調塊1附接點 係的,且因此可準確量測導頻通道。無線終端機自B s s 8026接收且處理在音調塊i與音調塊2中通信之信標信號 8017及在音調塊2中通信之導頻音調信號8〇15。注意,WT 1 8010相對於BSS 8026音調塊2附接點係時序同步的,且 因此可準確量測導頻通道。無線終端機8〇1〇自每一干擾 BSS (8012、8036、8008)接收且處理分別在音調塊1及音 調塊2中通信之信標信號(8005、8〇21、8025)。另外,分別 自 BSS (8016、8012、8026、8036、8008)之每一者通信上 行鏈路負載因數資訊信號(8013、8007、8019、8023、 8027)。此等上行鏈路負載因數資訊信號(8〇π ' 8〇〇7、 8019、8023、8027)係作為廣播信號予以通信,但可或不 可成功恢復,例如,由於其每音調之傳輸功率位準低於信 標之每音調之傳輸功率位準^在不可成功恢復上行鏈路負 載因數的情況下’在信標比率報告計算中使用預設值(例 如,值1)。 115454.doc •53· 1354460 在圖16之實例中,兩個連接使用不同的音調塊。為待在 連接1 8001上通信之信標比率報告而計算之増益比率可使 用來自基地台扇區8016的音調塊1之所接收導頻音調俨號 8009及來自其他基地台扇區之所接收信標信號。為待在連 接2 8〇〇3上通信之信標比率報告而計算之増益比率可使用 來自基地台扇區8026的音調塊2之所接收導頻音調俨號 8015及來自其他基地台扇區之所接收信標信號。 在一些例示性實施例中,關於基地台扇區,來自一音調 塊之OFDM信號相對於來自另一音調塊之〇FDm符號準確 同步。考慮BSS使用共同傳輸器且產生對應於三個音調塊 之早OFDM符號,例如,包含339個音調(其包括三個音調 塊,每一音調塊具有113個音調)之單〇FDM符號。在一些 該等實施例中,為待在連接i 8〇〇1上通信之信標比率報告 而計算之增益比率可使用來自基地台扇區8〇16的音調塊1 之所接收導頻音調信號、來自BSS 8G26的音調塊1之所接 收導頻音調信號及來自其他基地台扇區之所接收信標信 唬,為待在連接2 8003上通信之信標比率報告而計算之增 H匕率可使用來自基地台扇區8〇26的音調塊2之所接收導 頻:調彳s號、來自BSS 80126的音調塊2之所接收導頻音調 #號及來自其他基地台扇區之所接收信標信號。 圖17 (包括圖17A、圖17B、圖17C及17D之組合)為一根 據各項實施例的操作一無線終端機(例如,行動節點)之例 丁丨生方法之流程圖55〇〇。操作開始於步驟55〇2,其中對無 泉、、’;縞機開機且初始化。操作自步驟進行至步驟 115454.doc -54- 1354460 5504、步驟测且經由連接節點A55Q5進行至步驟55〇8。 在步踢5504中,操作無料端機以接收對應於第一當前 基地台連接之信標及導頻信號。操作自步隸測進行至步 驟55心在步驟測中,無線終端機為第一當前基地台扇 區連接量測所接收信標信號之功率(pB〇)及所接收導頻通 道信號之功率(pp〇)。操作自步驟5510進行至步驟5512。在 步驟55 12中’無線終端機自所接收信標信號導出第一當前 連接基地台扇區傳輪器資訊,例如,BSS_SLOPE及 BSS_SECTORTYPE。步驟5512 包含子步5513。在子步5513 中,無線終端機決定一與第一當前連接基地台扇區及正使 用之音調塊相關聯之功率傳輸層位準。 在步驟5506中,無線終端機自一或多個干擾基地台扇區 (無線終端機不具有至其之當前連接)接收信標信號且/或自 一或多個干擾基地台扇區(無線終端機具有至其之當前連 接)摻收彳5 k及導頻信標。對於無線終端機具有至其之當 φ 前連接的每一干擾基地台扇區(BSSi),操作自步驟5506進 行至步驟5514。為每一該干擾基地台扇區(例如,干擾基 地台扇區i (BSSi))執行後續操作5514、5518、5520。對於 無線終端機不具有至其之當前連接的每一干擾基地台扇區 (BSSi) ’操作自步驟5506進行至步驟5516。為每一該干擾 基地台扇區(例如,干擾基地台扇區i (BSSi))執行後續操作 5516、 5522、 5524° 在步驟5514中,無線終端機為干擾當前基地台扇區連接 量測所接收信標信號之功率(PBi)及所接收導頻通道信號之 II5454.doc -55- 1354460 功率(PPi)。操作自步驟5514進行至步驟5518。在步驟5518 中,無線終端機自所接收信標信號導出干擾當前連接基地 。扇區傳輸器資訊,例如,bss_slope及 BSS—SECTORTYPE。步驟5518包含子步 5519。在子步5519 中,無線終端機決定一與干擾當前連接基地台扇區及正使 用之音調塊相關聯之功率傳輸層位準。 操作自步驟55 12及步驟55 18經由連接節點B 5521進行至 步驟55 20。在步驟5520中,無線終端機使用子步5538之方 法或子步554〇之方法或子步5541之方法來計算通道增益比 率。在子步5538中,無線終端機使用信標信號資訊來計算 通道增益比率Gi。子步5538包含子步5542 ,其中無線終端 機計算G^PByPBo。 在子步5540中’無線終端機使用信標信號資訊及導頻信 號資訊來計算通道增益比率Gi。子步554〇包含子步5544。 在子步5544中,無線終端機計算Gi=PBi/(pJVK*Z〇),其中 K-用於層〇音調塊的每音調之傳輸器功率信標參考位準/用 於層〇音調塊的每音調之傳輸器導頻信號參考位準,且z〇 = 用於第一當前基地台扇區連接傳輸器音調塊的與音調塊之 力率傳輸層位準相關聯之功率換算因數。 在子步5541中,無線終端機使用導頻信號資訊來計算通 道增益比率Gi。子步5541包含子步5546。在子步5546中, 無線終端機計算Gi = (PIVZi)/(pivz〇),其中z〇=用於第一 田刖基地台扇區連接傳輸器音調塊的與音調塊之功率傳輸 層位準相關聯之功率換算因數,且Zi==用於BSSi連接傳輸 115454.doc -56- 1354460 器音調塊的與音調塊之功率傳輸層位準相關聯之功率換算 因數。操作自步驟5520經由連接節點D 5534進行至步驟 5536,其中無線終端機產生一或多個干擾報告。 在步驟5516中,無線終端機為干擾基地台扇區量測所接 收k標彳s號之功率(PBj)。操作自步驟5516進行至步驟 5522。在步驟5522中,無線終端機自所接收信標信號導出 干擾基地台扇區傳輸器資訊,例如,BSS—SLOPE及 8 8 8_3£(:丁01〇^后。步驟5522包含子步5523。在子步5523 中’無線終端機決定一與干擾基地台扇區及正使用之音調 塊相關聯之功率傳輸層位準。 操作自步驟55 12及步驟5522經由連接節點C 5525進行至 步驟5524。在步驟5524中,無線終端機使用子步5526之方 法或子步5528之方法來計算通道增益比率。 在子步5526中,無線終端機使用信標信號資訊來計算通 道增益比率Gi。子步5526包含子步5530,其中無線終端機 計算 Ο(=ΡΒ(/ΡΒ0 〇 在子步5528中,無線終端機使用信標信號資訊及導頻信 说Μ訊來δ十算通道增益比率Gj。子步5528包含子步5532, 其中無線終端機計算GpPBWPP^K^Zo),其中κ=用於層〇 音調塊的每音調之傳輸器功率信標參考位準/用於層〇音調 塊的每音調之傳輸器導頻信號參考位準,且Ζ〇=用於當前 基地台扇區連接傳輸器音調塊的與音調塊之功率傳輸層位 準相關聯之功率換算因數。 操作自步驟5 5 2 4經由連接節點D 5 5 3 4進行至步驟5 5 3 6, 115454.doc •57- 1354460 其中無線終端機產生一或多個干擾報告。 返回至步驟5508,在步驟5508中,操作無線終端機以自 第-當前服務基地台扇區傳輸器且自干擾基地台扇區傳輪 器接收廣播負載因數資訊信號。對於在考慮中的每—基地 台扇區,操作進行至步驟5548。在步驟5548中,無線終端 機決定是否已自所接收信號成功恢復了負载因數。若自所 接收信號成功恢復了負載因數,則操作進行至步驟555〇 , 其中無線終端機儲存負載因數。舉例而言,負載因數b〇=: 用於當前第一服務基地台扇區之負載因數,且負载因數 bk=用於干擾基地台區k之負載因數。若未自所接收信號成 功恢復負載因數,則操作進行至步驟5552,其中無線終端 機將負載因數設定為丨。獲得負載因數(b。5554、h 5556、…、bk 5558、.. bn 5560) ’其中每一負載因數源自 步驟5550及步驟5552中之一者。 返回至步驟5536,在步驟5536中,無線終端機產生一或 φ 多個干擾報告。步驟5536包含子步5562及子步5564 〇在子 步5562中,無線終端機產生一將一特定干擾基地台扇區之 干擾傳送至第一服務基地台扇區的特定類型報告。步驟 5562包含子步55 66。在子步5566中,無線終端機計算報告 值-(b0/Z0)/(Gk*bk/Zk),其中b〇係當前服務BSS之負載因 數,且bk係報告所對應之干擾BSS之負載因數,對於i=k, Gk=Gi,且Z〇係用於當前第一BSS連接傳輸器音調塊的與音 調塊之功率傳輸層位準相關聯之功率換算因數,且A係用 於報告所對應之干擾基地台扇區的與音調塊之功率傳輸層 115454.doc -58- 位準相關聯之功率換算因數。 在子步5564中’無線终端機(例如)使用來自干擾基地台 扇區之測知標k號之每一者的資訊(包含使用負載因數 資訊及功率換算因數資訊)來產生一將一或多個干擾BSS之 干擾之-貝訊傳送至服務中第一當前BSS的通用類型報告。 包3用於通用類型報告之四個替代例示性計算作為子步 5 57〇、5 572、5574、5 576。通用類型報告之一例示性實施 例(例如,在例不性單載波操作實施例中)為。 长矛係對於無線終端機可為信標或導頻信號偵測的干擾 k之—者。通用類型報告之另一例示性實施例(例 =,=單載波操作實施例中)為1)〇/(1^5^ (Gk*bk))。通用類 報Q之另一例不性實施例(例如,在例示性多載波,例 如’三載波’操作實施财)為(⑽。)/% (wbk/Zk)), :_ k係BSSk之上行鏈路在當前音調塊中是否在作用中的 才曰不4函數:若BSSk之上行鏈路在作用中,則“=1 ;若 B叫在當前音調'塊中不在作用中,則Ik=G。求和係對於無 線、、端機可為信標或導頻信號偵測的干擾〜之每一者。 :用類型報告之另一例示性實施例(例如,在例示性多載 π π Γ如,三載波,操作實施例中)為(b〇/z〇)/(職^ / ^ bk/Zk)) ’其中之上行鏈路在當前音調塊中 ::乍用中的指示符函數:若叫之上行鏈路在作用GfPBWPB. Or ΡΒΑΡΡ^Κ^Ζ. ) or (PP^ZJ/iPPc^Zo). G2=pb2/pb〇 or pb2/(pp〇*k*z〇). G3=pb3/pb〇 or pb3/(pp0*k*z0). G4=pb4/pb〇 or pb4/(pp0*k*z〇). In addition, since 1 =1, 12 =1, 13 = 〇 and Id , the general beacon ratio reporting equation can be simplified as: the first type of universal beacon ratio report one (b〇/Z〇)/(Gib丨/Zi + G2b2/Z2 + G4b4/Z4), and the second type of general-purpose φ scale ratio report ""(bo/ZoVOaxCGh/Z!, G2b2/Z2, G4b4/Z4)), where GpPBWPB. Or ΡΒΑΡΡζκ^Ζο) or (PP^ZiVRP^Zo). G2=PB2/PB〇 or PB2/(pp〇*k*Z.). G4=PB4/PB〇 or PB4/(PP0*K*Z〇). In some embodiments, if reliable pilot signal information can be recovered from two sources, the wireless terminal attempts to use the pilot signal to obtain a channel gain ratio (e.g., Gi). If it is not possible to recover reliable pilot signal information from two sources, the wireless terminal attempts to use the pilot nickname from the serving base station sector and the beacon signal from other base station sectors to obtain the channel gain ratio. . Figure 16 is a diagram of an exemplary system 8A illustrated in Figures 12 and 13 with an exemplary signal transmission of packet 3 received and processed by WT 8010 for illustrating an illustration in accordance with various embodiments. Sexual beacon ratio reporting method. In the example of FIG. 16, the wireless terminal 8010 has a first wireless connection 8.1 with the BSS 8016 using a tone block 丨 physical attachment point, and a BSS 8026 with a physical point of attachment of the tone block 2 The second simultaneous wireless connection is 8〇〇3. Regarding the beacon ratio report for communication over connection 8001, BSS 8〇16 is a service bss, sometimes 115454.doc •52-1354460 is denoted as BSS〇' and BSS 8012, 8026, 8036, 8008 represent interfering base station sectors, Sometimes referred to as BSSi when mentioned, for example, BSSi, BSS2, BSSs, BSS4. Regarding the beacon ratio report for communication over connection 8003, BSS 8026 is a serving BSS, sometimes denoted as BSS, and BSS 8012, 8016, 8036, 8008 represents an interfering base station sector, sometimes denoted BSSi, eg, BSSt , BSS2, BSS3, BSS4. The wireless terminal receives and processes the beacon signal 8011 communicated in the tone block 1 and the tone block 2 and the pilot tone signal 8009 communicated in the tone block 1 from the BSS 8016. Note that the WT 1 8010 is attached to the BSS 8016 tone block 1 and thus the pilot channel can be accurately measured. The wireless terminal receives from B s s 8026 and processes the beacon signal 8017 communicated in tone block i with tone block 2 and the pilot tone signal 8 〇 15 communicated in tone block 2. Note that the WT 1 8010 is synchronized with respect to the BSS 8026 tone block 2 attachment point timing, and thus the pilot channel can be accurately measured. The wireless terminal unit receives and processes the beacon signals (8005, 8〇21, 8025) respectively communicated in the tone block 1 and the tone block 2 from each of the interference BSSs (8012, 8036, 8008). In addition, uplink load factor information signals (8013, 8007, 8019, 8023, 8027) are communicated from each of the BSSs (8016, 8012, 8026, 8036, 8008). These uplink load factor information signals (8〇π '8〇〇7, 8019, 8023, 8027) are communicated as broadcast signals, but may or may not be successfully recovered, for example, due to their transmission power level per tone. A transmission power level lower than the pitch of the beacon. ^ In the case where the uplink load factor cannot be successfully recovered, a preset value (for example, a value of 1) is used in the beacon ratio report calculation. 115454.doc •53· 1354460 In the example of Figure 16, the two connections use different pitch blocks. The benefit ratio calculated for the beacon ratio report to be communicated over connection 1 8001 may use the received pilot tone nickname 8009 from tone block 1 of base station sector 8016 and the received message from other base station sectors. Standard signal. The benefit ratio calculated for the beacon ratio report to be communicated on the connection 2 8 〇〇 3 may use the received pilot tone nickname 8015 from the tone block 2 of the base station sector 8026 and from other base station sectors. Received beacon signal. In some exemplary embodiments, with respect to a base station sector, the OFDM signal from one tone block is accurately synchronized with respect to the 〇 FDm symbol from another tone block. Consider that the BSS uses a common transmitter and produces an early OFDM symbol corresponding to three tone blocks, for example, a single 〇 FDM symbol containing 339 tones (including three tone blocks, each tone block having 113 tones). In some such embodiments, the gain ratio calculated for the beacon ratio report to be communicated on connection i 8〇〇1 may use the received pilot tone signal from tone block 1 of base station sector 8〇16. The received pilot tone signal from the tone block 1 of the BSS 8G26 and the received beacon signal from the other base station sector, the calculated H rate for the beacon ratio report to be communicated on the connection 2 8003 The received pilots from the tone block 2 of the base station sector 26 26 can be used: the 彳s number, the received pilot tone # of the tone block 2 from the BSS 80126, and the reception from other base station sectors. Beacon signal. Figure 17 (comprising a combination of Figures 17A, 17B, 17C, and 17D) is an example of a wireless terminal (e.g., mobile node) operating in accordance with various embodiments. The operation begins in step 55〇2, where there is no spring, '; the machine is turned on and initialized. Operation proceeds from step to step 115454.doc -54- 1354460 5504, the step is measured and proceeds to step 55〇8 via the connection node A55Q5. In step kick 5504, the no-tune machine is operated to receive beacon and pilot signals corresponding to the first current base station connection. The operation self-step test proceeds to step 55. In the step measurement, the wireless terminal determines the power of the received beacon signal (pB〇) and the power of the received pilot channel signal for the first current base station sector connection measurement ( Pp〇). Operation proceeds from step 5510 to step 5512. In step 55 12, the wireless terminal transmits the first currently connected base station sector information, such as BSS_SLOPE and BSS_SECTORTYPE, from the received beacon signal. Step 5512 includes substep 5513. In substep 5513, the wireless terminal determines a power transfer layer level associated with the first currently connected base station sector and the tone block being used. In step 5506, the wireless terminal receives a beacon signal from one or more interfering base station sectors (the wireless terminal does not have a current connection thereto) and/or from one or more interfering base station sectors (wireless terminals) The machine has its current connection) with 彳5 k and pilot beacons. For each of the interfering base station sectors (BSSi) to which the wireless terminal has a φ pre-connection, operation proceeds from step 5506 to step 5514. Subsequent operations 5514, 5518, 5520 are performed for each of the interfering base station sectors (e.g., interfering base station sector i (BSSi)). Operation for each interfering base station sector (BSSi) for which the wireless terminal does not have its current connection proceeds from step 5506 to step 5516. Performing subsequent operations 5516, 5522, 5524 for each of the interfering base station sectors (e.g., interfering base station sector i (BSSi)). In step 5514, the wireless terminal is interfering with the current base station sector connection measurement. The power of the beacon signal (PBi) and the received pilot channel signal are II5454.doc -55 - 1354460 power (PPi). Operation proceeds from step 5514 to step 5518. In step 5518, the wireless terminal derives interference with the currently connected base from the received beacon signal. Sector transmitter information, for example, bss_slope and BSS-SECTORTYPE. Step 5518 includes substep 5519. In sub-step 5519, the wireless terminal determines a power transmission layer level associated with interfering with the currently connected base station sector and the tone block being used. Operation proceeds from step 55 12 and step 55 18 via connection node B 5521 to step 55 20 . In step 5520, the wireless terminal uses the method of sub-step 5538 or the method of sub-step 554 或 or the method of sub-step 5541 to calculate the channel gain ratio. In substep 5538, the wireless terminal uses the beacon signal information to calculate the channel gain ratio Gi. Substep 5538 includes substep 5542 in which the wireless terminal calculates G^PByPBo. In substep 5540, the wireless terminal uses the beacon signal information and the pilot signal information to calculate the channel gain ratio Gi. Substep 554 〇 includes substep 5544. In substep 5544, the wireless terminal calculates Gi=PBi/(pJVK*Z〇), where K- is used for the transmitter power beacon reference level per tone of the layered tone block/for layered tone blocks The transmitter pilot signal reference level per tone, and z 〇 = the power scaling factor associated with the force rate transmission layer level of the tone block for the first current base station sector connection transmitter tone block. In substep 5541, the wireless terminal uses the pilot signal information to calculate the channel gain ratio Gi. Substep 5541 includes substep 5546. In substep 5546, the wireless terminal calculates Gi = (PIVZi) / (pivz 〇), where z 〇 = power transmission layer level for the tone block of the first field base station sector connection transmitter tone block The associated power conversion factor, and Zi == the power conversion factor associated with the power transfer layer level of the tone block for the BSSi connection transmission 115454.doc -56 - 1354460 tone block. Operation proceeds from step 5520 via connection node D 5534 to step 5536, where the wireless terminal generates one or more interference reports. In step 5516, the wireless terminal transmits the power (PBj) of the k-mark s s number for the interfering base station sector measurement. Operation proceeds from step 5516 to step 5522. In step 5522, the wireless terminal device derives interference base station sector transmitter information from the received beacon signal, for example, BSS-SLOPE and 8 8 8_3 £ (step 0152). Step 5522 includes sub-step 5523. In step 5552, the 'wireless terminal machine determines a power transmission layer level associated with the interfering base station sector and the tone block being used. Operation proceeds from step 55 12 and step 5522 via connection node C 5525 to step 5524. In step 5524, the wireless terminal calculates the channel gain ratio using the method of substep 5526 or substep 5528. In substep 5526, the wireless terminal uses the beacon signal information to calculate the channel gain ratio Gi. Substep 5526 includes Sub-step 5530, wherein the wireless terminal calculates Ο(=ΡΒ(/ΡΒ0 中 in sub-step 5528, the wireless terminal uses the beacon signal information and the pilot signal to determine the channel gain ratio Gj. Substep 5528 Including substep 5532, where the wireless terminal calculates GpPBWPP^K^Zo), where κ = transmitter power beacon reference level for each tone of the layered tone block / per tone transmission for the layered tone block Pilot letter Reference level, and Ζ〇 = power scaling factor associated with the power transfer layer level of the tone block for the current base station sector connection transmitter tone block. Operation from step 5 5 2 4 via connection node D 5 5 3 4 Proceed to step 5 5 3 6, 115454.doc • 57- 1354460 wherein the wireless terminal generates one or more interference reports. Returning to step 5508, in step 5508, operating the wireless terminal to operate from the first-current service base The sector transmitter and the self-interfering base station sector transmitter receive the broadcast load factor information signal. For each base station sector under consideration, operation proceeds to step 5548. In step 5548, the wireless terminal determines whether The load factor has been successfully recovered from the received signal. If the load factor is successfully recovered from the received signal, the operation proceeds to step 555, where the wireless terminal stores the load factor. For example, the load factor b〇 =: The load factor of the current sector of the first serving base station, and the load factor bk = the load factor used to interfere with the base station area k. If the load factor is not successfully recovered from the received signal, Operation proceeds to step 5552, where the wireless terminal sets the load factor to 丨. Obtain the load factor (b. 5554, h 5556, ..., bk 5558, .. bn 5560) 'where each load factor is derived from step 5550 and steps Returning to step 5536, in step 5536, the wireless terminal generates one or more interference reports. Step 5536 includes substep 5562 and substep 5564. In substep 5562, the wireless terminal generates a The interference of a particular interfering base station sector is transmitted to a particular type of report of the first serving base station sector. Step 5562 includes substep 55 66. In substep 5566, the wireless terminal calculates a report value -(b0/Z0)/(Gk*bk/Zk), where b is the load factor of the current serving BSS, and bk is the load factor of the interfering BSS corresponding to the report. For i=k, Gk=Gi, and Z〇 is used for the power conversion factor associated with the power transmission layer level of the tone block of the current first BSS connection transmitter tone block, and A is used for report corresponding The power conversion factor of the interference base station sector associated with the power transmission layer 115454.doc -58- level of the tone block. In substep 5564, the 'wireless terminal' uses, for example, information from each of the k-targets of the interfering base station sector (including the use of load factor information and power conversion factor information) to generate one or more The interference of the interfering BSS - Beixun is transmitted to the general type report of the first current BSS in the service. Package 3 is used for four alternative exemplary calculations of the generic type report as substeps 5 57 〇, 5 572, 5574, 5 576. An exemplary embodiment of a generic type report (e.g., in an exemplary single carrier operation embodiment) is. The spear is the interference k that the wireless terminal can detect for beacons or pilot signals. Another exemplary embodiment of the generic type report (in the example =, = single carrier operation embodiment) is 1) 〇 / (1^5^ (Gk * bk)). Another example of a non-existing embodiment of the generic class Q (eg, in an exemplary multi-carrier, eg, 'three-carrier' operation implementation) is ((10).) /% (wbk/Zk)), :_ k is the uplink of the BSSk Whether the link is active in the current tone block is not a function: if the uplink of BSSk is active, then "=1; if B is not active in the current tone' block, then Ik=G The summation is for each of the wireless, end-of-line interference that can be detected by the beacon or pilot signal. Another exemplary embodiment of the type report (eg, in the exemplary multi-load π π Γ For example, the three carriers, in the operational embodiment, are (b〇/z〇)/(title^/^bk/Zk)) 'where the uplink is in the current tone block:: the indicator function in the :: If the uplink is called
中則㈠:若咖在當前音調塊中不在作用中 Ik一U。 J 在一些實施例t,步驟5536包含量化。舉例而言,例示 115454.doc •59- 標比率報告傳送4個資訊位it,其表示自-4 dB至28 dB 變化之16個 立準中之—者。用於例示性4位元下行鍵路信 標比率報告(DLBNR4)的圖u之表格110〇係該表示。Medium (1): If the coffee is not in the current tone block, Ik is U. J In some embodiments t, step 5536 includes quantification. For example, the example 115454.doc • 59-standard ratio report transmits four information bits it, which represents one of the 16 criteria from -4 dB to 28 dB change. The table 110 of Figure u for an exemplary 4-bit downlink beacon ratio report (DLBNR4) is the representation.
、操作自步驟5536進行至步驟5568,其中操作無線终端機 以將報告傳輸至充當無線終端機之當前附接點的第—當前 服務基地台扇區。在—些實施例中,報告之傳輸係回應於 來自服務基地台扇區之請求。在一些實施例中,所傳輸之 °之類型(例如’特定或通用)係回應於來自基地台扇區 的識別該報告之類型之所接收信號傳輸。在一些實施例 中’對與-特別基地台扇區相關聯之干擾進行報告的一特 别特疋類型報告之傳輸係回應於-識別該特別基地台扇區 之所接收基地台信號。在各項實施例中,根據無線终端機 所遵循的報告排程(例如作為專用控制通道結構之部分)而 週期性地傳輸干擾報告。在—些該等實施例中,對於所傳 輸之至少一些干擾報告,基地台不會信號傳輸任何用以選 擇報告的報告選擇資訊。在-些實施财,基地台作為循 環時序結構中之#前位置之__函數在兩種類型之通用信標 比率報告(例如,—使用對來自所接收干擾BSS之每一者之 資訊之求和的第-類型’及-基於來自單-最劣干擾BSS 之資訊的第二類型)之間的計算之間交替。舉例而言,當 =槽内之信標時槽指數為偶數時,計算第—類型之通用 U比率報告’且當超時槽内之信標時槽指數 計算第二類型之通用信標比率報告。在一些實施例中, 资預設地僅發送通用信標比率報告,且僅在被基地台請 115454.doc •60· 1354460 求=特g標比率報告時發送特定信標比率報告。 -些實施例中,系統包含複數個 如,三個位準具有一與每—層:傳輸層位準(例 的功率換算si數。舉例而+,I 目關聯之不同Operation proceeds from step 5536 to step 5568, in which the wireless terminal is operated to transmit the report to the first current serving base station sector that serves as the current attachment point for the wireless terminal. In some embodiments, the reported transmission is in response to a request from a serving base station sector. In some embodiments, the type of transmission (e.g., 'specific or generic) is in response to the received signal transmission from the base station sector identifying the type of the report. In some embodiments, the transmission of a special feature type report that reports interference associated with the particular base station sector is responsive to - identifying the received base station signal for the particular base station sector. In various embodiments, the interference report is transmitted periodically based on the reporting schedule followed by the wireless terminal (e.g., as part of a dedicated control channel structure). In some of these embodiments, the base station does not signal any report selection information used to select the report for at least some of the interference reports transmitted. In some implementations, the base station acts as a __ function of the #pre-position in the cyclic timing structure to report on the two types of universal beacon ratios (eg, using information about each of the received interfering BSSs). The calculation between the sum-type 'and-based based on the second type of information from the single-worst interfering BSS'. For example, when the beacon index in the slot is even, the general U ratio report of the first type is calculated and the slot index in the timeout slot calculates the second type of universal beacon ratio report. . In some embodiments, only the generic beacon ratio report is sent by default, and the specific beacon ratio report is sent only when the base station requests the report. In some embodiments, the system includes a plurality of, e.g., three levels having a level with each layer: transport layer level (for example, the power conversion si number. For example, the difference between the + and the I target)
】而5在一例示性實施例中,〇 dB =率換算因數與層位準0音調塊相關聯,而6 換鼻因數與層1位準音調诗相關 關聯,且12 dB之功率換算因And in an exemplary embodiment, the 〇 dB = rate conversion factor is associated with the horizon level 0 tone block, and the 6 nose change factor is associated with the layer 1 level pitch poem, and the 12 dB power conversion factor
二日2音調塊相關聯。在一些實施例中,每一附接點對 應於-基地台扇區傳輸器及_音調塊,且每_附接點咖 傳輸器音調塊可與-功率傳輸層位準相關聯。在—些實施 例十,存在複數個下行鏈路音調塊,例如,三個i調塊 (音調塊〇、音調塊卜音調塊2),每-音調塊具有113個相 連的均勻間隔之音調。在一些實施例巾,由不同基地台扇 區傳輸器使用之同-音調塊(例如,音調塊0)具有與不二基 地台扇區傳輸器相關聯之不同功率傳輸層位準。無線終2 機(例如’自經由其信標信號傳送之資訊,使用具有循環The two-day 2-tone block is associated. In some embodiments, each attachment point corresponds to a - base station sector transmitter and a tone block, and each _ attachment point coffee transmitter tone block can be associated with a - power transmission layer level. In some embodiments, there are a plurality of downlink tone blocks, for example, three i-modulation blocks (tone block 音, pitch block vowel block 2), and each-tone block has 113 consecutive evenly spaced tones. In some embodiments, the homo-tone block (e.g., tone block 0) used by different base station sector transmitters has different power transmission layer levels associated with the non-base station transmitter. Wireless terminal 2 (eg, 'using information transmitted via its beacon signal, using a loop
傳輸型樣的音調位置及/或時間位置來識別一對應於基地 台扇區傳輸器及音調塊之特別附接點)可使用所儲存資訊 來使所識別附接點與一特別功率傳輸層位準及用於一特別 音調塊之功率換算因數相關聯。 在一些實施例中,負載因數(例如,bk)係大於或等於〇且 小於或等於一之值。在一些實施例中,該值自基地台扇區 通信至無線終端機,表示複數個位準(例如,〇 d B、 -1 dB、-2 dB、-3 dB、-4 dB、-6 dB、-9 dB、負無窮 dB) 中之一者。圖10之表格950說明可由基地台扇區經由下行 115454.doc -61 - 1354460 鏈路廣播通道予以通信之例示性上行鏈路負載因數資訊。 在一些實施例中,不考慮與正使用之音調塊相關聯之功 率傳輸層,以相同功率自基地台扇區傳輸器傳輸信標信 號;然而,其他下行鏈路信號(例如,導頻信號)受與用於 基地台扇區傳輸器之音調塊相關聯之功率傳輸層影響。在 一些實施例中,參數κ為大於或等於6 dB之值。舉例而言, 在一例示性實施例中,參數K=23_8dB-7.2dB = 16.0dB。 圖1 8為用於一例示性實施例的例示性時序結構資訊及對 應的干擾報告資訊(例如,信標比率報告報告資訊)之圖式 1800。該例示性時序結構包含如列18〇2所指示之上行鏈路 超時槽,歹川02展示指數=〇之上行鏈路超日夺槽繼之以指數 -1之上行鏈路超時槽。在例示性實施例中,每一超時槽包 含如列1804所指示之18個具指數之信標時槽。每一信標時 槽包含(例如)912個連續的0FDM符號傳輸時段。在此例示 I·生實施例中’無線終端機可(例如)經由專用控制通道區段 向-服務基地台扇區報告兩種不同類型之信標比率報告, 第一類型之信#比率報告係通用信標比率報告且第二類型 t信標比率報告係特定信標比率報告(有時被稱作特殊信 1率報告)。第—類型之信標比率報告係通用信標比率 報告且使用兩種子類型之通用信標比率報告。第—子類型 :通用“比率報告決定作為對一或多個干擾基地台扇區 士和之函數的報告值。第二子類型之通用信標比率報告決 為最大值(例如’在干擾值方面最劣狀 台扇區)之函數的報告值。如列刪所指示,待使用= 115454.doc -62- υυ 用信標比率報告之子類型係、信標時槽指數之函數。對於作 _ 指數之偶數值(0'2、4、6'8、1〇、12、14、16): $線終端機在傳輸通用信標比率報告時使用求和函數來決 $疋該報告。對於信標時槽指數之奇數值(卜3、5、了、9、 13 15、17)’無線終端機在傳輸通用信標比率報告 時使用最大值函數來決定該報告β列18〇8指示··無線終端 機在傳輸特定信標比率報告時通信-對應於-基地台扇區 之報告,I亥基地台扇區在一請求中得以識別且具有—為信 ‘時槽4曰數值之函數的扇區類型。舉例而言,考慮使用二 種不同的扇區類型(扇區類型〇、扇區類型丨,及扇區類型 2)。一來自服務基地台扇區的請求特定類型之信標比率報 告之清求信號可包含一小區識別符值(例如,斜率值),且 於其中通信該報告之上行鏈路時序結構可決定扇區類型。 舉例而言,對於指數=(〇、3、6、9、12、15)之信標時 槽’無線終端機在報告特定信標比率報告時,報告一使服 務基地台扇區與由一所通信小區識別符值識別且具有扇區 類型=0之另一基地台扇區相關聯的特定信標比率報告。對 於指數=(1、4、7、10、13、16)之信標時槽,無線終端機 在報告特定信標比率報告時’報告一使服務基地台扇區與 由一所通信小區識別符值識別且具有扇區類型=1之另—基 地台扇區相關聯的特定信標比率報告。對於指數=(2、5、 8、11、14、17)之信標時槽,無線終端機在報告特定信標 比率報告時,報告一使服務基地台扇區與由一所通信小區 識別符值識別且具有扇區類型=2之另一基地台扇區相關聯 115454.doc -63· 1354460 的特定信標比率報告β w觀察到藉由實施基地台與無線終端機均理解的此基 於預定時序結構之報告格式,线支援多種報告格式,同 時限制k號傳輸耗用之量^另外,應觀察到,對於特定信 ‘比率報告’部分地藉由包含於一請求信號中之資訊且部 刀地藉由上行鏈路時序結構中之位置來獲得對所關心之基Transmitting the tone position and/or time position of the pattern to identify a particular attachment point corresponding to the base station sector transmitter and tone block) can use the stored information to cause the identified attachment point to be associated with a particular power transmission layer Associated with the power conversion factor for a particular tone block. In some embodiments, the load factor (e.g., bk) is greater than or equal to 〇 and less than or equal to one. In some embodiments, the value is communicated from the base station sector to the wireless terminal, representing a plurality of levels (eg, 〇d B, -1 dB, -2 dB, -3 dB, -4 dB, -6 dB) One of , -9 dB, negative infinity dB). Table 950 of Figure 10 illustrates exemplary uplink load factor information that can be communicated by a base station sector via a downlink 115454.doc - 61 - 1354460 link broadcast channel. In some embodiments, the beacon signal is transmitted from the base station transmitter at the same power regardless of the power transmission layer associated with the tone block being used; however, other downlink signals (eg, pilot signals) Affected by the power transfer layer associated with the tone block used for the base station sector transmitter. In some embodiments, the parameter κ is a value greater than or equal to 6 dB. For example, in an exemplary embodiment, the parameter K = 23_8 dB - 7.2 dB = 16.0 dB. Figure 18 is a diagram 1800 of exemplary timing structure information and corresponding interference reporting information (e.g., beacon ratio report reporting information) for an exemplary embodiment. The exemplary timing structure includes an uplink timeout slot as indicated by column 18〇2, and the Suichuan 02 display index = 上行 uplink overclocking followed by an uplink timeout slot of index -1. In the exemplary embodiment, each timeout slot contains 18 indexed beacon slots as indicated by column 1804. Each beacon slot contains, for example, 912 consecutive OFDM symbol transmission periods. In this exemplary embodiment, the 'wireless terminal' can report two different types of beacon ratio reports, for example, via a dedicated control channel segment to a serving base station sector, a first type of letter # rate reporting system. The generic beacon ratio report and the second type t beacon ratio report are specific beacon ratio reports (sometimes referred to as special letter 1 rate reports). The first-type beacon ratio report is a generic beacon ratio report and uses two subtypes of generic beacon ratio reports. First-subtype: The generic "ratio report determines the reported value as a function of one or more interfering base station sectors. The general subtotal ratio report for the second subtype is determined to be the maximum value (eg 'in terms of interference value') The reported value of the function of the worst-case sector. As indicated by the column deletion, to be used = 115454.doc -62- 函数 The sub-type of the beacon ratio report, the function of the beacon time slot index. For the _ index Even value (0'2, 4, 6'8, 1〇, 12, 14, 16): The $line terminal uses the summation function to report the report when transmitting the universal beacon ratio report. For the beacon The odd value of the time slot index (Bu 3, 5, 9, 9, 15, 15) 'The wireless terminal uses the maximum function to determine the report β column 18〇8 indication when transmitting the general beacon ratio report. When the terminal transmits a specific beacon ratio report, the communication-corresponding to the report of the base station sector, the sector is identified in a request and has a sector that is a function of the value of the slot 4 曰Type. For example, consider using two different sector types (sector type〇 Sector type 丨, and sector type 2). A request signal from a serving base station sector requesting a specific type of beacon ratio report may include a cell identifier value (eg, a slope value) and communicate therein The report's uplink timing structure determines the sector type. For example, for the index = (〇, 3, 6, 9, 12, 15) beacon time slot 'wireless terminal is reporting a specific beacon ratio report When reporting a specific beacon ratio report that associates the serving base station sector with another base station sector identified by a communication cell identifier value and having sector type = 0. For index = (1, 4) , 7, 10, 13, 16) beacon time slot, when the wireless terminal reports a specific beacon ratio report, 'reports one to make the serving base station sector and is identified by a communication cell identifier value and has a sector type =1 other - specific beacon ratio report associated with the base station sector. For beacon time slots of index = (2, 5, 8, 11, 14, 17), the wireless terminal reports a specific beacon ratio report When reporting a service base station sector with a small communication The specific beacon ratio report β w w identified by the identifier value and having another sector of the sector type = 115454.doc -63· 1354460 observes that this is understood by both the base station and the wireless terminal. Based on the report format of the predetermined timing structure, the line supports multiple report formats while limiting the amount of transmission of the k-number. In addition, it should be observed that for a particular message 'ratio report' is partly by the information contained in a request signal and Obtaining the base of interest by the position in the uplink timing structure
σ羽區之識别,目此*耗用e號傳輪需要較少位元以識別 所關心之基地台扇區。 圖19在圖式19〇〇中為—例示性實施例說明例示性信標比 率報D β求下行鏈路仏號傳輸及例示性上行鏈路信標比率 報告信號傳輸。在圖1900中,基地台扇區1902 (用於無線 終端機1904之當前附接點)發送一(例如)作為下行鍵路訊務 控制通道快閃信號之部分的下行鏈路訊務通道控制信號 1906,其包含對信標比率報告請求欄位19咐的資訊。在 龍實施财包含對信標^率報告之請求欄位的信號為 廣播#號’例如,意欲供客相& μ 思人供夕個無線終端機使用。因此,一 個別控制㈣經廣播以供多個連接無線終端機使用 低在關於待發送之干擾報告之類型而個別控制每一益線線 端機時另外將需要的耗用控制信號傳輸之位準。在一此實 施例中’單-對信標比率報告之請求下行對 於將由—無線終端機通信的多個上行鍵路干擾報止1 些實施例中,單一對信標比率報告之 。:在- 應於用於-個別無線終端機的單 /仃鏈路㈣對 一些實施例中’單一對信標比擾報告。在 < %求下行鏈路信號 115454.doc -64 - 對應於用於複數個不同無線終端機之每一 行鏈路報告。對信標比率 干擾上 求之#。本&, ηΛ σ之明求攔位包含一指示該請 I報止了由二1係例7^性對信標比率報告之請求攔位, 第報:可由BSS咖及WTl9〇4使用的格式。表格19〇】之 第一行1918指示報告所傳 所D在 得送之值,第二行1920包含對應值The identification of the σ-Yu area, which requires the use of the e-number transmission wheel requires fewer bits to identify the base station sector of interest. Figure 19 illustrates, in the context of Figure 19, an exemplary beacon ratio report D? for downlink nickname transmission and exemplary uplink beacon ratio report signal transmission. In diagram 1900, base station sector 1902 (for the current attachment point of wireless terminal 1904) transmits a downlink traffic channel control signal, for example, as part of the downlink signal control channel flash signal. 1906, which contains information on the beacon ratio report request field 19咐. In the Long implementation, the signal containing the request field for the beacon report is broadcast ##, for example, intended to be used by the guest & Therefore, one control (4) is broadcasted for the plurality of connected wireless terminals to use the level of the consumption control signal that will be additionally required when individually controlling each of the pay line end machines with respect to the type of interference report to be transmitted. . In one such embodiment, the request for the 'single-to-beacon ratio report is reported to report multiple uplink channel interferences to be communicated by the wireless terminal. In some embodiments, a single pair of beacon ratios is reported. : In-single-to-beacon-to-beacon (s). The <% downlink signal 115454.doc -64 - corresponds to each downlink report for a plurality of different wireless terminals. For the beacon ratio, the interference is on the #. This &, ηΛ σ 求 拦 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求format. The first line 1918 of Table 19 indicates the value of the report D is sent, and the second line 1920 contains the corresponding value.
产比^主訊。若值為零,則無線終端機將報告一通用信 告。若值為非零正整數,則無線終端機將報告-標比率報告’且值對應於一由所關心之基地台扇區 ^的小區識”參數,例如,斜率值。在-些實施例 :,該斜率值係、對應於導頻音調信號之斜率之值。然而, :實施例中’同一小區内之多個基地台扇區使用相同 ,斜率值且因此’上行鏈路時序資訊亦用以蚊待用於 Γ特別特定信標比率報告(例如,由列刪所指示之時序 資矾)的所關心之特別基地台扇區。Production ratio ^ main news. If the value is zero, the wireless terminal will report a general message. If the value is a non-zero positive integer, then the wireless terminal will report the -standard ratio report 'and the value corresponds to a cell identification by the base station sector of interest", for example, the slope value. In some embodiments: The slope value is a value corresponding to the slope of the pilot tone signal. However, in the embodiment, the plurality of base station sectors in the same cell use the same, the slope value and thus the uplink timing information is also used. Mosquitoes are used for special base station sectors of interest for special specific beacon ratio reports (eg, timing assets indicated by the deletion).
在些其他實施例中,無線終端機預設地傳輸第—類型 之報告’且在對信標比率報告之請求信號得以通信時傳輸 第:類型之報告。舉例而言’可預設地通信通用信標比率 報告’ a若基地台想要通信特定類型信標比率報告,則基 地台通k包含小區識別符資訊之對信標比率報告之請求 專用控制通道區段信號1910包含一根據請求資訊及上行 鏈路時序結構資訊的信標比率報告191卜專用控制通道: 段信號1914包含一根據請求資訊及上行鏈路時序結構資訊 的信標比率報告1916。舉例而言,考慮請求襴位1908傳送 115454.doc -65- 1354460 值。報告19 12對應於一在指數=〇之信標時槽期間通信之 信標比率報告,且報告1916對應於_在指數=ι之信標時槽 期間通信之信標比率報告。信標比率報告1912係使用求和 函數來計算報告值之通用信標比率報告,該報告使同一音 »周塊之偵測到的基地台扇區與服務基地台扇區相關聯;信 標比率報告1916係使用最大值函數來計算報告值之通用信 標比率報告’該報告使同一音調塊之偵測到的基地台扇區 φ 與服務基地台扇區相關聯。現考慮請求攔位1908傳送值 1,報告1912對應於一在指數=〇之信標時槽期間通信之信 標比率報告,且報告1916對應於一在指數=1之信標時槽期 間通k之信標比率報告《信標比率報告1912係使當前服務 基地台扇區附接點與一局部基地台扇區相關聯之特定信標 比率報告’該局部基地台扇區由斜率值=丨識別且具有扇區 類型=0並使用與服務基地台扇區相同之音調塊;信標比率 報告i 916係使當前服務基地台扇區附接點與一局部基地台 • 扇區相關聯之特定信標比率報告,該局部基地台扇區由斜 率值=1識別且具有扇區類型=1並使用與服務基地台扇區相 同之音調塊。 圖20為一根據各項實施例實施的例示性通信系統2000之 圖式。例示性通信系統2000包含經由一回程網路搞接在一 起之複數個基地台(BS 1 2001、BS 2 2002、BS 3 2003、 BS 4 2004、BS 5 2005、BS 6 2006、BS 7 2007、BS 8 2008、BS 9 2009、BS 10 2010)。該等 BS (2001、2002、 2003、2004、2005、2006、2007、2008、2009、2010)係 115454.doc •66- 1354460 三扇區基地台。BS 1 2001包含:斜率值=2且扇區類型值 =〇之第一扇區20 12;斜率值=2且扇區類型值=1之第二扇區 2〇14 ;及斜率值=2且扇區類型值=2之第三扇區2〇16。bs 2 2002包含:斜率值=1且扇區類型值=〇之第一扇區2〇18 ;斜 率值=1且扇區類型值=1之第二扇區2020;及斜率值=1且扇 區類型值=2之第三扇區2022。BS 3 2003包含:斜率值y 且扇區類型值=0之第一扇區2024 ;斜率值=1且扇區類型值 ^ —1之第二扇區2〇26 ;及斜率值=1且扇區類型值=2之第三扇 區2028。BS 4 2004包含:斜率值=2且扇區類型值=〇之第 一扇區2030 ;斜率值=2且扇區類型值=1之第二扇區2032 ; 及斜率值-2且扇區類型值=2之第三扇區2034。BS 5 2005 包含:斜率值=3且扇區類型值=〇之第一扇區2〇36 ;斜率值 =3且扇區類型值=1之第二扇區2〇38 ;及斜率值=3且扇區類 型值-2之第二扇區2040。BS 6 2〇06包含:斜率值=4且扇 區類型值=0之第一扇區2042;斜率值=4且扇區類型值=1之 φ 第二扇區2044 ;及斜率值=4且扇區類型值=2之第三扇區 2046。BS 7 2007包含:斜率值=5且扇區類型值=〇之第一 扇區2048 ;斜率值=5且扇區類型值=1之第二扇區2〇5〇 ;及 斜率值=5且扇區類型值=2之第三扇區2〇52。BS 8 2008包 含:斜率值=6且扇區類型值=〇之第一扇區2054 ;斜率值=6 且扇區類型值=1之第一扇區2056 ;及斜率值=6且扇區類型 值=2之第三扇區2058。BS 9 2009包含:斜率值=7且扇區 類型值=0之第一扇區2060 ;斜率值=7且扇區類型值=1之第 二扇區2062 ;及斜率值=7且扇區類型值=2之第三扇區 115454.doc •67- 1354460 2064。BS 10 2010包含:斜率值=8且扇區類型值=〇之第一 扇區2066,斜率值=8且扇區類型值=1之第二扇區2〇68 ;及 斜率值=8且扇區類型值=2之第三扇區2070。 例示性通信系統2000亦包含複數個無線終端機。例示性 WT A 2072及例示性WT B 2072經展示為分別經由無線鍵 路(2076、2078)連接至基地台5 2005第二扇區2038 »基地 台5 2005第二扇區2038附接點發送廣播下行鏈路訊務通道 控制信號’該等信號(例如)包含如圖19中所指示之對彳古標 ® 比率報告之請求欄位。WT A 2072處於開啟操作狀態,且 已分配有上行鏈路專用控制通道區段以用於通信上行鍵路 控制報告,該等上行鏈路報告中之一些將為干擾報告,例 如’信標比率報告。同樣地,WT B 2074處於開啟操作狀 態,且已分配有上行鏈路專用控制通道區段以用於通信上 行鏈路控制報告’該等上行鏈路報告中之一些將為干擾報 告,例如’信標比率報告《該等WT (2072、2074)在決定 • 待通信之信標比率報告之類型時接收廣播的對信標比率報 告之請求資訊。在一些實施例中,該資訊結合時序結構資 用於決疋待包含於上行鍵路干擾報告中之資气。 應觀察到,用作基地台識別符之斜率值係局部唯一的, 但在系統2000中並非唯一的。舉例而言,斜率值=1由Bs ^ 20(H與BS 3 2003用作小區識別符。然而,在评丁與基地台 附接點之間就哪一基地台係所欲目標而言不存在不定性。 藉由使用局部唯一的基地台識別符,與系統唯一基地台識 別符相反,在控制信號傳輸中,減少了表示基地台所需之 115454.doc -68- 1354460 位元數目,從而允許在利用大量基地台之系統中減少控制 信號傳輸耗用。相同原理可(且在各項實施例中確實)用於 包含大量扇區之基地台。舉例而言,例示性五扇區基地台 可使用三種不同的扇區類型,其中扇區類型值之兩者被使 用兩次。 圖2 1為說明對應於圖2〇之系統2〇〇〇的例示性下行鏈路控 制信號傳輸及上行鏈路干擾報告(例如,信標比率報告)之 圖式2100。第一列2104包含一時間線,其指示對應於不同 基地台扇區類型,對信標比率報告之特定報告何時係可能 的在此實例中,存在二種不同扇區類型(扇區類型〇、扇 區類型1,及扇區類型2)。根據此實施例,報告結構在三 種類型之間交替,例如,其中每一方塊表示信標時槽之時 間間隔(參見圖18)。第二列2106指示包含於一廣播下行鍵 路訊務控制通道信號中的對信標比率報告之請求值(參見 圖19)。第三列2108指示WT a所通信之報告類型‘,其中& 通用報告且S =特定報告。第四列2110為WT A特定報告指 示計算特定報告時將使用的基地台及基地台扇區類型。第 五列2112指示WTB所通信之報告類型,其中通用報告 且S =特定報告。第六列2114為WT B特定報告指示計算特 定報告時將使用的基地台及基地台扇區類型。 列2106之卜值為〇,其指示對應的干擾報告應為通用 類型報告。因此WT A盘WT Ώ /由 ΤΑΜΤΒ均傳輸通用上行鏈路信標比 靡σ 6之第二值為4 ’其指示對應的報告 應於一制斜率㈣之局部基W㈣定《報告。 115454.doc •69· 1354460 用於對應的上行鏈路彳古典L # ^標比率報告之時間在用於扇區類型 〇之信標時槽内。因此,加下时& —In some other embodiments, the wireless terminal pre-transmits the first type of report' and transmits a type: report when the request signal for the beacon ratio report is communicated. For example, 'a generic beacon ratio report can be communicated by default'. If the base station wants to communicate a specific type of beacon ratio report, the base station k contains a request-specific control channel for the beacon ratio report of the cell identifier information. The segment signal 1910 includes a beacon ratio report 191 based on the request information and uplink timing structure information. The segment signal 1914 includes a beacon ratio report 1916 based on the request information and the uplink timing structure information. For example, consider requesting location 1908 to transmit a value of 115454.doc -65 - 1354460. The report 19 12 corresponds to a beacon ratio report for communication during the slot of the index = 信, and the report 1916 corresponds to the beacon ratio report for communication during the slot of the index = ι. The beacon ratio report 1912 is a general beacon ratio report that uses a summation function to calculate a report value that correlates the detected base station sector of the same tone»week block with the serving base station sector; beacon ratio Report 1916 is a generic beacon ratio report that uses a maximum function to calculate a reported value. This report associates the detected base station sector φ of the same tone block with the serving base station sector. Considering that the request block 1908 transmits a value of 1, the report 1912 corresponds to a beacon ratio report for communication during the time slot of the index = 信, and the report 1916 corresponds to a beacon during the time slot of the index = 1 Beacon Ratio Report "Beacon Ratio Report 1912 is a specific beacon ratio report that associates the current serving base station sector attachment point with a local base station sector." The local base station sector is identified by a slope value = 丨And having a sector type = 0 and using the same tone block as the serving base station sector; the beacon ratio report i 916 is a specific letter that associates the current serving base station sector attachment point with a local base station/sector The standard ratio report indicates that the local base station sector is identified by a slope value of 1 and has a sector type of 1 and uses the same tone block as the serving base station sector. 20 is a diagram of an exemplary communication system 2000 implemented in accordance with various embodiments. The exemplary communication system 2000 includes a plurality of base stations that are connected together via a backhaul network (BS 1 2001, BS 2 2002, BS 3 2003, BS 4 2004, BS 5 2005, BS 6 2006, BS 7 2007, BS) 8 2008, BS 9 2009, BS 10 2010). These BSs (2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010) are 115454.doc • 66- 1354460 three-sector base stations. BS 1 2001 includes: a first sector 20 12 with a slope value = 2 and a sector type value = ;; a second sector 2 〇 14 with a slope value = 2 and a sector type value = 1; and a slope value = 2 and The sector type value = 2 of the third sector 2 〇 16. Bs 2 2002 includes: the first sector 2〇18 with the slope value=1 and the sector type value=〇; the second sector 2020 with the slope value=1 and the sector type value=1; and the slope value=1 and the fan The third sector 2022 of the zone type value = 2. BS 3 2003 includes: a first sector 2024 with a slope value y and a sector type value = 0; a second sector 2 〇 26 with a slope value = 1 and a sector type value of -1; and a slope value = 1 and a fan The third sector 2028 of the zone type value = 2. BS 4 2004 includes: a first sector 2030 with a slope value = 2 and a sector type value = ;; a second sector 2032 with a slope value = 2 and a sector type value = 1; and a slope value of -2 and a sector type The third sector 2034 of value = 2. BS 5 2005 includes: slope value = 3 and sector type value = 第一 first sector 2 〇 36; slope value = 3 and sector type value = 1 second sector 2 〇 38; and slope value = 3 And a second sector 2040 of sector type value -2. BS 6 2〇06 includes: a first sector 2042 with a slope value = 4 and a sector type value = 0; a slope value = 4 and a sector type value = 1 φ second sector 2044; and a slope value = 4 and The third sector 2046 of sector type value = 2. BS 7 2007 includes: a first sector 2048 with a slope value = 5 and a sector type value = ;; a second sector 2 〇 5 斜率 with a slope value = 5 and a sector type value = 1; and a slope value = 5 and The sector type value = 2 of the third sector 2 〇 52. BS 8 2008 includes: first sector 2054 with slope value = 6 and sector type value = ;; first sector 2056 with slope value = 6 and sector type value = 1; and slope value = 6 and sector type The third sector 2058 of value = 2. BS 9 2009 includes: first sector 2060 with slope value = 7 and sector type value = 0; second sector 2062 with slope value = 7 and sector type value = 1; and slope value = 7 and sector type The third sector of value = 2 115454.doc • 67- 1354460 2064. BS 10 2010 includes: a first sector 2066 with a slope value = 8 and a sector type value = ,, a second sector 2 〇 68 with a slope value = 8 and a sector type value = 1; and a slope value = 8 and a fan The third sector 2070 of the zone type value = 2. The exemplary communication system 2000 also includes a plurality of wireless terminals. An exemplary WT A 2072 and an exemplary WT B 2072 are shown as being connected to a base station 5 2005 second sector 2038 via a wireless link (2076, 2078), respectively, a base station 5 2005 second sector 2038 attachment point transmitting a broadcast Downlink Traffic Channel Control Signals 'These signals, for example, contain a request field for the 彳古标® ratio report as indicated in FIG. WT A 2072 is in an on-operation state and has been assigned an uplink dedicated control channel section for communicating uplink control reports, some of which will be interference reports, such as a 'beacon ratio report' . Similarly, WT B 2074 is in an on-operation state and has been assigned an uplink dedicated control channel section for communication uplink control reporting. Some of these uplink reports will be interference reports, such as 'letter Standard Ratio Reports These WTs (2072, 2074) receive broadcasted request information for beacon ratio reports when deciding the type of beacon ratio report to be communicated. In some embodiments, the information is combined with the timing structure to account for the asset to be included in the uplink routing interference report. It should be observed that the slope value used as the base station identifier is locally unique, but not unique in system 2000. For example, the slope value = 1 is determined by Bs ^ 20 (H and BS 3 2003 are used as cell identifiers. However, there is no existence between the evaluation base and the base station attachment point as to which base station desired target. Uncertainty. By using a locally unique base station identifier, as opposed to the system's unique base station identifier, the number of 115454.doc -68-1354460 bits required to represent the base station is reduced in control signal transmission, allowing The use of control signal transmission is reduced in systems that utilize a large number of base stations. The same principles can be used (and indeed in various embodiments) for base stations containing a large number of sectors. For example, an exemplary five-sector base station can Three different sector types are used, where both of the sector type values are used twice. Figure 21 is an illustration of an exemplary downlink control signal transmission and uplink corresponding to the system 2 of Figure 2A. Schematic 2100 of the interference report (eg, beacon ratio report). The first column 2104 includes a timeline indicating that a particular report on the beacon ratio report is possible in this instance corresponding to different base station sector types. in There are two different sector types (sector type 〇, sector type 1, and sector type 2). According to this embodiment, the reporting structure alternates between the three types, for example, where each square represents a beacon The time slot interval (see Figure 18). The second column 2106 indicates the request value for the beacon ratio report contained in a broadcast downlink traffic control channel signal (see Figure 19). The third column 2108 indicates WT. a report type 'communicated', where & general report and S = specific report. The fourth column 2110 indicates the base station and base station sector type to be used when calculating the specific report for the WT A specific report. The fifth column 2112 indicates The type of report communicated by the WTB, where the generic report and S = specific report. The sixth column 2114 is the base station and base station sector type that will be used when calculating the specific report for the WT B specific report indication. The value of the column 2106 is 〇, It indicates that the corresponding interference report should be a generic type report. Therefore, the WT A disk WT Ώ / is transmitted by the common uplink beacon ratio 靡 σ 6 and the second value is 4 ', indicating that the corresponding report should be in the one-system slope (4) Section W (4) is set to report. 115454.doc • 69· 1354460 The time for the corresponding uplink 彳 classical L # ^ standard ratio report is in the slot for the sector type 信 beacon. Therefore, when added & —
WT將特疋信標比率報告傳輸至BS 5扇區2038,從而使農妯A ^ 土地。6扇區類型〇扇區2〇42與基地台5 扇區類型.1扇區2038相關Μ。说丨吐 相關聯。列21〇6之第三及第四值為0,The WT transmits the amnesty beacon ratio report to the BS 5 sector 2038, thereby enabling the farmer to land. The 6 sector type 〇 sector 2〇42 is related to the base station 5 sector type .1 sector 2038. Said vomiting related. The third and fourth values of column 21〇6 are 0,
且因此對應的信標比率報告為通用信標比率報告。列21〇6 之第五值為1,其指示對應的報告應為對應於-使用斜率 值=1之局部基地台扇區的特定類型報告。用於對應的上行 鍵路信標tb率報告之時間在用於扇區㈣2之信標時槽 内。因此,WT將特定信標比率報告傳輸至BS 5扇區 2038 ’從而使基地台3扇區類型2扇區之咖與基地台$扇區1 2038相關聯。列2106之第六值為〇,且因此對應的信標比 率報告為通用信標比率報告。列21〇6之第七值為2,其指 示報告應為對應於一使用斜率值=2之局部基地台扇區的特 定類型報告。用於對應的上行鏈路信標比率報告之時間在 用於扇區類型0之信標時槽内。因此,臂丁將特定信標比率 報告傳輸至BS 5扇區2038,從而使基地台4扇區類型〇扇區 2030與基地台5扇區i 2〇38相關聯。列21〇6之第八、第九 及第十值為0,且因此對應的信標比率報告為通用信標比 率報告。列2106之第十一值為2,其指示報告應為對應於 一使用斜率值=2之局部基地台扇區的特定類型報告。用於 對應的上行鏈路信標比率報告之時間在用於扇區類型2之 信標時槽内。因此,wt將特定信標比率報告傳輸至Bs 5 扇區2038,從而使基地台4扇區類型2扇區2034與基地台5 扇區1 2038相關聯。列2106之第十二、第十三及第十四值 115454.doc • 70· 為Ο,且因此對應的信標比率生 _ 千报。為通用信標比率報告。 報ΓΓ性實施射,在時序結構中在包含對信標比率 t之^^下行料控制通道”與對應的上行鍵路干 擾報告機會之間存在固定關 _ β 隹u疋關係’例如,如虛線箭頭所指 不 土地台與無線終端機均理解,拉皮+ ^, J主解時序結構中之此鏈接會And therefore the corresponding beacon ratio report is a generic beacon ratio report. The fifth value of column 21〇6 is 1, which indicates that the corresponding report should be a specific type of report corresponding to the local base station sector using the slope value=1. The time for the corresponding uplink beacon tb rate report is in the beacon time slot for sector (4) 2. Therefore, the WT transmits a specific beacon ratio report to the BS 5 sector 2038' to associate the base station 3 sector type 2 sector coffee with the base station $ sector 1 2038. The sixth value of column 2106 is 〇, and thus the corresponding beacon ratio report is reported as a generic beacon ratio report. The seventh value of column 21〇6 is 2, which indicates that the report should be a specific type report corresponding to a local base station sector using a slope value = 2. The time for the corresponding uplink beacon ratio report is in the beacon time slot for sector type 0. Thus, the arm transmits a particular beacon ratio report to BS 5 sector 2038, thereby associating base station 4 sector type 〇 sector 2030 with base station 5 sector i 2 〇 38. The eighth, ninth, and tenth values of column 21〇6 are zero, and thus the corresponding beacon ratio is reported as a generic beacon ratio report. The eleventh value of column 2106 is 2, which indicates that the report should be a specific type of report corresponding to a local base station sector using a slope value = 2. The time for the corresponding uplink beacon ratio report is in the beacon slot for sector type 2. Thus, wt transmits a particular beacon ratio report to Bs 5 sector 2038, thereby associating base station 4 sector type 2 sector 2034 with base station 5 sector 1 2038. The twelfth, thirteenth and fourteenth values of column 2106 115454.doc • 70· is Ο, and therefore the corresponding beacon ratio is _ thousand reports. Report for the generic beacon ratio. Reporting implementation, in the timing structure, there is a fixed relationship between the downlink control channel including the beacon ratio t and the corresponding uplink interference reporting opportunity. For example, as a dotted line The arrows indicate that the land platform and the wireless terminal are both understood, and the link in the main structure of the pull solution + ^, J will be
,低耗用信號傳輸。在此例示性實施例中,WT A及资B 一上订鏈路時序結構中在不同的時間點處傳輸其對應於同 ^青求的上行鏈路信標㈣報告。對於其他實施例及/或 其他無線終端機,可(例如)使用音調塊中之不同音調而同 時通信該等報告。另外,左 另外在一些實施例中,(例如)在給定 的時間間隔内,-WT進行報告之頻率可不同於一不同無 線終端機進行報主夕瓶座+ “ 口 頻革由於一無線終端機可相對於另 一無線終端機在不同的報告操作模式中。, low consumption signal transmission. In this exemplary embodiment, the WT A and the B-B last link timing structure transmit their uplink beacon (four) reports corresponding to the same request at different points in time. For other embodiments and/or other wireless terminals, the reports can be communicated simultaneously, for example, using different tones in the tone block. In addition, in addition, in some embodiments, for example, within a given time interval, the frequency at which the -WT reports may be different from that of a different wireless terminal. The machine can be in a different reporting mode of operation relative to another wireless terminal.
雖然對於兩個例示性無線終端機加以說明,但應瞭解, 在一些實施例中,對信標比率報告廣播控制信號之同一請 求可(且有時確實)由使用該基地台扇區附接點之許多額外 無線終端機利用。舉例而言,考慮-例示性實施例,其中 基地〇扇區附接點可具有多達3丨個同時開啟狀態使用 且該等開啟狀態使用者上之每一者接收一專用控制通 道以用於傳輸包含信標比率報告之上行鏈路控制通道報 告,每一開啟狀態使用者可接收且利用對信標比率報告下 行鏈路信號之同一廣播請求。 圖22為一根據各項實施例的操作一無線終端機之例示性 方法之流程圖22〇〇的圖式。該例示性方法開始於步驟 H5454.doc -71 - 1354460 2202中,其中對無線終端機開機且初始化。操作自開始步 驟2202進行至步驟22()4、讓、纖,且在—些實施例中Although illustrated with respect to two exemplary wireless terminals, it should be appreciated that in some embodiments, the same request to report the broadcast control signal for the beacon ratio may (and sometimes does) be used by the base station attachment point. Many of the additional wireless terminals are utilized. For example, consider an exemplary embodiment in which a base 〇 sector attachment point can have up to 3 simultaneous open state uses and each of the open state users receives a dedicated control channel for use An uplink control channel report containing a beacon ratio report is transmitted, and each open state user can receive and utilize the same broadcast request reporting the downlink signal to the beacon ratio. 22 is a flow diagram of a flowchart 22B of an exemplary method of operating a wireless terminal in accordance with various embodiments. The exemplary method begins in step H5454.doc-71 - 1354460 2202, where the wireless terminal is powered on and initialized. Operation proceeds from start step 2202 to step 22 () 4, let, fiber, and in some embodiments
進^至㈣221G。在步驟22G4中,無線終端機監視以偵測 通k上行鏈路負載因數之所接收廣播信號,每一廣播上行 鏈路負載因數對應於一附接點。在步驟22〇6中,操作無線 終端機以自第_附接點接收第—信號,例如,信標或導頻 信號。在步驟22〇8中,操作無線終端機以自第二附接點接 收第二信號’例如’信標或導頻信號。在步驟221〇中,在 執行時,操作無線終端機以自第三附接點接收第三信號, 例如’信標或導頻信號。 操作自步驟2206進行至步驟2226,其中無線終端機對所 接收第-信號執行第一量測’例如’信號功率量測。操作 自步驟2208進行至步驟2228’其中無線終端機對所接收第 二信號執行第二量浪卜例如,信號功率量測。操作自步驟 進行至步驟223〇,其中無線終端機對所純第三信號 執行第三量測,例如,信號功率量測。操作自步驟2226、 2228及2230進行至步驟2232。 返回至步驟2204,在步驟22G4中,無線終端機輸出所接 收上行鏈路負載因數資訊’該資訊經轉發以用於步驟咖 中、。對應於第-附接點(無線終端機在該第—附接點處具 有連接),無線終端機輸出所接收第一上行鏈路負載因數 資訊22仏對應於第二附接點,無線終端機可已能夠或尚 無法摘測且恢復上行鏈路負載因數》在步驟2214中,若無 線終端機已偵測且恢復對應於第二附接點之上行鏈路負載 II5454.doc •72- 1354460Into ^ (four) 221G. In step 22G4, the wireless terminal monitors to detect the received broadcast signal for the k-link uplink loading factor, each broadcast uplink load factor corresponding to an attachment point. In step 22〇6, the wireless terminal is operated to receive a first signal, e.g., a beacon or pilot signal, from the first attachment point. In step 22A8, the wireless terminal is operated to receive a second signal 'e.g.' a beacon or pilot signal from the second attachment point. In step 221, upon execution, the wireless terminal is operated to receive a third signal, such as a 'beacon or pilot signal,' from the third attachment point. Operation proceeds from step 2206 to step 2226, in which the wireless terminal performs a first measurement 'e.g.' signal power measurement on the received first signal. Operation proceeds from step 2208 to step 2228' where the wireless terminal performs a second amount of measurement, e.g., signal power measurement, on the received second signal. Operation proceeds from step to step 223, where the wireless terminal performs a third measurement, such as signal power measurement, on the pure third signal. Operation proceeds from steps 2226, 2228, and 2230 to step 2232. Returning to step 2204, in step 22G4, the wireless terminal outputs the received uplink load factor information 'this information is forwarded for use in steps. Corresponding to the first-attachment point (the wireless terminal has a connection at the first-attachment point), the wireless terminal outputs the received first uplink loading factor information 22仏 corresponding to the second attachment point, the wireless terminal In the step 2214, if the wireless terminal has detected and restored the uplink load corresponding to the second attachment point II5454.doc • 72-1354460
因數,則無線終端機轉發所接收第二上行鍵路負載次 訊2216以供用於步驟2232令。然而,若無線終端機尚未: 測且恢復對應於第二附接點之上行鏈路負載因數,則在牛 驟2218t ’無線終端機將第二上行鏈路負載因數設定為二 預設值(例如,值丨),該預設值將用於步驟2232中。對應於 第三附接點,無線終端機可已能夠或尚無法偵測且恢:上 行鏈路負載因數。在步驟222()中,若無線終端機已_且 恢復對應於第三附接點之上行鏈路負载因數,則無線終端 機轉發所接收第三上行鏈路負載因數資訊2222以供用於步 驟2232中。然而’ 無線終端機尚未偵測且恢復對應於第 三附接點之上行鍵路負載因數’則在步驟2224中,無線终 端機將第三上行鏈路負載因數設定為一預設值(例如,值 1),該預設值將用於步驟2232 t。 在步驟2232中’無線終端機基於對第一信號之量測、對 應於第-附接點之第-所接收上行鏈路負載因數且使用第 二量測之結果來產生上行鏈路干擾報告。步驟2232包含步 驟2234’其中無線終端機決^第—值與第二值之比率,該 第一值係第-負載因數與第-信號量測之結果之乘積的函 數,且其中該第二值係第二量測之第二結果之函數。在一 些實施例t ’第二值亦係對應於第二附接點之第二負載因 數與第二信號量測之結果之乘積的函數。 在一些實施例(例如,其中來自三個不同附接點之三個 或三個以上所接收信號用於產生—干擾報告的一此實施 例)中,步驟熊包含步驟2236。在步驟中無線終 U5454.doc -73· 1354460 端機使用第三量測之結果來產生第二值。步驟2236包含子 步2238及子步2240 ’執行該等子步中之一者以產生干擾報 告。在一些實施例中,在不同時間處,使用子步2238及 2240中之不同者來產生干擾報告。在子步2238中,無線終 端機對第三及第四值求和,該第三值係第二信號量測之結 果之函數,該第四值係第三信號量測之結果之函叙。在子 步2240中,無線終端機將第二值設定為第三及第四值之最 大值,該第三值係第二信號量測之結果之函數,該第四值 係第三信號量測之結果之函數。 操作自步驟2232進行至步驟2242。在步驟2242中,無線 終端機傳輸來自步驟2232之所產生上行鏈路干擾報告。 在一些實施例中,第一及第二信號係〇Fdm信號。在一 些其他實施例中’第一及第二信號係CDMA信號。The factor then the wireless terminal forwards the received second uplink key load message 2216 for use in step 2232. However, if the wireless terminal has not: measured and restored the uplink loading factor corresponding to the second attachment point, then the wireless terminal sets the second uplink loading factor to a second preset value (eg, , value 丨), the preset value will be used in step 2232. Corresponding to the third attachment point, the wireless terminal may or may not be able to detect and recover: the uplink load factor. In step 222(), if the wireless terminal has _ and resumes the uplink loading factor corresponding to the third attachment point, the wireless terminal forwards the received third uplink loading factor information 2222 for use in step 2232. in. However, 'the wireless terminal has not detected and restored the uplink key loading factor corresponding to the third attachment point', then in step 2224, the wireless terminal sets the third uplink loading factor to a preset value (eg, The value 1), this preset value will be used in step 2232 t. In step 2232, the 'wireless terminal' generates an uplink interference report based on the measurement of the first signal, the first received uplink load factor corresponding to the first attachment point, and the result of the second measurement. Step 2232 includes a step 2234' wherein the wireless terminal determines a ratio of a first value to a second value, the first value being a function of a product of the first load factor and the first signal measurement result, and wherein the second value Is a function of the second result of the second measurement. The second value in some embodiments t' is also a function of the product of the second load factor of the second attachment point and the result of the second signal measurement. In some embodiments (e.g., one such embodiment in which three or more received signals from three different attachment points are used to generate an interference report), the step bear includes step 2236. In the step, the wireless terminal U5454.doc -73· 1354460 terminal uses the result of the third measurement to generate the second value. Step 2236 includes sub-step 2238 and sub-step 2240' performing one of the sub-steps to generate an interference report. In some embodiments, different ones of sub-steps 2238 and 2240 are used at different times to generate an interference report. In substep 2238, the wireless terminal sums the third and fourth values, which is a function of the result of the second signal measurement, which is a function of the result of the third signal measurement. In substep 2240, the wireless terminal sets the second value to a maximum of the third and fourth values, the third value being a function of a result of the second signal measurement, the fourth value being a third signal measurement The function of the result. Operation proceeds from step 2232 to step 2242. In step 2242, the wireless terminal transmits the generated uplink interference report from step 2232. In some embodiments, the first and second signals are 〇Fdm signals. In some other embodiments, the first and second signals are CDMA signals.
在一些實施例中,對於至少一些干擾報告,根據以下方 程式產生第一值:b〇PB〇 ;且根據以下方程式產生第二 值:ΝΡΒ^,ΡΒ2,·其中b〇係對應於第一附接點之負載因 數;其中PB0係來自第一附接點之所接收信標信號之測得 功率;其中bl係對應於第二附接點之負載因數;其中Μ 係來自第二附接點之所接收信標信號之測得功率;其中b 係對應於第三附接點之負載因數;且其中pi係來自第 附接點之所接收信標信號之測得功率。 在一些實施例中,對於至少一些 τ復報告,根據以下方 程式產生第一i : bopB。;且根據以下方程式產生第二 點之 值:MAX (blPBl,b2pB2);其中b〇係對應於第一附接一 J 15454,doc -74- 1354460 負載因數;其中PB0係來自第一附接點之所接收信標信號 之測得功率;其中b,係對應於第二附接點之負載因數;其 中PB!係來自第二附接點之所接收信標信號之測得功率; 其中fc>2係對應於第三附接點之負載因數;且其中pi係來 自第二附接點之所接收信標信號之測得功率。 圖23為一根據各項實施例實施的例示性無線終端機2300 之圖式。例示性無線終端機2300包含經由一匯流排2312耗 φ 接在一起之一接收器模組23〇2、一傳輸器模組2304、一處 理器2306、使用者I/O設備23〇8,及一記憶體231〇,各種 元件可在該匯流排上交換資料及資訊,記憶體231〇包含常 式23 18及資料/資訊2320 »處理器2306(例如,cpu)執行常 式23 1 8且使用記憶體23 1〇中之資料/資訊232〇來控制無線 終端機2300之操作並實施方法。 接收器模組2302(例如,OFDM接收器)耦接至接收天線 2314,無線終端機2300經由該接收天線自基地台附接點接 φ 收下行鏈路信號,該等下行鏈路信號包含傳送上行鏈路附 接點負載因數、信標信號及導頻信號之廣播信號。傳輸器 模組(例如,傳輸器)耦接至傳輸天線2316,無線終端機 2300經由該傳輸天線將上行鏈路信號傳輸至基地台附接 點,該等上行鏈路信號包含所產生干擾報告,例如,經由 專用控制通道區段而通信之信標比率報告。在一些實施例 中’同一天線(例如,結合雙工模組)用於接收器及傳輸 器。在一些其他實施例中’傳輸器模組2304係CDMA傳輸 器且接收器模組2302係CDMA接收器。在一些實施例中, I15454.doc •75- 1354460 傳輸器模組2304及/或接收器模組23Q2支援〇fd_cdma 信號傳輸。 I/O設備2308包含,你丨丨心 jk j. J如’麥克風、鍵盤、小鍵盤、開 關、攝影機、揚聲器、顯示器等。1/〇設備23〇8允許资 2300之使用者輸入資料/資訊、存取輸出資料/資訊、控制 應用程式,且控制WT 7·, k市J W丄2300之至少一些功能,例如,起始 一通信會話。In some embodiments, for at least some of the interference reports, a first value is generated according to the following equation: b 〇 PB 〇; and a second value is generated according to the following equation: ΝΡΒ ^, ΡΒ 2, where b 对应 corresponds to the first attachment a load factor of the point; wherein PB0 is the measured power of the received beacon signal from the first attachment point; wherein bl is the load factor corresponding to the second attachment point; wherein the system is from the second attachment point Receiving the measured power of the beacon signal; wherein b is a load factor corresponding to the third attachment point; and wherein pi is the measured power of the received beacon signal from the attachment point. In some embodiments, for at least some of the τ complex reports, the first i is generated according to the following program: bopB. And generating a value of the second point according to the following equation: MAX (blPBl, b2pB2); wherein b〇 corresponds to the first attachment one J 15454, doc -74-1354460 load factor; wherein PB0 is from the first attachment point The measured power of the received beacon signal; where b is the load factor corresponding to the second attachment point; wherein PB! is the measured power of the received beacon signal from the second attachment point; where fc> 2 is a load factor corresponding to the third attachment point; and wherein pi is the measured power of the received beacon signal from the second attachment point. FIG. 23 is a diagram of an exemplary wireless terminal set 2300 implemented in accordance with various embodiments. The exemplary wireless terminal 2300 includes a receiver module 23 〇 2, a transmitter module 2304, a processor 2306, a user I/O device 23 〇 8 connected via a bus bar 2312, and A memory 231, various components can exchange data and information on the bus, and the memory 231 includes the routine 23 18 and the data/information 2320 » the processor 2306 (for example, cpu) executes the routine 23 1 8 and uses The data/information 232 in the memory 23 is used to control the operation of the wireless terminal 2300 and implement the method. The receiver module 2302 (for example, an OFDM receiver) is coupled to the receiving antenna 2314, and the wireless terminal 2300 receives the downlink signal from the base station attachment point via the receiving antenna, and the downlink signals include the uplink. The link attachment point load factor, the beacon signal, and the broadcast signal of the pilot signal. A transmitter module (eg, a transmitter) is coupled to a transmit antenna 2316 via which the wireless terminal 2300 transmits an uplink signal to a base station attachment point, the uplink signals including the generated interference report, For example, a beacon ratio report communicated via a dedicated control channel segment. In some embodiments, the same antenna (e.g., in conjunction with a duplex module) is used for the receiver and transmitter. In some other embodiments, the transmitter module 2304 is a CDMA transmitter and the receiver module 2302 is a CDMA receiver. In some embodiments, the I15454.doc • 75-1354460 transmitter module 2304 and/or the receiver module 23Q2 support 〇fd_cdma signal transmission. I/O device 2308 contains, you are jig j. J such as 'microphone, keyboard, keypad, switch, camera, speaker, display, etc. 1/〇 device 23〇8 allows users of 2300 to input data/information, access output data/information, control applications, and control at least some functions of WT 7·, k city JW丄2300, for example, start one Communication session.
吊式23 18包含通信常式2322及無線终端機控制常式 2324。通信常式2322實施由無線終端機23〇〇使用之各種通 信協定。無線終端機控制常式2324包含一上行鏈路負載因 數k號監視模組2326、一負載因數決定模組2328、一第一 里測杈組2330、一第二量測模組2332,及一干擾報告產生 模組2 3 3 4。 上行鏈路負載因數信號監視模組2326偵測通信至少一上 行鏈路負載因數之所接收廣播信號,每一廣播上行鏈路負 • 載因數對應於一附接點。第一量測模組2330量測第一類型 之所接收信號,例如,第一量測模組2330係量測所接收信 標信號之信標信號量測模組。第一信號量測模組2330包含 里測所接收信標信號之功率的信號功率量測模組233 j。 第二量測模組2332量測第二類型之所接收信號,例如,第 一里測模組2332係量測所接收導頻信號之導頻信號量測模 、’且第一量測模組23 32包含一量測所接收導頻信號之功率 的#號功率量測模組23 3 3。 干擾報告產生模組2334基於對第一所接收信號(例如, 115454.doc -76- 1354460 所接收信標或導頻信號)之量測及對應於第一附接點之第 所接收上行鏈路負載因數而產生上行鏈路干擾報告。在 各項實施例中,干擾報告產生模組使用對來自第二附接點 之第二信號(例如,所接收信標或導頻信號)之量測來產生 上行鏈路干擾報告。干擾報告產生模組包含一第一值產生 模、’且23 3 6 秦一值產生模組233 8、一求和模組2342,及 一最大值選擇器模組2344。第二值產生模組2338包含一乘 ^ 法器模組2340。 第一值產生模組2336產生一作為第一負載因數與第一信 號量測之結果之乘積的函數之第一值2384。舉例而言,第 負載因數可對應於當前連接之附接點,該附接點由無線 終端機用作其附接點,且第一信號可為來自當前連接之附 接點的所接收信標或導頻信號。 第二值產生模組2338產生作為第二量測之結果(例如, 對一來自不同於第一值產生模組所使用之附接點的附接點 φ 之所接收信標或導頻信號之量測的結果)之函數的第二值 2386。舉例而言,第二信號可源自在當前服務附接點之鄰 近扇區及/或鄰近小區中之附接點。 乘法器模組2340用於產生對應於第二附接點之第二負載 因數與第二信號量測之結果之乘積。 在一些實施例中,干擾報告產生模組2334使用對來自第 三附接點之第三信號之第三量測之結果來產生該第二值, 從而產生至少一上行鏈路干擾報告。 求和模組2342對第三及第四值(2388、239〇)求和,該第 115454.doc -77- 1354460 三值係第二信號量測之結果之函數,該第四值係第三信號 量測之結果之結果函數。在一些實施例中,對於至少一些 干擾報告,根據以下方程式產生第一值:boPBo ;根據以 下方程式產生第二值:l^PBi+l^PB2 ;其中b〇係對應於第一The hanging type 23 18 includes a communication routine 2322 and a wireless terminal control routine 2324. The communication routine 2322 implements various communication protocols used by the wireless terminal device 23. The wireless terminal control routine 2324 includes an uplink load factor k monitoring module 2326, a load factor determining module 2328, a first metric group 2330, a second measurement module 2332, and an interference. The report generation module 2 3 3 4 . The uplink load factor signal monitoring module 2326 detects received broadcast signals that communicate at least one uplink load factor, each broadcast uplink negative load factor corresponding to an attachment point. The first measurement module 2330 measures the received signal of the first type. For example, the first measurement module 2330 measures the beacon signal measurement module of the received beacon signal. The first signal measurement module 2330 includes a signal power measurement module 233j that measures the power of the received beacon signal. The second measurement module 2332 measures the received signal of the second type. For example, the first measurement module 2332 measures the pilot signal measurement mode of the received pilot signal, and the first measurement module 23 32 includes a ## power measurement module 23 3 3 that measures the power of the received pilot signal. The interference report generation module 2334 is based on the measurement of the first received signal (eg, 115454.doc - 76 - 1354460 received beacon or pilot signal) and the received uplink corresponding to the first attachment point An uplink interference report is generated by the load factor. In various embodiments, the interference report generation module generates an uplink interference report using measurements of a second signal (e.g., received beacon or pilot signal) from the second attachment point. The interference report generation module includes a first value generation module, 'and a 23 3 6-value generation module 233 8 , a summation module 2342 , and a maximum value selector module 2344 . The second value generating module 2338 includes a multiplier module 2340. The first value generation module 2336 generates a first value 2384 as a function of the product of the first load factor and the result of the first signal measurement. For example, the first load factor may correspond to an attachment point of the current connection, the attachment point being used by the wireless terminal as its attachment point, and the first signal may be the received beacon from the attachment point of the current connection Or pilot signal. The second value generation module 2338 generates a result of the second measurement (eg, for a received beacon or pilot signal from an attachment point φ different from the attachment point used by the first value generation module) The second value of the function of the measurement) is 2386. For example, the second signal may originate from an attachment point in a neighboring sector and/or a neighboring cell of the current serving attachment point. The multiplier module 2340 is operative to generate a product of a second load factor corresponding to the second attachment point and a result of the second signal measurement. In some embodiments, the interference report generation module 2334 generates the second value using a result of a third measurement of the third signal from the third attachment point to generate at least one uplink interference report. The summation module 2342 sums the third and fourth values (2388, 239〇), the 115454.doc -77- 1354460 ternary value is a function of the result of the second signal measurement, and the fourth value is the third The result function of the result of the signal measurement. In some embodiments, for at least some of the interference reports, a first value is generated according to the following equation: boPBo; a second value is generated according to the following program: l^PBi+l^PB2; wherein b〇 corresponds to the first
附接點之負載因數;其中PB〇係來自第一附接點之所接收 信標信號之測得功率;其中b,係對應於第二附接點之負載 因數;其尹PBi係來自第二附接點之所接收信標信號之測 得功率;其中h係對應於第三附接點之負載因數;且其中 PB2係來自第三附接點之所接收信標信號之測得功率。a load factor of the attachment point; wherein the PB is the measured power of the received beacon signal from the first attachment point; wherein b is the load factor corresponding to the second attachment point; and the Yin PBi is from the second The measured power of the received beacon signal of the attachment point; wherein h is the load factor corresponding to the third attachment point; and wherein PB2 is the measured power of the received beacon signal from the third attachment point.
最大值扇區模組2344在被利用時將第二值設定為第三及 第四值(2388、2390)之最大值,該第三值係第二信號量測 之結果之函數,該第四值係第三信號量測之結果之函數。 在-些實施例巾’對於至少一些干擾報告,才艮據以下方程 式產生第一值:b0PB();且根據以下方程式產生第二值·· MAX (bJB,,b2PB2);其中bQ係對應於第一附接點之負載 因數;其中PB。係來自第一附接點之所接收信標信號之測 得功率;其中bl係對應於第二附接點之負載因數;其中 PB ,係來自第_附接點之所接收信標信號之測得功率;其 "2係對應於第三附接點之負載因數;且其中PB2係來自 第三附接點之所接收信標信號之測得功率。 在-些實施例中’對於所產生之至少一些干擾報告,第 三信號量測中之至少-些係對導頻通道信號 "~'些實施例中’換算因數用以使導頻作號之傳 輸功率與信標信號之傳^定导低唬之傳 死之傳輸功率相關聯且/或使來自一附接 115454.doc •78- 1354460 >訊(附接點1資訊2364、…、附接點N貧訊2366)。所接收 上行鏈路負載因數資訊23 50可包含對應於各種附接點之所 接收上行鏈路負載因數資訊(附接點1資訊2368 .....附接 點N資訊2370)。測得信標信號資訊2352可包含對應於各種 附接點之測得信標信號資訊(附接點1資訊2372 .....附接 點N資訊2374)。測得導頻信號資訊2354可包含對應於各種 附接點之測得導頻信號資訊(附接點1資訊2376 .....附接The maximum sector module 2344, when utilized, sets the second value to a maximum of the third and fourth values (2388, 2390), the third value being a function of the result of the second signal measurement, the fourth The value is a function of the result of the third signal measurement. In some embodiments, for at least some interference reports, a first value is generated according to the following equation: b0PB(); and a second value is generated according to the following equation: MAX (bJB,, b2PB2); wherein bQ corresponds to The load factor of the first attachment point; where PB. Is the measured power of the received beacon signal from the first attachment point; wherein bl is the load factor corresponding to the second attachment point; wherein PB is the measurement of the received beacon signal from the _attachment point The power is; its "2 corresponds to the load factor of the third attachment point; and wherein PB2 is the measured power of the received beacon signal from the third attachment point. In some embodiments, 'for at least some of the interference reports generated, at least some of the third signal measurements are for the pilot channel signals'~' in some embodiments, the 'scaling factor is used to make the pilot number The transmission power is associated with the transmitted transmission power of the beacon signal and/or is derived from an attached 115454.doc •78-1354460 > (attachment point 1 information 2364, ..., Attachment point N poor news 2366). The received uplink load factor information 23 50 may include received uplink load factor information corresponding to various attachment points (attach point 1 information 2368 ..... attachment point N information 2370). The measured beacon signal information 2352 may include measured beacon signal information corresponding to various attachment points (attach point 1 information 2372 ..... attachment point N information 2374). The measured pilot signal information 2354 may include measured pilot signal information corresponding to various attachment points (attachment point 1 information 2376 ..... attached)
點N資訊2378)。預設上行鏈路負載因數資訊2356可包含對 應於各種附接點之預設上行鏈路負載因數資訊(附接Si資 訊2380、…、附接點n資訊23 82)。Point N information 2378). The preset uplink load factor information 2356 may include preset uplink load factor information (attached Si information 2380, ..., attachment point n information 23 82) corresponding to various attachment points.
在一給定時間處,經儲存且用於產生上行鏈路干擾報告 之資訊之混合可不同於在另一時間點處所儲存之資訊之混 合。舉例而言,在一給定時間處,無線終端機可包含對應 於附接點1之所接收導頻信號及信標信號資訊、對應於附 接點2之所接收信標信號資訊、對應於附接點3之所接收信 標信號資訊、對應於附接點!之所接收上行鏈路負載因數 資訊、對應於附接點2之所接收上行鏈路負載因數資訊、 ,應於附接點1之測得導頻信號資訊、對應於附接點以測 得信標信號資訊、對應於附接點2之測得信標信號資訊、 對應於附接點3之測得信標信號f訊,及對應於附接點3之 預設上行鏈路負載因數資訊。繼續該實例,在另一給定時 間處,無線終端機可白4 阳微包3對應於附接點〗之所接收導頻信 號及信標信號資訊、對座认w 對應於附接點2之所接收信標信號資 訊、對應於附接點3之所接 厅接收導頻k唬及所接收信標信號 115454.doc -80· 1354460 資訊、對應於附接點1之所接收上行鏈路負載因數資訊、 對應於附接點3之所接收上行鏈路負載因數資訊、對應於 附接點1之測得導頻信號資訊、對應於附接點丨之測得信標 信號資訊、對應於附接點2之測得信標信標資訊、對應於 附接點3之測得導頻信號資訊、對應於附接點3之測得信標 信號資訊,及對應於附接點2之預設上行鏈路負載因數資 訊。 # 干擾報告資訊2358包含一第一值2384、一第二值2386、 一第二值2388、一第四值2390、一和值2392、一最大值 2394、一所決定比率2396,及一量化報告值2398。第一值 2384係第一值產生模組2336之運算之結果,而第二值23% 係第二值產生模組2338之運算之結果。第三及第四值 (2388、2390)係用於產生至少一些干擾報告(例如,考慮來 自二個或二個以上不同附接點之資訊的干擾報告)之中間 處理值。和值2392係藉由求和模組2342之運算之結果。最 φ 大值2394係最大值扇區模組幻44之運算之結果。所決定比 率係由干擾報告產生模組決定之第一值與第二值之所決定 比率。量化報告值2398係為待在一干擾報告中通信以通信 所決定比率23 96的複數個量化位準中之一者的值。 圖24 (包括圖24A及圖24B之組合)為一操作一無線終端 機之例示性方法之流程圖2400。該例示性方法開始於步驟 2402’其中對該無線終端機開機且初始化。操作自開始步 驟2402進行至步驟2404、24〇6及24〇8。 在步驟2404中,無線終端機接收基地台識別資訊,其包 • 8 J - I15454.doc 含-通信-局部唯一的基地台識別符(第二附接點位於該 處)之控制信號。在步驟2406中,無線終端機自第— 點(無線終端機與其具有連接)接收第一传號 现,例如,信標 信號或導頻信號。在步驟2408中,無線终蠕機自除該第二 附接點之外的一或多個附接點接收信號,例如,信標及/ 或導頻信號。步驟2408包含子步2412,其中⑽終^自 第二附接點接收第二信號,例如,信標或導頻信號,來自 步驟2404之該所接收基地台識別資訊對應於第二附接點。 步驟2408在各種時間處包含對應於來自額外附接點之所接 收信號(例如,所接收信標及/或導頻信號)的一或多個額外 子步。舉例而言,在子步2414中,無線終端機自第N附接 點接收第N信號,例如,信標或導頻信號。 操作自步驟2406進行至步驟2410。在步驟2410中,無線 終端機對所接收第一信號執行第一量測,例如,對所接收 第一信號之功率量測。操作自子步24 12進行至步驟2416。 在步驟2416中,無線終端機對所接收第二信號執行第二量 測,例如,對所接收第二信號之功率量測。操作自子步 2414進行至步驟2418。在步驟2418中,無線終端機對所接 收第N信號執行第N量測,例如,對所接收第n信號之功率 量測。 在一些實施例(例如,使用多扇區基地台之一些實施例) 中’操作自步驟2416進行至步驟2420。在其他實施例(例 如’母小區具有單一扇區基地台之一些實施例)中,操作 自步驟24 16進行至步驟2422。 I15454.doc •82· /步驟勒中,無線終端機自接收到控制信號之時間決 2 ^應於所接收基地台識別符之扇區_符, 別符識別充當第二附接點之扇區。在一些實施例中,作: ^儲存料結構tta㈣所減所對應之循環社 構中之-時時槽的函數來決定扇區識別符。 、’口At a given time, the mix of information stored and used to generate an uplink interference report may be different than the mixture of information stored at another point in time. For example, at a given time, the wireless terminal can include the received pilot signal and beacon signal information corresponding to the attachment point 1, the received beacon signal information corresponding to the attachment point 2, corresponding to The received beacon signal information of the attachment point 3, the received uplink load factor information corresponding to the attachment point!, the received uplink load factor information corresponding to the attachment point 2, should be at the attachment point 1 measured pilot signal information, corresponding to the attachment point to measure the beacon signal information, the measured beacon signal information corresponding to the attachment point 2, the measured beacon signal corresponding to the attachment point 3 And corresponding preset uplink load factor information corresponding to the attachment point 3. Continuing with the example, at another given time, the wireless terminal can whiten the micro-packet 3 corresponding to the received pilot signal and the beacon signal information of the attachment point, and the pair recognition w corresponds to the attachment point 2 The received beacon signal information, the received reception channel corresponding to the connection point 3, and the received beacon signal 115454.doc -80· 1354460 information, corresponding to the received uplink of the attachment point 1 Load factor information, received uplink load factor information corresponding to the attachment point 3, measured pilot signal information corresponding to the attachment point 1, measured beacon signal information corresponding to the attachment point 、, corresponding to The measured beacon beacon information of the attachment point 2, the measured pilot signal information corresponding to the attachment point 3, the measured beacon signal information corresponding to the attachment point 3, and the pre-corresponding to the attachment point 2 Set the uplink load factor information. The interference report information 2358 includes a first value 2384, a second value 2386, a second value 2388, a fourth value 2390, a sum value 2392, a maximum value 2394, a determined ratio 2396, and a quantized report. The value is 2398. The first value 2384 is the result of the operation of the first value generation module 2336, and the second value 23% is the result of the operation of the second value generation module 2338. The third and fourth values (2388, 2390) are intermediate processing values used to generate at least some interference reports (e.g., interference reports that take into account information from two or more different attachment points). The sum value 2392 is the result of the operation of the summation module 2342. The result of the operation of the maximum φ large value 2394 is the maximum sector module magic 44. The determined ratio is determined by the first value and the second value determined by the interference report generation module. The quantized report value 2398 is the value of one of a plurality of quantization levels to be communicated in an interference report to determine the ratio 23 96 of the communication. Figure 24 (comprising the combination of Figures 24A and 24B) is a flow chart 2400 of an exemplary method of operating a wireless terminal. The exemplary method begins in step 2402' where the wireless terminal is powered on and initialized. Operation proceeds from start step 2402 to steps 2404, 24〇6, and 24〇8. In step 2404, the wireless terminal receives the base station identification information, which includes a control signal for the communication-locally unique base station identifier (where the second attachment point is located). In step 2406, the wireless terminal receives a first tag, e.g., a beacon signal or a pilot signal, from a first point (the wireless terminal is connected thereto). In step 2408, the wireless terminal worm receives signals, such as beacons and/or pilot signals, from one or more attachment points other than the second attachment point. Step 2408 includes substep 2412, wherein (10) the second signal is received from the second attachment point, e.g., a beacon or pilot signal, and the received base station identification information from step 2404 corresponds to the second attachment point. Step 2408 includes one or more additional sub-steps corresponding to received signals (e.g., received beacons and/or pilot signals) from the additional attachment points at various times. For example, in sub-step 2414, the wireless terminal receives an Nth signal, such as a beacon or pilot signal, from the Nth attachment point. Operation proceeds from step 2406 to step 2410. In step 2410, the wireless terminal performs a first measurement on the received first signal, e.g., a power measurement of the received first signal. Operation proceeds from substep 24 12 to step 2416. In step 2416, the wireless terminal performs a second measurement on the received second signal, e.g., a power measurement of the received second signal. Operation proceeds from substep 2414 to step 2418. In step 2418, the wireless terminal performs an Nth measurement on the received Nth signal, e.g., a power measurement of the received nth signal. In some embodiments (e.g., using some embodiments of a multi-sector base station), operation proceeds from step 2416 to step 2420. In other embodiments (e.g., some embodiments in which the parent cell has a single sector base station), operation proceeds from step 24 16 to step 2422. I15454.doc •82· /Step, the time when the wireless terminal receives the control signal depends on the sector_symbol of the received base station identifier, and the identifier identifies the sector serving as the second attachment point. . In some embodiments, the function of the time slot in the loop organization corresponding to the subtraction of the stock structure tta(4) is determined to determine the sector identifier. ,'mouth
操作自步驟2420進行至步驟期。在步驟助中,無線 終端機作為所接收基地台識別資訊之函數而自對應於不同 附接點的步驟期之—或多個所接收錢巾識別第二信 嬈。操作自步驟2422進行至步驟242〇 在步驟2424中,無線終端機基於對第一及第二信號之量 、丨而產生報告,例如,諸如特定干擾報告之干擾報告。在 —些實施例中,報告係干擾報告,其係第-值與第二值之 比率’第-值係第-信號之測得功率之函數,纟第二值係 第一彳5號之測得功率之函數。操作自步驟2424進行至步驟 2426 〇在步驟2426中,無線終端機根據使用接收到控制信Operation proceeds from step 2420 to the step period. In the step-by-step, the wireless terminal identifies the second signal from the step corresponding to the different attachment points as a function of the received base station identification information. Operation proceeds from step 2422 to step 242. In step 2424, the wireless terminal generates a report based on the amount of the first and second signals, e.g., an interference report such as a particular interference report. In some embodiments, the report is an interference report, which is a function of the ratio of the first value to the second value, the measured value of the first value of the first signal, and the second value is the first measurement of the fifth value. The function of power. Operation proceeds from step 2424 to step 2426. In step 2426, the wireless terminal receives the control signal based on the usage.
唬作為傳#時間控制輸入時的時間之預定函數來決定要傳 輸所產生報告之傳輸時間。在一些實施例中,預定函數決 定傳輸時間係在對應於與接收到控制信號時之時間的固定 預定偏移之時間處。 操作自步驟2426進行至步驟2428,其中傳輸所產生報 σ 例如,使兩個附接點相關聯之所產生特定類型干擾報 告。操作自步驟2428經由連接節點a 2430進行至步驟 2432。在步驟2432中,無線終端機接收一控制信號,其指 不干擾報告將基於自除該第一附接點之外的複數個不同傳 Π 5454.doc •83· 1354460 輸益接㈣之信號。操作自步驟迎進行至步卿Μ。在 步驟期中’無線終端機對自該複數個不同傳輸器及自第 -附接點接故到之該複數個信號執行量測。操作自㈣ 2434進行至步驟2436。 在步驟2436中,無線終端機產生報告,例如,基於自來 自不同傳輸器之該等信號之結果所導出的值之和及最大值 中之一者的干擾報告。舉例而言,所產生干擾報告可為在决定 As a predetermined function of the time when the #time control input is passed, the transmission time of the report to be transmitted is determined. In some embodiments, the predetermined function determines that the transmission time is at a time corresponding to a fixed predetermined offset from the time when the control signal was received. Operation proceeds from step 2426 to step 2428, where the generated report σ, for example, correlates the two types of attachment points to produce a particular type of interference report. Operation proceeds from step 2428 via connection node a 2430 to step 2432. In step 2432, the wireless terminal receives a control signal indicating that the non-interference report will be based on signals from a plurality of different transmissions other than the first attachment point 5454.doc • 83· 1354460. The operation is carried out from the step to the step. During the step period, the wireless terminal performs measurement on the plurality of signals from the plurality of different transmitters and from the first-attachment point. Operation proceeds from (4) 2434 to step 2436. In step 2436, the wireless terminal generates a report, e.g., an interference report based on one of a sum of values derived from the results of the signals from different transmitters. For example, the interference report generated can be
產生報告時使用求和函數的第一子類型之通用類型干擾報 σ或者所產生干擾報告可為在產生報告時使用最大值 函數的第二子類型之通用干擾報告。在一些實施例中,步 驟2436匕3子步2438。在子步2438中,無線終端機作為時 序結構資訊之函數決定干擾報告將基於和還是最大值。操 作自步驟2436進行至步驟卿,其中無線終端機傳輸來自 步驟243 6之所屋生報告。The general type interference report σ or the generated interference report using the first subtype of the summation function when generating the report may be a general interference report of the second subtype using the maximum function when generating the report. In some embodiments, step 2436 匕 3 substep 2438. In substep 2438, the wireless terminal determines as a function of the timing structure information that the interference report will be based on the sum or maximum. Operation proceeds from step 2436 to step 2, wherein the wireless terminal transmits the home report from step 243 6 .
在一些實施例中,接收基地台識別資訊之步驟(步驟 2404)包含自第一附接點接收一廣播信號,該廣播信號用 以控制多個無線終端機。以此方式,信號傳輸耗用自個別 地將該基地台識別資訊個別信號傳輸至由第—附接點服務 之無線終端機之每一者另外所需要之量得以降低。 圖25 (包括圖25A及圖25B之組合)為一根據各項實施例 的細作-無線終端機之例示性方法之流程圖。操作開 始於步驟2502 ’其中對無線終端機開機且初始化。操作自 開始步驟2502進行至:步驟25〇4、步驟25〇6、步驟测、 經由連接節點A 2532至步驟2533、經由連接節點b 2534至 M5454.doc -84- 1354460 步驟2535、經由連接節點C 2536至步驟2544,且在一些實 施例中’經甴連接節點D 2538至步驟2546。 在步驟2504中,無線終端機在目前基礎上(on an ongoing basis)自當前連接之附接點接收包含對干擾報告資 訊之請求的廣播控制信號。對於所接收請求,操作自步驟 2504進订至步驟251〇。在步驟251〇中,無線終端機自對干 擾報告資訊之所接收請求來決定所請求之干擾報告之類型 鲁(特定或通用),且對於特定類型之報告,決定對應於附接 點之局部唯一的小區識別符。步驟251〇包含子步25丨2。在 子步2512中,若所接收請求值為零,則如報告類型=通用 輸出25.U所指示,無線終端機決定所請求報告類型係通用 報告。在子步2512中’若所接收值為非零,則如報告類型 =特定輸出2516所指示,無線終端機決定所請求報告類型 係特定報告。另外,若所接收值為非零,則無線終端機將 小區識別符設定為等於所接收請求值’例如,為一组可能 藝紅整數中之-者的正請求值,每—不同可能的正整數對 應於-不同導頻通道斜率值。輪出小區識別符值由輸出 2 5 18表示。 在步驟2506中,無線終端機在曰1 艰機在目則基礎上自當前附接點 接收信標及/或導頻信號。操作自步驟25〇6進行至步驟 2520。在步驟期中,無線終端機量測來自當前附接點之 所接收信標及/或導頻信號之強声,% 〜,丄 洩度,從而輸出當前附接點 所接收信號強度資訊2526。 在步驟2508中,無線終端機在目前 曰别基礎上自(若干)額外 115454.doc -85· 1354460 附接點接收信標及/或導頻信號。操作自步驟25〇8進行至 步驟2522,且有時進行至步驟2524。在步驟2522中,無線 終端機量測來自額外附接點之所接收信標及/或導頻信號 之強度,從而輸出第一額外附接點所接收信號強度資訊 2528。在步驟2524中,無線終端機量測來自不同的額外附 接點之所接收信標及/或導頻信號之強度,從而輸出第?^額 外額外附接點所接收信號強度資訊253〇。In some embodiments, the step of receiving base station identification information (step 2404) includes receiving a broadcast signal from the first attachment point for controlling the plurality of wireless terminals. In this manner, signal transmission is reduced by the additional amount required to individually transmit the individual identification information of the base station identification information to each of the wireless terminals served by the first attachment point. Figure 25 (comprising the combination of Figures 25A and 25B) is a flow diagram of an exemplary method of a wireless terminal in accordance with various embodiments. Operation begins in step 2502' where the wireless terminal is powered on and initialized. Operation proceeds from start step 2502 to: step 25〇4, step 25〇6, step measurement, via connection node A 2532 to step 2533, via connection node b 2534 to M5454.doc -84 - 1354460 step 2535, via connection node C 2536 to step 2544, and in some embodiments 'connected node D 2538 to step 2546. In step 2504, the wireless terminal receives a broadcast control signal containing a request for interference reporting information from an attachment point of the current connection on an ongoing basis. For the received request, the operation proceeds from step 2504 to step 251. In step 251, the wireless terminal determines the type of the requested interference report (specific or general) from the received request for the interference report information, and for the specific type of report, determines the local unique corresponding to the attachment point. Cell identifier. Step 251 〇 includes substep 25丨2. In substep 2512, if the received request value is zero, the wireless terminal determines that the requested report type is a generic report as indicated by report type = general output 25.U. In substep 2512, if the received value is non-zero, then as indicated by report type = specific output 2516, the wireless terminal determines that the requested report type is a particular report. In addition, if the received value is non-zero, the wireless terminal sets the cell identifier equal to the received request value 'for example, a positive request value of one of a set of possible eigen-integer integers, each - different possible positive The integer corresponds to the - different pilot channel slope values. The round-out cell identifier value is represented by output 2 5 18 . In step 2506, the wireless terminal receives the beacon and/or pilot signals from the current attachment point on a tangible basis. Operation proceeds from step 25〇6 to step 2520. During the step, the wireless terminal measures the strong sound, %~, 泄 度, of the received beacon and/or pilot signal from the current attachment point, thereby outputting the received signal strength information 2526 of the current attachment point. In step 2508, the wireless terminal receives the beacon and/or pilot signals from the (several) additional 115454.doc -85· 1354460 attachment points on a current screening basis. Operation proceeds from step 25〇8 to step 2522, and sometimes to step 2524. In step 2522, the wireless terminal measures the strength of the received beacon and/or pilot signals from the additional attachment points to output the received signal strength information 2528 for the first additional attachment point. In step 2524, the wireless terminal measures the strength of the received beacon and/or pilot signals from the different additional attachment points to output the first? ^ Additional signal strength information received by additional attachment points is 253〇.
返回至步驟2533,在步驟2533中,無線終端機接收與一 專用控制通道結構相關聯之無線終端機開啟狀態識別資 訊’該專驗㈣道結構包含循環結構巾用於無線終端機 將干擾報讀輸至當前附接點之報告時間。步驟加輸出 識別將用於干擾報告之區段之資訊254〇。 回至步驟2535,在步驟2535中,無線終端機在目前基 礎上追縱當前連接正使収循環時序結構巾之時序且輸出 當前時間資訊2542,例如,循環〇讀時序結構中之指數 資訊。 返回至步驟2544,在步驟^ Α ^ 、 在少驟2544中,無線終端機在目前基 礎上決定是否通信一干播鉬止 報。。步驟2544使用當前時間資 訊2542及識別用於干擾報主 > 。之區奴之資訊2540以及關於當 則連接之時序結構資訊作^ ^ ig^ 々掏入。右在步驟2544中決定將 通k 一干擾報告,則操作 ^ _ 自步驟2544進行至步驟2552、步 驟2558及步驟2566。 Ύ 在步驟2552中, 型通用報告還是第 無線終端機決定, 二類型通用報告。 時間是對應於第一類 若時間對應於第一類 115454.doc -86· ου = 則如輪出2554所指示,通用報告子類型= ' 員型’然而’若時間對應於第二類型通用報告, 貝:如輸出⑽所指示,通用報告子類型=最大值函數類 型0 在步驟2558中,無線終端機決定,關於用於—特定類型 報告之附接點’時間對應於哪一扇區類型。舉例而古,在 一例^性實施财,—循環時序結構被細分成信標時槽, 種不同扇區類型’且與—具指數之信標時槽相關聯 之扇區類型在該三種不同扇區類型之間交替(參見圖18)。 步驟2558之輸出係、扇區類型=扇區類型Q 2则、扇區類型= 扇區類型1 2562,及扇區類型=扇區類型2 2564甲之一者。 在一些實施例中,無線終端機在計算干擾報告時使用上 行鏈路負載因數資訊且包含步驟2546及步驟2548 ^在步驟 2546中,無線終端機在目前基礎上監視且接收對應於附接 點之上行鏈路負載因數資訊。操作自步驟2546進行至步驟 2548,其中無線終端機為所關心之附接點(尚未為其接收 上行鏈路負載因數資訊)應用預設的上行鏈路負載因數 值。自步騾2546及/或2548输出上行鏈路負載因數資訊 2 5 5 0 (所接收及/或預設資訊)。 返回至步驟2566,在步驟2566中’無線終端機根據所請 求報告類型(特定或通用)產生干擾報告;在通用報告之狀 況下’報告亦根據報告子類型(求和函數類型或最大值函 數類型);且在特定報告之狀況下,報告係關於特定所識 別附接點(例如,由小區識別符/扇區類型識別符組合所識 II5454.doc -87· 1354460 別),且係關於當前附接點。可用於步驟2566之輸入包含 以下資訊中之至少一些:報告類型資訊2568、通用報告子 類型資訊2570、小區識別資訊2518、扇區類型資訊2574、 使信標與導頻傳輸功率位準相關聯之資訊、當前附接點所 接收強度資訊2526、第一額外附接點所接收強度資訊 2528、第N額外附接點所接收強度資訊253〇,及上行鏈路 負載因數資訊2550。報告類型資訊2568識別報告將為通用 • 報告還是特定報告,且係輸出25 14及25 16中之一者。通用 報告子類型資訊2570識別,報告(若其係通用報告)將在產 生報告時將使用求和函數還是將在產生報告時使用最大值 函數。通用報告子類型資訊2570係輸出2554及2556中之一 者。小區m資訊2518係來自所接收報告請求控制信號之所 接收值。扇區類型資訊2574係輪出2560、2562及2564中之 一者。使信標/導頻傳輸功率位準相關聯之資訊包含使用 於一在考慮中之附接點的一信標信號之傳輸功率與一導頻 φ “號之傳輸功率相關聯之功率層位準資訊及其他增益資 訊,以及使不同附接點之間的傳輸功率位準相關聯之資 訊。 對於通用報告,無線終端機使用所接收強度資訊Μ%、 2528、…、2530來產生干擾報告,報告之子類型(求和函 數類型或最大值函數類型)由資訊257〇決定。對於特定類 型報告,無線終端機產生使當前附接點所接收強度資訊 2526與(第—額外附接點所接收強度資訊2528 .....第^^額 外附接點所接收強度資訊253〇)中之一者相關聯之報告, 115454.doc -88 - 1354460 該一者由對應於小區識別符25 18及扇區類型2574之組合的 額外附接點之識別決定。 操作自步驟2566進行至步驟2584,其中無線終端機將所 產生干擾報告傳輸至當前附接點。 圖26為一說明根據各項實施例的例示性干擾報告信號使 用及報告計算之表格2600之圖式。第一行2602列出關於一 通k第一值與第二值之比率的干擾報告之描述性資訊。第 ^ 二行2604列出第一值;第三行2606列出第二值;第四行 26〇8列出第三值;第五行2610列出第四值;第六行2612列 出第一信號類型;第七行26 14列出第二信號類型;第八行 2616列出第三信號類型。 每一列(2618 、 2620 、 2622 、 2624 、 2626 、 2628 、 2630、2632、2634)描述一不同的報告。列2618係關於使 用所接收信標信號功率量測之特定干擾報告。列262〇係關 於使用所接收導頻信號功率量測之特定干擾報告。列2622 φ 係關於使用所接收導頻及信標信號功率量測之特定干擾報 告。列2624係關於使用所接收信標信號功率量測之第一子 類型之通用干擾報告。列2626係關於使用所接收信標信號 功率ΐ測之第二子類型之干擾報告。列2628係關於使用所 接收導頻k號功率量測之第一子類型之通用干擾報告。列 2630係關於使用所接收導頻信號功率量測之第二子類型之 干擾報告°列2632係關於使用所接收導頻及信標信號功率 量測之第一子類型之通用干擾報告。列2634係關於使用所 接收導頻及k標信號功率量測之第二子類型之干擾報告。 115454.doc -89- 1354460 在表格2600中,b〇係對應於第 PB〇俜來白坌^ ^ 町接點之負載因數; 。係來自卜附接點之所接收信標信號之測 係來自第一附接點之所接收導頻信號之測得功率; 應於第二附接點之負載因數;%係來自第點 接收信標信號之測得功率;ΡΡι係來自第二附接點 收導頻信號之測得功率;b2係對應於第三附接點之負载因 广2係來自第三附接點之所接收信標信號之測得功 率,PP2係來自第三附接點之 率。兴存W β π供收導頻4旎之測得功 其通信干㈣告),且第-以;1田讀務附接點(向 且弟一及第二附接點可對應於系 之1 他局部附接點。κ係使信標信號之傳輸功率強度與導 頻佗號之傳輸功率強度相關聯之換算因數。 在此實财,可假定以相同傳輸功率位準自附接點卜2 及3傳輸信標信號,且亦可假定以相同傳輪功率位準自附 接點1、2及3傳輸導頻信號。 在一些實施例中,不考慮附接點而以相同傳輸功率傳輸 信標信號’而導頻信號之傳輸功率位準作為附接點之函數 而變化。在-些該等實施例中,不同功率層位準用於不同 附接點,且使不同附接點之功率層位準相關聯之換算因數 可用於干擾報告計算中。 表格2_描述使用來自三個不同附接點之資訊的例示性 通用報告;所使用之公式可擴展至包含使用來自額外附接 點之所接收功率量測。 圖27為一根據各項實施例實施的例示性無線終端機· H5454.doc •90· 1354460 之圖式例示性無線終端機2 7 0 0包含經由一匯流排2 712耗 接在一起之一接收器模組27〇2、一傳輸器模組27〇4、一處 理器2706、I/O設備2708,及記憶體2710,各種元件可在 該匯流排上交換資料及資訊。記憶體271〇包含常式2718及 資料/資訊272〇。處理器27〇6 (例如,cpu)執行常式”^且 使用記憶體2710中之資料/資訊272〇來控制無線終端機 2700之操作並實施本發明之方法。 接收器模組2702 (例如,0FDM接收器)耦接至接收天線 27丨4,無線終端機經由該接收天線自基地台附接點接收下 行鏈路信號。該等下行鏈路信號包含各種廣播信號,廣播 信號包含信標信號、導頻信號,及基地台識別資訊(例 如,對應於將用於特定類型報告中之附接點的局部唯一的 小區識別符);及請求干擾報告類型資訊(例如,區分特定 類型干擾報告與通用類型干擾報告之資訊)。在一些實施 例中’局部准-的基地台識別符係關於一分區基地台,第 二附接點位於該分區基地台處。接收器模組2而自多個附 接點接收複數個信號’該複數個信號包含一第二信號,例 如,該第二信號係來自一第二附接點之信標或導頻信號, 該第二附接點係除—第—附接點(例如,當前連接附接點) 之外的附接點。 傳輸器模組2704 (例如,〇職傳輸器)麵接至傳輸天線 2川,無線終端機經由該傳輸天線傳輸上行鍵路信號,其 包含所產生干擾報告(例如,在專用控制通道上通信之信 標比率報告)°在各項實施例中’接收器模組2702及傳輸 115454.doc 1354460 模組2704使用同一天線(例如,結合雙工模組)。 常式2718包含通信常式2722及無線終端機控制常式 2724。無線终端機控制常式2724包含一監視模組2726、— 第一量測模紕2728 (例如,一信標信號量測模組)、一第二 量測模組2732 (例如,一導頻信號量測模組)、一干擾報告 產生模組2734、一信號識別模組2736、一傳輸時間決定模 ’··且273 8 扇區類型決定模組2740,及一控制模組2742。 第里測模組 2728包含一信號功率量測模組233 1。第二量 測模組2732包含一信號功率量測模組23 33。 通信模組2722實施由無線終端機27〇〇使用之各種通信協 定。監視模組2726偵測廣播基地台識別資訊,例如,局部 唯的基地台識別符,諸如對應於一基地台附接點之小區 斜率值,信標及/或導頻之所接收信號強度量測將自該基 地台附接點獲得且用於經請求以在上行鏈路上通信之特定 干擾報告中。第一量測模組2728量測第一類型之所接收信 號,例如,信標信號。第二信號量測模組2732量測第二類 型之信號,例如,導頻信號。干擾報告產生模組2734基於 對第一所接收信號之量測及對一第二所接收信號之量測 而產生一報告,該第一所接收信號來自一第一附接點(該 無線終端機與其具有連接),該第二所接收信號來自一對 應於由該監視模組2726偵測到之基地台識別資訊的第二附 接點。 七5虎識別模組2736作為偵測到的廣播基地台識別資訊之 函數自複數個信號識別第二信號。因此信號識別在識別第 HS454.doc •92· 丄354460 一 ^號時使用來自監視模組2726之資訊。在一些實施例 中,偵測到之廣播基地台識別資訊在一來自第一附接點之 廣播信號中得以偵測,該廣播信號用以控制多個無線终端 機。 傳輸時間決定模組2738根據一使用一接收到包含基地台 識別資訊之控制信號作為傳輸時間控制輸入時的時間之預 定函數來決定要傳輸所產生干擾報告的傳輪時間。在一些 φ 實施例中,預定函數決定傳輸時間係在對應於與接收到控 制h號時之時間的固定預定偏移之時間處。 扇區類型決定模組274〇自接收到控制信號時之時間決定 一對應於所接收基地台識別符之扇區識別符,該扇區識別 捋殲別充當第二附接點之扇區。在一些實施例中,作為所 儲存時序結構資訊及該所接收信號時間所對應之循環結構 中之時時槽的函數來決定扇區識別符。 報告包含至少一第一 類型之報告通信第— 二值中之一者對應次 測’且一斛斑黜夕姑 控制模組2742控制干擾報告產生模組2734以回應於不同 • 所接收控制信號而產生不同類型之報告,該等不同類型之 一類型報告及一第二類型報告,該第一Returning to step 2533, in step 2533, the wireless terminal device receives the wireless terminal open state identification information associated with a dedicated control channel structure. The exclusive (four) track structure includes a loop structure towel for the wireless terminal to interfere with the subscription. The reporting time to the current attachment point. Step plus output Identifies the information 254 that will be used to interfere with the reporting segment. Going back to step 2535, in step 2535, the wireless terminal tracks the timing of the current connection timing loop and periodically outputs the current time information 2542, for example, cyclically reading the index information in the timing structure. Returning to step 2544, in step ^ Α ^, in a few steps 2544, the wireless terminal determines, on a current basis, whether to communicate a dry molybdenum stop. . Step 2544 uses current time information 2542 and identifies for interference with the main message >. The district slave information 2540 and the timing structure information about the connection are ^ ^ ig^ intrusion. Right in step 2544, it is determined that the interference report will be passed, and then operation ^_ proceeds from step 2544 to step 2552, step 2558, and step 2566. Ύ In step 2552, the type general report is still determined by the wireless terminal, the second type of general report. The time corresponds to the first class if the time corresponds to the first class 115454.doc -86· ου = then as indicated by the round 2554, the generic report subtype = 'member type' however 'if the time corresponds to the second type general report , Bay: As indicated by output (10), Generic Report Subtype = Maximum Function Type 0 In step 2558, the wireless terminal determines, with respect to which sector type the attachment point 'time for the particular type of report' corresponds to. For example, in the case of an implementation, the cyclic timing structure is subdivided into beacon time slots, different sector types 'and the sector types associated with the indexed beacon time slots are in the three different fans. The area types alternate between them (see Figure 18). The output of step 2558, sector type = sector type Q 2, sector type = sector type 1 2562, and sector type = sector type 2 2564 A. In some embodiments, the wireless terminal uses uplink load factor information when calculating the interference report and includes steps 2546 and 2548. In step 2546, the wireless terminal monitors and receives the corresponding point on the current basis. Uplink load factor information. Operation proceeds from step 2546 to step 2548, where the wireless terminal applies a preset uplink load factor value for the attachment point of interest (for which uplink load factor information has not been received). The uplink load factor information 2 5 5 0 (received and/or preset information) is output from step 2546 and/or 2548. Returning to step 2566, in step 2566, 'the wireless terminal generates an interference report according to the requested report type (specific or general); in the case of the general report, the report is also based on the report subtype (summation function type or maximum function type) And; in the case of a particular report, the report is about a particular identified attachment point (eg, identified by the cell identifier/sector type identifier combination II5454.doc -87· 1354460) and is attached to the current contact. The input available to step 2566 includes at least some of the following information: report type information 2568, generic report subtype information 2570, cell identification information 2518, sector type information 2574, associating beacons with pilot transmission power levels. Information, current attachment point received strength information 2526, first additional attachment point received strength information 2528, Nth additional attachment point received strength information 253, and uplink load factor information 2550. The report type information 2568 identifies whether the report will be generic • the report is still a specific report and is one of the outputs 25 14 and 25 16 . Generic Report Subtype Information 2570 identifies that the report (if it is a generic report) will use the summation function when generating the report or will use the maximum function when generating the report. The Generic Report Subtype Information 2570 is one of the outputs 2554 and 2556. Cell m information 2518 is the received value from the received report request control signal. The Sector Type Information 2574 is one of 2560, 2562, and 2564. The information relating the beacon/pilot transmission power level includes the power level of a beacon signal used in a connection point under consideration and the power level associated with the transmission power of a pilot φ "number" Information and other gain information, as well as information that correlates the transmission power levels between different attachment points. For general reporting, the wireless terminal uses the received intensity information Μ%, 2528, ..., 2530 to generate interference reports, reports The subtype (summation function type or maximum function type) is determined by information 257. For a particular type of report, the wireless terminal generates the received intensity information 2526 for the current attachment point and (the first additional point received strength information) 2528 ..... report of one of the received strength information 253〇) of the ^^ additional attachment point, 115454.doc -88 - 1354460 This one corresponds to the cell identifier 25 18 and the sector Identification of the additional attachment points of the combination of types 2574. Operation proceeds from step 2566 to step 2584, where the wireless terminal transmits the generated interference report to the current attachment point. Figure 26 is an illustration of the root A diagram of a table 2600 for the use and reporting of exemplary interference reporting signals according to various embodiments. The first row 2602 lists descriptive information about the interference report for the ratio of the first value to the second value of a pass. The second row 2604 lists the first value; the third row 2606 lists the second value; the fourth row 26〇8 lists the third value; the fifth row 2610 lists the fourth value; the sixth row 2612 lists the first signal type The seventh line 26 14 lists the second signal type; the eighth line 2616 lists the third signal type. Each column (2618, 2620, 2622, 2624, 2626, 2628, 2630, 2632, 2634) describes a different report. Column 2618 is for a particular interference report using the received beacon signal power measurement. Column 262 is for a particular interference report using the received pilot signal power measurement. Column 2622 φ is for using the received pilot and signal. The specific interference report for the nominal signal power measurement. Column 2624 is the general interference report for the first subtype using the received beacon signal power measurement. Column 2626 is for the second subsection using the received beacon signal power measurement. Type of interference Column 2628 is a general interference report for the first subtype using the received pilot k power measurement. Column 2630 is for the second subtype of interference report using the received pilot signal power measurement. A general interference report for the first subtype using the received pilot and beacon signal power measurements. Column 2634 is an interference report for the second subtype using the received pilot and k-signal power measurements. Doc -89- 1354460 In Table 2600, b〇 corresponds to the load factor of the PB〇俜^^^^^^^^^^^^^^^^ The measured beacon signal from the access point is the measured power of the received pilot signal from the first attachment point; the load factor at the second attachment point; % is from the first point receiving letter The measured power of the target signal; ΡΡι is the measured power from the second attachment point receiving pilot signal; b2 is the load corresponding to the third attachment point due to the wide received signal from the third attachment point The measured power of the signal, PP2 is the rate from the third attachment point. Prosperous W β π supply and receive pilot 4 旎 得 其 其 其 通信 通信 通信 通信 通信 通信 通信 通信 通信 通信 通信 通信 通信 通信 通信 通信 通信 通信 通信 通信 通信 通信 通信 通信 通信 通信 通信 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 His local attachment point. κ is the conversion factor that relates the transmission power strength of the beacon signal to the transmission power strength of the pilot nickname. In this real money, it can be assumed that the connection point is self-attached at the same transmission power level. 2 and 3 transmit beacon signals, and it is also assumed that pilot signals are transmitted from the attached terminals 1, 2 and 3 at the same transmission power level. In some embodiments, the transmission points are transmitted at the same transmission power regardless of the attachment points. The beacon signal 'and the transmission power level of the pilot signal varies as a function of the attachment point. In these embodiments, different power plane levels are used for different attachment points, and the power layers of different attachment points are made The level-associated scaling factor can be used in the interference report calculation. Table 2_ describes an exemplary generic report using information from three different attachment points; the formula used can be extended to include the use of additional attachment points Receive power measurement. Figure 27 is a diagram in accordance with various embodiments. Exemplary wireless terminal device implemented H5454.doc • 90· 1354460 The exemplary wireless terminal device 2 700 includes a receiver module 27 〇 2, a transmission that is consuming via a bus 2 712 The module 270, the processor 2706, the I/O device 2708, and the memory 2710, the various components can exchange data and information on the bus. The memory 271 includes the routine 2718 and the data/information 272. The processor 27〇6 (e.g., cpu) executes the routine "^ and uses the data/information 272" in the memory 2710 to control the operation of the wireless terminal 2700 and implement the method of the present invention. The receiver module 2702 (e.g. The 0FDM receiver is coupled to the receiving antenna 27丨4, and the wireless terminal receives the downlink signal from the base station attachment point via the receiving antenna. The downlink signals include various broadcast signals, and the broadcast signal includes the beacon signal. a pilot signal, and base station identification information (eg, corresponding to a locally unique cell identifier to be used for an attachment point in a particular type of report); and requesting interference reporting type information (eg, distinguishing between specific types of interference reports) And the general type interference report information. In some embodiments, the 'local quasi-base station identifier is for a partition base station, and the second attachment point is located at the partition base station. The receiver module 2 is self-multiple. The attachment points receive a plurality of signals 'the plurality of signals comprise a second signal, for example, the second signal is a beacon or pilot signal from a second attachment point, the second attachment point is - The attachment point other than the attachment point (for example, the current connection attachment point). The transmitter module 2704 (for example, the service transmitter) is connected to the transmission antenna 2, and the wireless terminal transmits the transmission antenna via the transmission antenna An uplink signal comprising the generated interference report (eg, a beacon ratio report communicated over the dedicated control channel). In each of the embodiments, the 'receiver module 2702 and the transmission 115454.doc 1354460 module 2704 use the same Antenna (for example, combined with a duplex module). The routine 2718 includes a communication routine 2722 and a wireless terminal control routine 2724. The wireless terminal control routine 2724 includes a monitoring module 2726, a first measurement module 2728 (eg, a beacon signal measurement module), and a second measurement module 2732 (eg, a pilot signal). The measurement module), an interference report generation module 2734, a signal recognition module 2736, a transmission time determination module '·· and 273 8 sector type determination module 2740, and a control module 2742. The first measurement module 2728 includes a signal power measurement module 233 1 . The second measurement module 2732 includes a signal power measurement module 23 33. The communication module 2722 implements various communication protocols used by the wireless terminal unit 27. The monitoring module 2726 detects the broadcast base station identification information, for example, a local only base station identifier, such as a cell slope value corresponding to a base station attachment point, and a received signal strength measurement of the beacon and/or pilot. It will be obtained from the base station attachment point and used in a particular interference report that is requested to communicate on the uplink. The first measurement module 2728 measures the first type of received signal, such as a beacon signal. The second signal measurement module 2732 measures a second type of signal, such as a pilot signal. The interference report generation module 2734 generates a report based on the measurement of the first received signal and the measurement of a second received signal, the first received signal being from a first attachment point (the wireless terminal In connection therewith, the second received signal is from a second attachment point corresponding to the base station identification information detected by the monitoring module 2726. The seven-5 tiger identification module 2736 identifies the second signal from the plurality of signals as a function of the detected broadcast base station identification information. Therefore, the signal identification uses information from the monitoring module 2726 when identifying the HS454.doc • 92· 丄 354460 I. In some embodiments, the detected broadcast base station identification information is detected in a broadcast signal from a first attachment point for controlling a plurality of wireless terminals. The transmission time decision module 2738 determines the transit time for transmitting the generated interference report based on a predetermined function of the time when the control signal containing the base station identification information is received as the transmission time control input. In some φ embodiments, the predetermined function determines the transmission time at a time corresponding to a fixed predetermined offset from the time when the control h number was received. The sector type decision module 274 determines the sector identifier corresponding to the received base station identifier from the time when the control signal is received, the sector identifying the sector serving as the second attachment point. In some embodiments, the sector identifier is determined as a function of the stored timing structure information and the time slot in the cyclic structure corresponding to the received signal time. The report includes at least one of the first type of report communication first-to-two values corresponding to the second test' and a control system 2742 controls the interference report generation module 2734 in response to different • received control signals Generating different types of reports, one of the different types of reports and a second type of report, the first
115454.doc -93· 控制信號(例如’在干擾報告請求廣播信號中之值G)可信號 傳輪.凊求通仏-通用報告;另—所接收控制信號(例 2,在干擾報告請求廣播信號中之正整數值)可表示:正 請求一特定類型之信標比率報告,其中該正整數值用於識 別第二附接點。 在一些實施例中,在處理對應於一或多個信號之信號量 測資訊中使用最大值或求和函數來產生第二類型之報告 (例如’通用信標比率報告)。 在各項實施例中,干擾報告係為一第一值與一第二值之 比率的干擾報告,Μ第一值係一第一信號(例如,一來自 一為當前連接之第一附接點的信標或導頻信號)之測定功 率之函數,且該第二值係一第二信號(例如,一來自另一 基地台附接點(例如,一使用相同載波及/或音調塊之鄰近 的小區及/或扇區附接點)之信標或導頻信號)之測得功率之 函數。 資料/資訊2720包含所儲存時序結構資訊2744、所偵測 廣播基地台識別資訊2746、第一所接收信號量測資訊 2748、第二所接收信號量測資訊275〇、所產生干擾報告資 訊2752、當前附接點連接1£)資訊2754、對應於所偵測基地 台識別資訊之附接點2756、控制信號接收時間資訊2758、 所接收局部唯一的基地台識別276〇、所識別第二附接點扇 區類型2762、所決定時時槽資訊2764、第一類型干擾報告 (例如,特定干擾報告)資訊2766 ,及第二類型干擾報告(例 如’通用報告)資訊2768。 115454.doc -94- 1354460 雖然在OFDM系統之情形下加以描述,但各項實施例之 方法及裝置適用於包含許多非0FDM及/或非蜂巢式系統的 各種各樣通信系統。 在各項實施例中,使用-或多個模組來實施本文中所描 述之節點以執行對應於一或多種方法之步驟,例如,信號 處理、信標產生、信標债測、信標量測、連接比較、連接 實施。在一些實施例中,使用模組來實施各種特徵。可使 # 帛軟體、硬體或軟體與硬體之組合來實施該等模組。可使 用諸如軟體之機器可執行指令來實施許多 或方法步驟,該等指令包含於諸如記憶體二:如 R A Μ、軟性磁碟等)之機器可讀媒體中以控制—機器(例 如,具有或不具有額外硬體之通用電腦)例如在一或多個 節點中實施所有或部分以上所述之方法。因此’各項實施 例尤其針對一機器可讀媒體,其包含用於使一機器(例 如,處理器及相關聯之硬體)執行以上所述之(該等)方法之 φ 步驟之一或多者的機器可執行指令。 鑒於以上描述,熟習此項技術者將易見對以上所述之方 法及裝置之許多額外變動。應認為該等變動在範疇内。各 項實施例之方法及裝置可(且在各項實施例中確實)與可用 以提供存取節點與行動節點之間的無線通信鏈路之 CDMA、正交分頻多工(〇FDM)及/或各種其他類型之通信 技術-起使用。在—些實施例中,存取節點經實施為基地 台,該等基地台使用0FDM及/或CDMA來與行動節點建立 通仏鏈路。在各項實施例中,行動節點經實施為筆記型電 115454.doc -95· !354460 信系統)之圖式》 —圖!3說明圖12之例示性系統且提供對應於基地台扇區之 每一者的額外細節以說明各種特徵。 圖14為圖12及13中所述之例示性系統之圖式,其包含由 無線終端機接收且處理之例示性信號傳輸以用》說明根據 各項實施例的例示性信標比率報告方法。 圖15為圖12及13中所述之例示性系統之圖式,其包含由 % 無線終端機接收且處理之例示性信號傳輸以用於說明根據 各項實施例的例示性信標比率報告方法。 圖16為圖12及13中所述之例示性系統之圖式,其包含由 無線終端機接收且處理之例示性信號傳輸以用於說明根據 各項實施例的例示性信標比率報告方法。 圖17(包括圖17A、圖17B、圖17C及17D之組合)為根據 各項實施例的操作無線終端機(例如,行動節點)之例示性 方法之流程圖。 • 圖18為用於例示性實施例的例示性時序結構資訊及對應 干擾報告資訊(例如,報告信標比率報告之資訊)之圖式。 圖19在圖式中對於例示性實施例說明例示性信標比率報 告凊求下行鏈路信號傳輸及例示性上行鏈路信標比率報告 信號傳輸。 13 、 圖20為根據各項實施例實施的例示性通信系統之圖式。 圖2 1為說明對應於圖20之例示性系統的例示性下行鍵路 控制信號傳輸及上行鍵路干擾報告(例如,信標比率報生) 之圖式。 "5454.doc -97- 1354460 圖22為根據各項實施例的操作無線故 \機之例示性方法 之流程圖的圖式。 圖2 3為根據各項實施例實施的例*个生無線终端機之圖 式0 圖24(包括圖24Α及圖24Β之組合)為操作無線終端機之例 示性方法之流程圖。 圖25(包括圖25Α及圖25Β之組合)為根據各項實施例的操 作無線終端機之例示性方法之流程圖。115454.doc -93· Control signals (eg 'value G in the interference report request broadcast signal') can be signaled to the wheel. Request wanted - general report; another - received control signal (example 2, in the interference report request broadcast A positive integer value in the signal can indicate that a particular type of beacon ratio report is being requested, wherein the positive integer value is used to identify the second attachment point. In some embodiments, a maximum type or summation function is used in processing signal measurement information corresponding to one or more signals to generate a second type of report (e.g., 'general beacon ratio report'). In various embodiments, the interference report is an interference report of a ratio of the first value to the second value, and the first value is a first signal (eg, a first attachment point from the current connection) The beacon or pilot signal is a function of the measured power, and the second value is a second signal (eg, one from another base station attachment point (eg, one using the same carrier and/or adjacent to the tone block) A function of the measured power of the beacon or pilot signal of the cell and/or sector attachment point). The data/information 2720 includes the stored timing structure information 2744, the detected broadcast base station identification information 2746, the first received signal measurement information 2748, the second received signal measurement information 275, and the generated interference report information 2752. The current attachment point is connected to 1) information 2754, the attachment point 2756 corresponding to the detected base station identification information, the control signal reception time information 2758, the received locally unique base station identification 276, the identified second attachment Point sector type 2762, determined time slot information 2764, first type interference report (eg, specific interference report) information 2766, and second type interference report (eg, 'general report) information 2768. 115454.doc -94- 1354460 Although described in the context of an OFDM system, the methods and apparatus of various embodiments are applicable to a wide variety of communication systems including many non-OFDM and/or non-cellular systems. In various embodiments, the nodes described herein are implemented using - or multiple modules to perform steps corresponding to one or more methods, such as signal processing, beacon generation, beacon debt testing, beacon volume Measurement, connection comparison, connection implementation. In some embodiments, modules are used to implement various features. The modules can be implemented by a combination of software, hardware or software and hardware. Many or method steps can be implemented using machine-executable instructions, such as software, in a machine-readable medium, such as a memory 2: such as RA 软, floppy disk, etc., to control-machine (eg, with or A general purpose computer without additional hardware), for example, implementing all or some of the methods described above in one or more nodes. Thus, the embodiments are directed, in particular, to a machine-readable medium that includes one or more of the steps φ for causing a machine (eg, a processor and associated hardware) to perform the methods described above. The machine's machine executable instructions. In view of the above description, many additional variations to the methods and apparatus described above will be apparent to those skilled in the art. These changes should be considered within the scope. The methods and apparatus of various embodiments can (and in various embodiments) be CDMA, orthogonal frequency division multiplexing (〇FDM), and can be used to provide a wireless communication link between an access node and a mobile node. / or a variety of other types of communication technology - from use. In some embodiments, the access nodes are implemented as base stations that use OFDM and/or CDMA to establish an overnight link with the mobile node. In various embodiments, the action node is implemented as a diagram of a notebook type 115454.doc-95·!354460 signal system. FIG. 3 illustrates an exemplary system of FIG. 12 and provides corresponding to a base station sector. Additional details for each to illustrate various features. 14 is a diagram of an exemplary system illustrated in FIGS. 12 and 13 including exemplary signal transmissions received and processed by a wireless terminal to illustrate an exemplary beacon ratio reporting method in accordance with various embodiments. 15 is a diagram of an exemplary system illustrated in FIGS. 12 and 13 including exemplary signal transmissions received and processed by a % wireless terminal for illustrating an exemplary beacon ratio reporting method in accordance with various embodiments. . 16 is a diagram of an exemplary system illustrated in FIGS. 12 and 13 including exemplary signal transmissions received and processed by a wireless terminal for illustrating an exemplary beacon ratio reporting method in accordance with various embodiments. Figure 17 (comprising the combination of Figures 17A, 17B, 17C, and 17D) is a flowchart of an illustrative method of operating a wireless terminal (e.g., a mobile node) in accordance with various embodiments. • Figure 18 is a diagram of exemplary timing structure information and corresponding interference reporting information (e.g., information reporting a beacon ratio report) for an exemplary embodiment. Figure 19 illustrates, in the drawings, an exemplary beacon ratio report solicitation downlink signal transmission and an exemplary uplink beacon ratio report signal transmission for an illustrative embodiment. 13 is a diagram of an exemplary communication system implemented in accordance with various embodiments. Figure 2 is a diagram illustrating exemplary downlink key control signal transmission and uplink key interference reporting (e.g., beacon ratio reporting) corresponding to the exemplary system of Figure 20. "5454.doc -97- 1354460 Figure 22 is a diagram of a flowchart of an exemplary method of operating a wireless device in accordance with various embodiments. Figure 2 is a diagram of an example of a wireless terminal set in accordance with various embodiments. Figure 24 (including the combination of Figures 24A and 24B) is a flow diagram of an exemplary method of operating a wireless terminal. Figure 25 (comprising a combination of Figures 25A and 25B) is a flow diagram of an exemplary method of operating a wireless terminal in accordance with various embodiments.
圖2 6為說明根據各項實施例的例示性干擾報告信號使用 及報告計算之表格之圖式。 圖2 7為根據各項實施例實施的例示性無線終端機之圖 式。 【主要元件符號說明】 100 例示性無線通信系統 100A 圖表 102 基地台1 102A 垂直軸 104 小區1 104A 水平轴 106 無線終端機/WT(1) 106A 訊務區段A 108 無線終端機/WT(N) 108A 訊務區段B 110 無線鏈路Figure 26 is a diagram illustrating a table of exemplary interference reporting signal usage and report calculations in accordance with various embodiments. Figure 27 is a diagram of an exemplary wireless terminal device implemented in accordance with various embodiments. [Main component symbol description] 100 Exemplary wireless communication system 100A Diagram 102 Base station 1 102A Vertical axis 104 Cell 1 104A Horizontal axis 106 Wireless terminal/WT(1) 106A Traffic section A 108 Wireless terminal/WT (N ) 108A Traffic Zone B 110 Wireless Link
115454.doc •98· 1354460 112 無線鏈路 114 基地台Μ 116 小區Ν1 118 無線終端機WT(r) 120 無線終端機WT(N') 122 無線鏈路 124 無線鏈路 126 網路節點 128 網路鏈路 130 網路鏈路 132 網路鏈路 134 區域 200 例示性基地台 200A 圖表 202 接收器 202A 垂直軸 204 傳輸器 204A 水平軸 206 處理器 206A 指派區段A· 208 I/O介面 , 208A 指派區段B' 210 I/O設備 210A 上行鏈路訊務區段A 115454.doc -99- 1354460 212 記憶體 212A 上行鍵路訊務區段B 214 匯流排 216 接收器天線 218 傳輸器天線 220 常式 224 資料/資訊 226 通信常式 228 基地台控制常式 230 排程器 232 下行鏈路廣播信號傳輸模組 234 WT干擾報告處理模組 236 ^報告請求模組 238 干擾指示符模組 240 下行鏈路廣播參考信號資訊 241 無線終端機資料/資訊 242 WT 1資訊 244 WT N資訊 246 . 上行鏈路訊務通道資訊 248 干擾報告請求資訊訊息 250 干擾控制指示符信號 252 信標信號資訊 254 導頻信號資訊 256 指派信號資訊/指派信號傳輸資訊 115454.doc -100· 1354460 258 識別資訊 260 功率位準資訊 262 識別資訊 264 功率位準資訊 266 識別資訊 268 功率位準資訊 270 資料 272 終端機識別資訊 274 干擾成本報告資訊 276 所請求上行鏈路訊務區段 278 經指派上行鏈路訊務區段 280 通道區段1資訊 282 通道區段N資訊 284 類型資訊 286 功率位準資訊 288 定義資訊 290 指派資訊 292 基地台傳輸器識別資訊 300 例示性無線終端機(WT) 302 接收器 304 傳輸器 306 處理器 310 I/O設備 3 12 記憶體 115454.doc -101 1354460115454.doc •98· 1354460 112 Wireless Link 114 Base Station 116 Cell Ν1 118 Wireless Terminal WT(r) 120 Wireless Terminal WT(N') 122 Wireless Link 124 Wireless Link 126 Network Node 128 Network Link 130 Network Link 132 Network Link 134 Area 200 Exemplary Base Station 200A Chart 202 Receiver 202A Vertical Axis 204 Transmitter 204A Horizontal Axis 206 Processor 206A Assignment Section A·208 I/O Interface, 208A Assignment Section B' 210 I/O Device 210A Uplink Traffic Section A 115454.doc -99- 1354460 212 Memory 212A Uplink Traffic Part B 214 Bus 216 Receiver Antenna 218 Transmitter Antenna 220 224 data / information 226 communication routine 228 base station control routine 230 scheduler 232 downlink broadcast signal transmission module 234 WT interference report processing module 236 ^ report request module 238 interference indicator module 240 downlink Road Broadcast Reference Signal Information 241 Wireless Terminal Information/Information 242 WT 1 Information 244 WT N Information 246. Uplink Traffic Channel Information 248 Interference Report Request Information Message 250 Interference Control Indicator Signal 252 Beacon Signal Information 254 Pilot Signal Information 256 Assignment Signal Information/Assignment Signal Transmission Information 115454.doc -100· 1354460 258 Identification Information 260 Power Level Information 262 Identification Information 264 Power Level Information 266 Identification Information 268 Power Level Information 270 Data 272 Terminal Identification Information 274 Interference Cost Report Information 276 Requested Uplink Traffic Section 278 Assigned Uplink Traffic Section 280 Channel Section 1 Information 282 Channel Section N Information 284 Type Information 286 Power Level Information 288 Definition Information 290 Assignment Information 292 Base Station Transmitter Identification Information 300 Exemplary Wireless Terminal (WT) 302 Receiver 304 Transmitter 306 Processor 310 I/O Device 3 12 Memory 115454. Doc -101 1354460
314 匯流排 316 天線 318 天線 320 常式 322 資料/資訊 324 通信常式 326 WT控制常式 329 報告格式選擇模組 330 排程決策模組 332 參考信號處理模組 334 干擾成本模組 336 識別模組 338 所接收功率量測模組 340 通道增益比率計算模組 342 濾波模組 344 決定模組 346 報告產生模組 348 量化模組 349 下行鏈路廣播參考信號資訊 350 基地台1下行鏈路廣播參考信號資訊 351 基地台Μ下行鏈路廣播參考信號資訊 352 無線終端機資料/資訊 353 所接收廣播參考信號 354 上行鏈路訊務通道資訊 115454.doc •102· 1354460314 Bus 316 Antenna 318 Antenna 320 Normal 322 Data / Information 324 Communication 326 WT Control 329 Report Format Selection Module 330 Schedule Decision Module 332 Reference Signal Processing Module 334 Interference Cost Module 336 Identification Module 338 Received Power Measurement Module 340 Channel Gain Ratio Calculation Module 342 Filter Module 344 Decision Module 346 Report Generation Module 348 Quantization Module 349 Downlink Broadcast Reference Signal Information 350 Base Station 1 Downlink Broadcast Reference Signal Information 351 Base Station Downlink Broadcast Reference Signal Information 352 Wireless Terminal Information/Information 353 Received Broadcast Reference Signal 354 Uplink Traffic Channel Information 115454.doc •102· 1354460
356 所接收干擾報告請求資訊訊息 358 所接收干擾控制指示符信號 360 信標信號資訊 362 導頻信號資訊 364 指派信號傳輸資訊 366 識別資訊 368 功率位準資訊 370 識別資訊 372 功率位準資訊 374 識別資訊 376 功率位準資訊 382 資料 384 終端機識別資訊 386 干擾成本報告資訊 388 所請求上行鏈路訊務區段 390 經指派上行鏈路訊務區段 391 通道1資訊 392 通道N資訊 393 類型資訊 394 功率位準資訊 395 定義資訊 396 指派資訊 397 基地台識別符 400 例示性系統 115454.doc •103· 1354460356 Received Interference Report Request Information Message 358 Received Interference Control Indicator Signal 360 Beacon Signal Information 362 Pilot Signal Information 364 Assignment Signal Transmission Information 366 Identification Information 368 Power Level Information 370 Identification Information 372 Power Level Information 374 Identification Information 376 Power Level Information 382 Data 384 Terminal Identification Information 386 Interference Cost Report Information 388 Requested Uplink Traffic Section 390 Assigned Uplink Traffic Section 391 Channel 1 Information 392 Channel N Information 393 Type Information 394 Power Level Information 395 Definition Information 396 Assignment Information 397 Base Station Identifier 400 Exemplary System 115454.doc • 103· 1354460
404 第一小區 406 第二小區 408 第三小區 410 第一基地台(BSS〇) 412 第二基地台(BSS〇 414 第三基地台(bss2) 420 無線終端機 800 例示性通信系統 802 小區1 804 小區Μ 806 基地台1 808 基地台Μ 810 第 一扇區(扇區1) 812 第·一扇區(扇區2) 814 第三扇區(扇區3) 822 第一扇區(扇區1) 824 第—扇區(扇區2) 826 第三扇區(扇區3) 836 無線終端機WT(1) 838 無線終端機WT(N) 840 無線鏈路 842 無線鏈路 844 無線終端機WT(r) 846 無線終端機WT(N') 115454.doc -104· 1354460404 first cell 406 second cell 408 third cell 410 first base station (BSS) 412 second base station (BSS 〇 414 third base station (bss2) 420 wireless terminal 800 exemplary communication system 802 cell 1 804 Cell 806 806 Base station 1 808 Base station 810 First sector (sector 1) 812 First sector (sector 2) 814 Third sector (sector 3) 822 First sector (sector 1 ) 824 First Sector (Sector 2) 826 Third Sector (Sector 3) 836 Wireless Terminal WT(1) 838 Wireless Terminal WT(N) 840 Wireless Link 842 Wireless Link 844 Wireless Terminal WT (r) 846 Wireless Terminal WT(N') 115454.doc -104· 1354460
848 無線鏈路 850 無線鏈路 852 無線終端機WT(1") 854 無線終端機WT(N") 856 無線鏈路 858 無線鏈路 860 網路節點 866 網路鏈路 868 無線終端機WT(1"") 870 無線終端機WT(N"") 872 無線終端機WT(l"’n) 874 無線終端機WT(N) 876 無線終端機WT(1……) 878 無線終端機WT(N……) 880 無線鏈路 882 無線鏈路 884 無線鏈路 886 無線鏈路 888 無線鏈路 890 無線鏈路 900 例示性功率換算因數表格 902 第一行 904 第二行 950 上行鏈路負載因數表格 115454.doc -105- 1354460 952 第一行 954 第二行 1005 連接節點B 1032 負載因數b〇 1034 負載因數比 1038 負載因數心 1040 負載因數1^ 1042 連接節點A 1100 表格 1102 第一行 1104 第二行 1800 圖式 1802 列 1804 列 1806 列 1808 列 1900 圖式 1901 表格 1902 基地台扇區(當前附接點) 1904 無線終端機 1906 下行鏈路訊務通道控制信號 1908 對信標比率報告之請求攔位 1910 專用控制通道區段信號 1912 根據請求資訊及上行鏈路時序結構資訊的 115454.doc -106- 1354460 信標比率報告 1914 專用控制通道區段信號 1916 根據請求資訊及上行鏈路時序結構資訊的 信標比率報告 1918 第一行 1920 第二行 2000 例示性通信系統 2001 基地台1(BS 1) 2002 基地台2(BS 2) 2003 基地台3(BS 3) 2004 基地台4(BS 4) 2005 基地台5(BS 5) 2006 基地台6(BS 6) 2007 基地台7(BS 7) 2008 基地台8(BS 8) 2009 基地台9(BS 9) 2010 基地台10(BS 10) 2012 第一扇區 2014 第二扇區 2016 第三扇區 2018 第一扇區 2020 第二扇區 2022 第三扇區 2024 第一扇區 2026 第二扇區 115454.doc • 107- 1354460848 Wireless Link 850 Wireless Link 852 Wireless Terminal WT (1") 854 Wireless Terminal WT (N") 856 Wireless Link 858 Wireless Link 860 Network Node 866 Network Link 868 Wireless Terminal WT (1" ;") 870 Wireless Terminal WT (N"") 872 Wireless Terminal WT (l"'n) 874 Wireless Terminal WT(N) 876 Wireless Terminal WT(1...) 878 Wireless Terminal WT ( N...) 880 Wireless Link 882 Wireless Link 884 Wireless Link 886 Wireless Link 888 Wireless Link 890 Wireless Link 900 Exemplary Power Conversion Factor Table 902 First Row 904 Second Row 950 Uplink Load Factor Table 115454.doc -105- 1354460 952 First line 954 Second line 1005 Connection node B 1032 Load factor b〇1034 Load factor ratio 1038 Load factor core 1040 Load factor 1^ 1042 Connection node A 1100 Table 1102 First line 1104 Second Line 1800 Figure 1802 Column 1804 Column 1806 Column 1808 Column 1900 Figure 1901 Table 1902 Base Station Sector (Current Attachment Point) 1904 Wireless Terminal Unit 1906 Downlink Traffic Channel Control Signal 1908 Request Blocking for Beacon Ratio Report 1910 Dedicated Control Channel Section Signal 1912 115454.doc -106-1354460 Beacon Ratio Report Based on Request Information and Uplink Timing Structure Information 1914 Dedicated Control Channel Section Signal 1916 Upon Request Beacon Ratio Report for Information and Uplink Timing Structure Information 1918 First Line 1920 Second Line 2000 Exemplary Communication System 2001 Base Station 1 (BS 1) 2002 Base Station 2 (BS 2) 2003 Base Station 3 (BS 3) 2004 Base Station 4 (BS 4) 2005 Base Station 5 (BS 5) 2006 Base Station 6 (BS 6) 2007 Base Station 7 (BS 7) 2008 Base Station 8 (BS 8) 2009 Base Station 9 (BS 9) 2010 Base Station 10 (BS 10) 2012 First Sector 2014 Second Sector 2016 Third Sector 2018 First Sector 2020 Second Sector 2022 Third Sector 2024 First Sector 2026 Second Sector 115454.doc • 107- 1354460
2028 第三扇區 2030 第一扇區 2032 苐-一扇區 2034 第三扇區 2036 第一扇區 2038 第—扇區 2040 第三扇區 2042 第一扇區 2044 第—扇區 2046 第三扇區 2048 第一扇區 2050 第一扇區 2052 第三扇區 2054 第一扇區 2056 第二扇區 2058 第三扇區 2060 第一扇區 2062 第二扇區 2064 第三扇區 2066 第一扇區 2068 第—扇區 2070 第三扇區 2072 無線終端機WT A 2074 無線終端機WT B 115454.doc -108· 1354460 2076 無線鏈路 2078 無線鏈路 2100 圖式 2104 第一列 2106 第二列 2108 第三列 2110 第四列 2112 第五列 2114 第六列 2300 例示性無線終端機 2302 接收器模組 2304 傳輸器模組 2306 處理器 2308 使用者I/O設備 23 10 記憶體 23 12 匯流排 23 14 接收天線 23 16 傳輸天線 23 18 常式 2320 資料/資訊 2322 通信常式 2324 無線終端機控制常式 2326 上行鏈路負載因數信號監視模組 2328 負載因數決定模組 H5454.doc -109- 1354460 2330 第一量測模組 233 1 信號功率量測模組 2332 第二量測模組 2333 信號功率量測模組 2334 干擾報告產生模組 2336 第一值產生模組 2338 第二值產生模組 2340 乘法器模組 2342 求和模組 2344 最大值選擇器模組 2346 所接收信標信號資訊 2348 所接收導頻信號資訊 2350 所接收上行鏈路負載因數資訊 2352 測得信標資訊 2354 測得導頻資訊 2356 預設上行鏈路負載因數資訊 2358 干擾報告資訊 2360 附接點1資訊 2362 附接點N資訊 2364 附接點1資訊 2366 附接點N資訊 2368 附接點1資訊 2370 附接點N資訊 2372 附接點1資訊 115454.doc -110- 1354460 2374 附接點N資訊 2376 附接點1資訊 2378 附接點N資訊 2380 附接點1資訊 2382 附接點N資訊 2384 第一值 2386 第二值 2388 第三值 2390 第四值 2392 和值 2394 最大值 2396 所決定比率 2398 量化報告值 2430 連接節點A 2532 連接節點A 2534 連接節點B 2536 連接節點C 2538 連接節點D 2600 表格 2602 第一行 2604 第二行 2606 第三行 2608 第四行 2610 第五行 115454.doc -111· 13544602028 third sector 2030 first sector 2032 苐-one sector 2034 third sector 2036 first sector 2038 first sector 2040 third sector 2042 first sector 2044 first sector 1246 third sector Area 2048 First Sector 2050 First Sector 2052 Third Sector 2054 First Sector 2056 Second Sector 2058 Third Sector 2060 First Sector 2062 Second Sector 2064 Third Sector 2066 First Fan Area 2068 First-Sector 2070 Third Sector 2072 Wireless Terminal WT A 2074 Wireless Terminal WT B 115454.doc -108· 1354460 2076 Wireless Link 2078 Wireless Link 2100 Figure 2104 First Column 2106 Second Column 2108 Third column 2110 Fourth column 2112 Fifth column 2114 Sixth column 2300 Exemplary wireless terminal unit 2302 Receiver module 2304 Transmitter module 2306 Processor 2308 User I/O device 23 10 Memory 23 12 Bus bar 23 14 Receiving antenna 23 16 Transmitting antenna 23 18 Normal 2320 Data / Information 2322 Communication routine 2324 Wireless terminal control routine 2326 Uplink load factor signal monitoring module 2328 Load factor determination module H5454.doc -109- 1354460 2330 First Measurement Module 233 1 Signal Power Measurement Module 2332 Second Measurement Module 2333 Signal Power Measurement Module 2334 Interference Report Generation Module 2336 First Value Generation Module 2338 Second value generation module 2340 Multiplier module 2342 Summation module 2344 Maximum value selector module 2346 Received beacon signal information 2348 Received pilot signal information 2350 Received uplink load factor information 2352 Measured letter Standard information 2354 measured pilot information 2356 preset uplink load factor information 2358 interference report information 2360 attachment point 1 information 2362 attachment point N information 2364 attachment point 1 information 2366 attachment point N information 2368 attachment point 1 Information 2370 Attachment N Information 2372 Attachment 1 Information 115454.doc -110- 1354460 2374 Attachment N Information 2376 Attachment 1 Information 2378 Attachment N Information 2380 Attachment 1 Information 2382 Attachment N Information 2384 First value 2386 Second value 2388 Third value 2390 Fourth value 2392 and Value 2394 Maximum value 2396 Determined ratio 2398 Quantitative report value 2430 Connection node A 2532 Connection section Point A 2534 Connection Node B 2536 Connection Node C 2538 Connection Node D 2600 Table 2602 First Line 2604 Second Line 2606 Third Line 2608 Fourth Line 2610 Fifth Line 115454.doc -111· 1354460
2612 第六行 2614 第七行 2616 第八行 2618 列 2620 列 2622 列 2624 列 2626 列 2628 列 2630 列 2632 列 2634 列 2700 例示性無線終端機 2702 接收器模組 2704 傳輸器模組 2706 處理器 2708 I/O設備 2710 記憶體 2712 匯流排 2714 接收天線 2716 傳輸天線 2718 常式 2720 資料/資訊 2722 通信常式 115454.doc -112- 1354460 2724 無線終端機控制常式 2726 監視模組 2728 第一量測模組 2732 第二量測模組 2734 干擾報告產生模組 2736 信號識別模組 2738 傳輸時間決定模組 2740 扇區類型決定模組 2742 控制模組 2744 所儲存時序結構資訊 2746 所偵測廣播基地台識別資訊 2748 第一所接收信號量測資訊 2750 第二所接收信號量測資訊 2752 所產生干擾報告資訊 2754 當前附接點連接ID資訊 2756 對應於所偵測基地台識別資訊之附接點 2758 控制信號接收時間資訊 2760 所接收局部唯一的基地台識別 2762 所識別第二附接點扇區類型 2764 所決定時時槽資訊 2766 第一類型干擾報告資訊 2768 第二類型干擾報告資訊 5505 連接節點A 5521 連接節點B I15454.doc -113 - 1354460 5525 連接節點c 5534 連接節點D 5554 負載因數b〇 5556 負載因數1^ 5558 負載因數bk 5560 負載因數1)„ 8000 例示性無線通信系統 8001 第一無線連接 8002 基地台1 8003 第二同時無線連接 8004 基地台2 8005 信標信號 8006 基地台3 8007 上行鏈路負載因數資訊信號 8008 基地台4 8009 導頻音調信號 8010 無線終端機1(WT 1) 8011 信標信號 8012 基地台扇區S0(BSS 0) 8013 上行鏈路負載因數資訊信號 8014 基地台扇區S1(BSS 1) 8015 導頻音調信號 8016 基地台扇區S2(BSS2) 8017 信標信號 115454.doc -114- 13544602612 sixth row 2614 seventh row 2616 eighth row 2618 column 2620 column 2262 column 2624 column 2626 column 2628 column 2630 column 2632 column 2634 column 2700 exemplary wireless terminal 2702 receiver module 2704 transmitter module 2706 processor 2708 I/O device 2710 memory 2712 bus 2714 receiving antenna 2716 transmission antenna 2718 routine 2720 data / information 2722 communication routine 115454.doc -112- 1354460 2724 wireless terminal control routine 2726 monitoring module 2728 first measurement Module 2732 Second Measurement Module 2734 Interference Report Generation Module 2736 Signal Identification Module 2738 Transmission Time Determination Module 2740 Sector Type Determination Module 2742 Control Module 2744 Storage Timing Structure Information 2746 Detection Broadcast Base Station Identification information 2748 First received signal measurement information 2750 Second received signal measurement information 2752 Interference report information generated 2754 Current attachment point connection ID information 2756 Attachment point 2758 corresponding to the detected base station identification information Signal reception time information 2760 Received locally unique base station identification 2 762 identified second attachment point sector type 2764 determined time slot information 2766 first type interference report information 2768 second type interference report information 5505 connection node A 5521 connection node B I15454.doc -113 - 1354460 5525 connection node c 5534 Connection node D 5554 Load factor b〇5556 Load factor 1^ 5558 Load factor bk 5560 Load factor 1)„ 8000 Exemplary wireless communication system 8001 First wireless connection 8002 Base station 1 8003 Second simultaneous wireless connection 8004 Base station 2 8005 beacon signal 8006 base station 3 8007 uplink load factor information signal 8008 base station 4 8009 pilot tone signal 8010 wireless terminal 1 (WT 1) 8011 beacon signal 8012 base station sector S0 (BSS 0) 8013 uplink Link load factor information signal 8014 base station sector S1 (BSS 1) 8015 pilot tone signal 8016 base station sector S2 (BSS2) 8017 beacon signal 115454.doc -114- 1354460
8018 BSS 0標稱層0功率位準 8019 上行鏈路負載因數資訊信號 8020 BSS 1標稱層0功率位準 8021 信標信號 8022 BSS 2標稱層0功率位準 8023 上行鏈路負載因數資訊信號 8024 基地台扇區SO (BSS 0) 8025 信標信號 8026 基地台扇區SI (BSS 1) 8027 上行鏈路負載因數資訊信號 8028 基地台扇區S2 (BSS2) 8030 BSS 0標稱層0功率位準 8032 BSS 1標稱層0功率位準 8034 BSS 2標稱層0功率位準 8036 基地台扇區SO (BSS 0) 8038 基地台扇區SI (BSS 1) 8040 基地台扇區S2 (BSS 2) 8042 BSS 0標稱層0功率位準 8044 BSS 1標稱層0功率位準 8046 BSS 2標稱層0功率位準 8048 標稱層〇功率位準 8050 方塊 8052 方塊 8054 方塊 115454.doc • 115- 1354460 8056 方塊 8058 方塊 8060 方塊 8062 方塊 8064 方塊 8066 方塊 8068 方塊8018 BSS 0 nominal layer 0 power level 8019 uplink load factor information signal 8020 BSS 1 nominal layer 0 power level 8021 beacon signal 8022 BSS 2 nominal layer 0 power level 8023 uplink load factor information signal 8024 Base Station Sector SO (BSS 0) 8025 Beacon Signal 8026 Base Station Sector SI (BSS 1) 8027 Uplink Load Factor Information Signal 8028 Base Station Sector S2 (BSS2) 8030 BSS 0 Nominal Layer 0 Power Bit Quasi-8032 BSS 1 Nominal layer 0 Power level 8034 BSS 2 Nominal layer 0 Power level 8036 Base station sector SO (BSS 0) 8038 Base station sector SI (BSS 1) 8040 Base station sector S2 (BSS 2 8042 BSS 0 nominal layer 0 power level 8044 BSS 1 nominal layer 0 power level 8046 BSS 2 nominal layer 0 power level 8048 nominal layer 〇 power level 8050 square 8052 square 8054 square 115454.doc • 115 - 1354460 8056 block 8058 block 8060 block 8062 block 8064 block 8066 block 8068 square
無線連接/第一無線連接/連接1 連接/連接2 信標信號 上行鏈路負載因數資訊信號 導頻音調信號 信標信號 上行鏈路負載因數資訊信號 信標信號 導頻信號Wireless connection / first wireless connection / connection 1 connection / connection 2 beacon signal uplink load factor information signal pilot tone signal beacon signal uplink load factor information signal beacon signal pilot signal
8070 8071 8072 8074 8076 8078 8080 8082 8083 8084 8086 8088 8090 8092 上行鏈路負載因數資訊信號 信標信號 上行鏈路負載因數資訊信號 信標信號 上行鏈路負載因數資訊信號 115454.doc -116-8070 8071 8072 8074 8076 8078 8080 8082 8083 8084 8086 8088 8090 8092 Uplink load factor information signal Beacon signal Uplink load factor information signal Beacon signal Uplink load factor information signal 115454.doc -116-
Claims (1)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/251,069 US8514692B2 (en) | 2003-02-24 | 2005-10-14 | Methods and apparatus for determining, communicating and using information which can be used for interference control purposes |
US11/302,729 US20060092881A1 (en) | 2004-10-14 | 2005-12-14 | Methods and apparatus for determining, communicating and using information which can be used for interference control purposes |
US79212806P | 2006-04-14 | 2006-04-14 | |
US11/486,714 US9191840B2 (en) | 2005-10-14 | 2006-07-14 | Methods and apparatus for determining, communicating and using information which can be used for interference control |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200733592A TW200733592A (en) | 2007-09-01 |
TWI354460B true TWI354460B (en) | 2011-12-11 |
Family
ID=46415789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW095137936A TWI354460B (en) | 2005-10-14 | 2006-10-14 | Methods and apparatus for determining, communicati |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN102571232A (en) |
ES (1) | ES2441735T3 (en) |
TW (1) | TWI354460B (en) |
-
2006
- 2006-10-13 ES ES06816920.0T patent/ES2441735T3/en active Active
- 2006-10-13 CN CN201110442336XA patent/CN102571232A/en active Pending
- 2006-10-14 TW TW095137936A patent/TWI354460B/en active
Also Published As
Publication number | Publication date |
---|---|
ES2441735T3 (en) | 2014-02-06 |
CN102571232A (en) | 2012-07-11 |
TW200733592A (en) | 2007-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4782841B2 (en) | Method and apparatus for determining, communicating and using information including load factors for interference control | |
JP4791592B2 (en) | Method and apparatus for determining, communicating and using information that can be used for interference control | |
US20060092881A1 (en) | Methods and apparatus for determining, communicating and using information which can be used for interference control purposes | |
US8989084B2 (en) | Methods and apparatus for broadcasting loading information corresponding to neighboring base stations | |
EP2755336B1 (en) | Method for multinode cooperative transmission | |
US20070104164A1 (en) | Methods and apparatus for determining, communicating and using information including loading factors which can be used for interference control purposes | |
US20070248042A1 (en) | Channel assignment in wireless communication | |
TW200939827A (en) | Opportunistic uplink scheduling | |
CN101322338B (en) | Methods and apparatus for determining, communicating and using information including loading factors for interference control | |
TW200830755A (en) | A method and apparatus for interaction of fast other sector interference (OSI) with slow OSI | |
TW200939826A (en) | Opportunistic uplink scheduling | |
TW200939825A (en) | Opportunistic uplink scheduling | |
WO2013084991A1 (en) | Wireless communication system, base station, user terminal, and communication control method | |
KR101002151B1 (en) | Methods and apparatus for broadcasting loading information corresponding to neighboring base stations | |
JP5815137B2 (en) | Method, base station, and integrated circuit for receiving a channel quality indicator | |
KR20100029056A (en) | Apparatus and method for managing multi-carrier | |
JP4927853B2 (en) | Method and apparatus for determining, communicating and using information including load factors for interference control | |
TWI354460B (en) | Methods and apparatus for determining, communicati | |
JP4927854B2 (en) | Method and apparatus for broadcasting load information corresponding to neighboring base stations | |
JP2010507284A (en) | Method and apparatus for determining, communicating and using information that can be used for interference control purposes | |
US9282508B2 (en) | Rate optimized power consumption in micro wave radio links |