TWI354159B - Dual mode display - Google Patents

Dual mode display Download PDF

Info

Publication number
TWI354159B
TWI354159B TW096107194A TW96107194A TWI354159B TW I354159 B TWI354159 B TW I354159B TW 096107194 A TW096107194 A TW 096107194A TW 96107194 A TW96107194 A TW 96107194A TW I354159 B TWI354159 B TW I354159B
Authority
TW
Taiwan
Prior art keywords
dual
liquid crystal
light
mode liquid
crystal display
Prior art date
Application number
TW096107194A
Other languages
Chinese (zh)
Other versions
TW200823554A (en
Inventor
Mary Lou Jepsen
Original Assignee
One Laptop Per Child Ass Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2006/045050 external-priority patent/WO2008063171A2/en
Application filed by One Laptop Per Child Ass Inc filed Critical One Laptop Per Child Ass Inc
Publication of TW200823554A publication Critical patent/TW200823554A/en
Application granted granted Critical
Publication of TWI354159B publication Critical patent/TWI354159B/en

Links

Description

1354159 九、發明說明: * 【發明所屬之技術領域】 本發明係為一種雙模式液晶顯示器’尤指一種一雙模 • 式、一單色反射模式與一彩色穿透模式下作用的雙模式液 晶顯示器。 【先前技術】 在各種電子組件中使用顯示器的比例不斷增加,使得 顯示器製造商必須努力提供更佳效能的組件。效能參數包 ® 括功率消耗、解析度、影像更新率(frame refresh rate)、成 本、以及在日光下的可讀性。顯示器廠商採用各種技術來 • 提昇這些效能參數的表現。 其中有一種技術是採用半穿透反射式 LCD(transflective LCD),半穿透反射式LCD的每一個像素 (pixel)具有一反射部(reflective part)與一穿透部 (transmissive part),穿透部與反射部同樣包含子像素 (sub-pixel)。母一個像素具有;慮光片(c〇i〇r fiiter),用以將色 彩賦予像素。此外,每一個子像素係以水平地或垂直地配 置,因此在LCD中要呈現一色彩需要三個或更多的子像素。 在上述的方法中’據光片係被放置在穿透部與反射部 之上。因此,通過慮光片的光會被衰減,使得反射模式會 變得模糊並且不容易閱讀。另外,背光⑦就在穿透模 式下需要更多的電力以達到θ 、 〗问解析度的顯示.。此外,使用 水平或垂直配置的子像素會# 士 "乂成解析度變低。更有甚之, 在LCD中切換所有的色彩奴件+ 及件需要用到高頻率與高電力消 可V、觀上述的討論,目前仍需要一種技術,能夠製造出 •日光下_的高解析度LCD。另外,也有需要開發只 =低電力與低影像更新率(frame rate)的LCD。本發明可洁 戍上述要求。 罨 【發明内容】 曰本發明的目的為提供一種LCD’與現有LCD相較下可 槌供較佳的解析度。 本發明的另一目的是降低照射LCD所需的電力。 本發明的另一目的是降低LCD的影像更新率(frame rate)。 而本發明的另一目的是為LCD提供可於日光閱讀的顯 示器。 ‘ 本發明係提供一種僅有在一像素的穿透部之上具有濾 光片的LCD ’使得在周遭光線下可以讀取。而本發明的另 —型態是省除了在製造濾光片過程中一般會用到的黑色矩 陣光罩(black matrix mask)。另外,本發明提供對角線像素 (diagonal pixel),以便提昇LCD在色彩穿透模式下的lcd 的解析度。此外,本發明的另一型態讓光在二種色彩間切 換,而第三種色彩(一般為綠色)會一直呈現,藉此降低 LCD用於混合場序(hybrid field sequential)的方法中所需的 影像更新率。本發明的另一型態是由背光(backlight)產生色 彩’藉此省除了濾光月。本發明的又另一型態是僅在綠光 1354159 像素之上使用滤光片’藉此省除使用額外的光罩來製作遽 光片陣列的需求。 【實施方式】 .本發明的各種實施例係與—可以在一雙模式、一單色 反射換板式與-φ色穿透模式下作用的液晶顯示器 有關起此技#者應可了解對於較佳實施例所作的各種 修改,以及在此所述的-般原則和特點。因此,本發明並 不限於所提出的實施例’而應該根據所陳述的原則和特點 之最廣範圍來定義。 第一圖所示的示意圖說明根據本發明的一實施例之一 LCD的像素1〇〇之橫截面。像素1〇〇包含一液晶材料1〇4、 一像素電極106、一共用電極1〇8、一反射部(reflective part)110、穿透部(transmissivepart)n2、基板 114 與 116、 間隔物(叩&(^)118&與11813、一第一偏光片(1)〇1以汉1〇12()、 以及一第一偏光片122。在本發明的一實施例中,一光源 102或一周遭光線124照射像素1〇〇。光源1〇2的範例包 括,但不限於發光二極體(LEDs)背光、冷陰極螢光管 (Cold-Cathode Fluorescent Lamp, CCFL)背光,以及其類似 者。周遭光線124可為日光或任何外部的光源。在本發明 的一貫施例中,液晶材料104為光學主動材料,會旋轉來 自光源102或周遭光線124的光的極化轴。液晶材料1 〇4 可以疋扭轉向列型(ΤΝ)、電場控制雙折射型(Electrically Controlled Birefringence, ECB),以及其類似者。在本發明 的一實施例中,光的平面是根據施加於像素電極106與共 7 1354159 用電極108 <間的電位差而旋轉。在本發明的一實施例 甲像素电極1〇6與共用電極1〇8可利用氣化鋼錫 Tin Oxide, ITO)而製成。此外,每一像素係被提供以一像素 电極而共用電極108則是由LCD内所有的像素所共用。 在本;月的—實施例中,反射部110係為可導電的, 並可反射周遭光線124以照射像素議。反射部ιι〇係由 至屬製成並以電氣地柄合至像素電極106’ ||此提供反 射部110與共用電極108之間的電位差。穿透部112傳送 來自光源102的光以照射像素100。基板114與116圍住液 晶材料104、像素電極1〇6與共用電極1〇8。在本發明的一 實施例中,像素電極1〇6係被設置於基板114,而共用電 極108係被設置於基板116。此外,基板114包含交換元件 (未顯示於第一圖中)。在本發明的一實施例中,交換元件 可以是薄膜電晶體(Thin Film Transistor, TFT)。另外,一驅 動電路130傳送與像素數值有關的訊號給交換元件。在本 發明的一實施例中,驅動電路130使用低電壓差動訊號 (LVDS)驅動器。在本發明的另一實施例中,同時感測電壓 增加與減少的電晶體邏輯(transistor-transistor logic,TTL) 71面係被應用於驅動電路13 〇中。此外,時序控制器(timing controller) 140將與像素數值有關的訊號編碼為像素的對角 線穿透部所需的訊號。另外’時序控制器丨4〇具有一記憶 體’當與像素有關的訊號係從時序控制器140被移除時, 可以讓LCD自我更新。 在本發明的一實施例中’間隔物11“與U8t)係被放 8 1354159 • 置於反射部110之上,以於基板114與116之間維持一均 等的距離。此外,像素100包含第一偏光片120與第二偏 . 光片122。在本發明的一實施例中,第一偏光片120的極 性軸(axis of polarity)與第二偏光片122的極性軸係彼此垂 直。在本發明的另一實施例中,第一偏光片120的極性軸 與第二偏光片122的極性軸係彼此平行。 像素100係由光源102或周遭光線124照射。通過像 素100的光的強度係藉由像素電極106與共用電極108之 • 間的電位差所決定。在本發明的一實施例中,當像素電極 106與共用電極108之間沒有被施加電位差的時候,液晶 材料104係處於非定向(disoriented)狀態,通過第一偏光片 . 120的光會被第二偏光片122所阻擋,而當像素電極106 與共用電極108之間有被施加電位差的時候’液晶材料104 係處於定向(oriented)狀態。液晶材料104的方向性會讓光 通過第二偏光片122。 第二圖所示的示意圖說明根據本發明的一實施例, ® LCD的九個像素100的配置。像素100包含穿透部112b 與反射部110。在本發明的一實施例中,如果是依循RGB '(紅_藍一綠)色彩系統的話,穿透部112a-c分別賦予綠、 藍與紅光成份以形成一彩色像素。此外,如果選擇不同的 色彩系統的話,穿透部112a-c可賦予不同的色彩,像是紅、 ‘ 綠、藍與白或其他色彩的組合。更進一步,穿透部113a與 114a賦予綠光,穿透部113b與114b賦予藍光,而穿透部 113a與114c賦予紅光給像素。此外,不同厚度的濾光片可 / r-· ·、··之 9 1354159 13541591354159 IX. Description of the invention: * [Technical field of the invention] The present invention is a dual mode liquid crystal display, especially a dual mode liquid crystal type, a monochromatic reflection mode and a color mode. monitor. [Prior Art] The increasing use of displays in various electronic components has led display manufacturers to strive to provide components with better performance. The performance parameter package includes power consumption, resolution, frame refresh rate, cost, and readability in daylight. Display manufacturers use a variety of techniques to • improve the performance of these performance parameters. One of the techniques is to use a transflective LCD. Each pixel of the transflective LCD has a reflective part and a transmissive part. The portion and the reflection portion also include a sub-pixel. A mother has a pixel (c〇i〇r fiiter) for imparting color to the pixel. Further, each sub-pixel is arranged horizontally or vertically, so that three or more sub-pixels are required to present a color in the LCD. In the above method, the light film system is placed above the penetrating portion and the reflecting portion. Therefore, the light passing through the light sheet is attenuated, so that the reflection mode becomes blurred and is not easy to read. In addition, the backlight 7 requires more power in the penetrating mode to achieve the display of θ and resolution. In addition, using a horizontal or vertical configuration of sub-pixels will result in a lower resolution. What's more, switching all the color slaves and components in the LCD requires high frequency and high power consumption. Looking at the above discussion, there is still a need for a technology that can produce high resolution in daylight. Degree LCD. In addition, there is also a need to develop an LCD with only low power and low image frame rate. The present invention can clean up the above requirements. SUMMARY OF THE INVENTION [The present invention] It is an object of the present invention to provide a LCD' that provides better resolution than existing LCDs. Another object of the invention is to reduce the power required to illuminate the LCD. Another object of the present invention is to reduce the image frame rate of an LCD. Yet another object of the present invention is to provide a display that is readable by daylight for an LCD. The present invention provides an LCD having a filter only above the penetration of a pixel so that it can be read under ambient light. Another form of the invention is to eliminate the black matrix mask that is typically used in the manufacture of filters. In addition, the present invention provides diagonal pixels to enhance the resolution of the LCD in the color penetration mode. In addition, another version of the present invention allows light to be switched between two colors, while a third color (generally green) is always present, thereby reducing the LCD's method for hybrid field sequential. The required image update rate. Another form of the invention is the production of color by a backlight' thereby eliminating the filter month. Yet another version of the invention is to use a filter only on top of green 1354159 pixels, thereby eliminating the need to use an additional reticle to make the array of illuminators. [Embodiment] Various embodiments of the present invention are related to a liquid crystal display that can operate in a dual mode, a monochromatic reflective plate changing mode, and a -φ color penetrating mode. Various modifications made to the embodiments, as well as the general principles and features described herein. Therefore, the invention is not limited to the embodiments described, but should be defined in the broadest scope of The first diagram shows a cross section of a pixel 1 of an LCD according to an embodiment of the present invention. The pixel 1A includes a liquid crystal material 1〇4, a pixel electrode 106, a common electrode 1〇8, a reflective part 110, a transmissive part n2, a substrate 114 and 116, and a spacer (叩). & (^) 118 & and 11813, a first polarizer (1) 〇 1 汉 1 〇 12 (), and a first polarizer 122. In an embodiment of the invention, a light source 102 or a The ambient light 124 illuminates the pixel 1 . Examples of the light source 1 包括 2 include, but are not limited to, a light-emitting diode (LEDs) backlight, a Cold-Cathode Fluorescent Lamp (CCFL) backlight, and the like. The ambient light 124 can be daylight or any external source of light. In a consistent embodiment of the invention, the liquid crystal material 104 is an optically active material that rotates the polarization axis of light from the source 102 or ambient light 124. Liquid crystal material 1 〇 4 It may be a twisted nematic (ΤΝ), an electrically controlled birefringence (ECB), and the like. In an embodiment of the invention, the plane of the light is based on the application to the pixel electrode 106 and a total of 7 1354159 with electrode 108 < The rotation of the potential difference. Example A is made common electrode and the pixel electrode 1〇6 In one embodiment of the present invention may utilize vaporized 1〇8 steel tin Tin Oxide, ITO). In addition, each pixel is provided with a pixel electrode and the common electrode 108 is shared by all pixels in the LCD. In this embodiment of the month, the reflecting portion 110 is electrically conductive and reflects the ambient light 124 to illuminate the pixel. The reflecting portion is made of a genus and electrically shank to the pixel electrode 106' || this provides a potential difference between the reflecting portion 110 and the common electrode 108. The penetrating portion 112 transmits light from the light source 102 to illuminate the pixel 100. The substrates 114 and 116 enclose the liquid crystal material 104, the pixel electrode 1〇6, and the common electrode 1〇8. In an embodiment of the invention, the pixel electrodes 1〇6 are disposed on the substrate 114, and the common electrode 108 is disposed on the substrate 116. In addition, substrate 114 includes switching elements (not shown in the first figure). In an embodiment of the invention, the switching element may be a Thin Film Transistor (TFT). In addition, a drive circuit 130 transmits a signal associated with the pixel value to the switching element. In an embodiment of the invention, drive circuit 130 uses a low voltage differential signaling (LVDS) driver. In another embodiment of the present invention, a transistor-transistor logic (TTL) 71 surface that simultaneously senses voltage increase and decrease is applied to the drive circuit 13A. In addition, a timing controller 140 encodes the signal associated with the pixel value as the signal required for the diagonal penetration of the pixel. In addition, the 'timing controller 〇 4 〇 has a memory' allows the LCD to self-update when the signal associated with the pixel is removed from the timing controller 140. In an embodiment of the invention, 'spacers 11' and U8t) are placed 8 1354159. • are placed over the reflective portion 110 to maintain an equal distance between the substrates 114 and 116. In addition, the pixel 100 includes A polarizer 120 and a second polarizer 122. In an embodiment of the invention, the axis of polarity of the first polarizer 120 and the polar axis of the second polarizer 122 are perpendicular to each other. In another embodiment of the invention, the polarity axis of the first polarizer 120 and the polarity axis of the second polarizer 122 are parallel to each other. The pixel 100 is illuminated by the light source 102 or the ambient light 124. The intensity of the light passing through the pixel 100 is The potential difference between the pixel electrode 106 and the common electrode 108 is determined. In an embodiment of the invention, when no potential difference is applied between the pixel electrode 106 and the common electrode 108, the liquid crystal material 104 is non-oriented ( In the disoriented state, the light passing through the first polarizer 120 is blocked by the second polarizer 122, and when the potential difference is applied between the pixel electrode 106 and the common electrode 108, the liquid crystal material 104 is oriented (orien The ted state. The directivity of the liquid crystal material 104 allows light to pass through the second polarizer 122. The schematic diagram shown in the second figure illustrates the configuration of nine pixels 100 of the LCD, in accordance with an embodiment of the present invention. The transmissive portion 112b and the reflecting portion 110. In an embodiment of the present invention, if the RGB '(red_blue-green) color system is followed, the penetrating portions 112a-c respectively impart green, blue and red light components to form A color pixel. Furthermore, if different color systems are selected, the penetrating portions 112a-c can be given different colors, such as red, 'green, blue and white or a combination of other colors. Further, the penetrating portion 113a and 114a imparts green light, and the penetrating portions 113b and 114b impart blue light, and the penetrating portions 113a and 114c impart red light to the pixels. Further, filters of different thicknesses can be /r-·····9 1354159 1354159

被放置於穿透部112a-c之上,以減少或增加被賦予給像素 的色彩飽和度(saturation)。飽和度係被定義為在可見光光 譜中某一特定層次的色彩的強度。另外,在本發明的不同 實施例中,無色的濾光片(colorless filter)202d可被放置於 反射部110之上。在本發明的不同實施例中,無色的淚光 片202d的厚度可由零變化至其他被放置於穿透部n2a_c 之上的濾光片的厚度不等。在本發明的一實施例中,穿 透部112a代表彩色像素的三種色彩中的一種的對角帶 (diagonal strip)。同樣地,穿透部1121)與112c代表彩色像 素的其他兩種色彩的對角帶。使用對角帶可以讓彩色穿透 模式下的解析度接近單色(黑與白)反射模式下的解析度。 彩色穿透模式需要高解析度是因為人類的視覺系統在將巧 像視覺化時可❹j水平與垂直線條。在本發明的另二 例中’可採用色彩的垂直帶,與使用對角帶相較下,可】 變較多水平方向的解析度’而改變較少垂直方向 度。從光源102通過每一穿透部U2a_c傳送的光 換元件(未顯示於第二圖)所決定。而接著,通過每—穿 透部傳㈣光量蚊彩色像素的色彩。 部112a-c與濾光片的形狀可以异丄牙远 圓形、或其他等等。此外,反矩形、八角形、 圓形、人角形、以及其類似者的城可為矩形、 被傳遞至對角帶的光,而不會傳、乒反射』110會阻擋 例來說,反射部110會阻擔沿著穿不同色彩的像素’舉 進入穿透部⑽或112a。替代t/i部心與收的光 也,也可使用黑色矩陣光罩 1354159 203或;I於像素與像素的光敏區域sensitive area)之間 的一遮盖。在本發明的一實施例中,黑色矩陣光罩203係 被省除以提昇像素的反射性。 第三圖所示的示意圖說明根據本發明的一實施例,像 素100在單色反射模式下的作用。由於第三圖中僅解釋單 -色反射模式’因此圖中僅顯示出反射部110。像素100可 •以在有外部光源的情況下使用單色反射模式,在本發明的 一貝施例中’周遭光線124通過無色的濾光片202d與液晶 材料104而入射至反射部11〇之上。無色的濾光片2〇2d係 用來將周遭光線124的衰減度(attenuation)和路徑差異(path difference)維持與色彩穿透模式下的衰減度和路徑差異一 • 樣。像素10〇的反射部110將周遭光線124反射至基板 •116在本發明的一實施例中,電位差(v)係被施加於與反射 110和共用電極1〇8電氣地耦合的像素電極1〇6。液晶 材料104係根據電位差(¥)而被定向。因此,液晶材料1〇4 _的方向性旋轉周遭光線124的平面,讓光可通過第二偏光 片122。所以液晶材料1〇4的方向性的角度決定了像素1〇〇 的亮度(brightness) ’而因此影響了像素100的發光強度。 在本發明的一實施例中,像素1〇〇可採用一般為白的 .液晶實施例。在此實施例中,第一偏光片12〇與第二偏光 片122的軸係彼此平行。像素電極106,以及共用電極1〇8 被施加以最大的臨限電壓,以阻擋反射部11〇所反射的 光。因此像素100看起來是黑的。替代地,像素1〇〇可採 用一般的黑色液晶。在此實施例中,第—偏光片12〇與第 11 1354159 二偏光片122的軸係彼此垂直。像素電極ι〇6,以及共用 電極108被細加以最大的臨限電壓,以照射像素1 〇〇。 第四圖所示的示意圖說明根據本發明的一實施例,當 使用部份濾光片的方法時,LCD在彩色穿透模式下的作 用。由於先前已說明過彩色穿透實施例,因此在第四圖中 僅顯示出穿透部112a-c。如第四圖所示,在基板丨16上, 渡光片404a、404b與404c係分別針對穿透部ma、n2bIt is placed over the penetrating portions 112a-c to reduce or increase the color saturation imparted to the pixels. Saturation is defined as the intensity of a particular level of color in the visible light spectrum. Additionally, in various embodiments of the present invention, a colorless filter 202d can be placed over the reflective portion 110. In various embodiments of the invention, the thickness of the colorless tear sheet 202d may vary from zero to other thicknesses of the filters placed over the penetrations n2a-c. In an embodiment of the invention, the penetrating portion 112a represents a diagonal strip of one of the three colors of the color pixel. Similarly, the penetrating portions 1121) and 112c represent the diagonal bands of the other two colors of the color pixels. The diagonal band allows the resolution in color-penetration mode to be close to the resolution in monochrome (black and white) reflection mode. The color penetration mode requires high resolution because the human visual system can illuminate horizontal and vertical lines when visualizing the image. In the other two examples of the present invention, a vertical band of color can be employed, and the degree of resolution in the horizontal direction can be changed as compared with the use of the diagonal band, and the degree of vertical direction is changed. The light source 102 is determined by the optical switching element (not shown in the second figure) transmitted through each of the penetrating portions U2a_c. Then, through each of the transmissive parts, the color of the mosquito color pixels is transmitted. The shapes of the portions 112a-c and the filter may be different from the shape of the circle, or the like. In addition, the anti-rectangular, octagonal, circular, human-angled, and similar cities may be rectangular, transmitted to the diagonal band of light, and will not pass, ping-reflected, 110 will block, for example, the reflection 110 will block the passage of pixels that wear different colors to enter the penetration (10) or 112a. Instead of the t/i center and the received light, a black matrix mask 1354159 203 or a gap between the pixel and the sensitive area of the pixel can also be used. In an embodiment of the invention, the black matrix mask 203 is omitted to enhance the reflectivity of the pixels. The schematic diagram shown in the third diagram illustrates the effect of pixel 100 in a monochromatic reflection mode in accordance with an embodiment of the present invention. Since only the single-color reflection mode is explained in the third figure, only the reflection portion 110 is shown in the drawing. The pixel 100 can use a monochrome reflection mode in the presence of an external light source. In the embodiment of the present invention, the ambient light 124 is incident on the reflection portion 11 through the colorless filter 202d and the liquid crystal material 104. on. The colorless filter 2〇2d is used to maintain the attenuation and path difference of the ambient light 124 with the attenuation and path difference in the color penetration mode. The reflecting portion 110 of the pixel 10 turns the ambient light 124 to the substrate 116. In an embodiment of the invention, a potential difference (v) is applied to the pixel electrode 1 electrically coupled to the reflection 110 and the common electrode 1A8. 6. The liquid crystal material 104 is oriented in accordance with the potential difference (¥). Therefore, the directionality of the liquid crystal material 1 〇 4 _ rotates the plane of the surrounding ray 124 to allow light to pass through the second polarizer 122. Therefore, the directivity angle of the liquid crystal material 1 〇 4 determines the brightness of the pixel 1 而 and thus affects the light-emitting intensity of the pixel 100. In an embodiment of the invention, the pixel 1 〇〇 can be a generally white liquid crystal embodiment. In this embodiment, the axes of the first polarizer 12 and the second polarizer 122 are parallel to each other. The pixel electrode 106, and the common electrode 1A8 are applied with a maximum threshold voltage to block the light reflected by the reflecting portion 11A. Thus pixel 100 appears to be black. Alternatively, the pixel 1 can be a general black liquid crystal. In this embodiment, the axis of the first polarizer 12A and the eleventh 1354159 polarizer 122 are perpendicular to each other. The pixel electrode ι 6 and the common electrode 108 are thinned to the maximum threshold voltage to illuminate the pixel 1 〇〇. The schematic diagram shown in the fourth diagram illustrates the effect of the LCD in color pass mode when a partial filter method is used in accordance with an embodiment of the present invention. Since the color penetrating embodiment has been previously described, only the penetrating portions 112a-c are shown in the fourth figure. As shown in the fourth figure, on the substrate stack 16, the light-receiving sheets 404a, 404b, and 404c are respectively directed to the penetration portions ma, n2b.

與112c而被放置。光源102為標準背光源。來自光源1〇2 的光402可利用準直光導(c〇lhmatlng light guide)或透鏡加 以對準。在本發明的一實施例中,來自光源102的光402 會通過第一偏光片120。而第一偏光片會將光4〇2的平面 校準於一特定平面。在本發明的一實施例中,光的平 面係被校準於水平的方向。此外,第二偏光片122在垂直 方向具有極化軸(axis 〇f p〇larizati〇n)。穿透部e傳送 光402。在本發明的一實施例中,每一個穿透部具 有個別的交換元件。交換元件控制通過對應的穿透 的強度。另外’光4〇2在傳送通過穿透 :穿過液晶材料,穿遷 拯供以像素電極106a_c。在 ’、刀別 之間的電位差麥定… 電 C與共用電極10 8 曰u丄 、了 /夜日9材料1〇4的方向性。而接荖,、广 晶材料1〇4的方向性決宏7 而接者,液 的光他的強度。 了入射於每一遽光片4〇4a_C之上 ’綠光慮光片4〇4a係被放置 光片404b係被玫置於穿透部 在本發明的一實施例中 於穿透部U2a之上,藍光濾 1354159 112b之上,而紅光濾光片404c係被放置於穿透部n2c之 , 上。每一個濾光片404a-c將對應的色光賦予彩色像素。由 ;濾光片404a_c所賦予的光決定了彩色像素的色度數值 (chrominance vaiue)。色度包含了像是一像素的色調仏此) 與飽和度等色彩資訊。另外,如果有周遭光線124的話, 由反射部110 (如第二圖與第三圖所示)所反射的光提供 彩色像素的發光強度。此發光強度會增加在色彩穿透模式 鲁下的解析度。發光強度為像素的亮度之量測準則。It is placed with 112c. Light source 102 is a standard backlight. Light 402 from source 1 〇 2 can be aligned using a collimating light guide or lens. In an embodiment of the invention, light 402 from source 102 passes through first polarizer 120. The first polarizer aligns the plane of the light 4〇2 to a specific plane. In an embodiment of the invention, the plane of the light is calibrated in a horizontal direction. Further, the second polarizer 122 has a polarization axis (axis 〇f p〇larizati〇n) in the vertical direction. The penetration e transmits light 402. In an embodiment of the invention, each of the penetrating portions has an individual exchange element. The exchange element controls the intensity of the corresponding penetration. In addition, the light 4 〇 2 is transmitted through the liquid crystal material, and is passed through the pixel electrode 106a_c. The potential difference between the ', the knife' is different... The electric C and the common electrode 10 8 曰u丄, / night 9 material 1 〇 4 directionality. In the case of the 荖, the directionality of the wide-grained material 1〇4 is determined by the macro 7 and the liquid's light is his intensity. It is incident on each of the calender sheets 4〇4a_C. The green light-receiving sheet 4〇4a is placed on the light-transmitting sheet 404b, and is placed in the penetrating portion. In an embodiment of the present invention, the penetrating portion U2a is disposed. Above, the blue filter 1354159 112b is placed, and the red filter 404c is placed on the penetrating portion n2c. Each of the filters 404a-c imparts a corresponding color light to the color pixels. The light imparted by the filter 404a_c determines the chrominance vaiue of the color pixel. Chroma contains color information such as a pixel's hue and saturation. Further, if there is ambient light 124, the light reflected by the reflecting portion 110 (as shown in the second and third figures) provides the luminous intensity of the color pixel. This luminous intensity increases the resolution under the color penetration mode. The luminous intensity is a measure of the brightness of the pixel.

第五圖所示的示意圖說明根據本發明的一實施例,當 使用混合場序的方法時,LCD在彩色穿透模式下的作用。 由於先前已說明過彩色穿透實施例,因此在第五圖中僅顯 -· 示出穿透部112a-c。在本發明的一實施例中,光源1〇2包 含LED帶’像是LED群組1、LED群組2等等(未顯示於 圖中)。在本發明的一實施例中,被水平地配置的led係 被聚集在一起,一個led群組接在另一個之下,用以照射 ^ LCD。替代地,被垂直地配置的LED也可被聚集在一起。 LED群組係以序列的方式照射,一 LED群組的照射頻率可 介於每秒30張晝面(frame)至540張晝面之間。在本發明的 一實施例中,每一 LED群組包含紅光LED 506a、白光LED 506b與藍光LED 506c。另外,LED群組1的紅光LED 506a 與白光LED 506b係由時間t = 0至t = 5導通,而LED群 組2的紅光LED 506a與白光LED 506b係由時間t = 1至t =6導通。同樣地,其他的LED群組的所有紅光與白光LED 係以序列的方式作用。在本發明的一實施例中,如果LED 1354159 群組係以垂直地配置’每一 LED群組會照射LCD的像素 ' 的一水平列。同樣地’ LED群組1的藍光LED 506c與白 光LED 5〇6b係由時間t = 5至t= 10導通,而LED群組2 的藍光LED 506c與白光LED 506b係由時間t = 6至t = 11 導通。同樣地,其他的LED群組的所有藍光與白光LED 係以序列的方式作用。紅光LEd 506a、白光LED 506b與 k光LED 506c係被配置為紅光LED 506a與藍光LED 506c _照射穿透部穿透部112a與112c,而白光LED 506b照射穿 透部112b。在本發明的另一實施例中,LED群組可包含紅、 綠與藍光LED。紅、綠與藍光LED也被配置為綠光lEd 5〇6b照射穿透部112b,而紅光LED5〇6a與藍光 刀別照射穿透部H2a與112c。 在本發明的一實施例中,來自光源1〇2的光5〇2會通 過第—偏光片120。而第一偏光片12〇會將光5〇2的平面 杈準於—特定平面。在本發明的一實施例中,光502的平 鲁面係被校準於水平的方向。此外,第二偏光片122在垂直 方=具有極化轴。穿透部U2a_e傳送光術。在本發明的 -實施例中,每—個穿透部U2a_e具有個別的交換元件。 另外,父換元件控制通過穿透每一個穿透部U2a_c的光的 強度,藉此控制色光成份的強度。另外,光5〇2在傳送通 .過穿透部112a-c之後,會穿過液晶材料1〇4。每一穿透部 112a、i12b與U2c分別具有自己的像素電極c。在像 素電極l〇6a-c與共用電極1〇8之間的電位差決定了液晶材 •料104的方向性。在使用乡工、白與藍光LK)的實施例中, ^M159 接著液晶材料104的方向性決定了入射於綠光濾光片 504,以及透明間隔物5083與508b之上的光502的強度。 •穿過綠光濾光片504、以及透明間隔物5〇8a與5〇8b的"光 加2的強度決定了彩色像素的色度數值。在本發明的一實 施,中,綠光濾光片504係對應穿透部112b而被放置,二 透部112a與112c並沒有濾光片。替代地,穿透部Hu與 • U2c可分別使用透明間隔物508a與508b。綠光濾光片、 % 504、透明間隔物508a與508b係位於基板116上。在本發 月的另一貫施例中,洋紅色光濾光片 < 被放至於透明間隔 物508a與5〇讣之上。在本發明的一實施例中,在時間t=〇 至t = 5之間’當紅光led 506a與白光LED 5〇6b為導通 時’穿透部l12a與112c為紅色的,而綠光濾光片5〇4將 綠光賦予穿透部112b。同樣地,在時間t= 6至t = 11之間, 當藍光LED 506c與白光LED 506b為導通時,穿透部u 2a 與112c為紅色的,而綠光濾光片504將綠光賦予穿透部 0 112b。被賦予給彩色像素的顏色係由來自穿透部112a-c的 色光的組合所形成。另外’如果有周遭光線124的話,由 反射部110 (如第二圖與第三圖所示)所反射的光提供彩 色像素的發光強度。此發光強度會增加在色.彩穿透模式下 的解析度。‘ 第六圖所示的示意圖說明根據本發明的一實施例,當 使用繞射的方法時,LCD在彩色穿透模式下的作用。由於 先前已說明過彩色穿透實施例,因此在第六圖中僅顯示出 穿透部112a-c。光源102可為標準背光源。在本發明的—The schematic diagram shown in the fifth diagram illustrates the effect of the LCD in the color penetrating mode when using the method of mixing the field sequential according to an embodiment of the present invention. Since the color penetrating embodiment has been previously described, only the penetrating portions 112a-c are shown in the fifth figure. In an embodiment of the invention, light source 1〇2 includes LED strips' such as LED group 1, LED group 2, etc. (not shown). In an embodiment of the invention, the horizontally arranged LEDs are grouped together and one led group is connected to the other to illuminate the LCD. Alternatively, vertically arranged LEDs can also be brought together. The LED groups are illuminated in a sequence, and the illumination frequency of an LED group can be between 30 frames per second and 540 frames. In an embodiment of the invention, each LED group includes a red LED 506a, a white LED 506b, and a blue LED 506c. In addition, the red LED 506a and the white LED 506b of the LED group 1 are turned on by time t = 0 to t = 5, and the red LED 506a and the white LED 506b of the LED group 2 are time t = 1 to t = 6 conduction. Similarly, all red and white LEDs of other LED groups act in a sequential manner. In one embodiment of the invention, if the LED 1354159 group is arranged vertically, 'each LED group illuminates a horizontal column of pixels' of the LCD. Similarly, the blue LED 506c and the white LED 5〇6b of the LED group 1 are turned on by time t=5 to t=10, and the blue LED 506c and the white LED 506b of the LED group 2 are time t=6 to t. = 11 is on. Similarly, all blue and white LEDs of other LED groups function in a sequential manner. The red light LEd 506a, the white light LED 506b and the k light LED 506c are configured as a red LED 506a and a blue LED 506c to illuminate the penetration penetration portions 112a and 112c, and the white LED 506b illuminates the penetration portion 112b. In another embodiment of the invention, the group of LEDs can include red, green, and blue LEDs. The red, green and blue LEDs are also arranged to illuminate the penetrating portion 112b with the green light lEd 5〇6b, and the red LEDs 5a and 6a illuminate the penetrating portions H2a and 112c. In an embodiment of the invention, light 5〇2 from source 1〇2 passes through first-polarizer 120. The first polarizer 12 杈 aligns the plane of the light 5 〇 2 with a specific plane. In an embodiment of the invention, the flat surface of light 502 is aligned in a horizontal direction. Further, the second polarizer 122 has a polarization axis in the vertical direction. The penetrating portion U2a_e transmits light. In the embodiment of the invention, each of the penetrations U2a_e has an individual exchange element. Further, the parent changing element controls the intensity of light passing through each of the penetrating portions U2a_c, thereby controlling the intensity of the color light component. In addition, the light 5〇2 passes through the liquid crystal material 1〇4 after passing through the through-penetration portions 112a-c. Each of the penetrating portions 112a, i12b, and U2c has its own pixel electrode c. The potential difference between the pixel electrodes 16a-c and the common electrode 1A8 determines the directivity of the liquid crystal material 104. In an embodiment using lumps, white and blue light LK), the directivity of ^M159 followed by liquid crystal material 104 determines the intensity of light 502 incident on green light filter 504, as well as transparent spacers 5083 and 508b. • The intensity of the "light plus 2 through the green filter 504 and the transparent spacers 5〇8a and 5〇8b determines the chromaticity value of the color pixel. In one embodiment of the present invention, the green light filter 504 is placed corresponding to the penetrating portion 112b, and the second through portions 112a and 112c have no filter. Alternatively, the transparent portions 508a and 508b may be used for the penetrating portions Hu and U2c, respectively. The green light filter, % 504, and transparent spacers 508a and 508b are located on the substrate 116. In another embodiment of this month, the magenta light filter < is placed over the transparent spacers 508a and 5〇讣. In an embodiment of the invention, between time t=〇 and t=5, when the red LED 506a and the white LED 5〇6b are turned on, the penetration portions l12a and 112c are red, and the green light is filtered. The sheet 5〇4 gives green light to the penetrating portion 112b. Similarly, between time t=6 and t=11, when the blue LED 506c and the white LED 506b are turned on, the penetrating portions u 2a and 112c are red, and the green light filter 504 imparts green light. Transmitting part 0 112b. The color imparted to the color pixels is formed by a combination of color lights from the penetrating portions 112a-c. Further, if there is ambient light 124, the light reflected by the reflecting portion 110 (as shown in the second and third figures) provides the luminous intensity of the color pixels. This luminous intensity increases the resolution in the color-to-color penetration mode. The schematic diagram shown in the sixth diagram illustrates the role of the LCD in the color penetrating mode when the method of diffraction is used according to an embodiment of the present invention. Since the color penetrating embodiment has been previously described, only the penetrating portions 112a-c are shown in the sixth figure. Light source 102 can be a standard backlight. In the present invention -

15 1354159 實施例中,來自光源102的光602可藉由繞射光柵 (diffraction grating)604而被分為綠光成份602a、藍光成份 602b以及紅光成份602c。替代地,光602可被分為色彩的 光譜,而光譜上不同部分的光可藉由微光學結構 (micro-optical structure)而分別通過穿透部112a-c的每一部 分。在本發明的一實施例中,微光學結構為平面薄膜光學 結構(flat film optical structure),其具有小型透鏡組,可被 壓印或引入至薄膜。綠光成份602a、紅光成份602b與藍 光成份602c係利用繞射光栅604而被導至穿透部n2a、 ll2b與ll2c。光6〇2的成份會通過第一偏光片。而第 一偏光片120會將光的成份602a-c的平面校準於一特定平 面。在本發明的一實施例中,光的成份602a_c的平面係被 校準於水平的方向。此外,第二偏光片122在垂直方向具 有極化軸。穿透部丨丨2a_c讓光的成份6〇2a、c可透過它們傳 送。在本發明的一實施例中,每一個穿透部U2a_c具有個 別的交換元件。交換元件控制通過對應的穿透部U2a_c的 光的強度’藉此控制色光成份的強度。另外,光°成份6〇2a_c 在傳送通過穿透部112a_e之後,會穿過液晶材料刚。穿 透部112a、112b與112e分別具有像素電極iQ6a e。在像 與共用電極1〇8之間的電位差決定了液晶材 性。而接著’液晶材料104的方向性決定了 的J 122的光成份6〇2a_C的強度。穿過第二偏 先片122的先成份6〇心的強度決定了彩色像素 。 另外,如果有周遭光線的話,由反射部11〇 (如第二^ 16 .之 第三圖p/f -、 ώ不)所反射的光提供彩色像素的發光強度。此發 強度會增加在色彩穿透模式下的解析度。 如5如本發明所述,像素的穿透部係被斜對地配置,而非 扩5先%己知的LCD 一樣採用垂直或水平的配置。穿透部 角、、表配置,與先前已知的LCD相比可提昇解析度,因 在可提供較㈣顯示功能。 此外’有周遭光線可增強在彩色穿透模式下的彩色像15 1354159 In an embodiment, light 602 from source 102 can be divided into green component 602a, blue component 602b, and red component 602c by a diffraction grating 604. Alternatively, light 602 can be divided into a spectrum of colors, while different portions of the spectrum of light can pass through each of the penetrations 112a-c, respectively, by a micro-optical structure. In an embodiment of the invention, the micro-optical structure is a flat film optical structure having a small lens group that can be embossed or introduced into the film. The green light component 602a, the red light component 602b, and the blue light component 602c are guided to the penetrating portions n2a, 11b, and 11c by the diffraction grating 604. The composition of the light 6〇2 passes through the first polarizer. The first polarizer 120 aligns the plane of the light components 602a-c to a particular plane. In an embodiment of the invention, the plane of the components 602a-c of light is calibrated in a horizontal direction. Further, the second polarizer 122 has a polarization axis in the vertical direction. The penetrating portion a2a_c allows the components 6〇2a, c of light to be transmitted therethrough. In an embodiment of the invention, each of the penetrations U2a-c has a separate exchange element. The switching element controls the intensity of the light passing through the corresponding penetrating portion U2a_c thereby controlling the intensity of the color light component. In addition, the light component 6〇2a_c passes through the liquid crystal material just after passing through the penetrating portion 112a_e. The transmissive portions 112a, 112b, and 112e have pixel electrodes iQ6a e, respectively. The potential difference between the image and the common electrode 1 〇 8 determines the liquid crystal material properties. Then, the directivity of the liquid crystal material 104 determines the intensity of the light component 6〇2a_C of J 122 . The intensity of the center of the first component 6 passing through the second partial film 122 determines the color pixel. Further, if there is ambient light, the light reflected by the reflecting portion 11A (e.g., the third image p/f -, ώ) of the second portion 16 16 provides the luminous intensity of the color pixel. This intensity increases the resolution in color penetration mode. As in the present invention, as described in the present invention, the penetrating portions of the pixels are arranged diagonally, instead of the vertical or horizontal configuration, as is the case with the LCDs. The penetration angle, table configuration, can improve the resolution compared to the previously known LCD, because the (four) display function can be provided. In addition, there is ambient light that enhances the color image in color penetration mode.

發光強度(luminance)。所以,每—像素兼具有發光強 度與色度,這樣會增加LCD的解析度。因此,某一特定解 析度所需的像素數目會低於先前已知的LCD,藉此降低 LCf的電力消耗。另外,以電晶體邏輯(TTL)為主的介面與 先七已知的LCD所用的介面相較下,可用來降低lcd的 電肖耗。此外,因為時序控制器儲存與像素數值有關的 Λ號LCD可達到最佳化的自我更新’藉此也可降低電力 消耗。在本發明的不同實施例中,可以採用較薄的濾光片,Luminance. Therefore, each pixel has both luminous intensity and chromaticity, which increases the resolution of the LCD. Therefore, the number of pixels required for a particular resolution will be lower than previously known LCDs, thereby reducing the power consumption of the LCf. In addition, the transistor logic (TTL)-based interface can be used to reduce the electrical dissipation of the LCD compared to the interface used in the first seven known LCDs. In addition, because the timing controller stores an apostrophe LCD associated with pixel values, an optimized self-updating can be achieved, thereby reducing power consumption. In various embodiments of the invention, thinner filters can be used,

用送較不飽和的色彩與更多的光量。所以,本發明的 各種貝知例在與先前已知的LCD相較下,可達到減少電 力消耗的目的。 找%叫員々乜1夕口乐立圆尸/τ地;,杜1豕ί 100上永遠可目 見到綠光或白光,而只有紅光和藍光會被i 換。所以,和先< 別已知的場序顯示器(field sequential displa 相較之下,只你π ^ ^ 而要較低的影像更新率。 S以上巳提出本發明的較佳實施例,要注意的是;? 發明並不限於此、 ^匕些貫施例。在不違背本發明的精神與範3 〆·* ..Ί. 17 1354159 的情況下’如申請專利範圍所述,熟悉此技藝者應可了解 本發明可有各種修正、變化、改變、置換與等效的方式。 •【圖式簡單說明】 以下將配合所附的圖表敘述本發明的各種實施例,发 中類似的標號代表類似的元件,而其中·· 〃 第-圖所示的示意圖說明根據本發明的 LCD的像素之橫截面; 、列— .第二圖所示的示意圖說明根據本發明的一實施例 LCD的九個像素的配置; μ她例, 第三圖所示的示意圖說明根據本 LCD在單色反射模式下的作用; 只她例, •第四圖所示的示意圖說明根據本發明的— 使用部份據光片的方法時,LCD在彩色穿透貝&’虽 第五圖所示的示意圖說明根據本發明的1"、用; ::合場序的方法時,LCD在物透模式下:用當 第六圖所示的示意圖說明根據本發 — 使用繞射的方法時,LCD在彩色穿透模式下的=例,當 【主要元件符號說明】 像素100 光源102 液晶材料104 18 1354159 像素電極106 ' 像素電極106a-c • 共用電極108 反射部110 穿透部112 穿透部112a-c • 穿透部113a-c 穿透部114a-c 基板114 基板116 間隔物118a 間隔物118b • 第一偏光片120 第二偏光月122 ' 周遭光線124 驅動電路130 時序控制器140 無色的濾光片202d 黑色矩陣光罩203 1354159 光402 • 濾光片404a . 濾光片404b 濾光片404c 光502 綠光濾光片504 # 紅光 LED 506a 白光 LED 506b 藍光 LED 506c ' 透明間隔物508a 透明間隔物508b 光602 鲁 綠光成份6〇2a 藍光成份602b 紅光成份602c 繞射光柵604Use to send less saturated colors and more light. Therefore, the various examples of the present invention can achieve the purpose of reducing power consumption as compared with the previously known LCD. Look for the number of 叫1 夕 乐 乐 立 立 / / τ ground;, Du 1豕ί 100 can always see green or white light, and only red and blue will be replaced by i. Therefore, compared with the field sequential displa which is previously known, only you have a lower image update rate than the field sequential displa. In view of the preferred embodiment of the present invention, it is noted that The invention is not limited to this, and some examples are applied. Without departing from the spirit of the invention and the scope of the invention, as described in the scope of the patent application, familiarity with the art Various modifications, changes, variations, substitutions, and equivalents are possible in the present invention. The present invention will be described in conjunction with the accompanying drawings. Similar elements, and wherein: 〃 FIG. 1 is a schematic view showing a cross section of a pixel of an LCD according to the present invention; and a column. The second diagram shows a schematic diagram of an LCD according to an embodiment of the present invention. The configuration of the pixels; μ, the diagram shown in the third figure illustrates the role of the LCD in the monochrome reflection mode; only her example, the diagram shown in the fourth figure illustrates the use of the part according to the present invention. According to the method of light film LCD in Color Penetration & 'Although the schematic diagram shown in the fifth figure illustrates the 1", using; :: field-sequencing method according to the present invention, the LCD is in the object-through mode: as shown in the sixth figure BRIEF DESCRIPTION OF THE DRAWINGS According to the present invention - when using the diffraction method, the LCD is in the color penetration mode = example, when [main component symbol description] pixel 100 light source 102 liquid crystal material 104 18 1354159 pixel electrode 106 'pixel electrode 106a-c • Common electrode 108 Reflecting portion 110 Penetrating portion 112 Penetrating portion 112a-c • Penetrating portion 113a-c Penetrating portion 114a-c Substrate 114 Substrate 116 Spacer 118a Spacer 118b • First polarizer 120 Second polarizing month 122 ' ambient light 124 drive circuit 130 timing controller 140 colorless filter 202d black matrix mask 203 1354159 light 402 • filter 404a. filter 404b filter 404c light 502 green filter 504 #red Light LED 506a White LED 506b Blue LED 506c 'Transparent spacer 508a Transparent spacer 508b Light 602 Lu green component 6〇2a Blue component 602b Red component 602c Diffraction grating 604

Claims (1)

* ** i . 】00年8月12日修正替肺 十、申請專利範圍: 種雙模式液晶顯示器,包含: a.—,源,用以照射該雙模式顯示器; 一苐一平面的光 b•一第一偏光片,用以校準由該光源至 之極化的平面; Μ仅半由該光源 顶疋我的第 一平面的光之極化的平面 d. =—基板與—第二基板,該第—基板與該第二基板 被插設於該第-偏光片與該第二偏光片之間;以及扳 e. 讀個像素,每—該等像素係W該第-基板,每 像素係包含-反㈣與—穿透部,該穿透部係 複數個像素中之該反射部、及其他存在於 :或多固其他像素中的零或多個其他反射部所圍 2 %’其中献射部不具有濾H該穿透部的至少一 部分包含一或更多個濾光片。 2請專觀圍第1項之雙模式液日日日顯示器,其中该反 射。卩佔據該複數個像素的相對角落。 3. 7請專利範圍第W之雙模式液晶顯示器,其中該穿 透部佔據該複數個像素的中心。 4·如申請專利範圍第i項之雙模式液晶顯示器, 衫的光譜係由該光源的光利用一达 .' 所產生。 、凡射或—微光學薄膜 顯示器,其中該穿 如申請專利範圍第i項之雙模式液晶 透部係以斜對地配置。 - 21 5. 104159 J 00年8月12日修正替換頁 ιυυ 干 〇 月 Ϊ6 η •如申凊專利範圍第】項之錐 或更多個遽'光片係為不液晶顯不&’其㈣ 7.=:旁專利範圍第】項之雙模式液晶顯示器,其中該一 5更夕個/慮光片係為相同的厚度。 8mf專利範圍第1項之雙模式液晶顯示器,更包含一 或更夕個無色的間隔物,該—夕 被設置於該反射部之上。更夕個無色的間隔物係 9· 請專利範圍第8項之雙模式液晶顯示n,i中节- 或更多個無色的間隔物係為相同的厚度。 i〇.n?專利範圍第8項之雙模式液晶顯示器,其中該-,更夕個無色的間隔物係為不同的厚产。 u·,申請專利範圍第1項之雙模式液^示器,更包含一 !!=電路,^提供像餘餘減㈣換元件,該等 又換元件決定通過該穿透部傳送的光。 驅:mn項之雙模式液晶顯示器,其中該 動電路,更包含一電晶體邏輯介面。 13·如申請專利範圍η項之雙模式液晶顯示器 人一 ==電路,用以更新該雙模式液晶•器‘二 14·如申請專利範圍第1項之雙模式液晶顯示器, 晶顯示器係被用於一筆記型電腦。 、核式液 22* ** i . 】 August 12, 2000 revised for the lungs 10, the scope of application for patent: a dual-mode liquid crystal display, including: a. -, source, to illuminate the dual-mode display; • a first polarizer for calibrating the plane to which the source is polarized; Μ only half of the plane polarized by the source of light from the first plane d. =—substrate and —second substrate The first substrate and the second substrate are interposed between the first polarizer and the second polarizer; and the flipper e. reads a pixel, each of the pixels is the first substrate, each pixel The system includes a -in (four) and a penetrating portion, the penetrating portion is the reflecting portion of the plurality of pixels, and other zero or a plurality of other reflecting portions existing in: or multi-solid other pixels are surrounded by 2% The concentrating portion does not have a filter H. At least a portion of the penetrating portion contains one or more filters. 2 Please look around the first mode of the dual mode liquid day and day display, which reflects.卩 occupies the opposite corners of the plurality of pixels. 3. 7 The dual-mode liquid crystal display of the patent range W, wherein the transmissive portion occupies the center of the plurality of pixels. 4. If the dual-mode liquid crystal display of claim i is applied, the spectrum of the shirt is generated by the light of the light source. A radiant or micro-optical film display, wherein the dual-mode liquid crystal permeable portion of the item i of the patent application range is disposed diagonally. - 21 5. 104159 J Aug. 12, 00, Amendment Replacement Page υυ υυ 〇 Ϊ 如 • • 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如(4) 7.=: The dual-mode liquid crystal display of the above-mentioned patent range, wherein the one-and-a-half/thin film is of the same thickness. The dual mode liquid crystal display of item 1 of the 8mf patent range further includes one or more colorless spacers disposed on the reflecting portion. Even more colorless spacers 9· The dual mode liquid crystal display n, i middle section - or more of the colorless spacers of the patent range 8 is the same thickness. I〇.n? The dual-mode liquid crystal display of the eighth item of the patent range, wherein the -, a colorless spacer is a different thick product. u·, the dual-mode liquid display device of claim 1 of the patent scope further includes a !!= circuit, which provides a component such as a residual subtraction (four), which determines the light transmitted through the penetrating portion. Drive: mn item dual mode liquid crystal display, wherein the circuit also includes a transistor logic interface. 13·If the dual-mode liquid crystal display of the patent scope η is a == circuit for updating the dual-mode liquid crystal device, the dual-mode liquid crystal display of the first application of the patent scope is used, and the crystal display is used. On a notebook computer. Nuclear liquid 22
TW096107194A 2006-11-21 2007-03-02 Dual mode display TWI354159B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US86024706P 2006-11-21 2006-11-21
PCT/US2006/045050 WO2008063171A2 (en) 2006-11-21 2006-11-21 Dual mode display

Publications (2)

Publication Number Publication Date
TW200823554A TW200823554A (en) 2008-06-01
TWI354159B true TWI354159B (en) 2011-12-11

Family

ID=44771196

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096107194A TWI354159B (en) 2006-11-21 2007-03-02 Dual mode display

Country Status (1)

Country Link
TW (1) TWI354159B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101290205B1 (en) 2008-07-28 2013-07-30 픽셀 키 코포레이션 Diffractive liquid crystal display
US8830426B2 (en) 2010-11-17 2014-09-09 Pixel Qi Corporation Color shift reduction in transflective liquid crystal displays

Also Published As

Publication number Publication date
TW200823554A (en) 2008-06-01

Similar Documents

Publication Publication Date Title
US7746431B2 (en) Dual mode display
JP5324068B2 (en) Backlight assembly and display device having the same
CN106200092B (en) Display device and method for driving the same
TWI278692B (en) Liquid crystal display device and electronic apparatus
US8264646B2 (en) Transflective display with white tuning
US9858849B2 (en) Display apparatus with transmissive and reflective subpixels
US8264645B2 (en) Transflective display
CN109031768B (en) Liquid crystal display panel, display device and working method
CN103197477A (en) Dual-mode liquid crystal display device, color film substrate and array substrate
JP2001033768A (en) Liquid crystal device and electronic appliance
CN110192147B (en) Liquid crystal display device having a plurality of pixel electrodes
KR100933111B1 (en) Dual mode display
TWI354159B (en) Dual mode display
CN106959544B (en) Backlight module, liquid crystal display and preparation process thereof
TWI454795B (en) Liquid crystal display device
TWI401496B (en) Transflective display with white tuning
JP3971378B2 (en) Liquid crystal display
JP4670102B2 (en) Dual mode display
JP2019158964A (en) Display device
JP4867432B2 (en) Liquid crystal device and electronic device
JP2010072391A (en) Liquid crystal display device
KR20040005420A (en) Liquid crystal display device with a cholesteric liquid crystal polarizer
KR20020094854A (en) Color Liquid Crystal Display with Fast response and High Brightness
JP2006030888A (en) Liquid crystal display device
KR20160008699A (en) Double-sided liquid crystal display device using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees