TWI353395B - Method and apparatus for maintaining parallelism o - Google Patents
Method and apparatus for maintaining parallelism o Download PDFInfo
- Publication number
- TWI353395B TWI353395B TW93141486A TW93141486A TWI353395B TW I353395 B TWI353395 B TW I353395B TW 93141486 A TW93141486 A TW 93141486A TW 93141486 A TW93141486 A TW 93141486A TW I353395 B TWI353395 B TW I353395B
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- layer
- fixture
- height
- dimensional structure
- Prior art date
Links
Landscapes
- Electroplating Methods And Accessories (AREA)
- Micromachines (AREA)
- Manufacturing Of Printed Wiring (AREA)
Description
九、發明說明: t 明 屬 】 相關的申請案資料 此申請案主張2003年12月31曰所申請之美國暫時專利 申凊案案说60/534,183的利益。此參考申請案如若以其食文 提出般,以參考之方式併於本文。 發明領域 本發明係關於一般的電化學製造領域且與三維結構 (例如微尺度或中尺度結構)之形成有關。更特別的是,本發 明係關於-種經改良的方法及裝置,其可絲在層間達成 想要的平行程度及/或用來達成該結構層所欲之厚度。 【先前技術3 發明背景 已由愛登(Adam)L.古漢(Cohen)發明一種從複數層黏 附層來形成二維結構(例如零件、組件、裝置及其類似物) 的技術’且此已熟知為電化學製造。其已由加州(Caiif〇rnia) 柏班克(Burbank)的微菲布卡有限公司(Micr〇fabrica InC.)(以前稱為門金⑧股份(有限)公司(ΜΕΜ&η⑧ Corporation)),以伊飛伯(EFAB)™之名稱從事商業製造。此 技術描述在2000年2月22日所發證的美國專利案號 6,027,630中。此電化學沉積技術可使用單_遮蔽技術來選 擇性沉積-材料,其包括使用-在—切結構上之遮罩, 該遮罩包括經圖案化可保形的材料,且該支稽結構與將在 上面進行⑽的基材無m要❹此鮮來進行電沉 積時’讓該遮罩之可保形部分會與一基材接觸,同時於電 鐘溶液存在下,如此該遮罩之可保形部分與該基材之接觸 能抑制在所選擇的場所處沉積。為了方便起見,這些遮罩 通常可稱為可保形的接觸遮罩;此遮蔽技術通常可稱為可 5 保形的接觸遮罩電鍍方法。更特別的是,在加州柏班克之 微菲布卡有限公司(以前稱為門金®股份(有限)公司)的術語 中,此遮罩已熟知為立即馬司克(INSTANT MASKS)™,及 此方法已熟知為立即馬司金TM(INSTANT MASKINGTM) 或立即馬司克TMQNSTANT MASKTM)電鍍。可使用選擇 10 性沉積(其已使用一可保形的接觸遮罩電鍍)來形成一單層 材料層,或可使用其來形成一多層結構。’630專利之教導 如若以其全文提出於本文般,藉此以參考之方式併於本 文。因為導致上述提及的專利之專利申請案的申請,故已 有多篇關於可保形的接觸遮罩電鍍(即立即馬司金 15 (INSTANT MASKING))及電化學製造之文獻公告: ⑴A.古漢,G.張(Zhang),F.錢(Tseng),F.門斯菲爾得 (Mansfeld),U.弗拉狄斯(Frodis)及P_威爾(Will),“伊飛伯: 成批製造具有微尺度構形之功能性、完全緻密的金屬零 件”,Proc.第9屆固體自由形態製造(9th Solid Freeform 20 Fabrication),1998 年 8 月在奥斯丁(Austin)的德州大學(The University of Texas),p 161 〇 (2) A.古漢,G.張,F.錢,F.門斯菲爾得,U.弗拉狄斯 及P.威爾,“伊飛伯:高縱深比率、真實的3D MEMS之快速、 低成本桌上型顯微機械加工”,1999年1月之Proc.第12屆 6 1353395 IEEE微電子機械系統研討會(12th IEEE Micro Electro Mechanical Systems Workshop),IEEE,p 244。 (3) A.古漢,“利用電化學製造之3D顯微機械加工”, 1999年3 月的微機器裝置(Micromachine Devices)。 5 (4) G·張,A.古漢’ U.弗拉狄斯’ F.錢,F·門斯菲爾得 及P.威爾,“伊飛伯:真實的3D微結構之快速桌上型製 造”,1999年4月的Pr〇C_第2屆空間應用之積體微奈米技 術國際會議(2nd International Conference on Integrated MicroNanotechnology for Space Applications),航太公司 10 (The Aerospace)。 (5) F_錢,U.弗拉狄斯,G·張,A.古漢,F.門斯菲爾得 及Ρ·威爾,“伊飛伯:使用低成本、自動化、成批方法之高 縱深比率、任意的3D金屬微結構”,1999年6月之第3屆高縱 深比率微結構技術國際研討會(International Workshop on 15 High Aspect Ratio MicroStructure) (HARMST’99)。 (6) A.古漢,U.弗拉狄斯,F.錢,G.張,F.門斯菲 爾得及Ρ·威爾,“伊飛伯:低成本、自動化、電化學成 批製造之任意的3D微結構”,顯微機械加工及微製造 方法技術(Micromachining and Microfabrication 20 Process Technology),1999年9月的 SPIE 1999顯微機械 加工及微製造座談會(Symposium on Micromaching and Microfabrication)。 (7) F.錢,G.張,U.弗拉狄斯,Α·古漢,F·門斯菲爾得 及P.威爾,“伊飛伯:使用低成本、自動化、成批方法之高 7 1353395 縱深比率、任意的3D金屬微結構”,MEMS座談會’ 1999年 11月之ASME 1999國際機械工程會議及展覽會 (International Mechanical Engineering Congress and Exposition) ° 5 (8) A.古漢,“電化學製造(伊飛伯TM)”,MEMS手冊第 19章,由莫罕得(Mohamed)Gad-EI-Hak編輯,CRC出版社, 2002。 (9) “微製造·快速原型的致命應用”,1999年6月的快速 原型報導(Rapid Prototyping Report)第 1-5 頁,CAD/CAM 出 馨 10 版公司。 這九篇公告之揭示如若以其全文提出於此般,藉此以 參考之方式併於本文。 可如在上述專利及公告中所提出般,以數種不同方法 來進行該電化學沉積方法。在一種形式中,此方法在欲形 15成的結構之每層的形成期間包括執行三種個別的操作: 1. 利用電沉積將至少一種材料選擇性沉積在一基材之 一或多個想要的區域上。 鲁 2. 然後,利用電沉積進行掩蓋沉積至少一種其它材 料’以便此其它沉積物覆蓋在該基材之先前經選擇性沉積 20的區域與先前未接受任何選擇性沉積塗佈之區域此 -區域 上。 · 最後平坦化在該第一及第二操作期間所沉積的材 料’以產生-具有平滑表面的第一層,其具有想要的厚度 >個區域包含至少_種材料,且至少一個區域包含 8 至少一種其它材料。 在該第一層形成後,可形成一或多層其它層,其立即 與則述層毗連且黏附至前述層的平滑表面。這些其它層可 藉由重覆第-至第三操作-或多次而形成,其中每層隨後 層之形成皆把先前形成的層及起始基材視作一新及變厚的 基材。 旦已元成形成全部的層’通常會利⑽刻方法來移 除所沉積的至少-種材料之至少一部分,以曝露或釋放出 意欲形成的三維結構。 包含在第-操作中的選擇性電沉積之較佳進行方法為 使=保形的接觸遮罩電鍍。在此電鍍型式中’首先 谨或=可保形的接觸(cc)遮罩。紙遮罩包括—支撐結 上面黏附或形成—經圖案化可入 ”。 每個遮罩之可保形的材料可根據欲電鏟的材二:。 而塑形。每個欲電錢的單—截面圖案需要至少一:面 罩。 u 遮 構,=^^=7 叙、 料。在此典型的方法心 為陽極。在另-種方法中,該μ物中作用 =孔材料’該沉積材料將在電《作期間二:其 透過此支雜至㈣㈣表面之方柄過 陽極 t,cc遮罩可共用—共同支樓物,即 種方法 之可保形的介電材料圖案可位於單一‘ 為cc^ 樓結構包括多次電鑛圖案時,此整體結構指 2幸Φ ,,同時各別的電鍍遮罩可指為“副遮罩,,。在本申 使用。㉖別僅在當與—欲製得的特定位置有關時才會 可仅/備進行第"'操作的選擇性沉積時,將該^遮罩之 Γ 放置在將進行沉積的基材之經選擇的部分之位 二,”,且逆著其加壓(或到-先前形成的層上或到一層之先 J 1的4分上)。以讓在該CC遮軍的可保形部》中之全部 ^王。P包含電鍍溶液的方式,進行將該CC遮罩與該基材 壓在一起。當提供適當的電壓及/或電流時,該CC遮罩其接 觸基材之可細㈣將作為該f沉積的障礙物,同時該在 C遮罩中且已填滿電鍍溶液之開口則作為將材料從陽極 ⑴如CC遮罩支樓物)傳遞至該基材的未接觸部分(其在電 鍍操作期間作用為陰極)之途徑。 CC遮罩&CC遮罩電鍍之實例顯示在第1A-1C圖中。第 1A圖顯不出CC遮罩8之側視圖,該遮罩由一已在陽極^上 圖案化之可保形或可變形的(例如彈性體)絕緣體1〇組成。該 陽極具有二種功能。第1A圖亦描繪出一與遮罩8分隔開的基 材6。該陽極的功能之一為作為該經圖案化的絕緣體1〇之支 撐材料,以維持其完整性及排列,因為該圖案可具有拓撲 學複雜性(例如,包括孤立的絕緣材料“島”)。另一功能為作 為該電鍍操作的陽極。該(:^遮罩電鍍可藉由下列方式將材 料22選擇性沉積到基材6上:其藉由將該絕緣體簡單壓向該 基材’然後透過在絕緣體中的空隙26a及26b來電沉積一材 料,如第1B圖所顯示。在沉積後,將該cc遮罩與基材6分 離(較佳為非破壞性),如顯示在第1(:圖。該〇(:遮罩電鍍方 法與“穿透遮罩(through-mask)”電鍍方法有所區別,在穿透 遮罩電鍍方法中,將破壞性地進行該遮蔽材料與基材之分 離。如使用穿透遮罩電鍍般,該CC遮罩電鍍可選擇性且同 v在整個層上沉積材料。該經電鍍的區域可由一或多個分 離的電鍍區域所組成,其中這些經分離的電鍍區域可屬於 將形成的單一結構或可屬於將同步形成的多重結構。在移 除過程中,不會故意破壞如為各別遮罩的CC遮罩電鍍,故 它們可使用在多次電鍍操作中。 另一個CC遮罩及CC遮罩電鍍的實例則顯示在第1D1F 圖中。第ID圖顯示出一與遮罩8’分離的陽極12,,該遮罩包 '、二圖案化之可保形的材料1〇’及一支撐結構2〇。第圖 亦撝繪出该基材6與遮罩8,分離。第1E圖闡明將遮罩8,帶至 與基材6接觸。第1F圖闡明從陽極12,傳導電流至基材6而產 生的沉積物22,。第则_在與遮罩8,分離後,該沉積物 22’在基材6上。在此實例中,在基材6與陽極12,間放置適當 的电解貝來自溶液及陽極之一或二者的離子電流會透過 在遮罩中的開口而傳導至將沉積材料的基材。此遮罩型式 可指為無陽極立即馬司克tm(aim)或指為無陽極可保形的 接觸(ACC)遮罩。 不像穿透遮罩電鍍般,cc遮罩電鍍可讓所形成的cc 遮罩與所製造進行電鍍的基材完全分離,例如與所形成的 —維(3D)結構分離。可以多種方法來形成cc遮罩例如, 1353395 可使用光微影糾方法。全部遮罩可在結構製造前(而結 . 製造期間)同時產生。此分離可產生一簡單、低成本、自動 化、自身包含及内部清潔的“超小型工具機廠(deskt叩. fact〇ry)’,’討由服務處或其類似独絲麵乎贿財 · 5來製造3D結構,而不需要任何無塵室製程(諸如欲進行的光 微影光刻)。 上述討論的電化學製造方法之實例則闡明在第2A-2F 圖中。每些圖形顯示出該方法包括沉積一作為犧牲材料的 第-材料2及一作為結構材料的第二材料4。在此實例中, ^ 10該CC遮罩8包括-經圖案化可保形的材料(例如彈性體介電 材料)10及一由沉積材料2所製造的支樓物12。將CC遮罩的 保形部分壓向基材6,而電鐘溶液14則位於該可保形的材料 10之開σ 16内。然後,來自電源供應器丨8的電流會經由⑷ 支撲物12(其兼作為陽極)及(b)基材6(其兼作為陰極)而料 15电鍍溶液14。第2A圖闡a月電流通過可造成在該電鍍溶液與 材料2内的材料2,從陽極12選擇性傳遞及電鍍在陰極6上。 在使用CC遮罩8將第一沉積材料2電鍍到基材6上後,移除 · CC遮罩8,如顯示在第2B圖。第2C圖描繪出將該第二沉積 材料4掩蓋沉積(即未經選擇的沉積)在已預先沉積的第一沉 20積材料2上和在基材6的其它部分上。此掩蓋沉積可藉由從 由第二材料所組成的陽極(無顯示),經由適當的電鍍溶液 (無顯示)至陰極/基材6來進行電鍍。然後,平坦化此二材料 . 層全部’以獲得精確的厚度及平坦度,如顯示在第2D圖。 在對全部之層重覆此製程後,由第二材料4(即結構材料)所 12 1353395 形成的多層結構20已埋入第一材料2(即犧牲材料)中,如顯 不在第2E圖。蝕刻此埋入結構,以產生想要的裝置(即結構 20) ’如顯示在第2?圖。 10 15 典型的手動電化學製造系統32之多種组件則顯示在第 3A-3C圖中。該系統32由數個次系統34、36 38及4崎組成。 夾持基材次系統34則描繪在第3A-3C圖每個的上部分,其包 括數個組件:(1)載體48 ; (2)上面將沉積該些層的金屬基材 6,及(3)線性滑座42,其能因應來自致動器44的驅動力量而 相對於载體48上下移動該基材6。次系統34亦包括一指示器 46,其可用來測量基材的垂直位置差異,其可使用來設定 或測量層厚度及/或沉積物厚度。次线34進—步包括= 48的腳68 ,以將其精確安裝在次系統36上。 顯示在第3A圖的下部分中之cc遮罩次系統%包括數 個組件:⑴CC遮罩8,其實際上由一些共用—共同支稽物/ 陽極12的CC遮罩(即副遮罩)組成;(2)精準的χ載物臺54 精準的Υ載物臺56 ;⑷框架72,在其上面可安裝該次系統 34的腳68·,及(5)用來包含電解質16的槽%。次系統“及% 亦包括射的電連接(無顯朴以連結至適當的電源來 此CC遮蔽方法。 部Nine, invention description: t Ming genus 】 Related application information This application claims the interest of 60/534,183 in the US temporary patent application filed on December 31, 2003. This reference application, if presented in its food, is hereby incorporated by reference. FIELD OF THE INVENTION This invention relates to the field of general electrochemical fabrication and relates to the formation of three-dimensional structures, such as microscale or mesoscale structures. More particularly, the present invention relates to an improved method and apparatus for achieving a desired degree of parallelism between layers and/or for achieving the desired thickness of the structural layer. [Prior Art 3 Background of the Invention A technique for forming a two-dimensional structure (e.g., parts, components, devices, and the like) from a plurality of layers of adhesion layers has been invented by Adam L. Cohen. It is well known for electrochemical manufacturing. It has been owned by Micr〇fabrica InC. (formerly known as 金&η8 Corporation) by Burif, Calif〇rnia. The name of EFABTM is engaged in commercial manufacturing. This technique is described in U.S. Patent No. 6,027,630, issued Feb. 22, 2000. The electrochemical deposition technique can use a single-masking technique to selectively deposit a material comprising a mask using an on-cut structure, the mask comprising a patterned conformal material, and the structure is When the substrate on which (10) is performed is not subjected to electrodeposition, the conformal portion of the mask is brought into contact with a substrate, and in the presence of the electric clock solution, the mask can be Contact of the conformal portion with the substrate inhibits deposition at the selected location. For convenience, these masks are often referred to as conformal contact masks; this masking technique is commonly referred to as a conformal contact mask plating method. More specifically, in the terminology of Microfabrika Limited (formerly known as Menkin® Co., Ltd.) of Burbank, Calif., this mask is known as INSTANT MASKSTM, and This method is well known as immediate INSTANT MASKINGTM or immediate MaerskTM QNSTANT MASKTM plating. A single layer of material may be formed using a selective deposition (which has been plated using a conformal contact mask) or may be used to form a multilayer structure. The teachings of the '630 patent are hereby incorporated by reference in its entirety in its entirety herein in its entirety. Because of the application for the patent application of the above mentioned patent, there have been a number of publications on conformal contact mask plating (ie, INSTANT MASKING) and electrochemical fabrication: (1) A. Gu Han, G. Zhang, F. Qian (Tseng), F. Mensfeld, U. Frodis and P_Will, "Iefeibo : Batch manufacturing of functional, fully dense metal parts with micro-scale configuration", Proc. 9th Solid Freeform 20 Fabrication, August 1998 in Austin, Texas The University of Texas, p 161 〇 (2) A. Guhan, G. Zhang, F. Money, F. Mensfield, U. Vladis and P. Will, “Ifei Bo: High depth ratio, fast, low-cost desktop micromachining of real 3D MEMS, Proc., January 1999, 12th 6 1353395 IEEE Micro Electro Mechanical Systems Symposium (12th IEEE Micro Electro Mechanical Systems) Workshop), IEEE, p 244. (3) A. Guhan, “Using Electrochemical Manufacturing 3D Micromachining,” March 1999 Micromachine Devices. 5 (4) G·Zhang, A. Guhan 'U. Vladis' F. Money, F. Mensfield and P. Will, “Ifeibo: Real 3D Microstructure Quick Table "Top-of-the-line manufacturing", April 1999, Pr〇C_ 2nd International Conference on Integrated MicroNanotechnology for Space Applications, The Aerospace. (5) F_Money, U. Vladis, G. Zhang, A. Guhan, F. Mensfield, and Wei Wei, “Yi Feibo: Using low-cost, automated, batch methods High depth ratio, arbitrary 3D metal microstructures, June 3rd, International Workshop on 15 High Aspect Ratio MicroStructure (HARMST'99). (6) A. Guhan, U. Vladis, F. Money, G. Zhang, F. Mensfield, and Wei Weir, “Ifeibo: Low Cost, Automated, Electrochemical Batch Any of the 3D microstructures manufactured, Micromachining and Microfabrication 20 Process Technology, September 1999, SPIE 1999 Symposium on Micromaching and Microfabrication . (7) F. Qian, G. Zhang, U. Vladis, Α·Guhan, F. Mensfield, and P. Will, “Ifeibo: Using low-cost, automated, batch methods Height 7 1353395 Depth Ratio, Arbitrary 3D Metal Microstructure", MEMS Symposium 'International Mechanical Engineering Congress and Exposition in November 1999 ° 5 (8) A. Guhan , "Electrochemical Manufacturing (IberberTM)", Chapter 19 of the MEMS Handbook, edited by Mohamed Gad-EI-Hak, CRC Press, 2002. (9) “Fat-manufacturing and lethal application of rapid prototyping”, Rapid Prototyping Report, June 1999, page 1-5, CAD/CAM, 10th Edition. The disclosures of these nine announcements are hereby incorporated by reference in its entirety in its entirety herein by reference. The electrochemical deposition method can be carried out in several different ways as proposed in the above patents and publications. In one form, the method includes performing three separate operations during the formation of each of the layers of the desired structure: 1. Selectively depositing at least one material on one of the substrates by electrodeposition or multiple On the area. Lu 2. Then, using electrodeposition to mask deposition of at least one other material 'so that this other deposit covers the previously selectively deposited 20 region of the substrate and the region that has not previously received any selective deposition coating - this region on. Finally flattening the material deposited during the first and second operations to produce - a first layer having a smooth surface having a desired thickness > a region comprising at least one material, and at least one region comprising 8 At least one other material. After the first layer is formed, one or more other layers may be formed which immediately adjoin the layer and adhere to the smooth surface of the layer. These other layers may be formed by repeating the first to third operations - or multiple times, wherein the formation of subsequent layers of each layer treats the previously formed layer and the starting substrate as a new and thickened substrate. Once formed, all layers are formed. Typically, at least a portion of the deposited at least one material is removed to expose or release the desired three-dimensional structure. A preferred method of selective electrodeposition included in the first operation is to electroplate a conformal contact mask. In this plating pattern, 'first or = conformal contact (cc) mask. The paper mask includes—the support knot is adhered or formed—the pattern can be entered.” The shape of each mask can be shaped according to the material of the electric shovel: shaping the shape. - The cross-section pattern requires at least one: mask. u Shielding, =^^=7, material. In this case, the typical method is the anode. In another method, the effect in the μ = hole material 'the deposition material During the electricity "Working Period 2: It passes through the square handle of the surface of the (4) (4) through the anode, the cc mask can share - the common branch, that is, the conformable dielectric material pattern of the method can be located in a single ' When the cc^ floor structure includes multiple electric ore patterns, the overall structure refers to 2 fortunately, and at the same time, the respective plating masks may be referred to as "sub-masks." Used in this application. 26 Do not place the mask of the mask on the substrate to be deposited only when it is associated with the specific location to be produced. The selected part is in position two," and is pressed against it (or onto the previously formed layer or to the first point of J 1 of the first layer). To allow the insurable part of the CC to be covered. All of them are in the form of a plating solution, and the CC mask is pressed together with the substrate. When a suitable voltage and/or current is supplied, the CC mask can be contacted with the substrate (4). An obstacle that will be deposited as the f, while the opening in the C-mask and filled with the plating solution acts as an uncontacted portion that transfers material from the anode (1), such as a CC masking branch, to the substrate (its The route acting as a cathode during the plating operation. An example of CC mask & CC mask plating is shown in Figure 1A-1C. Figure 1A shows a side view of the CC mask 8, which is covered by a It is composed of a conformable or deformable (e.g., elastomeric) insulator patterned on the anode. The anode has two functions. Also depicted is a substrate 6 that is spaced apart from the mask 8. One of the functions of the anode is as a support material for the patterned insulator 1 to maintain its integrity and alignment because the pattern can have a topology Learning complexity (for example, including an isolated "island" of insulating material). Another function is as an anode for this plating operation. This (:^ mask plating can selectively deposit material 22 onto substrate 6 by: : by simply pressing the insulator against the substrate ' and then depositing a material by gaps 26a and 26b in the insulator, as shown in Figure 1B. After deposition, the cc mask is separated from the substrate 6. (preferably non-destructive), as shown in the first (: Figure.): (the mask plating method is different from the "through-mask" plating method, in the penetration mask plating In the method, the separation of the masking material from the substrate will be destructively performed. If using a penetrating mask plating, the CC mask plating can selectively and simultaneously deposit material over the entire layer. One or more separate plating areas, of which The separated electroplated regions may belong to a single structure to be formed or may belong to multiple structures that will be formed simultaneously. During the removal process, the CC mask plating, such as separate masks, is not intentionally destroyed, so they can be used in many In the second plating operation, another example of CC mask and CC mask plating is shown in the 1D1F diagram. The ID diagram shows an anode 12 separated from the mask 8', the mask package ', two patterns The conformable material 1〇' and a support structure 2〇. The figure also depicts the substrate 6 and the mask 8 separated. Figure 1E illustrates the mask 8 being brought into contact with the substrate 6. Figure 1F illustrates the deposit 22 from the anode 12 that conducts current to the substrate 6. The first layer, after separation from the mask 8, is deposited on the substrate 6. In this example, an ionic current from one or both of the solution and the anode placed between the substrate 6 and the anode 12 is conducted through the opening in the mask to the substrate on which the material will be deposited. This mask type can be referred to as an anode-free instant mascar tm (aim) or as an anode-free conformable contact (ACC) mask. Unlike through-mask plating, cc mask plating allows the resulting cc mask to be completely separated from the substrate being fabricated for electroplating, for example, from the formed dimensional (3D) structure. There are a number of ways to form a cc mask. For example, 1353395 can use a light micro-shadow correction method. All masks can be produced simultaneously before the structure is manufactured (and during the manufacturing process). This separation can result in a simple, low-cost, automated, self-contained and internally cleaned "small tool machine factory (deskt叩.fact〇ry)", 'to ask for a service or similar monolithic bribery · 5 To fabricate 3D structures without any clean room process (such as photolithographic lithography to be performed). Examples of electrochemical fabrication methods discussed above are illustrated in Figures 2A-2F. Each graphic shows this The method includes depositing a first material 2 as a sacrificial material and a second material 4 as a structural material. In this example, the CC mask 8 includes a patterned conformal material (eg, an elastomeric interface). Electrical material) 10 and a support 12 made of deposited material 2. The conformal portion of the CC mask is pressed against the substrate 6, and the electric clock solution 14 is located at the opening σ of the conformable material 10. Then, the current from the power supply port 8 is electroplated with the solution 14 via the (4) baffle 12 (which also serves as the anode) and (b) the substrate 6 (which also serves as the cathode). Figure 2A illustrates a The monthly current passes through the material 2 in the plating solution and the material 2, and is selectively transferred from the anode 12 Electroplating on the cathode 6. After the first deposition material 2 is electroplated onto the substrate 6 using the CC mask 8, the CC mask 8 is removed, as shown in Figure 2B. Figure 2C depicts the second The deposition material 4 masks the deposition (i.e., unselected deposition) on the pre-deposited first deposited 20 material 2 and on other portions of the substrate 6. This masking deposition can be made from the second material The anode (not shown) is electroplated via a suitable plating solution (not shown) to the cathode/substrate 6. Then, the two materials are planarized. The layers are all 'to obtain precise thickness and flatness, as shown in the 2D After repeating this process for all layers, the multilayer structure 20 formed by the second material 4 (ie, structural material) 12 1353395 has been buried in the first material 2 (ie, the sacrificial material), as shown in the second 2E. The buried structure is etched to produce the desired device (ie, structure 20) as shown in Figure 2. 10 15 The various components of a typical manual electrochemical manufacturing system 32 are shown in Figure 3A-3C. The system 32 consists of several subsystems 34, 36 38 and 4 s. 34 is depicted in the upper portion of each of Figures 3A-3C, which includes several components: (1) carrier 48; (2) metal substrate 6 on which the layers are to be deposited, and (3) linear slider 42. The substrate 6 can be moved up and down relative to the carrier 48 in response to the driving force from the actuator 44. The subsystem 34 also includes an indicator 46 that can be used to measure the vertical position difference of the substrate, which can be used The layer thickness and/or deposit thickness is set or measured. The secondary line 34 includes a foot 68 of = 48 to accurately mount it on the secondary system 36. The cc mask is shown in the lower portion of Figure 3A. The system % includes several components: (1) CC mask 8, which is actually composed of CC masks (ie, sub-masks) that share the common-common object/anode 12; (2) precise χ-stage 54 accurate The magazine 56; (4) a frame 72 on which the legs 68 of the subsystem 34 can be mounted, and (5) used to contain the slot % of the electrolyte 16. The secondary system "and % also includes the electrical connection of the shot (no display to connect to the appropriate power supply to this CC shielding method.
20 掩蓋沉積次系統38顯示在第犯圖的下部分,其勺人 個組件:⑴陽極62 ; (2)電解質槽64,其用^㈣ 66 ;及⑶框架74,在其上面可掷置次系統Μ㈣68二 統38亦包括適當的電連接(無顯示),以將陽極連結至適 電源供應器來驅動該掩蓋沉積方法。 备的 13 1353395 平坦化次系統40顯示在第3C圖的下部分,其包括一拋 光板52及一用來平坦化該沉積物的相關移動及控制系統 (無顯示)。 該’630專利進一步說明:在其中所揭示的電鍍方法及 S 物件可從薄層材料(諸如例如’金屬、聚合物、陶瓷及半導 體材料)來製造一裝置。其進一步說明:雖然在其中所描述 10 的電鍍具體實施例已描述關於使用二種金屬,但可藉由在 其中的電鍵方法或遍及該電鑛方法所進行之各別製程來沉 積多種材料,例如聚合物、陶瓷及半導體材料及任何數量 的金屬。其已說明可在一導電度不足的沉積物(例如,絕緣 層)上沉積(例如藉由濺鍍)一薄的電鍍基材,以便進行隨後 的電鍍。其亦說明在該電鑛元件中可包括多種支樓材料(即 犧牲材料),以選擇性移除該支撐材料。20 The masking deposition subsystem 38 is shown in the lower portion of the map, the components of which are: (1) the anode 62; (2) the electrolyte tank 64, which uses ^(4) 66; and (3) the frame 74, which can be placed on top of it. The system (4) 68 is also included with a suitable electrical connection (not shown) to connect the anode to a suitable power supply to drive the mask deposition method. The 13 1353395 planarization subsystem 40 is shown in the lower portion of Figure 3C and includes a polishing pad 52 and an associated movement and control system (not shown) for planarizing the deposit. The '630 patent further illustrates that the electroplating process and S article disclosed therein can be fabricated from a thin layer of material such as, for example, 'metal, polymer, ceramic, and semiconductor materials. It is further illustrated that although the specific embodiment of electroplating described therein has been described with respect to the use of two metals, a plurality of materials may be deposited by an electrical bonding method therein or a separate process performed throughout the electrominening process, for example Polymer, ceramic and semiconductor materials and any number of metals. It has been shown that a thin plated substrate can be deposited (e.g., by sputtering) on a less conductive deposit (e.g., by an insulating layer) for subsequent plating. It also illustrates that a plurality of branch materials (i.e., sacrificial materials) can be included in the electrode assembly to selectively remove the support material.
15 20 乃一種κ經m鍍的金屬來形成微結構之方法(即4 電化學製造技術)則教導在亨利家扣(Henry Guekd)的‘ 專=案號5,19G,637中,其發表名稱為‘‘藉由多階深㈣ '讀到’以犧牲金屬層來形成微結構”。此專利教導1 2曝光來形成金屬結構。將主要金屬的第-層電鍍】 路的電鑛基材上’以填滿在光阻中的空隙然後移^ 再於該第-層上及該電鍵基材上電鍍二級金屬。然 么該二級金屬的曝露表面向下機械加工至—能曝露出] 泊屬的间度,以產生—延伸過主要及二級金屬二者的」 p表面。然後可開始第二層之形成,藉由在該第一」 佈光阻層’錢重㈣制來製造帛-層的製程15 20 is a method of forming a microstructure by κm-plated metal (ie, 4 electrochemical manufacturing techniques) teaching the name of Henry Guekd's 'Special Case No. 5, 19G, 637. ''Make a microstructure by sacrificing a metal layer by multi-step deep (four)'. This patent teaches 12 exposure to form a metal structure. The first layer of the main metal is electroplated. 'To fill the voids in the photoresist and then transfer the secondary metal on the first layer and the key substrate. Then the exposed surface of the secondary metal is machined down to - can be exposed] The spacing of the genus to create a "p-surface" that extends across both the primary and secondary metals. Then, the formation of the second layer can be started, and the process of manufacturing the germanium layer by the first "light-retardant layer"
14 1353395 後,重覆該製程直到形成整個結構,且藉由蝕刻來移除該 二級金屬。在該電鍍基材或先前層上,藉由鑄塑來形成該 光阻,且在該光阻中的空隙可透過經圖案化的遮罩,經由X 射線或UV輕射來曝光該光阻而形成。 5 即使如所教導及至今已實行之電化學製造已大大提高 微製造能力,特別是已大大增加可合併至結構的金屬層數 量及可製得此結構的速度及簡易性,但尚亦存在有可增進 電化學製造狀態的空間。特別是,需要一可用來測量平坦 化操作完成(即終點偵測)之增進技術,及相關地達到一在想 10 要的容差内之層厚度或一與加入一厚度等於一層厚度之層 有關的目標結構高度。亦需要一可用來測量所沉積的層相 對於先前沉積的層或該基材之平行度的增進技術。 【發明内容】 發明概要 15 本發明的一或多個具體實施例之目標為提供一種基材 改質技術,其包括一經改良的終點偵測方法及裝置。 本發明的一或多個具體實施例之目標為提供一種基材 改質技術,其包括一經改良的維持平行之方法及裝置。 本發明的一或多個具體實施例之目標為提供一種多層 20 電化學製造技術,其具有一經改良的終點偵測方法及裝置。 本發明的一或多個具體實施例之目標為提供一種多層 電化學製造技術,其具有一經改良的維持平行之方法及裝 置。 本發明的多個具體實施例之其它目標及優點將由熟知 15 1353395 此技藝之人士在回顧本文之教導後明瞭。本發明的不同具 體實施例及觀點(明確於本文中提出或其它可從本文之教 導查明)可單獨或組合著滿足一或多個上述目標;或再者, 它們可滿足從本文之教導所查明的本發明之某些其它目 5 標。不必需想要由本發明的任何單一觀點來滿足全部目 標,即使其可為相關的某些觀點之實例。 在本發明的第一觀點中,一用來形成多層三維結構的 製造方法包括:(a)形成一材料層且將其黏附至先前形成的 層及/或至一基材,其中該層包含至少一種材料之想要的圖 10 案,其中在該基材或先前形成的層上存在一或多個接觸 墊;(b)讓該至少一種材料接受一平坦化操作;(c)將一測量 探針設置成與一或多個接觸墊接觸及與將接受平坦化操作 之材料接觸,且從與經平坦化之材料在相對於想要的參考 位置或平面之至少一個位置處所測量的高度有關之固定件 15 (fixture)選粹出資料;(d)將該材料所測量的高度與該材料想 要的高度比較;(e)若所測量及想要的高度不在想要的容差 内,則重覆操作(b)-(d),直到所測量與想要的高度在想要的 容差内;⑴重覆該形成及黏附操作(a)—或多次,以從複數 層黏附層形成該三維結構。 20 在本發明的第二觀點中,一用來形成多層三維結構的 製造方法包括:(a)形成一材料層且將其黏附至先前形成的 層及/或至一基材,其中該層包含至少一種材料之想要的圖 案;(b)讓該至少一種材料接受一平坦化操作,其包括:⑴ 經由一多孔真空吸盤將該基材安裝至一拋光固定件;(ii)同 16 裝至該固定件,讓所沉積的材料接受抛光 至相要的值料的表面且將所沉積的材料之高度帶 複:::::=一_, 5 10 製造形成多層三維結構的 層及/或至-基材,層且將其賴至先前形成的 案,其中在該基材上或在;^含至少一種材料之想要的圖 觸塾鳴該至少—種::成的層上存在-或多個接 ⑴經由平坦化操作,其包括: 同時,將Μ材^至^基材安裝至―拋光固定件;⑼ 光操作,以正 /該固疋件,讓所沉積的材料接受拋 *至相I 坦化4材料的表面且將所沉積的材料之高度 15 :及:二值;⑷將—固定件設置成與-或多個接觸墊接 ㈣^ $平坦化操彳X㈣接觸,魏與經平坦化的 =::::ΐ考位置或平面之至少-個位置處所 20 义件選粹出資料;(d)將該材料所測量 痒二A材料想要的高度比較·,⑷若所測量及想要的高 Λ '要的谷差内,則重覆操作(b)-(d),直到所測量與想 夕、X在想要的各差内;⑴重覆該形成及黏附操作⑷一 3 乂從複數層點附層形成該三維結構。 η在本發明的第四觀點中,—用來㈣多層三維結構的 製每方法包括.⑷形成—材料層且將其簡至先前形成的 層及/或至一其从,甘a 土材,、中該層包含至少一種材料之想要的圖 案’其中在該基材上或在先前形成的層上存在―或多個接 17 1353395 觸墊;(b)讓該至少一種材料接受一平坦化操作,其包括: ⑴經由一多孔真空吸盤將該基材安裝至一拋光固定件;(ii) 同時,將該基材安裝至該固定件,讓所沉積的材料接受拋 光操作,以平坦化該材料的表面且將所沉積的材料之高度 5 帶至想要的值;(c)重覆該形成及黏附操作(a) —或多次,以 從複數層黏附層形成該三維結構。 在本發明的第五觀點中,一用來形成多層三維結構的 製造方法包括:(a)形成一材料層且將其黏附至先前形成的 層及/或至一基材,其中該層包含至少一種材料之想要的圖 10 案,其中在該基材上或在先前形成的層上存在一或多個接 觸墊;(b)讓該至少一種材料接受一平坦化操作;(c)讓該至 少一種材料接受檢查,以測量至少二處該沉積物相對於想 要的參考點之高度、該沉積物之平面性及該沉積物相對於 想要的參考點之位向;(d)重覆該形成及黏附操作(a)—或多 15 次,以從複數層黏附層形成該三維結構。 在本發明的第六觀點中,一用來形成多層三維結構的 製造方法包括:(a)形成一材料層且將其黏附至先前形成的 層及/或至一基材,其中該層包含至少一種材料之想要的圖 案,其中在該基材上或在先前形成的層上存在一或多個參 20 考墊,其可使用來查明該經平坦化經沉積的材料沉積物之 至少一處的高度、該經平坦化的材料之平面性及/或該經平 坦化的材料之位向;(b)重覆該形成及黏附操作(a)—或多 次,以從複數層黏附層形成該三維結構。 在本發明的第七觀點中,一用來形成多層三維結構的 18 1353395 製造方法包括:(a)形成一材料層且將其黏附至先前形成的 層及/或至一基材,其中該層包含至少一種材料之想要的圖 案;(b)讓該至少一種材料接受一平坦化操作,其包括:⑴ 將該基材安裝至在一高速切削機器中的固定件;(ii)同時, 5 將該基材安裝至該固定件,讓所沉積的材料接受一旋轉切 割工具,以平坦化該材料的表面且將所沉積的材料之高度 帶至想要的值;(c)重覆該形成及黏附操作(a) —或多次,以 從複數層黏附層形成該三維結構。 在本發明的第八觀點中,一用來形成多層三維結構的 10 製造方法包括:(a)形成一材料層且將其黏附至先前形成的 層及/或至一基材,其中該層包含至少一種材料之想要的圖 案,其中在該基材上或在先前形成的層上存在一或多個接 觸墊;(b)讓該至少一種材料接受一平坦化操作,其包括: ⑴將該基材安裝至在一高速切削機器中的固定件;(ii)同 15 時,將該基材安裝至該固定件,讓所沉積的材料接受一旋 轉切割工具,以平坦化該材料的表面且將所沉積的材料之 高度帶至想要的值;(c)將一固定件設置成與一或多個接觸 墊接觸及與將接受平坦化操作之材料接觸,且從與經平坦 化的材料在相對於想要的參考位置或平面之至少一個位置 20 處所測量的高度有關之固定件選粹出資料;(d)將該材料所 測量的高度與該材料想要的高度比較;(e)若所測量及想要 的高度不在想要的容差内,則重覆操作(b)-(d),直到所測量 與想要的高度在想要的容差内;(f)重覆該形成及黏附操作 (a)—或多次,以從複數層黏附層形成該三維結構。 19 1353395 5 10 4在本發明的第九觀點中一用來形成多層三維結構的 製造方法包括:⑷形成-㈣層且將其黏附至先前形成的 層及/或至-基材,其中該層包含至少—種材料之想要的圖 案其中在该基材上或在先前形成的層上存在一或多個接 觸墊,(b)讓該至少一種材料接受一平坦化操作其包括: (1)將該基材安裝至在一高速切削機器中的固定件其中該 固定件具有將該基材的平面相對於該高迷切削機器之 平面:整的能力;⑻將該基材之平面調整至與在該高速切 削機器上之㈣平面相符;然後(_時,將該基材安裝至 忒固疋件,讓所沉積的材料接受一旋轉切割工具以平坦 化該材料的表面,將所沉積的材料之高度帶至想要的值; ⑷重覆挪成及黏附操作⑷—或多次’以從複數層黏附層 形成該三維結構。After 14 1353395, the process is repeated until the entire structure is formed and the secondary metal is removed by etching. Forming the photoresist on the electroplated substrate or the previous layer by casting, and the void in the photoresist can be exposed through the patterned mask to expose the photoresist via X-ray or UV light radiation. form. 5 Even if the electrochemical fabrication as taught and practiced so far has greatly improved the microfabrication capability, in particular the number of metal layers that can be incorporated into the structure and the speed and simplicity of the structure that can be made, there are still It can increase the space for electrochemical manufacturing. In particular, there is a need for an enhancement technique that can be used to measure the completion of the planarization operation (i.e., endpoint detection), and to achieve a layer thickness within a desired tolerance or to add a layer having a thickness equal to a layer thickness. The height of the target structure. There is also a need for an enhancement technique that can be used to measure the parallelism of a deposited layer relative to a previously deposited layer or substrate. SUMMARY OF THE INVENTION The object of one or more embodiments of the present invention is to provide a substrate modification technique that includes an improved endpoint detection method and apparatus. It is an object of one or more embodiments of the present invention to provide a substrate upgrading technique that includes an improved method and apparatus for maintaining parallelism. It is an object of one or more embodiments of the present invention to provide a multilayer 20 electrochemical fabrication technique having an improved endpoint detection method and apparatus. It is an object of one or more embodiments of the present invention to provide a multilayer electrochemical fabrication technique having an improved method and apparatus for maintaining parallelism. Other objects and advantages of the various embodiments of the present invention will be apparent to those skilled in the <RTIgt; Different specific embodiments and aspects of the invention (as explicitly set forth herein or otherwise identifiable from the teachings herein) may satisfy one or more of the above objectives, alone or in combination; or alternatively, they may satisfy the teachings herein. Certain other objects of the invention identified. It is not necessary to satisfy all of the objectives by any single point of view of the invention, even though it may be an example of some of the relevant points. In a first aspect of the invention, a method of forming a multilayer three-dimensional structure includes: (a) forming a layer of material and adhering it to a previously formed layer and/or to a substrate, wherein the layer comprises at least A preferred embodiment of a material wherein one or more contact pads are present on the substrate or previously formed layer; (b) subjecting the at least one material to a planarization operation; (c) placing a measurement probe The needle is disposed in contact with the one or more contact pads and in contact with the material that will undergo the planarization operation, and is related to the height measured at at least one location relative to the desired reference position or plane from the planarized material Fixture 15 (fixture) selects the material; (d) compares the height measured by the material with the desired height of the material; (e) if the measured and desired height is not within the desired tolerance, then Overlay operations (b)-(d) until the measured and desired heights are within the desired tolerance; (1) repeating the forming and adhering operation (a) - or multiple times to form the layer from the plurality of adhesion layers Three-dimensional structure. In a second aspect of the invention, a method of forming a multilayer three-dimensional structure includes: (a) forming a layer of material and adhering it to a previously formed layer and/or to a substrate, wherein the layer comprises a desired pattern of at least one material; (b) subjecting the at least one material to a planarization operation comprising: (1) mounting the substrate to a polishing fixture via a porous vacuum chuck; (ii) loading the same 16 To the fixing member, the deposited material is subjected to polishing to the surface of the desired material and the height of the deposited material is complexed:::::=1, 5 10 to form a layer forming a multi-layered three-dimensional structure and/or Or to a substrate, a layer and depending on the previously formed case, wherein the desired pattern on the substrate or at least one material is present on the at least one of the layers: - or a plurality of connections (1) via a planarization operation, comprising: simultaneously mounting the substrate to the "polishing fixture"; (9) operating the light to positive/the solid member, allowing the deposited material to be thrown * To phase I to the surface of the 4 material and the height of the deposited material 15 : and: two (4) Set the fixture to be in contact with - or multiple contact pads (4) ^ flattening operation X (four) contact, Wei and flattened =:::: reference position or plane at least - position location 20 The right piece selects the data; (d) compares the desired height of the itch II material measured by the material, and (4) repeats the operation (b) if the measured and desired sorghum is within the desired valley difference. (d) until the measured and imaginary, X is within the desired difference; (1) repeating the forming and adhering operations (4) - 3 乂 forming the three-dimensional structure from the complex layer attachment layer. η In the fourth aspect of the invention, the method for forming (4) a multi-layer three-dimensional structure comprises: (4) forming a layer of material and simplifying it to a previously formed layer and/or to a layer thereof, The layer comprises a desired pattern of at least one material 'wherein - or a plurality of 17 1353395 contact pads are present on the substrate or on a previously formed layer; (b) subjecting the at least one material to a planarization The operation comprises: (1) mounting the substrate to a polishing fixture via a porous vacuum chuck; (ii) simultaneously mounting the substrate to the fixture, and subjecting the deposited material to a polishing operation to planarize The surface of the material is brought to the desired value by the height 5 of the deposited material; (c) the forming and adhering operation (a) is repeated - or multiple times to form the three-dimensional structure from the plurality of layers of adhesion. In a fifth aspect of the invention, a method of fabricating a multilayer three-dimensional structure includes: (a) forming a layer of material and adhering it to a previously formed layer and/or to a substrate, wherein the layer comprises at least A preferred embodiment of a material wherein one or more contact pads are present on the substrate or on a previously formed layer; (b) subjecting the at least one material to a planarization operation; (c) allowing the At least one material is inspected to measure the height of at least two of the deposit relative to a desired reference point, the planarity of the deposit, and the orientation of the deposit relative to a desired reference point; (d) repeated The forming and adhering operation (a) - or more than 15 times - is to form the three-dimensional structure from a plurality of layers of adhesion layers. In a sixth aspect of the invention, a method of forming a multilayer three-dimensional structure includes: (a) forming a layer of material and adhering it to a previously formed layer and/or to a substrate, wherein the layer comprises at least a desired pattern of a material, wherein one or more ginseng pads are present on the substrate or on a previously formed layer that can be used to ascertain at least one of the planarized deposited material deposits The height at which it is, the planarity of the planarized material and/or the orientation of the planarized material; (b) repeating the formation and adhesion operations (a) - or multiple times to adhere from multiple layers The three-dimensional structure is formed. In a seventh aspect of the invention, a method of manufacturing 18 1353395 for forming a multilayer three-dimensional structure comprises: (a) forming a layer of material and adhering it to a previously formed layer and/or to a substrate, wherein the layer a desired pattern comprising at least one material; (b) subjecting the at least one material to a planarization operation comprising: (1) mounting the substrate to a fixture in a high speed cutting machine; (ii) simultaneously, 5 Mounting the substrate to the fixture, subjecting the deposited material to a rotary cutting tool to planarize the surface of the material and bring the height of the deposited material to a desired value; (c) repeating the formation And the adhesion operation (a) - or multiple times to form the three-dimensional structure from a plurality of layers of adhesion layers. In an eighth aspect of the invention, a method of fabricating a multilayer three-dimensional structure comprises: (a) forming a layer of material and adhering it to a previously formed layer and/or to a substrate, wherein the layer comprises a desired pattern of at least one material, wherein one or more contact pads are present on the substrate or on a previously formed layer; (b) subjecting the at least one material to a planarization operation comprising: (1) The substrate is mounted to a fixture in a high speed cutting machine; (ii) when the substrate is mounted to the fixture, the deposited material is subjected to a rotary cutting tool to planarize the surface of the material and Bringing the height of the deposited material to a desired value; (c) placing a fixture in contact with one or more contact pads and in contact with the material that will undergo the planarization operation, and from the planarized material The fixture is selected in relation to the height measured at at least one location 20 of the desired reference position or plane; (d) the height measured by the material is compared to the desired height of the material; (e) If measured and thought If the height is not within the desired tolerance, repeat operations (b)-(d) until the measured and desired height is within the desired tolerance; (f) repeat the forming and adhering operation (a) One or more times to form the three-dimensional structure from a plurality of layers of adhesion layers. 19 1353395 5 10 4 In a ninth aspect of the invention, a method for forming a multilayer three-dimensional structure comprises: (4) forming a layer of (-) and adhering it to a previously formed layer and/or to a substrate, wherein the layer A desired pattern comprising at least one of the materials wherein one or more contact pads are present on the substrate or on a previously formed layer, (b) subjecting the at least one material to a planarization operation comprising: (1) Mounting the substrate to a fixture in a high speed cutting machine wherein the fixture has the ability to flatten the plane of the substrate relative to the plane of the cutting machine; (8) adjust the plane of the substrate to The plane is matched on the high-speed cutting machine; then (when the substrate is mounted to the tamping element, the deposited material is subjected to a rotary cutting tool to planarize the surface of the material, the deposited material The height is brought to the desired value; (4) Repeated and adhered operation (4) - or multiple times 'to form the three-dimensional structure from the plurality of layers of adhesion layers.
15 20 月的進步觀點將由熟知此技藝之人士在回顧才 文各教導後了解。本發明的其它觀點可包括能使用來執布 ' 之或多個上述方法觀點的裝置。甚至,本發明纪 進一步觀點可接供 — 促上述所顯現的觀點之不同組合,和提供、B述未特別提出的組態、結構、功能關係及方法。才 乃“、i進一步觀點可提供一能平坦化位於基材上之和 料沉積物的梦署. 、置,R時甚至進一步觀點可提供一能使用东 此裝置的固定件。 圖式簡單說明 第AlC圖圖式梅繪出不同階段的CC遮罩電鍍方法3 侧視圖;fij _ g 乐1〇圖圖式描繪出使用不同型式的CCiiThe progress of the 15th December will be understood by those who are familiar with the art after reviewing the teachings. Other aspects of the invention may include apparatus that can be used to perform 'or a plurality of the above-described methods. Further, the present invention may be further developed to provide different combinations of the above-described viewpoints, and to provide configurations, structures, functional relationships, and methods not specifically mentioned in the above. It is a further point of view that can provide a flattening device that can flatten the deposits on the substrate. Even when R, it can provide a fixture that can be used with the device. The first AlC diagram shows the different stages of CC mask plating method 3 side view; fij _ g Le 1 diagram depicting the use of different types of CCii
20 1353395 罩之cc遮罩電鍍方法,其在不同階段處之側視圖。 第2A-2F圖圖式描繪出一電化學製造方法,當將其應用 來形成一待別結構時,其於不同階段處之側視圖,其中可 選擇性沉積一犧牲材料同時掩蓋沉積一結構材料。 5 第3A-3C圖圖式描繪出多種可使用來手動執行描繪在 第2A-2F圖之電化學製造方法的實例次組合之側視圖。 第4A-4I圖圖式描繪出使用黏附遮罩電鍍來形成一結 構的第一層,其中該第二材料的掩蓋沉積將覆蓋位於該第 一材料的沉積場所與該第一材料其自身二者間之開口上。 10 第5A圖對根據本發明的第一具體實施例之用來形成多 層三維結構的方法提供一流程圖,其使用一終點指示固定 件及一各別的平坦化固定件。 第5B-5G圖提供一操作設定實例,其可使用於與第5A 圖相關連的方法或與其它相關連的方法。 15 第6及7圖提供一合適於使用在本發明的第一具體實施 例中之拋光固定件的不同立體透視圖。 第8圖提供一從第6圖之拋光固定件其垂直延伸過該固 定件中心的切割平面所切割之截面圖。 第9及10圖提供一合適於使用在本發明的第一具體實 20 施例中之終點指示固定件的不同立體透視圖。 第11圖圖式描繪出一基材的上俯視圖,其具有三個終 點測量墊。 第12圖提供一將第9及12圖之終點指示裝置安裝在第 11圖的基材上之立體透視圖。 21 1353395 第13圖根據本發明的一些具體實施例提供一高速切削 機器設計的立體透視圖。 第14圖對第12圖之機器設計的測量固定件及基材夾持 和平面調整固定件提供一拉近的立體透視圖。 5 第15圖提供一聚焦在第14圖之測量固定件的立體透視 圖。 第16圖提供一聚焦在第14圖之基材夾持及平面調整固 定件的立體透視圖。 第17圖提供一聚焦在第14圖的平面調整固定件之立體 10 透視圖,其已移除該基材夾持固定件的運動板及該基材其 自身。 第18圖提供一聚焦在平面設定固定件的特定組件上之 立體透視圖,其包括一截平的球形元件、一調整臂彎曲點、 一真空吸盤接附托架及一用來在張力下夾持住該真空吸盤 15 的彈簧負載桿。 第19圖提供一第14圖的平面設定固定件之背部立體透 視圖。 第20圖提供一方塊圖,其提出一可使用來讓第13-15圖 之測量固定件及探針的歸零平面與由高速切削工具所切割 20 的平面相配之樣本操作。 第21圖提供一方塊圖,其提出一可使用來校定該基材 的前表面(在其層材料已沉積及/或欲沉積)或所沉積的材料 其自身,相對於由鑽石工具所切割之平面的平行度之樣本 操作。 22 Ϊ353395 第22圖提供一方塊圖,其提出一可使用第13_ 啤之裝置 將沉積在該基材上的材料修整至想要的高度之操作。 t貧施方式j 較佳實施例之詳細說明 5 10 第1A-1G、2A-2F及3A-3C圖闡明已熟知的—種電化風 製造形式之不同構形。其它電化學製造技術已提出在上: 所提出的,630專利中、在多種先前合併的公告中、在以參 考之方式併於本文的多種其它專利及專利申請案中;其它 仍然可來自在這些公告、專利及申請案中所描述的多種方 法之組合,或其它已熟知或可由熟知此技藝之人士從本文 所提出的教導來查明。這些技術全部可與本發明的多種觀 .’·之那些不同具體實施例結合,以產生經增進的具體實施 例。其它具體實施例仍然可來自明確於本文中所提出的不 同具體實施例之組合。20 1353395 Cover cc mask plating method, its side view at different stages. 2A-2F is a schematic diagram depicting an electrochemical fabrication process, when applied to form a standby structure, at a different side view thereof, wherein a sacrificial material can be selectively deposited while masking deposition of a structural material. . 5 Figures 3A-3C are diagrammatic views depicting various examples of combinations that can be used to manually perform the electrochemical fabrication methods depicted in Figures 2A-2F. 4A-4I is a drawing depicting the use of an adhesive mask plating to form a first layer of a structure, wherein the masking deposition of the second material will cover both the deposition site of the first material and the first material itself On the opening. 10 Figure 5A provides a flow chart for a method for forming a multi-layer three-dimensional structure in accordance with a first embodiment of the present invention using an end point indicating fixture and a respective flattening fixture. The 5B-5G diagram provides an example of an operational setting that may be used for methods associated with Figure 5A or methods associated with others. 15 Figures 6 and 7 provide different perspective views of a polishing fixture suitable for use in the first embodiment of the present invention. Figure 8 provides a cross-sectional view cut from the cutting plane of the polishing fixture of Figure 6 extending vertically through the center of the fastener. Figures 9 and 10 provide different perspective views of an end point indicating fixture suitable for use in the first embodiment of the present invention. Figure 11 is a top plan view of a substrate having three end point measurement pads. Fig. 12 is a perspective perspective view showing the mounting of the end point indicating device of Figs. 9 and 12 on the substrate of Fig. 11. 21 1353395 Figure 13 provides a perspective view of a high speed cutting machine design in accordance with some embodiments of the present invention. Figure 14 provides a close-up perspective view of the machine-designed measuring fixture and substrate holding and planar adjustment fasteners of Figure 12. 5 Figure 15 provides a perspective view of a measurement fixture focused on Figure 14. Figure 16 provides a perspective view of a substrate holding and planar adjustment fastener focused on Figure 14. Figure 17 provides a perspective view of a perspective adjustment of the planar adjustment fixture of Figure 14 which has removed the motion plate of the substrate holding fixture and the substrate itself. Figure 18 provides a perspective view of a particular component focused on a planar setting fixture, including a truncated spherical member, an adjustment arm bending point, a vacuum chuck attachment bracket, and a clip for tensioning Hold the spring load lever of the vacuum chuck 15. Fig. 19 is a perspective view showing the back of the plane setting fixing member of Fig. 14. Figure 20 provides a block diagram of a sample operation that can be used to match the zeroing plane of the measurement fixture and probe of Figures 13-15 with the plane cut by the high speed cutting tool 20. Figure 21 provides a block diagram showing a front surface that can be used to calibrate the substrate (in which the layer material has been deposited and/or to be deposited) or the deposited material itself, as opposed to being cut by a diamond tool Sample operation of the parallelism of the plane. 22 Ϊ 353395 Figure 22 provides a block diagram of an operation for trimming the material deposited on the substrate to the desired height using the apparatus of the 13th beer. t Depletion mode j DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 5 10 Figures 1A-1G, 2A-2F and 3A-3C illustrate different configurations of the well-known forms of electrified wind. Other electrochemical fabrication techniques have been proposed: the proposed 630 patent, in various previously incorporated publications, by reference, and in various other patents and patent applications herein; Combinations of the various methods described in the publications, patents, and applications, or other teachings that are well known or can be made by those skilled in the art from the teachings herein. All of these techniques can be combined with various embodiments of the present invention to produce enhanced specific embodiments. Other embodiments may still be derived from combinations of different specific embodiments as set forth herein.
15 20 第4A-4I圖闡明在多層製造方法之單層形成中的不同 又其中在一第一金屬上和在該第一金屬之開口中沉積 第一金屬,其中該沉積物會形成該層的一部分。在第4A 圖中顯不出基材82的側視圖;將一可圖形化的光阻84鑄塑 Λ基材上’如顯示在第4B圖。在第4C圖中,可硬化、曝 ”'、貝衫该光阻來產生所顯示的光阻圖案。該光阻84之圖 匕可產生開口或空隙92⑻-92(c),其從該光阻的表面86 之伸過该光阻的厚度至該基材82的表面88。在第4D圖中, ‘貝不出將金屬94(例如鎳)電鍍至開口 92(a)-92(c)中。在第4E 圖中,pi ,已將光阻從該基材上移除(即化學剝除),而曝露出基15 20 Figures 4A-4I illustrate differences in the formation of a single layer in a multilayer fabrication process in which a first metal is deposited on a first metal and in an opening of the first metal, wherein the deposit forms the layer portion. A side view of the substrate 82 is shown in Figure 4A; a patterned photoresist 84 is cast onto the substrate as shown in Figure 4B. In Figure 4C, the photoresist can be cured, exposed, and patterned to produce the displayed photoresist pattern. The pattern of the photoresist 84 can create openings or voids 92(8)-92(c) from which the light The surface of the resist 86 extends through the thickness of the photoresist to the surface 88 of the substrate 82. In Figure 4D, the metal 94 (e.g., nickel) is electroplated to the openings 92(a)-92(c). In Figure 4E, pi, the photoresist has been removed from the substrate (ie, chemically stripped), and the exposed base
23 1353395 材82未覆蓋第—金屬94的區域。在第4F圖中,顯示出已在 基材82(其導電)的整個*露部分上及在第一金廣糾(其亦導 電)上掩蓋電鍍一第二金屬96(例如,銀卜第4G圖描繪出已 . 完成之該结構的第一層,其可藉由向下平坦化該第—及第 . 5 一金屬至可曝露出第一金屬而產生,且將高度設定為第一 層之厚度。在第圖中,顯示出重覆顯示在第4B-4G圖之 製程步驟數次後所形成的多層結構結果,其中每層由二種 材料所組成°對大部分的應用來說,可如在第41圖所顯示 般’移除些材料之一來產生一想要的3D結構98(例如組件 鲁 10 或裝置)。 於本文所揭示的不同具體實施例、替代方案及技術可 在全部層上使用單一圖形化技術,或可在不同層上使用不 同的圖形化技術,來形成一多層結構。例如,可使用不同 型式的圖形化遮罩及遮蔽技術,或甚至可不需要遮蔽而直 15接進行選擇性沉積的技術。例如,可在不同層上使用可保 形的接觸遮罩或不可保形的接觸遮罩。可使用鄰近式遮罩 及遮蔽操作(即一使用遮罩的操作,因該遮罩鄰近該基材, ® 即使不造成接觸亦可至少部分選擇性掩蓋該基材);及/或可 使用黏附遮罩及遮蔽操作(一遮罩及使用遮罩的操作,其中 20該遮罩將黏附至一基材,而其選擇性沉積或蝕刻之進行將 - 僅與其所接觸的位置相反)。 本發明的某些具體實施例提供一種用來電化學製造多 層結構(例如中尺度或微尺度結構)的方法及裝置,與一經改 良的終點偵測及在電化學製造方法期間維持進行平坦化的 24 1353395 材料(例如層)之平行度。某些方法包括在平坦化期間使用一 固疋件,以保証該材料之經平坦化的平面與其它經平坦化 的/儿積材料之平行度在所提供的容差内。某些方法包括使 用’、點偵測固定件,其可保証所沉積的材料相對於基材 5的起始表面、相對於第一沉積層或相對於某些在製造方法 所屯成的其它層之精綠高度。在某些具體實施例中, /平化可經由拋光來進行,且該平坦化固定件可包括一23 1353395 The material 82 does not cover the area of the first metal 94. In Fig. 4F, it is shown that a second metal 96 has been masked on the entire exposed portion of the substrate 82 (which is electrically conductive) and on the first gold-gear (which is also electrically conductive) (for example, silver 4G) The figure depicts a first layer of the completed structure that can be created by planarizing the first and fifth metals downwardly to expose the first metal and setting the height to the first layer Thickness. In the figure, it shows the results of the multilayer structure formed by repeating the process steps of Figure 4B-4G several times, each layer consisting of two materials. For most applications, One of the materials is removed as shown in Figure 41 to produce a desired 3D structure 98 (e.g., component 10 or device). The various embodiments, alternatives, and techniques disclosed herein may be all A single patterning technique can be used on the layer, or a different layering structure can be formed on different layers to form a multi-layer structure. For example, different types of graphic masking and masking techniques can be used, or even without shielding 15 techniques for selective deposition. For example, A conformable contact mask or a non-conformal contact mask can be used on different layers. Proximity masking and masking operations can be used (ie a masking operation because the mask is adjacent to the substrate, ® Even at least partially contacting the substrate without causing contact; and/or using an adhesive mask and a masking operation (a mask and a masking operation, wherein the mask will adhere to a substrate, While selective deposition or etching will be performed - only in opposition to the location in which it is in contact.) Certain embodiments of the present invention provide a method and apparatus for electrochemically fabricating a multilayer structure, such as a mesoscale or microscale structure, Parallelism with a modified endpoint detection and maintenance of planarization of 24 1353395 material (eg, layers) during electrochemical manufacturing methods. Some methods include the use of a solid part during planarization to ensure the material is The parallelism of the planarized plane to other planarized/integral materials is within the tolerances provided. Some methods include the use of ', point detection fixtures that ensure the deposited material For the starting surface of the substrate 5, relative to the first deposited layer or relative to some of the other layers formed in the manufacturing process, in some embodiments, / flattening may be performed via polishing And the planarization fixture can include a
多子、,墨真空吸盤,其安裝在一能垂直於一由塾磨片所限 定的平=而移動之載物臺上,該平面將在拋光操作期間摘 10置s固疋件。在某些具體實施例中該終點指示固定件可 ^括三或更多支長度固^的腳及-或多個(例如3_4)高度測 董探針。该固定件之使用可包括讓該些腳逆著經曝露的墊 接觸在。亥基材的一表面上然後調整該高度測量探針的接 觸元件位置直到與欲測量的沉積物接觸。由該些探斜所顯 15不之在歸零或校正測量與該沉積物測量間的高度差異可 象積物的高度’且可能為該沉積物的平面位向及/或The multi-sub, ink vacuum chuck is mounted on a stage that can be moved perpendicular to a flat = defined by the honing pad, which will pick up the stencil during the polishing operation. In some embodiments, the end point indicating fixture can include three or more lengths of feet and/or a plurality (e.g., 3-4) of height measuring probes. The use of the fastener can include contacting the feet against the exposed pad. The surface of the substrate is then adjusted to the position of the contact element of the height measuring probe until it contacts the deposit to be measured. The difference in height between the zeroing or correction measurement and the deposit measurement may be due to the height of the deposit and may be the plane orientation of the deposit and/or
可:為讀沉積物之平面性。在某些具體實施例中,若平坦 化问度、平面性及/或位向脫離想要的容差範圍時,可 橋正動作。 20 帛5圖根據本發明的第-具體實施例之用來形成多層 三維結構的方法提供-流程圖,其使用一終點指示固定二 及一平垣化固定件。 第5圖的區塊lG2f要提供—平坦化@定件,其可在平 坦化操作期間使絲料縣材隸何沉積在4的材 25 1353395 料區塊104而要製備要使用的平坦化固定件。此製備可包 括平—化將使用來失持基材的吸盤以便獲得—表面,其 會與在平坦化(即拋旬操作期間將於上面放置固定件的塾 之表面平行。Yes: to read the flatness of the sediment. In some embodiments, the positive motion can be bridged if the flatness, planarity, and/or orientation are out of the desired tolerance range. 20 帛 5 is a flowchart provided by a method for forming a multilayer three-dimensional structure in accordance with a first embodiment of the present invention, which uses an end point indicating a fixed two and a flattened fastener. The block lG2f of Fig. 5 is to provide a flattening @piece which can be used to prepare the flattening fixing to be used during the flattening operation by depositing the silk material in the material of the material 25 of the 1st, 25, 353, 395. Pieces. This preparation may include sizing the suction cups that will be used to lose the substrate in order to obtain a surface that will be parallel to the surface of the crucible that will be placed on the fixture during the flattening operation.
區塊106需要提供—終點彳貞測固定件;同時區塊108需 要製備該固疋件’以便其可使用。該製備可包括將該固定 件設定在-平坦表面上,然後㈣些探針接觸與在上面摘 置該裝置之固定長度的金屬定位螺絲柱(stand〇ff)相同的平 坦表面時,將該一或多個偵測探針的輸出歸零。 製備操作104及108可在一建立製程開始時進行;或再 者,其可遍及一建立製程定期進行。例如,可在每次使用 該終點偵測S]定件前,進行該探針在終點_裝置上的歸 零。Block 106 is required to provide an end point test fixture; at the same time block 108 needs to prepare the solid member' so that it can be used. The preparation may include setting the fixture on a flat surface, and then (4) the probes are in contact with the same flat surface as the fixed length metal locating studs on which the device is removed, Or the output of multiple detection probes is zeroed. Preparation operations 104 and 108 can be performed at the beginning of a build process; or, alternatively, it can be performed periodically throughout a build process. For example, the zeroing of the probe at the end point device can be performed each time the end point detection S] is used.
該建立製程則從區塊112開始,然後向前移動至區塊 Μ m,其需要定義幾個變量及參數。特別是,定義現行的層 數變數,‘V’ ;定義最後的層數參數,“N” ;定義對層η的操 作數目變數’ “οη”,及定義對層_最後操作數目參數, “〇η”。在定義變量及參數後,該製程向前移動至區塊u6, 其需要提供一欲形成該結構的基材。 2〇 #次’該製程向前移動至區塊U8,其設定現行的層數 變數η等於_(n=1);然後向前移動至區塊12〇,其設定對層η 的現行操作數目變數等於一(0η=1)。 其次,該製程向前移動至區塊124,其會詢問現行的操 作(與⑽相關)是否為一平坦化操作。若回答為“否,,,則該製 26 ^向前移動至區塊126,其需要進行操作。n,且之後該 會向前移動至區塊148,其晚後將於本文中討論。 若對決定區塊m之詢_回答為“是”,該製程會向前 移動至區绳128 ’其需要將該基材安裝到該平坦化固定件 (其已在區塊104令準備好可用來操作)上。 其次,該製程向前移動至區塊13〇,其需要進行—或多 次平坦化操作。例如,這鋪作可為使用不同型式的研磨 材料及/或接觸壓力、拋光板速度及其類似條件的抛光操 作。在完成想要的平坦化操作後,該製程會向前移動至區 塊132 ’其需要使用祕點偵測@定件來進行終點備測測 1。在本具體實施例之變化中,可使用不同的平坦化固定 件,且可進行除了拋光外的平坦化操作例如在某些可 供選擇的具體實施例中,可進行粗縫的機器加玉及/或可進 行精確的鑽石機器加工(鑽石車削或高速切削)。 其次,該製程向前移動至區塊134,其需要分析產生自 該終點偵測測量的資料。此分析可簡單包括將一測量值與 一目标值比較,然後根據此比較來決定所關心的隨後操作。 再者’該分析可包括更複雜的複數個測量資料點之數 學分析,諸如此將從該些資料的最小平方擬合推導出一平 面。該分析隨後可包括將所推導出的平面與意欲的平面高 度比較,以決定是否已達到目標高度。該分析亦可包括決 定所刺量的平面與想要的平面之平行度,以決定是否已滿 足想要的平行度規格。更多的分析可包括決定該表面的平 面性是否滿足所定義的規格。 1353395 在已進行分析之後,該製程向前移動至區塊136,其會 詢問是否巳達到想要的目標。若此詢問產生一負反應則 該製程會向前移動至區塊138,其會詢問是否要進一步平坦 化以產生想要的目標。若對區塊138之詢問的回答為“是,,, 5則該製程會迴路回區塊13〇,以便進行其它的平坦化操作。 在該具體實施例的某些執行過程中,可根據區塊之分 析,在此第二或隨後循環經過的平坦化製裎期間改變該些 平坦化參數,甚至是該平坦化製程其自身。若區塊138產: 一負反應,則該製程會向前移動至區塊14(),其需要採取三 10種動作之-:⑴著手橋正動作,然後跳至該製程之任何適 當的位置,以繼續該建立;(2)不理會此失敗並繼續該製程; 或(3)中止該建立製程且若必要時重新開始建立。若區塊136 的詢問產生-正反應或若選擇區塊14〇的第二選項時,則該 製程向前移動至區塊142 ^ 15 ⑮塊142會詢問是否欲進行另—個平坦化操作。若此詢 問之反應為“否”,則該製程移動至區塊⑽,其需要將該基 材從δ亥平坦化固定件中移出。在從該平坦化固定件移出基 材後,5亥製程會向别移動至區塊148。 在某些執行過程中,需要多次平坦化操作來達成想要 20的目標(例如’最初以粗棱的料漿進行拋光,然後在達成初 步目後’進彳亍其它叫細㈣馳光)。在此執行過程 中’該區塊142之詢問可產生_或多次正反應。在此事件 中,該製程會向前移動至區塊144,其需要增加操作數目一 (〇n-on+1),然偏製程會迴路回至區塊⑽,其需要完成 28 1353395 其它的平坦化操作。在此第二或隨後循環經過的平坦化製 程中,該平坦化變量、參數及甚至平坦化製程全部可改變。 一旦區塊142之詢問獲得負反應,如在區塊146中所需 般移除基材(如上述提及),然後該製程向前移動至區塊 5 148。如先前亦提及,在區塊126中進行所需的操作〇n之後, 亦會進入區塊148’在此實例中,操作〇n不為一平坦化操作。 區塊148需要增加操作數目變數一(〇n=〇n+1),然後該 製程向耵移動至區塊15〇’其會詢問現行的操作數目變數是 否大於與層n有關的最後操作數目參數。若此詢問產生一負 1〇反應,則該製程會迴路回區塊124,以便進行另一個與層η 相關的操作。若區塊15〇的詢問產生一正反應,則該層數目 變數η會增加一(η=η+1),’然後該製程向前移動至區塊154。 區塊154會詢問現行的層數變數η是否大於最後的層數 參數Ν(η>Ν?)。若此詢問的回答為“是”,則已完成全部層之 15形成,且該製程會向前移動至區塊156並終止。若回答為 否,則該製程會迴路回區塊12〇且開始進行下一層之操 作。 區塊I56需要結束該結構之層形成製程,但是不必需結 束全部的結構形成製程。可進行多種後加工操作,以完成 20形成想要的結構,如將更完整討論於本文別處及在已以參 考之方式併於本文的不同專利申請案中。 第5B-5G圖提供不同的操作設定實例,其可使用來形成 結構的各別層。在某些具體實施例中,可重覆單一圖形之 操作來形成結構的每層;同時,在其它具體實施例中不 29 1353395 同層之形成可包括概述在不同圖中的操作。在立它具 施例中,可使用其它層形成操作及/或可使用其;;層形=實 作。 夕戍操 可在許多不同方面上修改概述在第5A圖中的製程, . 5可使用不同裝置組件來執行。該製程可以單—自動^ A · 機器來執行;或其可使用不同的機器來執行如可^的 作部分形成的結構,以在機器間傳送該結構、以分析所操 行的製程之可容許性及其類似動作。 進 在某些具體實施例中,本發明可採取一裝置形式 1〇如,完全身動化或半自動化裝置)來修# 一基材或製造 層三維結構,例如,其可包括(a)_基材,在其上面已進^ 且將進行一或多次連續沉積一或多種材料;(的_遮罩,^ 包含至少一個空隙及至少一個環繞的材料突出物;(c)一栽 ' 物臺’其用來將該遮罩的至少一個突出物帶至與該基材鄰 15 近或與其接觸,以便形成至少一個電化學製程袋(其具有相 要的與任何先前的沉積物有關之定位),且在該至少—個電 化學製程袋内提供想要的電解質;(d)—電源供應器,以在 魯 至少一個電極(其可為該遮罩的部分或為各別的電極)與該 基材間施加想要的電啟動’以便進行想要的基材改質;(e) 20 一平坦化系統(例如拋光、高速切削或其它機械或化學機械 · 系統)及偵測系統’以修整掉過多的材料及偵測是否已移除 足夠的材料;且在某些具體實施例中’(f)至少一個控制器, 以控制該載物臺及電源供應器。 在可供選擇的具體實施例中’該元件(b)之遮罩及該元 30 1353395 件(C)之載物臺可由黏附遮罩佈置(例如乾膜薄片用之層合 機或塗抹器及以液體為基礎的光阻用之離心塗佈機)、圖形 化系統(例如選擇性曝光系統,其可使用經圖案化的光罩或 掃描雷射東及可能的顯影劑)及移除系統(例如剝除溶液、槽 5 及/或喷灑器及其類似物)來置換。 該基材可例如為導電材料形式(例如經選擇的金屬或 其類似物)、適度導電的材料(例如經摻雜的矽或其類似 物)、介電質或介電質/導體/半導體的混合基材(在其上面已 形成一導電種子層)該載物臺可包括一線性載物臺’其可 10 由線性馬達或步繼馬達或其它迴轉馬達驅動,其可驅動一 滾珠螺桿或其它會將旋轉移動轉化成線性移動的機制,其 可再者或額外包括一壓力驅動的膨脹或收縮風箱機制。該 載物臺可包括一位置編碼器且其可包括多重載物臺,諸如 粗調載物臺(course movement stage)及微調載物臺(fine 15 m〇vement stage)。該載物臺可在氣墊轴承或其類似物上移 動’以平滑移動。其允許在全部三個方向中線性移動及/或 旋轉移動。特別是’該載物臺可提供能傾斜基材或接觸遮 罩的能力,以在該遮罩的接合面與該基材的接合面間達到 想要的不平行度或不平面性量。該電源供應器可採取驅動 2〇任何所提供的反應所需之適當形式。例如,其可為一直流 電或脈衝直流電供應器;其可經控制,以輸出—固定電流 或固定電壓或一可變的電流或可變的電壓 ^ ^ 共可包括回 饋’以準確控制。該控制器可採用多種形式。例如,其可 為一經一方式程式化的電腦,以便以想要的方式來控制其 31 P件(#|如重_些操作複數次’以建立-多層結構);或 、可為用於不同裝置組件的糾控制元件,其每個皆可由 f作者控制。該電腦可包括-監視器或其㈣示ϋ及/或- 機以將訊心提供給操作者或使用者;一記憶體,用 來儲存収制參數_量值;鍵盤、滑鼠、觸控營幕或 -類似物’以接讀作者之輸人。該電腦可連接至網路, 以允許砥端控制該系統或由單一電腦控制多個系統。 亦可將許多其它裝置組件併人某些具體實施例中:⑴ 二剛架,用來以適當的準雜托住該些㈣組件;及一防 護面板’以允許存在有經控制的環境;(2)經控制的空氣或 氣體系統;⑶溫度控㈣統;⑷基材淨化线;(5)基材活 化系統;⑹電料統及電解質置換或淨化系統;⑺空氣過 滤器及循環系統;⑻製程監視設備,諸如照相機、資料採 集及儲存H (9)存取出人口及面板;⑽觀察f 口或照 相機及監視器;(11)操作者警示系統,包括光及聽覺訊號; (12)加熱系統,以進行擴散壓合、炫化所選擇的建造材料及 其類似物或讓其流動;及其類似物。 可藉由如顯示在第6_8圖之拋光固定件2〇2輔助,來維 持一層相對於一基材或連續層彼此之平行度。該固定件包 括一多孔石墨真空吸盤2〇4(第7及8圖),其使用來適當地鉗 住一欲在其上面形成該結構的基材,以藉由減少在該基材 背部的真空不均勻分佈度來最小化該基材變形。在使用該 拋光固定件來製造該結構之前,該真空吸盤可經拋平同時 接附至該拋光固定件,以在墊磨片2〇6之平面間達成共平面 053395 十生,其中該些墊會在平坦化操作期間座落於拋光板上且其 安裝在磨耗環208上。此拋光固定件之製備會額外移除任何 在真空吸盤204表面中已由扣件212所造成的變形,其中該 扣件會將該真空吸盤托至滑行軌道214。滑行執道214能相 $對於騎外罩216(其錢在磨耗環期上)上下移動。滑行軌 道214(因此真空吸盤204)之上下移動產生自向上的彈力(例 如,來自可調整張力型式的彈簧)與作用在軌道、吸盤及基 材上的向下重力之平衡。張力彈簧型式平衡錘228可讓操作 者設定在將平坦化的表面與拋光板間之有效接觸壓力。文 10托利(Venturi)型式真空產生器218可提供將基材托至吸盤 204所需的真空。真空閥222允許操作者開關真空以安裝及 移除該基材。 滑行轨道214及滑行外罩216包括一氣墊軸承型式的機 制,以保證以非常固定且直的移動路徑運動時無摩擦力。 15在操作期間,二個組件由一壓縮空氣薄膜(其透過轉動接合 器224提供)分開,該接合器由托架226托住且可讓該抛光固 定件旋轉而沒有阻斷氣流。在某些具體實施例中,該滑行 軌道可為一方形管而具有圓孔通過其中心。該滑行軌道的 外在方形尺寸可非常準痛地和穿透該滑行外罩的内部方形 2〇孔相稱。該外罩或滑行軌道可在其側壁上包括多孔石墨墊 或其類似物,此可有用地讓該滑行相對於外罩進行平滑運 動特別疋當供應一薄膜空氣通過這些多孔墊時。 磨耗環208提供一固定及穩定的圓柱狀表面,在其上面 可女裝墊磨片且其可與在拋光機器上的止動器及其類似物 33 1353395 接合,用於讓該抛光固定件繞著固定轴旋轉之目的。塾磨 片(例如多晶鑽石)附著至磨耗環的底面及限定出—穩定抛 光固定件將在其上面旋轉的平面。與在欲平坦化的基材上 之材料比較,該塾磨片磨損的非常慢且保証由拋光固定件 5所限定的平面遍及該製造結構程序仍然穩定。 亦提供料衆密封物232(例如〇環,其在淨化期間會逆著 推向該磨耗環表面,例如當該固定件在製備時為上邊向下 以1付測量)’以保註料漿不會在正常操作期間污染該氣墊 軸承且亦可在基材淨化操作期間保護該轴承。料紫防護別 0及滑订頂端2 3 6則對該固定件的頂端邊提供類似的功能。 該拋光固定件可裝入一位移感應器,以測量在滑行外 罩216與’朴财214狀相對移動。在拋光操作期間,監 視此位移可提供—從該建立製程移除材料之即時測量工 具。來自位移感應H的訊號可由安裝至拋光固定件之無線 15 ^無線電㈣頻率或紅外線裝置傳送。再者,可使用電滑 ^於相同目的。在某些具體實施例中,可連結-經校正或 、、寸位置與來自位移感應器的測量,如此在某些具體實施 例中’该位移感應器可S供絕對終點伯測或可評估該修整 製程的狀態。 亦可對安裝操作提供複數個孔洞242,此可讓操作者用 來在操作期間操縱該拋光固定件。 在製備所使用的固定件期間,該真空吸盤可使用例如 H㈣錢光來拋光;在狀後,該真空吸盤可 知加正壓且可使用異丙基醇或其類似物來沖清該多孔材料 34 1353395 以清潔碎片。 使用此拋光固定件可對經平坦化之表面達成非常高的 平坦程度(例如,遍及100毫米的表面<0.5微米),同時在所 建立之全部層間皆維持高平行程度(例如,遍及100毫米的 5 表面在0.5微米内)。該固定件之設計為從該固定件移除該部 分形成的結構以進行其它製程操作,然後再安裝及平坦化 該基材,同時維持高平坦及平行程度。 使用上述描述的多孔真空吸盤可在減少基材變形上提 供某些可區別的優點。在某些具體實施例中,該真空吸盤 10 具有一不連續的表面,其稍微比該基材的直徑小。在某些 具體實施例中,較佳的石墨吸盤可容易拋光至平坦(好過在 98毫米表面上超過0.3微米),同時達到足以使用雷射干涉儀 來測量平坦度之鏡面反射度。使用多孔材料可將真空遍及 該表面均句分佈且將污染物拉入該多孔材料,以避免成為 15 變形來源。在某些具體實施例中,可使用其它真空吸盤型 式,如環形槽。在某些具體實施例中,可將該多孔石墨材 料裝入一支撐及密封該多孔材料之外罩(例如鋁外罩)中。該 多孔材料可製成座落在稍微高於該外罩材料處,以讓該表 面被拋光且不會因該外罩存在而干擾安裝至該基材之進 20 行,且沒有明顯會漏出真空的表面區域。 可有多種可替代的平坦化固定件。例如,某些可替代 的固定件可使用可調整的底座來將該真空吸盤安裝至該滑 行外罩。這些可調整的底座可具有經校正的調整機制,以 讓該吸盤的平面相對於該墊磨片的平面調整。這些可調整 35 1353395 的底座可使用來校定真空吸盤的平面’如此該基材的外側 表面可製成與該塾磨片的平面平行。此調整可在材料的起 始沉積物位於該基材上之後製得,該沉積物經拋光成與該 墊磨片的表面平行,可對該基材的平面相對於經平坦化的 5 沉積物之平面進行測量。可使用一或多個額外的平坦化操 作及潛在一或多個額外的沉積操作,以確認或調整該基材 表面相對於該墊磨片平面之平行度。 在某些具體實施例中,於開始建立之前,將該基材的 前後表面拋光成彼此平行(在約2微米内)。在這些具體實施 1〇例中’主要基材表面(即前表面)與由該金屬定位螺絲柱所限 定的平面之平行度可偏離如2微米一樣多。此誤差可由該零 件的第一層吸收(若需要的話,其可故意製成較厚),且在隨 後層與該基材表面間之平行度可以起始之平行誤差作為考 量基礎。在其它具體實施例中,平行度可為在第一層的平 15面與隨後層的平面間之比較。在某些此具體實施例中,該 基材可以平面或刻痕來標記,其可對準至一在該拋光固定 件上及在該終點測量固定件上的標誌,以便可合理地保持 角定位固定。 在某些可供選擇的具體實施例中,可將所安裝的基材 2〇拋光至具有一與該墊磨片的表面平行之表面’來取代將該 吸盤拋光成與該墊磨片的平面平行。在這些具體實施例 中’想要或甚至需要每次進行平坦化或測量操作時,該欲 女裝到真空吸盤上之基材具有相同位向。 在某些具體實施例中,想要平坦化該真空吸盤然後該 36 1353395 基材二者,以便每個皆與該墊磨片的平面平行,在此實例 中,不需要在每次拋光操作或進行拋光操作設定時,將該 基材及真空吸盤安裝成具有相同位向。 第9-12圖闡明本發明之某些具體實施例的終點指示裝 5 置實例之立體透視圖。可在該平坦化操作中的週期性中斷 期間,使用該終點指示裝置或固定件來測量該沉積物相對 於欲製造該結構的基材之主要表面之經平坦化的高度。第 11圖圖式描繪出一在其表面上具有三個(3)墊274、276及278 的基材272,於此處將遍及該製造製程維持無沉積物。這些 10 墊將使用作為所需要的參考,沉積物的高度測量可以其為 基礎。 在某些具體實施例(例如,例示在第9-12圖)中,可使用 三個終點偵測墊且其較佳遍及該建立製程皆維持在未沉積 狀態,且遍及該製程皆保持曝露或當需要製得測量時可製 15 成曝露。在某些具體實施例中,該些墊可設置在靠近晶圓 邊緣處,且相對於位於該基材中心的座標軸分開120。。 可使用多種方法來防止沉積在該終點偵測墊上,例如 當使用一塗佈著黏附層及種子層的介電基材時,該墊可在 以金屬層被覆之前以光阻、蠟、漆、膠帶等等覆蓋,然後 20 可移除該覆蓋以曝露出該墊而進行測量。若在該墊區域中 已沉積一或多層金屬層時,它們可藉由選擇性蝕刻而移 除。在某些具體實施例中,該墊區域可由一具有限定出該 墊直徑之内徑的結構材料“墊環”包圍;然後,可在該墊環 内進行選擇性银刻(例如,使用一浸泡姓刻劑的拭子),以如 37 所需地曝絡出4些塾。右該基材為—可電錢的金屬,則該 呰墊町在沉積之前以光阻1、漆、膠帶、經沉積的介電 質(例如’聚對苯二甲撐、二氧化石夕、氮化石夕)等等塗佈且 在進抒測量前可移除該被歸料。另—方面,絲被覆材 科為〆介電質且若其足夠薄(以避免被平坦化)且足夠硬則 其4遍及整個建立製程適當地遺留下來。再者,可在電鐘 之前加入此介電質被覆並在測量之前移除。在仍然其它具 雜實施例_,可在晶圓中於鄰近該些墊處提供—介電質(例 如,氧純)嵌入物m有碟狀形式,其可鑲嵌在晶圓 内及經適當膠合(亦可為-μ接,然而其必需在晶圓的熱循 環期間穩定)。該嵌入物可與該晶圓共平坦化;或若不與其 齊枣,玎相對於該共同晶圓表面來測量其位置且記錄並使 用來測量晚後沉積的層之高度及平行度。 第9圖顯示出一終點指示裝置3〇〇的立體透視圖,其包 括三個固定的金屬定位螺絲柱284、286及288,其與在基材 上的終點測量墊274、276及278接合。在某些具體實施例 中,需要固定該金屬定位螺絲桎與該墊的關係(例如金屬定 位螺絲柱284必需總是安裝在墊274上,金屬定位螺絲柱286 必需總是安裝在墊286上等等),此端視將如何使用來自終 點測量固定件的資料且該基材的前表面是否與該墊磨片的 平面平行而定。該金屬定位螺絲柱的尖端較佳由一在測量 製程期間不會明顯變形的硬材料製得,以便避免引進潛在 的測量誤差來源。 , 終點指示裝置300亦包括一處理環304及一接附該固定 1353395 的金屬定位螺絲柱之固定件鉗住板。該固定件鉗住板亦接 附一或多個測量探針(如描繪在第9、10及12圖,其描繪出 四個包括尖端292’-298,的探針292-298),其具有可縮回能控 制及測量地伸出的測量探針尖端,以接觸在該基材表面上 5 經平坦化的沉積物。在某些具體實施例中,該探針尖端經 由空氣壓力伸出’且使用精確的空氣壓力調節器來保証可 重覆及以相等的壓力施加至全部四個探針。該固定件的重 量較佳明顯高於由四個探針所施加的結合力量(但是不必The setup process begins at block 112 and then moves forward to block Μ m, which requires the definition of several variables and parameters. In particular, define the current layer variable, 'V'; define the last layer parameter, "N"; define the number of operations for the layer η 'οη", and define the parameter for the layer_last operation number, "〇 η". After defining the variables and parameters, the process moves forward to block u6, which needs to provide a substrate to form the structure. 2〇#次' The process moves forward to block U8, which sets the current layer number variable η equal to _(n=1); then moves forward to block 12〇, which sets the current number of operations on layer η The variable is equal to one (0η=1). Second, the process moves forward to block 124, which asks if the current operation (related to (10)) is a flattening operation. If the answer is no, then the system 26^ moves forward to block 126, which needs to operate. n, and then it will move forward to block 148, which will be discussed later in this article. For the inquiry block m, the answer is "Yes", the process will move forward to the zone rope 128' which requires the substrate to be mounted to the flattening fixture (which has been ready for use in block 104) Secondly, the process moves forward to block 13〇, which requires - or multiple flattening operations. For example, this can be done using different types of abrasive materials and/or contact pressure, polishing plate speed And the polishing operation of similar conditions. After the desired flattening operation is completed, the process will move forward to block 132', which requires the use of a secret detection@fixing to perform the end point measurement. In variations of the embodiments, different planarization fixtures can be used, and planarization operations other than polishing can be performed, such as in some alternative embodiments, rough-joining machines can be added and/or Perform precise diamond machining (diamond turning or Next, the process moves forward to block 134, which needs to analyze the data generated from the endpoint detection measurement. This analysis can simply include comparing a measured value to a target value and then determining based on the comparison. Subsequent operations of interest. Again, the analysis may include a more complex mathematical analysis of a plurality of measurement data points, such as to derive a plane from the least squares fit of the data. The analysis may then include derivation The resulting plane is compared to the intended plane height to determine if the target height has been reached. The analysis may also include determining the parallelism of the punctured plane to the desired plane to determine if the desired parallelism specification has been met. Further analysis may include determining if the planarity of the surface satisfies the defined specifications. 1353395 After the analysis has been performed, the process moves forward to block 136, which will ask if the desired target is reached. If a negative reaction occurs, the process will move forward to block 138, which will ask if further planarization is to be made to produce the desired target. The answer to the inquiry is "Yes,,, 5, the process will loop back to block 13 for other flattening operations. In some implementations of this particular embodiment, the planarization parameters may be changed during the planarization process during which the second or subsequent cycle passes, depending on the analysis of the block, even the planarization process itself. If block 138 produces: a negative reaction, the process moves forward to block 14(), which requires three or three actions - (1) to start the bridge and then jump to any suitable position in the process. To continue the establishment; (2) ignore the failure and continue the process; or (3) suspend the establishment process and restart the establishment if necessary. If the interrogation of block 136 produces a positive response or if the second option of block 14 is selected, then the process moves forward to block 142^15 15 Block 142 to ask if another flattening operation is desired. If the response to this inquiry is "NO", then the process moves to block (10) which requires removal of the substrate from the δH flattening fixture. After the substrate is removed from the planarization fixture, the 5 ga process will move to block 148. In some implementations, multiple flattening operations are required to achieve the desired goal of 20 (eg 'initial polishing with coarse-grained slurry, and then after entering the initial goal', the other is called fine (four)) . Interrogation of the block 142 during this execution may result in _ or multiple positive reactions. In this event, the process will move forward to block 144, which requires an increase in the number of operations (〇n-on+1), but the partial process will loop back to the block (10), which needs to complete 28 1353395 other flat Operation. The planarization variables, parameters, and even the planarization process can all be changed during this second or subsequent planarization process. Once the interrogation of block 142 has a negative response, the substrate is removed as required in block 146 (as mentioned above) and then the process moves forward to block 5 148. As previously mentioned, after the desired operation 〇n is performed in block 126, block 148' is also entered. In this example, operation 〇n is not a flattening operation. Block 148 needs to increase the number of operations variable one (〇n=〇n+1), and then the process moves to block 15〇' which will ask if the current number of operations variable is greater than the last number of operations associated with layer n. parameter. If the query produces a negative 1 〇 response, the process loops back to block 124 for another layer η related operation. If the interrogation of block 15 产生 produces a positive response, then the number of variables η will increase by one (η = η + 1), and then the process moves forward to block 154. Block 154 will ask if the current layer number variable η is greater than the last number of layers parameter η(η>Ν?). If the answer to this inquiry is "Yes", then all layers 15 have been formed and the process will move forward to block 156 and terminate. If the answer is no, the process loops back to block 12 and begins the next level of operation. Block I56 requires a layer forming process to terminate the structure, but it is not necessary to complete the entire structure forming process. A variety of post-processing operations can be performed to complete the formation of the desired structure, as will be more fully discussed elsewhere herein and in various patent applications that have been incorporated herein by reference. Figures 5B-5G provide different examples of operational settings that can be used to form the individual layers of the structure. In some embodiments, the operation of a single pattern may be repeated to form each layer of the structure; while, in other embodiments, the formation of the same layer may include an overview of the operations in the different figures. In other embodiments, other layers may be used to form the operation and/or may be used; layering = implementation. The procedure outlined in Figure 5A can be modified in many different ways, . 5 can be performed using different device components. The process can be performed by a single-automatic machine; or it can use different machines to perform a partially formed structure to transfer the structure between machines to analyze the processability of the process being performed. And similar actions. In some embodiments, the present invention may take the form of a device, such as a fully exercised or semi-automated device, to repair a substrate or fabricate a three-dimensional structure, for example, which may include (a) a substrate on which one or more materials are continuously deposited; one or more materials; (a mask comprising at least one void and at least one surrounding material protrusion; (c) a plant The table 'is used to bring at least one protrusion of the mask to or near the substrate 15 to form at least one electrochemical process bag (having a desired orientation associated with any previous deposit) And providing a desired electrolyte in the at least one electrochemical process bag; (d) a power supply to at least one electrode (which may be part of the mask or a separate electrode) Applying the desired electrical start between the substrates to perform the desired substrate modification; (e) 20 a planarization system (eg polishing, high speed cutting or other mechanical or chemical mechanical systems) and detection systems Trimming too much material and detecting if it has Sufficient material is removed; and in some embodiments '(f) at least one controller to control the stage and power supply. In an alternative embodiment, 'the element (b) The mask and the stage of the element 30 1353395 (C) can be arranged by an adhesive mask (for example, a laminator or applicator for dry film sheets and a centrifugal coater for liquid-based photoresist), graphics Systems such as selective exposure systems that use patterned reticle or scanning laser and possible developer and removal systems (eg stripping solution, tank 5 and/or sprinkler and the like) The substrate can be, for example, in the form of a conductive material (eg, a selected metal or the like), a moderately conductive material (eg, doped germanium or the like), a dielectric or a dielectric. / Conductor/semiconductor hybrid substrate on which a conductive seed layer has been formed. The stage can include a linear stage that can be driven by a linear motor or step motor or other swing motor that can be driven a ball screw or other will convert the rotational movement into The mechanism of sexual movement, which may additionally or additionally include a pressure-driven expansion or contraction bellows mechanism. The stage may include a position encoder and may include multiple stages, such as a coarse stage (course) Movement stage) and fine 15 m〇vement stage. The stage can be moved 'on the air bearing or the like to move smoothly. It allows linear movement and/or rotation in all three directions. Movement. In particular, the stage can provide the ability to tilt the substrate or contact the mask to achieve the desired degree of non-parallelism or non-planarity between the interface of the mask and the interface of the substrate. The power supply can take the appropriate form to drive any of the provided reactions. For example, it can be a galvanic or pulsed DC power supply; it can be controlled to output - fixed current or fixed voltage or Variable current or variable voltage ^ ^ can include feedback 'for accurate control. The controller can take a variety of forms. For example, it can be a computer that is programmed in a way to control its 31 P pieces in a desired manner (#|such as heavy_some operations multiple times to establish a multi-layer structure); or, can be used for different The control elements of the device components, each of which can be controlled by the f author. The computer may include a monitor or a (four) indicator and/or a machine for providing a message to an operator or a user; a memory for storing a parameter _ value; a keyboard, a mouse, a touch Camp or - analog 'to accept the author's input. The computer can be connected to the network to allow the terminal to control the system or to control multiple systems from a single computer. Many other device components can also be combined in some specific embodiments: (1) two rigid frames for holding the (four) components with appropriate quasi-heavy; and a protective panel to allow the presence of a controlled environment; 2) controlled air or gas system; (3) temperature control (four) system; (4) substrate purification line; (5) substrate activation system; (6) electric material system and electrolyte replacement or purification system; (7) air filter and circulation system; Process monitoring equipment, such as cameras, data acquisition and storage H (9) access to population and panels; (10) observation of f or camera and monitor; (11) operator warning system, including light and audible signals; (12) heating a system for performing diffusion bonding, smashing selected building materials and the like, or allowing them to flow; and the like. The parallelism of a layer relative to a substrate or a continuous layer can be maintained by the aid of a polishing fixture 2〇2 as shown in Figure 6-8. The fixture comprises a porous graphite vacuum chuck 2〇4 (Figs. 7 and 8) which is used to properly clamp a substrate on which the structure is to be formed to reduce the back of the substrate. The uneven distribution of vacuum minimizes deformation of the substrate. Before the polishing fixture is used to fabricate the structure, the vacuum chuck can be attached to the polishing fixture while being flattened to achieve a coplanar 053395 tense between the planes of the pad blades 2〇6, wherein the pads It will be seated on the polishing pad during the planarization operation and it will be mounted on the wear ring 208. The preparation of the polishing fixture additionally removes any deformation that has been caused by the fastener 212 in the surface of the vacuum chuck 204, wherein the fastener will hold the vacuum chuck to the taxi track 214. The taxiway 214 can move up and down for riding the outer cover 216 (whose money is on the wear cycle). The upward movement of the taxi track 214 (and thus the vacuum chuck 204) produces a self-upward spring force (e.g., a spring from an adjustable tension pattern) that balances the downward gravitational forces acting on the track, the suction cup, and the substrate. The tension spring type counterweight 228 allows the operator to set the effective contact pressure between the flattened surface and the polishing pad. The Venturi type vacuum generator 218 can provide the vacuum required to hold the substrate to the suction cup 204. Vacuum valve 222 allows the operator to switch vacuum to install and remove the substrate. The taxi track 214 and the taxi cover 216 include an air bearing type of machine to ensure frictionless movement when moving in a very fixed and straight path of travel. 15 During operation, the two components are separated by a film of compressed air (provided by a rotary adapter 224) that is held by the bracket 226 and allows the polishing fixture to rotate without blocking air flow. In some embodiments, the taxi track can be a square tube with a circular aperture through its center. The outer square dimension of the glide track is commensurate with the inner square 2 pupil that penetrates the sliding outer cover. The outer cover or slide track may include a porous graphite pad or the like on its side walls, which may usefully allow smooth movement of the slide relative to the outer cover, particularly when a film air is supplied through the porous pads. The wear ring 208 provides a fixed and stable cylindrical surface upon which a lap pad can be worn and which can be engaged with a stopper on the polishing machine and the like 33 1353395 for winding the polishing fixture The purpose of rotating the fixed axis. An honing sheet (e.g., polycrystalline diamond) is attached to the bottom surface of the wear ring and defines a plane on which the stable polishing fixture will rotate. The honing blade wears very slowly and ensures that the plane defined by the polishing fixture 5 remains stable throughout the manufacturing structure as compared to the material on the substrate to be planarized. A seal 232 is also provided (e.g., an annulus ring that pushes against the surface of the wear ring during cleaning, for example, when the fixture is prepared, the upper side is measured downward by 1). The air bearing can be contaminated during normal operation and can also be protected during substrate cleaning operations. The material purple protection 0 and the sliding top 2 3 6 provide similar functions to the top edge of the fixture. The polishing fixture can be loaded into a displacement sensor to measure the relative movement of the sliding outer cover 216 with the 'Pak Choi 214'. Monitoring this displacement during the polishing operation provides an instant measurement tool that removes material from the build process. The signal from the displacement sensing H can be transmitted by a wireless 15^ radio (four) frequency or infrared device mounted to the polishing fixture. Furthermore, electrospinning can be used for the same purpose. In some embodiments, the calibrated or corrected position can be measured from the displacement sensor, such that in some embodiments the displacement sensor can be used for absolute end point or evaluable. The state of the trimming process. A plurality of holes 242 can also be provided for the mounting operation, which allows the operator to manipulate the polishing fixture during operation. During the preparation of the fixture used, the vacuum chuck can be polished using, for example, H (four) money light; after the shape, the vacuum chuck is known to be positively pressurized and the porous material 34 can be rinsed out using isopropyl alcohol or the like. 1353395 to clean the debris. The use of this polishing fixture achieves a very high degree of flatness on the planarized surface (eg, over a surface of 100 mm < 0.5 microns) while maintaining a high degree of parallelism across all established layers (eg, over 100 mm) The surface of 5 is within 0.5 microns). The fixture is designed to remove the portion of the structure from the fixture for other processing operations, and then to mount and planarize the substrate while maintaining a high level of flatness and parallelism. The use of the porous vacuum chuck described above provides some distinguishable advantages in reducing substrate deformation. In some embodiments, the vacuum chuck 10 has a discontinuous surface that is slightly smaller than the diameter of the substrate. In some embodiments, the preferred graphite chuck can be easily polished to a flat (better than 0.3 microns on a 98 mm surface) while achieving specular reflectance sufficient to measure flatness using a laser interferometer. The use of a porous material distributes the vacuum throughout the surface and draws contaminants into the porous material to avoid becoming a source of deformation. In some embodiments, other vacuum chuck types, such as annular grooves, can be used. In some embodiments, the porous graphite material can be incorporated into a support (e.g., an aluminum outer cover) that supports and seals the porous material. The porous material can be seated at a location slightly above the outer cover material to allow the surface to be polished without interfering with the presence of the outer cover to the 20 rows of the substrate, and without apparently leaking the surface region. There are a variety of alternative flattening fixtures. For example, some alternative fasteners may use an adjustable base to mount the vacuum chuck to the sliding housing. These adjustable mounts can have a calibrated adjustment mechanism to adjust the plane of the chuck relative to the plane of the pad. These adjustable bases of 35 1353395 can be used to calibrate the plane of the vacuum chuck so that the outer side surface of the substrate can be made parallel to the plane of the honing pad. This adjustment can be made after the initial deposit of material is placed on the substrate, the deposit being polished to be parallel to the surface of the pad, the plane of the substrate being relative to the planarized 5 deposit The plane is measured. One or more additional planarization operations and potentially one or more additional deposition operations may be used to confirm or adjust the parallelism of the substrate surface relative to the pad surface. In some embodiments, the front and back surfaces of the substrate are polished parallel to each other (within about 2 microns) prior to initiation of establishment. In these embodiments, the parallelism of the major substrate surface (i.e., the front surface) to the plane defined by the metal locating studs may be as much as 2 microns. This error can be absorbed by the first layer of the part (which can be intentionally made thicker if desired), and the parallelism of the parallelism between the subsequent layer and the surface of the substrate can be used as a basis for consideration. In other embodiments, the degree of parallelism can be a comparison between the plane of the first layer and the plane of the subsequent layer. In some such embodiments, the substrate may be planar or scored, which may be aligned to a mark on the polishing fixture and at the end measuring fixture so that angular positioning is reasonably maintained fixed. In some alternative embodiments, the mounted substrate 2 can be polished to have a surface parallel to the surface of the pad to replace the polishing pad with the surface of the pad. parallel. In these embodiments, it is desirable or even necessary to perform the planarization or measurement operation each time the substrate on the vacuum chuck has the same orientation. In some embodiments, it is desirable to planarize the vacuum chuck and then the 36 1353395 substrate so that each is parallel to the plane of the pad, in this example, not required for each polishing operation or When the polishing operation is set, the substrate and the vacuum chuck are mounted to have the same orientation. Figures 9-12 illustrate perspective perspective views of an example of an end point indicating assembly of certain embodiments of the present invention. The endpoint indicating device or fixture can be used to measure the planarized height of the deposit relative to the major surface of the substrate from which the structure is to be fabricated during periodic interruptions in the planarization operation. Figure 11 depicts a substrate 272 having three (3) pads 274, 276 and 278 on its surface, where no deposits will be maintained throughout the manufacturing process. These 10 pads will be used as a required reference and the height measurement of the deposit can be based on it. In certain embodiments (eg, illustrated in Figures 9-12), three endpoint detection pads can be used and are preferably maintained in an undeposited state throughout the build process and remain exposed throughout the process or When it is necessary to make a measurement, it can be made to expose 15%. In some embodiments, the pads can be disposed adjacent the edge of the wafer and spaced 120 apart from the coordinate axis at the center of the substrate. . A variety of methods can be used to prevent deposition on the endpoint detection pad, such as when a dielectric substrate coated with an adhesion layer and a seed layer is used, the pad can be photoresist, wax, lacquer, before being coated with a metal layer. Covering with tape or the like, then 20 can remove the cover to expose the pad for measurement. If one or more metal layers have been deposited in the pad region, they can be removed by selective etching. In some embodiments, the pad region can be surrounded by a structural material "pad" having an inner diameter defining the diameter of the pad; then, selective silver etching can be performed within the gasket (eg, using a soak The swab of the surname of the engraving agent is exposed to four cockroaches as required by 37. The substrate on the right is a metal that can be used for electricity, and the paddle-machi is made of photoresist 1, lacquer, tape, and deposited dielectric before deposition (for example, 'poly(p-xylylene), dioxide dioxide, Nitrile eve) and the like can be applied and the retort can be removed before the enthalpy measurement. On the other hand, the wire covering material is a dielectric material and if it is thin enough (to avoid being flattened) and hard enough, it is properly left over for 4 times and the entire build process. Again, this dielectric coating can be added before the clock and removed prior to measurement. In still other embodiments, a dielectric (e.g., oxygen-only) interposer m can be provided in the wafer adjacent to the pads in a dish form that can be embedded in the wafer and suitably glued. (It can also be -μ, but it must be stable during thermal cycling of the wafer). The insert may be coplanar with the wafer; or if not juxtaposed, the crucible is measured relative to the common wafer surface and recorded and used to measure the height and parallelism of the layer deposited later. Figure 9 shows a perspective perspective view of an end point indicating device 3''''''''''''''''''''''' In some embodiments, the relationship between the metal positioning screw and the pad needs to be fixed (for example, the metal positioning screw 284 must always be mounted on the pad 274, and the metal positioning screw 286 must always be mounted on the pad 286, etc. Etc.) This view will determine how the material from the end point measurement fixture will be used and whether the front surface of the substrate is parallel to the plane of the pad. The tip of the metal locating stud is preferably made of a hard material that does not deform significantly during the measurement process to avoid introducing potential sources of measurement error. The end point indicating device 300 also includes a processing ring 304 and a fixing member clamping plate attached to the metal positioning screw column of the fixing 1353395. The fastener clamping plate is also attached with one or more measuring probes (as depicted in Figures 9, 10 and 12, which depict four probes 292-298 including tips 292'-298) having The measurement probe tip that can be controlled and measured can be retracted to contact the 5 flattened deposits on the surface of the substrate. In some embodiments, the probe tip is extended by air pressure' and a precise air pressure regulator is used to ensure reproducible and equal pressure applied to all four probes. The weight of the fixture is preferably significantly higher than the bonding force applied by the four probes (but not necessarily
需),以便不影響準確性。使用閥來伸出及縮回該探針尖 10 端。該尖端正常縮回及向外伸出,以取得歸零讀取值或以 取得測量值。在某些具體實施例中,可使用海得漢測量MT (Heidenhain Metro MT) 1287長度測量儀器;同時,在其它 具體實施例中,可使用具有可能的增加測量準確性 TJ 之 15 20 LVDT型式感應器。在某些具體實施例中,可藉由使用彈今 與減少拉伸壓力之組合來進行探針縮回。在其它具體實^ 例中,可使用一能提供無接觸測量沉積物高度之探針。^ 仍然其它具體實施例中,固定長度的探針(即金屬定位螺戾 柱)可接觸所沉積的材料,及可調整長度的探針或無接觸# 針可使用該終點指示墊來接觸或製得測量。 / 固定件鉗住板306具有適當的硬度及鉗住力 ^ 从保言 準確的測量。在某些具體實施例中,辑理環可從會傳驾 非常些微的熱之材料製得,以保証來自操作者之手的熱习 會在測量固定件中造成尺寸變形。在其它具體實施例^ 該固定件可具有較少或更多個金屬定位螺絲柱及/或較^Required) so as not to affect accuracy. A valve is used to extend and retract the probe tip 10 end. The tip is normally retracted and extended outward to obtain a zero return reading or to obtain a measured value. In some embodiments, a Heidenhain Metro MT 1287 length measuring instrument can be used; meanwhile, in other embodiments, a 15 20 LVDT type sensing with a possible increased measurement accuracy TJ can be used. Device. In some embodiments, probe retraction can be performed by using a combination of elastic and reduced tensile pressure. In other specific embodiments, a probe that provides a non-contact measurement of the height of the deposit can be used. ^ In still other embodiments, a fixed length probe (ie, a metal positioning screw) can contact the deposited material, and an adjustable length probe or contactless # needle can be used to contact or make the end point indicator pad. Have to measure. / The fixture clamps the plate 306 with the proper hardness and clamping force ^ From the testimony accurate measurement. In some embodiments, the processing ring can be made from a material that transfers a very small amount of heat to ensure that the heat from the operator's hand causes dimensional distortion in the measurement fixture. In other embodiments, the fixture may have fewer or more metal positioning studs and/or
39 1353395 或更多個探針》 當該些探針在校正製程期間接觸擱置該金屬定位螺絲 柱的平板時及當它們接觸欲測量的表面時,在所測量的位 移值中之差異會產生一經平坦化的材料厚度,及潛在查明 5該表面平面相對於先前偵測的平面之表面或基材表面的能 力,及潛在產生查明該表面其自身整體平面性的能力。 第12圖^供一座落在欲測置的基材上之終點測量裝置 或固疋件300的立體透視圖,其中已在測量墊上設置三個金 屬定位螺絲柱。 10 在某些具體實施例中,每個測量探針292-298(其各別具 有可移動的尖端292,-298,)可為一以編碼器為基礎的測量 裝置,其準確性允許滿足合適的容差標準(例如,它們可在 12毫米移動上且以0_01微米的解析度及+/ 〇 〇5微米的再現 能力及+M).2微米的準確性操作)。該可移動的探針尖端可 15正吊縮回,但是可根據探針的接觸面積及潛在該固定件其 自身的重量’藉由空氣壓力以一可設定的接觸力量或至: 一合適於測量想要的材料之力量伸出。 可在第10圖—更清楚地看見較佳裝置的四探針裝置 292-298,同時可在第,中更清楚地看見四個相關的探針 20大端292 -298。在某些具體實施例中,在進行測量之前, 全部四個⑷探針在伸出位置中歸零,同時制定件座落在 參考平面(例如光學平面)上。在其它具體實施例中可簡單 。己錄在5請出的平板彳4置處之探針位置值及在此些值間之 差異且當測量、㈣垣化的沉積物時將所採取之值使用來 40 1353395 決定沉積物高度及可能的平行度及平面性。 在某些具體實施例中,由四個探針從經平坦化的沉積 物所採取之測量值可使用來計算(使用最小平方擬合)該表 5 面的平面。計算X及Y斜率(該平面沿著χ&γ轴(其假設為二 個在基材表面平面中垂直的軸)之斜率)及2截距。2截距可 使用作為指示該經平坦化的沉積物(例如全部沉積物的總 ,度)相對於主要基材表面之厚度。乂及¥斜率值可使用來決 定所測量的平面是否已偏離與主要基材表面或與假設的表 10 面之平行度太遠。X或Y斜率的值大可指示出該平坦化設備 或其污染問題(例如不均勾的墊磨損、干擾適合地安裝在真 空吸盤或其類似物上之污物、料漿顆粒或其類似物)。事實 上’若該基材的前表面不製成與基材背表面平行,在所沉 ,的材料與基材前表面間之平面位向會存在明顯差異;且 15 =例二可有益地比較該平面的位向與該材料的第- ===該沉積材料的某些其它層相關或與假設 ^ ^,,最初可塗佈-經平坦化 的材料層在其上面將限定出測量塾區 沉積物厚度及平面位向。 [則里後的 20 在某些具體實施例中,使用平面 是否可適當地作用。可使用 :率來決定平行控制 0.01微米,其相當於遍及1(K^T容差(例如’每毫米 在某些具體實施例中,如上述:換入1微米)。 件可接觸所沉積的材料,同時I ’該固定長度的元 上或在與先前形成的層相關材2多動的探針可與在基材 之材枓上的接觸墊接觸。 41 1353395 在某些具體實施例卜取代使用終點測量裝置的探針 來測里平面性’可使用雷射干涉儀來檢查已達成適當的平 坦度(例如0.3微米)。若平坦度脫離規格時,其指示出該拋 光板需要再平面化。 · 5 在某些具體實施例中,該測量以限時的拋光量為基 礎,其由操作者估計而比到達所需想要的目標少。透過平 坦化及測量的迭代步驟(其收歛在正媒值)以達成最後的層 厚度值。 在某些具體實施例中,如顯示在第5B及冗圖之實例 籲 中可使用夕重平坦化操作來達成想要的層厚度或部分升》 成的結構厚度。粗糙拋光步驟可包括使用粗研磨顆粒(例 如,9微米的研磨顆粒),其可將拋光程度例如帶至值等於 . 全部先前層的厚度加上現行的層厚度加上4微米補償,容差 在+/-0.1微米内。然後可使用細研磨顆粒(例如2微米的研磨 15顆粒)’以例如將厚度帶至值大於最後想要的表面位置 0.1+/-0.05微米處。全部這些測量可在當該基材仍然由該固 定件鉗住時進行。在某些具體實施例中,可使用-最後研 · 磨步驟’其中假設將移除一些量的材料(例如〇1微米)。可 不使用拋光固定件來進行此操作。在某些具體實施例中, 2〇 -旦將基材從固定件中移除,料想要進行測量,此· 曰曰加基材撓曲及其類似現象的風險。在這些具體實施例 中,可或可不進行在研磨後之最後測量。 . 在某些具體實施例中,可進行單一平坦化製程及 要的話,可重覆直到到達想要的表面程度。 42 1353395 在某些具體實施例中’可使用厚基材例如厚度範圍 1〇毫米對直徑⑽毫米的晶圓、15毫米對直徑鳴米的晶 圓及其類似物。此厚基材可提供下列優點:⑴甚至當在其 上面沉積具有高應力的金屬薄膜時,它們仍然平坦;⑺它 5們在平坦化期間較不會由真空吸盤或其它固定件的平坦度 影響;⑶它們較易平坦化至高平坦程度及與相對面的平行 度;及/或(4)對在製程期間的處理來說,它們更堅固。此晶 圓可在層製造完成後變薄(例如,使 在其—__中’可藉由將-厚“載體”黏合至-1〇較薄的基材而獲得厚基材,以便提供該較厚的晶圓效應。 對如上述4’的第5A圖之方法具體實施例及對第6_8 圖的拋光固定件襄置及第9.12圖之終點偵測裝置來說可 有多種增進及替代方案。例如,在某些可供選擇的具體實 施例中,可使用從抛光固定件之測量裝置所查明的位移值 15來提供某些或全部層的終點偵測。在某些具體實施例中, 該基材可在測量期間仍然安農至該抛光固定件;同時在其 它具體實施例中,可在基材與固定件分離後進行測量。在 某些具體實他例中,可使用非多孔真空吸盤(例如,具有機 械形成的開口或其類似物之真空吸盤);同時在其它具體實 20施例中,可使用來自除了石墨外的材料之多孔真空吸盤。 在某些具體實知例中,將該基材托至真空吸盤的真空來源 可為文托利髮式產生器,其靠與提供如上述討論在滑行軌 道與外罩間之承載能力相同的空氣供應器來維持·同時, 在其它具體實施财,可使用其它型式的真空I生器及/或 43 1353395 可使用其它空氣壓力來源。 * 本發明存在有多種其它具體實施例。某些這些具體實 施例可基於本文之教導與以參考之方式併於本文的多種教 . 導之組合。某些具體實施例可不使用任何掩蓋沉積製程及/ 5或它們可不使用平坦化製程。某些具體實施例可包括在單 層上或在不同層上選擇性沉積複數種不同材料。某些具體 實施例可在某些層上使用非為電沉積製程之選擇性沉積製 程或掩蓋沉積製程。某些具體實施例可使用鎳作為結構材 料’同時其它具體實施例可使用不同的材料。某些具體實 · 10施例可使用鋼作為結構材料且含或不含犧牲材料。某些具 體實施例可移除犧牲材料,同時其它具體實施例可不移 除。在某些具體實施例中,陽極(使用在電沉積期間)可與該 . 可保形的接觸遮罩支撐物不同,且該支撐物可為一多孔結 構或其它有孔結構。某些具體實施例可使用以遮罩為基礎 15的選擇性姑刻操作且與掩蓋沉積操作一起。某些具體實施 例可在層對層基礎上形成結構,但是偏離藉由平面層建立 | 製程的嚴格平面層,以有助於在層間交錯材料之製程。此 交替建立製程揭示在2003年5月7曰所申請之美國申請案號 1〇/434,519中,其發表名稱為“經由交錯層或經由選擇性蝕 20刻及填入空隙來電化學製造結構的方法及裝置”,其如若以 . 其王文it出般,藉此以參考之方式併於本文。 . 雖然上文提出的多種具體實施例已聚焦在使用拋光作 為較佳的平坦化技術,但於此所揭示的技術亦可具有其它 應用’當該平坦化技術除了拋光外,例如可使用化學機械 44 1353395 平坦化、研磨、鑽石高速切削或其類似技術。特別是,當 該平坦化製程為除了拋光外的技術時,咸信該終止指示固 定件及方法將合適。可在美國專利申請案案號60/534,159 中發現關於在電化學製造製程期間使用鑽石高速切削的平 5坦化操作之教導,其由古漢等人隨函同時申請及其發表名 稱為“用來製造多層結構之電化學製造方法,包括在平坦化 沉積材料時使用鑽石機器加工,,。此申請案如若以其全文提 出於本文般’藉此以參考之方式併於本文。 本發明的進一步具體實施例係關於一種使用來建造多 10層或單層結構或裝置之方法及裝置,其以單點鑽石機器加 工方法在高速切削機器(例如第13圖之高速切削機器)上進 行平坦化。下列所討論的裝置及方法允許操作者測量及調 整該基材的主要平面,如此在高速切削期間所建立的新平 面可與該基材的主要平面平行。 15 相同裝置亦允許操作者測量一大約進入的沉積層厚 度。然後,操作者可進行一起始高速切削步驟,以建立一 與該基材的主要基材表面爭行之平坦表面。在某些具體實 施例中,操作者可藉由測量此經平行化的表面之厚度來 查明需要移除多少材料以達成想要的層厚度,且可命令該 20機益移除所決定之精確的材料量。在某些具體實施例中, 可製得一或多次檢查以保証新定義的平面與主要的基材表 面平行。依起始沉積物的獨特高度及該經平坦化的声之择 要的高度而定’此高速切削可在單次讓切刀通過該表面的 每個。p 5?時移除全部所需的材料,或可含或不含中間測量 45 1353395 操作而製得多次通過。可定期檢查該平面切割,且進行該 基材之任何需要的位向改質,以保証連續層仍然彼此平行 且具有適當的厚度。一旦進行最後的高速切削步驟時,可 瑞定層厚度和新表面的平面。 5 如上述討論之以拋光為基礎的平坦化具體實施例,該 測量及平坦化操作較佳以該基材的主要表面為主(例如,欲 加入材料層的基材之前表面)’如可從設置在基材上的三個 測量塾(例如偵測整、接觸墊及其類似物)來測量,如顯示在 第11圖。在較佳的具體實施例中,這些墊可遍及每次的建 10立製造製程皆維持。應該由熟知此技藝之人士了解,在某 些可供選擇的具體實施例中,可將該些墊設置在基材的後 表面上’來取代使用位於基材前表面上的墊。在仍然其它 可供選擇的具體實施例中,可使用在每層上或在連續層的 部分上所形成之墊來取代在基材表面上維持固定的墊,以 15查明平面性及設定欲形成的一或多層隨後層之高度。 第13圖提供一高速切削機器的主要組件之立體透視 圖。將上面已建立電化學製造結構的基材404附著至基材平 面調整器406 ’其依次安裝至z軸載物臺408(其能在由箭號 410所定義的Z方向中移動)。z軸為一在實質上垂直於由高 20速切削工具所掃查的平面之方向上延伸的軸。將Z軸載物臺 408及X軸載物臺418安裝至一振動隔離主體(無顯示),其可 對整個裝置提供一機械穩定的平台。X軸在垂直於z軸的方 向上延伸且允許在由箭號420所指出的方向上回來移動。X 轴載物臺托住高速切削轉轴422,其依次托住高速切削工具 46 1353395 支架424,其依次托住高速切削工具其自身(無顯示)。在某 些具體實施例中,安裝至該工具支架的工具為早晶鑽石, 同時,在其它具體實施例中,可使用其它工具材料。測量 固定件426則接附至該轉軸外罩。 5 轉轴422使用一極硬及穩定的高速氣墊軸承。X軸及z 軸載物臺408及418極準確、硬且使用油液壓軸承(oi1 hydrostatic bearing)。該裝置的轉軸、X載物臺及Z載物臺部 分(不包括該基材平面調整固定件、基材支架及測量固定件) 與電腦控制硬體、軟體、振動隔離主體 '保護外罩及其類 10 似物一起,可例如從新罕布夏州(New Hampshire)奇尼 (Keene)的LLC之慕雷奈米科技系統(Moore Nanotechnology Systems)購買,如型號為奈諾泰克(Nanotech)350UPL。結合 這些組件,以提供一具有10奈米的位置解析度及可高速切 削表面而遍及直徑1〇〇毫米具有平坦級數1〇〇奈米之能力的 15 機器系統。 該基材可由Z軸載物臺定位’同時該測量固定件可由X 軸載物臺定位,以便—起帶動它們,以便可測量高度、平 面位向及其類似性質。可使用該χ軸載物臺及z軸載物臺, 來交又該基材及高速切削工具的路徑。高速切削工具支架 2〇相對於轉轴的自由輪轉可允許該高速切削工具在基材路徑 :回來旋轉,同時Ζ軸載物臺可增加向前移動,以允許在設 定操作及其類似動作期間發生在工具與基材間之接觸。 在第14圖中,二個測量探針指狀尖端434-1、434-2及 434 3形成電腦可控制及可讀取的測量探針裝置4叫、 47 1353395 432-2及432-3之接觸部分。該探斜可沿著冰驅動且當它 們接觸欲測量的表面時可提供電子讀出位置。當遇到想要 的位置及/或位向之表面時,該探針讀取值可再歸零,以便 . 設定一參考平面。在某些使用期間,當該基材設定在預定 . 5的位向上且由支架托在預定的位向中時,該探針指狀尖端 會沿著X轴定位,以便它們可對準及接觸在基材上的三個測 量墊274'276及278。在其它使用中,可限定該探針的位置, 以便其太知接觸在基材上的區域她連該測量塾或與发相隔 遙遠。在仍然其它使用中,該基材可以非標準位向放置到 鲁 〇 。亥支架上,以便該尖端不對準該墊。可使用此非標準位向 定位來產生關於基材前後表面之平行度的訊息。 該探針尖端可使用由高精密空氣壓力調節器所提供的 . 空氣壓力來伸出,如此全部探針皆可以相等及重覆的接觸 力量接觸。在典型的操作中,會將該基材及探針帶至x軸位 置’同時該探針尖端會縮回D 一旦在位置上時,該探針尖 端會伸出並採取三個測量值。主要基材表面之平面可從此 二個測量墊所採取之讀取值來查明。若所測量的平面之位 ^ 向與想要的平面位向不相符’則可在該平面調整固定件所 允許的範圍内’將該基材參考表面的平面調整至任何平 20 面。當平坦化一表面時,典型地調整該參考表面之平面, . 以相對於機器的X-Y平面(其亦為該高速切削工具所產生的 平面)具有零斜率。實務上’在使用二個線性致動器446-1 及料6-2調整平面之後’該探針尖端可再次接觸該參考墊, 以測量及確認該基材的平面已經合適地調整。在某些實例 48 中,重覆該測量及調整可改善於單次通過所達成的物件上 之對準;但是’此典型地已發現並不需要0在測量之後, 該探針尖料㈣縮不發生不小㈣基材到傷。 第15圖顯示出該測量固定件的細部圖。該測量探針 132小132-3由探針夾鉗133_M33_3夹住其依次附著至水 平板135及其依次附著至垂直扳137,其依次飾至轉軸外 罩422,如顯示在第13圖。 第5圖顯示出將該基材安裝至該基材平面調整固定 件此使用4孔碳真空吸盤454來進行。可在將該多孔碳 ㈣安裝至該固定件後,讓該真空吸盤454在該機器上接受 高速切削,如此其具有與切财面相同的斜率(例如,遍及 〇毫米表®其平坦度至在03微米内)。此能力可使用來 移除任何在將真空吸盤安裝至運純引進㈣ 形。。。該真空吸盤可控制地連接至真空供應器及空氣壓力供 應器二者,如此該基材可控制地接附、釋放及可容易改變 相對於該吸盤的位置。 在該真空吸盤的較低邊底部上,使用三個基材設置托 架458-1-458-2來幫助定位該基材。底部托架々π·2提供一平 坦表面,其允許-在該基材的邊緣上之平面(例如18毫米的 平坦邊緣)觀在該平坦脑表面上,以便在開啟動真空前 幫助提供旋轉疋位°該運動板提供_穩定的基礎,可在其 背面邊上接附該些運動組件。 第17圊顯示出該已移除運動板攸之基材平面調整固 定件406。三個截平的球形462.Μ62·3附著至運動板,如此 1353395 它們可與三個溝槽托架旋轉嚙合。在第17圖中,三個球形 顯示出不與該運動板連接。溝槽托架之一設置在一已安裝 至基礎467的固定垂直板466上,其依次安裝至Ζ載物臺;同 時其它二個托架則設置在二個彎曲臂上,其可移動以調整 5該基材當安裝在真空吸盤上時的平面。三個彈簧偏壓拉緊 螺栓464-1-464-3延伸通過該固定垂直板466及接附且拉牽 該運動板,並以一大的預負載力(例如5〇〇磅的預負載)對著 該溝槽來連結截平的球形,因此產生一堅硬的機制。 第18圖顯示出該運動組件的部分放大圖,其包括戴平 10的球形462-1及462-3、相關的溝槽托架468_1及468-2、拉緊 螺栓464-2、接附托架472-1(其將彎曲臂474-1接附至固定垂 直板466)。該載平的球形及溝槽由硬鋼構成,以保証該組 件的幾何外觀仍然穩定。 第19圖顯不出該基材平面調整固定件454的背面邊,其 15已移除邊板478-1以顯露出某些其它組件。有三個拉緊壓縮 彈簧465-1至465-3,其以該些拉緊螺检操作而在該運動板上 產生該大的預負載。有二個彎曲損桿臂474· i及474 2,其每 個已接附一溝槽托架。當已驅動線性致動器綱及 446_2(其已經由父又支樓桿479安裝至邊板⑽-^及梢2)至 20新位置肖f曲點473]及473_2可各別提供彎曲損桿臂 474 1及474 2用之旋轉點。該接附托架(亦顯示在第關)可 將該脊曲槓杯身連接至顯示在第19圖的垂直板。每個線性 致動器可使用來驅動每個彎曲臂。由具有從該溝槽及截平 的球形之運動接觸補償的致動點所獲得之機械利益可達成 50 個目標.(1)提供機械槓桿作用,否則該線性致動器將由 ;大的預㈣而必需更強大、昂貴及/或較不準確;及⑵ ;°亥機械利ϋ而提供增加的準確性。在本具體實施例 該機制提供10比1的機械利益,·但是在其它具體實施例 中,可使用較小或較大的機械利益。本致動器(例如鑽石移 動致動器N100DC)具有0.1微米的解析度,其可提供該系統 子平面調整有10奈米的解析度。在第19圖中亦可看見一個 使用在該線性致動器與該彎曲槓桿臂間的接觸點處之碳化 鴿衛模(strike) 182-1。 第20圖提供一提出的樣本操作流程圖,其可使用來讓 第13-15圖之測量固定件及探針的零平面與由高速切削工 具所切割的平面相配。 第21圖提供一提出的樣本操作流程圖,其可使用來設 疋基材的前表面(在其上面已沉積及/或欲沉積材料層)或沉 積材料其自身,相對於由鑽石工具所切割之平面的平行度。 第22圖提供一提出的操作流程圖,其可使用第13圖之 裝置來將在基材上的沉積材料修整至想要的高度。 那些在第20-22圖中所提出的另一種方法將由熟知此 技藝之人士在回顧於本文之教導後明暸。在某些此可供選 擇的方法中,可消除多種操作、可加入其它操作及/或可使 用多種取代操作。 關於在介電基材上形成結構及/或將介電材料併入該 形成製程且可能將其併入如所形成的最後結構中之結構形 成的教導則提出在2003年12月31日所申請的一些專利申請 1353395 案中。這些細檔文件第一為美國專利申請案案 刪⑽,其發表名稱為“合併介電材料及/或使用介^ 材的電化學製造方法,,。這些歸檔文件第二為美國專利申二 案案號60/533,932,其發表名稱為“使用介電基材的電化學 5製造方法”。這些歸槽文件第三為美國專利申請案案號 祕34,157其發表名稱為“合併介電材料的電化學製造方 法細檔文件第四為美國4利申請案案號 60/533,891,其發表名稱為“合併能部分經由平坦化移除的 介電質薄片及/或種子層之結構的電化學製造方法,,。此些歸 1〇樓文件第五為美國專利申請案案號6〇/533,895,其發表名稱 為在少孔"電質上製造多層三維結構之電化學製造方 法。每些專利歸標文件每篇如若以其全文提出於本文般, 藉此以參考之方式併於本文。 考慮到於本文中的教導,將由熟知此技藝之人士明瞭 ^在本發明之設計及使用上的許多進一步具體實施例、替代 方案。就其本身而論,不意欲本發明由上述描述之特別的 闊明具體實施例、替代方案及用途所限制,而是獨自由此 後所顯現的申請專利範圍所限制。 【圓式簡單説明】 20 第1A-lc圖圖式描繪出不同階段的CC遮罩電鍍方法之 側視圖,同時第11}_1(3圖圖式描繪出使用不同型式的cc遮 罩之CC遮罩電鍍方法,其在不同階段處之側視圖。 第2A-2F圖圖式描繪出一電化學製造方法,當將其應用 來形成特別結構時,其於不同階段處之側視圖,其中可 52 1353395 選擇性沉積一犧牲材料同時掩蓋沉積一結構材料。 第3A-3C圖圖式描繪出多種可使用來手動執行描繪在 第2A-2F圖之電化學製造方法的實例次組合之侧視圖。 第4A-4I圖圖式描繪出使用黏附遮罩電鍍來形成一結 5 構的第一層,其中該第二材料的掩蓋沉積將覆蓋位於該第 一材料的沉積場所與該第一材料其自身二者間之開口上。 第5A圖對根據本發明的第一具體實施例之用來形成多 層三維結構的方法提供一流程圖,其使用一終點指示固定 件及一各別的平坦化固定件。39 1353395 or more probes] When the probes touch the plate on which the metal positioning screw is placed during the calibration process and when they contact the surface to be measured, the difference in the measured displacement values will be generated. The thickness of the planarized material, and the ability to potentially ascertain the surface of the surface relative to the previously detected planar surface or substrate surface, and the potential to ascertain the overall planarity of the surface. Fig. 12 is a perspective perspective view of an end point measuring device or a fixing member 300 which is placed on a substrate to be measured, in which three metal positioning screw posts have been placed on the measuring pad. In some embodiments, each of the measurement probes 292-298 (each having a movable tip 292, -298,) can be an encoder-based measurement device, the accuracy of which allows for appropriate Tolerance standards (for example, they operate on a 12 mm movement with a resolution of 0_01 micron and a reproducibility of +/ 〇〇 5 microns and +M). 2 micron accuracy). The movable probe tip 15 can be hoisted back, but can be based on the contact area of the probe and potentially its own weight 'by air pressure with a settable contact force or to: one suitable for measurement The power of the desired material extends. The four-probe device 292-298 of the preferred device can be seen more clearly in Figure 10, while the four associated probes 20 major ends 292-298 can be more clearly seen in the first. In some embodiments, all four (4) probes are zeroed in the extended position prior to the measurement, while the authoring member is seated on a reference plane (e.g., an optical plane). In other embodiments, it may be simple. The position values of the probes placed on the plate 4 and the difference between these values are recorded. When measuring, (4) the sedimentation of the deuterated deposit, the value taken is used to determine the sediment height and 40 1353395. Possible parallelism and planarity. In some embodiments, the measurements taken by the four probes from the planarized deposits can be used to calculate (using a least squares fit) the plane of the surface of the table. The X and Y slopes are calculated (the slope of the plane along the χ& γ axis (which is assumed to be two axes perpendicular to the plane of the substrate surface) and 2 intercepts. The 2 intercept can be used as a measure of the thickness of the planarized deposit (e.g., the total extent of all deposits) relative to the surface of the primary substrate. The 乂 and ¥ slope values can be used to determine if the measured plane has deviated too far from the main substrate surface or parallel to the hypothetical surface of Table 10. A large value of the X or Y slope may indicate the planarization device or its contamination problem (eg, uneven pad wear, interference with dirt suitably mounted on a vacuum chuck or the like, slurry particles, or the like) ). In fact, if the front surface of the substrate is not made parallel to the back surface of the substrate, there will be a significant difference in the plane orientation between the deposited material and the front surface of the substrate; and 15 = Example 2 can be beneficially compared. The orientation of the plane is related to the first ==== of the material to some other layer of the deposited material or to the assumption that the initially coatable-flattened layer of material will define the measurement zone thereon. Sediment thickness and plane orientation. [20] In some embodiments, whether the plane of use can function properly. The rate can be used to determine parallel control of 0.01 microns, which is equivalent to 1 (K^T tolerance (eg 'per millimeter in some specific embodiments, as described above: 1 micron). The piece can be exposed to the deposited The material, at the same time I's a fixed length of the element or a probe that is hyperactive with the previously formed layer 2 can be in contact with the contact pad on the substrate material. 41 1353395 replaced in some specific examples Use the probe of the endpoint measuring device to measure the planarity'. A laser interferometer can be used to check that proper flatness (for example, 0.3 micron) has been achieved. If the flatness is out of specification, it indicates that the polishing plate needs to be re-planarized. 5 In some embodiments, the measurement is based on a time-limited amount of polishing that is estimated by the operator to be less than the desired target to reach. The iterative step through flattening and measurement (which converges in positive Media value) to achieve the final layer thickness value. In some embodiments, as shown in Example 5B and the example of the redundancy diagram, a flattening operation can be used to achieve the desired layer thickness or partial rise. Structure thickness. Rough The light step can include the use of coarse abrasive particles (eg, 9 micron abrasive particles) that can be polished to a value equal to, for example, the thickness of all previous layers plus the current layer thickness plus 4 micron compensation, tolerance at + /-0.1 microns. Fine abrasive particles (eg 2 microns of ground 15 particles) can then be used 'for example to bring the thickness to a value greater than the last desired surface position 0.1 +/- 0.05 microns. All these measurements can be The substrate is still being held by the fixture. In some embodiments, a - final grinding step can be used, where it is assumed that some amount of material will be removed (e.g., 1 micron). To perform this operation. In some embodiments, the substrate is removed from the fixture and is intended to be measured, which increases the risk of substrate deflection and the like. In these embodiments, the final measurement after grinding may or may not be performed. In some embodiments, a single planarization process and, if desired, repeating until the desired surface level is reached. 42 1353395 In some embodiments, thick substrates such as wafers having a thickness ranging from 1 mm to 10 mm, wafers having a diameter of 15 mm, and the like can be used. This thick substrate provides the following advantages: (1) Even when metal films with high stress are deposited thereon, they are still flat; (7) they are less affected by the flatness of vacuum chucks or other fixtures during planarization; (3) they are easier to flatten to a high degree of flatness And parallelism to the opposite side; and/or (4) they are stronger for processing during the process. This wafer can be thinned after the layer is fabricated (eg, in its -__) A thick substrate is obtained by bonding a -thick "carrier" to a thinner substrate of -1" to provide the thicker wafer effect. The specific embodiment and pair of the method of Figure 5A of 4' above There are a number of enhancements and alternatives to the polishing fixture arrangement of Figure 6_8 and the endpoint detection device of Figure 9.12. For example, in some alternative embodiments, the displacement value 15 ascertained from the polishing fixture can be used to provide endpoint detection for some or all of the layers. In some embodiments, the substrate can be amplied to the polishing fixture during measurement; while in other embodiments, the measurement can be made after the substrate is separated from the fixture. In some embodiments, non-porous vacuum chucks (e.g., vacuum chucks having mechanically formed openings or the like) may be used; while in other embodiments, materials other than graphite may be used. Porous vacuum chuck. In some specific embodiments, the vacuum source for the substrate to the vacuum chuck can be a Venturi hair generator that provides the same air supply capacity as provided between the taxi track and the outer cover as discussed above. For maintenance, at the same time, other types of vacuum generators and/or 43 1353395 may be used for other air pressure sources. * There are many other specific embodiments of the invention. Some of these specific embodiments can be combined based on the teachings herein and in the various teachings herein. Some embodiments may use no masking deposition process and/or they may not use a planarization process. Some embodiments may include selectively depositing a plurality of different materials on a single layer or on different layers. Some embodiments may use a selective deposition process or a mask deposition process that is not an electrodeposition process on certain layers. Some embodiments may use nickel as the structural material' while other embodiments may use different materials. Some specific embodiments may use steel as the structural material with or without sacrificial materials. Some specific embodiments may remove the sacrificial material while other embodiments may not be removed. In some embodiments, the anode (used during electrodeposition) can be different from the conformable contact mask support, and the support can be a porous structure or other porous structure. Some embodiments may use a mask-based selective lithography operation and along with a mask deposition operation. Some embodiments may form a structure on a layer-by-layer basis, but deviate from the rigorous planar layer created by the planar layer to facilitate interleaving of the material between the layers. This alternate process is disclosed in U.S. Application Serial No. 1/434,519, the entire disclosure of which is incorporated herein by reference. And the device", if it is. Its Wang Wen it out, by reference to this article and here. While the various embodiments set forth above have focused on the use of polishing as a preferred planarization technique, the techniques disclosed herein may have other applications. 'When the planarization technique is used in addition to polishing, for example, chemical machinery may be used. 44 1353395 Flattening, grinding, high-speed diamond cutting or similar. In particular, when the flattening process is a technique other than polishing, it is appropriate to terminate the indicating fixing member and method. The teaching of a flat 5 canal operation using diamond high speed cutting during an electrochemical manufacturing process can be found in U.S. Patent Application Serial No. 60/534,159, the entire disclosure of which is hereby incorporated by reference. An electrochemical fabrication process for the fabrication of a multilayer structure, including the use of a diamond machine for the planarization of a deposited material, which is hereby incorporated by reference in its entirety herein by reference in its entirety in its entirety. DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a method and apparatus for constructing a multi-layer or single-layer structure or apparatus that is planarized on a high speed cutting machine (e.g., the high speed cutting machine of Fig. 13) in a single point diamond machining process. The apparatus and methods discussed below allow the operator to measure and adjust the primary plane of the substrate such that a new plane created during high speed cutting can be parallel to the major plane of the substrate. 15 The same device also allows the operator to measure an approximation. Entering the thickness of the deposited layer. The operator can then perform an initial high speed cutting step to create a substrate with the substrate A flat surface that is intended to compete for the surface of the substrate. In some embodiments, the operator can determine how much material needs to be removed to achieve the desired layer thickness by measuring the thickness of the parallelized surface. The 20 machine is ordered to remove the determined amount of material. In some embodiments, one or more inspections can be made to ensure that the newly defined plane is parallel to the major substrate surface. The unique height and the height of the flattened sound. 'This high-speed cutting can remove all the required materials in a single pass of the cutter through each of the surfaces. p 5? Multiple passes may be made without or without intermediate measurement 45 1353395. The planar cut may be periodically inspected and any desired orientation modification of the substrate performed to ensure that the continuous layers are still parallel to one another and of appropriate thickness. The thickness of the layer and the plane of the new surface can be determined during the final high speed cutting step. 5 As discussed above, a polishing-based planarization embodiment, the measurement and planarization operation preferably is based on the major surface of the substrate. The primary (eg, the surface of the substrate to be added to the layer of material) can be measured, for example, from three gauges (eg, detection, contact pads, and the like) disposed on the substrate, as shown in FIG. In a preferred embodiment, the pads can be maintained throughout each manufacturing process. It should be understood by those skilled in the art that in certain alternative embodiments, these may be The pad is disposed on the back surface of the substrate instead of using a pad on the front surface of the substrate. In still other alternative embodiments, it may be formed on each layer or on portions of the continuous layer. The pad replaces the pad that remains fixed on the surface of the substrate to ascertain the planarity and set the height of one or more subsequent layers to be formed. Figure 13 provides a perspective view of the main components of a high speed cutting machine. The substrate 404, to which the electrochemical fabrication structure has been established, is attached to a substrate plane adjuster 406' which is in turn mounted to a z-axis stage 408 (which is movable in the Z direction defined by arrow 410). The z-axis is an axis that extends substantially perpendicular to the plane scanned by the high 20-speed cutting tool. The Z-axis stage 408 and the X-axis stage 418 are mounted to a vibrating isolation body (not shown) which provides a mechanically stable platform for the entire apparatus. The X-axis extends in a direction perpendicular to the z-axis and allows movement back in the direction indicated by arrow 420. The X-axis stage holds the high speed cutting spindle 422, which in turn holds the high speed cutting tool 46 1353395 bracket 424, which in turn holds the high speed cutting tool itself (no display). In some embodiments, the tool mounted to the tool holder is an early diamond, while in other embodiments other tool materials may be used. A measurement fixture 426 is attached to the spindle housing. 5 Rotary shaft 422 uses a very hard and stable high-speed air bearing. The X-axis and z-axis stages 408 and 418 are extremely accurate and hard and use oi1 hydrostatic bearings. The rotating shaft of the device, the X stage and the Z stage portion (excluding the substrate plane adjusting fixture, the substrate holder and the measuring fixture) and the computer controlled hardware, the soft body, the vibration isolation body and the protective cover The class 10 can be purchased, for example, from Moore Nanotechnology Systems, LLC, of Keene, New Hampshire, such as the Nanotech 350UPL. These components are combined to provide a 15 machine system with a position resolution of 10 nm and the ability to cut surfaces at high speeds with a flat 1 〇〇 nanometer diameter of 1 mm. The substrate can be positioned by the Z-axis stage' while the measurement fixtures can be positioned by the X-axis stage to enable them to be measured so that height, plane orientation and the like can be measured. The boring stage and the z-axis stage can be used to transfer the path of the substrate and the high speed cutting tool. The free rotation of the high speed cutting tool holder 2 〇 relative to the rotating shaft allows the high speed cutting tool to be rotated in the substrate path: while the boring stage can be moved forward to allow for occurrence during set operations and the like. Contact between the tool and the substrate. In Fig. 14, the two measuring probe finger tips 434-1, 434-2 and 434 3 form a computer controllable and readable measuring probe device 4, 47 1353395 432-2 and 432-3 Contact part. The probes can be driven along the ice and provide an electronic readout position as they contact the surface to be measured. The probe read value can be reset to zero when the desired position and/or the surface is encountered, so that a reference plane is set. During certain uses, when the substrate is set to a predetermined position of 5 and is supported by the holder in a predetermined position, the probe tips are positioned along the X axis so that they can be aligned and contacted. Three measuring pads 274'276 and 278 on the substrate. In other uses, the position of the probe can be defined such that it is too close to the area on the substrate that she is exposed to or from the hair. In still other uses, the substrate can be placed in a non-standard orientation to the ruthenium. On the stand so that the tip does not align with the pad. This non-standard bit orientation can be used to generate information about the parallelism of the front and back surfaces of the substrate. The probe tip can be extended using air pressure provided by a high precision air pressure regulator so that all probes can be contacted with equal and repeated contact forces. In a typical operation, the substrate and probe are brought to the x-axis position while the probe tip is retracted to D. Once in position, the probe tip extends and takes three measurements. The plane of the surface of the primary substrate can be ascertained from the readings taken by the two measuring pads. If the position of the measured plane does not match the desired plane orientation, then the plane of the reference surface of the substrate can be adjusted to any flat surface within the range allowed by the plane adjustment fixture. When planarizing a surface, the plane of the reference surface is typically adjusted to have a zero slope relative to the machine's X-Y plane, which is also the plane produced by the high speed cutting tool. Practically, after adjusting the plane using two linear actuators 446-1 and 6-2, the probe tip can again contact the reference pad to measure and confirm that the plane of the substrate has been properly adjusted. In some example 48, repeating the measurement and adjustment may improve alignment on the object achieved by a single pass; however, 'this has typically been found to not require 0 after the measurement, the probe tip (four) shrinks Does not occur not small (four) substrate to injury. Figure 15 shows a detailed view of the measurement fixture. The measuring probe 132 is slightly 132-3 clamped by the probe clamp 133_M33_3 and attached to the water plate 135 in turn and attached to the vertical plate 137 in sequence, which in turn is attached to the shaft cover 422, as shown in Fig. 13. Figure 5 shows the mounting of the substrate to the substrate planar adjustment fixture using a 4-hole carbon vacuum chuck 454. After the porous carbon (4) is mounted to the fixture, the vacuum chuck 454 is subjected to high speed cutting on the machine such that it has the same slope as the cut surface (for example, throughout the 〇 mm meter® its flatness to Within 03 microns). This ability can be used to remove any of the imported (four) shapes that are installed in the vacuum chuck. . . The vacuum chuck is controllably coupled to both the vacuum supply and the air pressure supply such that the substrate is controllably attached, released and the position relative to the suction cup can be easily changed. On the lower side bottom of the vacuum chuck, three substrates were used to set the brackets 458-1-458-2 to help position the substrate. The bottom bracket 々π·2 provides a flat surface that allows a flat surface (e.g., a flat edge of 18 mm) on the edge of the substrate to be viewed on the flat brain surface to help provide rotation before opening the vacuum. The moving plate provides a stable basis for attaching the moving components to the back side. The seventh substrate shows the substrate plane adjustment fixing member 406 from which the moving plate has been removed. Three truncated spheres 462. Μ 62·3 are attached to the moving plate such that they are rotatably engaged with the three grooved brackets. In Fig. 17, three spheres are shown not to be connected to the moving plate. One of the groove brackets is disposed on a fixed vertical plate 466 that has been mounted to the base 467, which in turn is mounted to the load stage; while the other two brackets are disposed on the two curved arms, which are movable to adjust 5 The plane of the substrate when mounted on a vacuum chuck. Three spring biased tension bolts 464-1-464-3 extend through the fixed vertical plate 466 and attach and pull the moving plate with a large preload force (eg, 5 lbs preload) The trough is joined against the groove, thus creating a rigid mechanism. Figure 18 shows a partial enlarged view of the moving assembly, including the spherical 462-1 and 462-3 of the wearer 10, the associated groove brackets 468_1 and 468-2, the tension bolt 464-2, and the attachment bracket. Rack 472-1 (which attaches curved arm 474-1 to fixed vertical plate 466). The flattened spheres and grooves are constructed of hard steel to ensure that the geometric appearance of the assembly remains stable. Figure 19 shows the back side of the substrate planar adjustment fixture 454 which has removed the side plate 477-1 to reveal some other components. There are three tension compression springs 465-1 through 465-3 that produce the large preload on the motion plate with the tightening screwing operations. There are two bending arm arms 474·i and 474 2, each of which is attached to a grooved bracket. When the linear actuators and 446_2 have been driven (which have been mounted by the parent support bar 479 to the side panels (10)-^ and the tip 2) to 20 new positions, the curved points 473] and 473_2 can provide bending damage bars respectively. The points of rotation of arms 474 1 and 474 2 are used. The attachment bracket (also shown at the first level) connects the spine cup body to the vertical panel shown in Fig. 19. Each linear actuator can be used to drive each curved arm. The mechanical advantage obtained from the actuation point compensated by the groove and the truncated spherical motion contact can achieve 50 goals. (1) Provide mechanical leverage, otherwise the linear actuator will be; large pre-(4) It must be more powerful, expensive, and/or less accurate; and (2) ; This mechanism provides a mechanical advantage of 10 to 1 in this embodiment, but in other embodiments, smaller or larger mechanical benefits may be used. The present actuator (e.g., diamond movement actuator N100DC) has a resolution of 0.1 micron, which provides a resolution of 10 nanometers for the sub-plane adjustment of the system. Also visible in Fig. 19 is a carbonized pigeon 182-1 used at the point of contact between the linear actuator and the curved lever arm. Figure 20 provides a proposed sample operation flow diagram that allows the zero plane of the measurement fixture and probe of Figures 13-15 to be matched to the plane cut by the high speed cutting tool. Figure 21 provides a proposed sample operation flow diagram that can be used to set the front surface of the substrate (on which the material layer has been deposited and/or to be deposited) or the deposition material itself, as opposed to being cut by a diamond tool. The parallelism of the plane. Figure 22 provides a proposed operational flow diagram that can be used to trim the deposited material on the substrate to a desired height using the apparatus of Figure 13. The other methods set forth in Figures 20-22 will be apparent to those of ordinary skill in the art in reviewing this disclosure. In some of the alternatives, multiple operations can be eliminated, other operations can be added, and/or multiple replacement operations can be employed. A teaching regarding the formation of a structure on a dielectric substrate and/or the incorporation of a dielectric material into the formation process and possibly incorporating it into the final structure as formed, is filed on December 31, 2003. Some patent applications are in 1353395. The first file of these documents is US Patent Application (10), which is entitled "Electrochemical Manufacturing Method Combining Dielectric Materials and/or Using Dielectric Materials. These archived documents are the second US patent application case. Case No. 60/533,932, issued under the name "Electrochemical 5 Manufacturing Method Using Dielectric Substrate". The third document is the U.S. Patent Application Serial No. 34,157, entitled "Combined Dielectric Materials" The fourth step of the electrochemical fabrication method is U.S. Patent Application Serial No. 60/533,891, entitled "Electrochemistry of a Structure That Combines Dielectric Substrates and/or Seed Layers That Can Be Partially Removed by Planarization" The manufacturing method, the fifth of these documents is US Patent Application No. 6〇/533,895, which is entitled Electrochemical Manufacturing Method for Manufacturing Multilayer Three-Dimensional Structures in Less Holes. Each of the patented documents is hereby incorporated by reference in its entirety herein in its entirety in its entirety in its entirety in its entirety in the the the the the the the The invention is not limited to the specific embodiments, alternatives and uses described above, but rather to the extent of the patent application that appears thereafter. [Limited by Circular] 20 The 1A-lc diagram depicts a side view of the CC mask plating method at different stages, while the 11}_1 (3 diagram depicts the use of different types of cc masks) CC mask plating method, its side view at different stages. 2A-2F diagram depicts an electrochemical manufacturing method, when applied to form a special structure, its side view at different stages, Wherein 52 1353395 selectively deposits a sacrificial material while masking deposition of a structural material. Figures 3A-3C depict a variety of aspects that can be used to manually perform the example sub-combination of the electrochemical fabrication methods depicted in Figures 2A-2F. 4A-4I is a drawing depicting the use of an adhesive mask plating to form a first layer of a junction structure, wherein the masking deposition of the second material will cover the deposition site of the first material and The first material is on the opening between itself. Figure 5A provides a flow chart for the method for forming a multi-layer three-dimensional structure according to the first embodiment of the present invention, which uses an end point indicating fixture and a separate The flattening fixture.
10 第5B-5G圖提供一操作設定實例,其可使用於與第5A 圖相關連的方法或與其它相關連的方法。 第6及7圖提供一合適於使用在本發明的第一具體實施 例中之拋光固定件的不同立體透視圖。 第8圖提供一從第6圖之拋光固定件其垂直延伸過該固 15 定件中心的切割平面所切割之截面圖。 第9及10圖提供一合適於使用在本發明的第一具體實 施例中之終點指示固定件的不同立體透視圖。 第11圖圖式描繪出一基材的上俯視圖,其具有三個終 點測量墊。 20 第12圖提供一將第9及12圖之終點指示裝置安裝在第 11圖的基材上之立體透視圖。 第13圖根攄本發明的一些具體實施例提供一高速切削 機器設計的立體透視圖。 第14圖對第12圖之機器設計的測量固定件及基材夾持 53 1353395 和平面調整固定件提供一拉近的立體透視圖。 第15圖提供一聚焦在第14圖之測量固定件的立體透視 圖。 第16圖提供一聚焦在第14圖之基材夾持及平面調整固 5 定件的立體透視圖。 第17圖提供一聚焦在第14圖的平面調整固定件之立體 透視圖,其已移除該基材夾持固定件的運動板及該基材其 自身。 第18圖提供一聚焦在平面設定固定件的特定組件上之 10 立體透視圖,其包括一截平的球形元件、一調整臂彎曲點、 一真空吸盤接附托架及一用來在張力下夾持住該真空吸盤 的彈簧負載桿。 第19圖提供一第14圖的平面設定固定件之背部立體透 視圖。 15 第20圖提供一方塊圖,其提出一可使用來讓第13-15圖 之測量固定件及探針的歸零平面與由高速切削工具所切割 的平面相配之樣本操作。 第21圖提供一方塊圖,其提出一可使用來校定該基材 的前表面(在其層材料已沉積及/或欲沉積)或所沉積的材料 20 其自身,相對於由鑽石工具所切割之平面的平行度之樣本 操作。 第22圖提供一方塊圖,其提出一可使用第13圖之裝置 將沉積在該基材上的材料修整至想要的高度之操作。 【主要元件符號說明】 54 1353395 2...第一材料 44...致動器 4...第二材料 46...指示器 6...基材 48...載體 8...CC遮罩 52...抛光板 8’...遮罩 54...X載物臺 10...絕緣體 56...Y載物臺 10’...可保形的材料 58…槽 12...陽極 62...陽極 12(2A)...支撐物 64...電解質槽 12’...陽極 66...電鍍溶液 14...電鍍溶液 68…腳 16⑴…開口 72...框架 16(3A)...電解質 74...框架 20(1)...支撐結構 82...基材 20(2F)...多層結構 84...光阻 22…材料 86...表面 22’…沉積物 92⑻...空隙 26a...空隙 92(b).··空隙 26b...空隙 92(c)...空隙 32…手動電化學製造系統 94…第一金屬 34...夫持基材次糸統 96...第二金屬 36... CC遮罩次系統 98...3D 結構 38...掩蓋沉積次系統 102...區塊 40...平坦化次系統 104...區塊 42...線性滑座 106...區塊10 Figure 5B-5G provides an example of an operational setting that may be used for methods associated with Figure 5A or methods associated with others. Figures 6 and 7 provide different perspective views of a polishing fixture suitable for use in the first embodiment of the present invention. Figure 8 provides a cross-sectional view cut from the cutting plane of the polishing fixture of Figure 6 extending perpendicularly through the center of the fastener. Figures 9 and 10 provide different perspective views of an end point indicating fixture suitable for use in the first embodiment of the present invention. Figure 11 is a top plan view of a substrate having three end point measurement pads. 20 Fig. 12 is a perspective perspective view showing the mounting of the end point indicating device of Figs. 9 and 12 on the substrate of Fig. 11. Figure 13 is a perspective view of a high speed cutting machine design in accordance with some embodiments of the present invention. Figure 14 provides a close-up perspective view of the machine-designed measurement fixture and substrate holder 53 1353395 and the planar adjustment fixture. Figure 15 provides a perspective view of a measurement fixture focused on Figure 14. Figure 16 provides a perspective view of a substrate holding and planar adjustment of the fixing member of Fig. 14. Figure 17 provides a perspective view of a planar adjustment fixture focused on Figure 14 with the moving plate of the substrate holding fixture removed and the substrate itself removed. Figure 18 provides a perspective view of a 10 focusing on a particular component of the planar setting fixture, including a truncated spherical member, an adjustment arm bending point, a vacuum chuck attachment bracket, and a used under tension A spring load bar that holds the vacuum chuck. Fig. 19 is a perspective view showing the back of the plane setting fixing member of Fig. 14. 15 Figure 20 provides a block diagram of a sample operation that can be used to match the zeroing plane of the measurement fixture and probe of Figures 13-15 with the plane cut by the high speed cutting tool. Figure 21 provides a block diagram proposing a material that can be used to calibrate the front surface of the substrate (in which the layer material has been deposited and/or to be deposited) or deposited material 20 itself, relative to the diamond tool Sample manipulation of the parallelism of the plane of the cut. Figure 22 provides a block diagram of an operation for trimming the material deposited on the substrate to a desired height using the apparatus of Figure 13. [Main component symbol description] 54 1353395 2...first material 44...actuator 4...second material 46...indicator 6...substrate 48...carrier 8... CC mask 52...polishing plate 8'...mask 54...X stage 10...insulator 56...Y stage 10'...formable material 58...groove 12...anode 62...anode 12(2A)...support 64...electrolyte tank 12'...anode 66...plating solution 14...plating solution 68...foot 16(1)...opening 72 ...frame 16 (3A)...electrolyte 74...frame 20(1)...support structure 82...substrate 20(2F)...multilayer structure 84...resistance 22...material 86...surface 22'...sediment 92(8)...void 26a...void 92(b)..void 26b...void 92(c)...void 32...manual electrochemical manufacturing system 94... The first metal 34...the holding substrate of the secondary system 96...the second metal 36...the CC mask subsystem 98...3D structure 38...masking the deposition subsystem 102...block 40...flattening subsystems 104...blocks 42...linear sliders 106...blocks
55 1353395 r 108.. .區塊 112.. .區塊 114…區塊 116.. .區塊 118.. .區塊 120.. .區塊 124.. .區塊 126.. .區塊 128.. .區塊 130.. .區塊 132.. .區塊 132-1...測量探針 132-2...測量探針 132- 3...測量探針 133- 1...探針夾鉗 133-2…探針夾鉗 133-3...探針夾鉗 134.. .區塊 135.. .水平板 136.. .區塊 137.. .垂直板 138.. .區塊 140…區塊 142.. .區塊 144.. .區塊 146.. .區塊 148.. .區塊 150.. .區塊 152.. .區塊 · 154.. .區塊 156.. .區塊 182-1...碳化鎢衝模 202.. .拋光固定件 204.. .多孔石墨真空吸盤 籲 206.. .墊磨片 208.. .磨耗環 212.. .扣件 214.. .滑行軌道 216.. .滑行外罩 _ 218…文托利型式真空產生器 222.. .真空閥 224…轉動接合器 籲 226.. .托架 228.. .張力彈簧型式平衡錘 232.. .料漿密封物 234.. .料漿防護 · 236.. .滑行頂端 - 242.. .孔洞 272.. .基材 274.. .終點測量墊 56 1353395 276.. .終點測量墊 278.. .終點測量墊 300.. .終點指示裝置 284.. .金屬定位螺絲柱 286.. .金屬定位螺絲柱 288.·.金屬定位螺絲柱 292.. .探針 294.. .探針 296.. .探針 298.. .探針 292’...尖端 294’...尖端 296’...尖端 298’...尖端 304.. .處理環 306.. .固定件钳住板 404.. .基材 406.. .基材平面調整固定件 408.. .Z軸載物臺 410.. .箭號 418.. . X軸載物臺 420.. .箭號 422.. .高速切削轉軸 424.. .高速切削工具支架 426.. .測量固定件 432-1...測量探針裝置 432-2...測量探針裝置 432-3…測量探針裝置 434-1...測量探針指狀尖端 434-2...測量探針指狀尖端 434-3...測量探針指狀尖端 446-1...線性致動器 446-2...線性致動器 454(16)..·多孔碳真空吸盤 454(19).·.基材平面調整固定件 456.. .運動板 458-1...基材設置托架 458-2...基材設置托架 462-1...截平的球形 462-2...截平的球形 462-3...截平的球形 464-1...彈簧偏壓拉緊螺栓 464-2...彈簧偏壓拉緊螺栓 464- 3..·彈簧偏壓拉緊螺栓 465- 1...拉緊壓縮彈簧 465-2...拉緊壓縮彈簧 465-3...拉緊壓縮彈簧 466.. .固定垂直板 467.. .基礎 468-1...溝槽托架55 1353395 r 108.. . Block 112.. Block 114... Block 116.. Block 118.. Block 120.. Block 124.. Block 126.. Block 128 .. . Block 130.. Block 132.. Block 132-1... Measurement Probe 132-2... Measurement Probe 132-3... Measurement Probe 133- 1... Probe Clamp 133-2... Probe Clamp 133-3... Probe Clamp 134.. Block 135.. Horizontal Plate 136.. Block 137.. Vertical Plate 138.. Block 140... Block 142.. Block 144.. Block 146.. Block 148.. Block 150.. Block 152.. Block 154.. Block 156 .. Block 182-1...Tungsten Carbide Die 202.. Polishing Fixture 204.. Porous Graphite Vacuum Suction Disk 206.. Pad Grinding Plate 208.. Abrasion Ring 212.. Fastener 214 .. .gliding track 216.. sliding housing _ 218... Venturi type vacuum generator 222.. vacuum valve 224... rotating adapter 226.. bracket 228.. tension spring type counterweight 232. . slurry seal 234.. slurry protection · 236.. . sliding top - 242.. hole 272.. substrate 274.. end point measuring pad 56 1353395 276.. end point measuring pad 278. . End point measurement pad 300.. . End point indicator 284.. .Metal positioning screw column 286.. metal positioning screw column 288.·. metal positioning screw column 292.. probe 294.. probe 296.. probe 298.. probe 292' ...tip 294'...tip 296'...tip 298'...tip 304.. processing ring 306.. fixing member clamping plate 404.. substrate 406.. substrate plane Adjusting fixture 408.. Z-axis stage 410.. . Arrow 418.. X-axis stage 420.. . Arrow 422.. . High-speed cutting shaft 424.. High-speed cutting tool holder 426. . Measurement Fixing Member 432-1... Measuring Probe Device 432-2... Measuring Probe Device 432-3... Measuring Probe Device 434-1... Measuring Probe Finger Tip 434-2.. Measurement Probe Finger Tip 434-3... Measurement Probe Finger Tip 446-1... Linear Actuator 446-2... Linear Actuator 454 (16).. Porous Carbon Vacuum Suction Cup 454 (19).. substrate flat adjustment fixture 456.. sports plate 458-1... substrate setting bracket 458-2... substrate setting bracket 462-1... truncated Spherical 462-2... Truncated spherical 462-3... Truncated spherical 464-1... Spring biased tensioning bolt 464-2... Spring biased tightening bolt 464- 3.. ·Spring biased tension bolt 465 - 1...Tighten compression spring 465-2...Tighten compression spring 465-3...Tighten compression spring 466.. Fix vertical plate 467...Basic 468-1...groove bracket frame
57 1353395 468-2...溝槽托架 472- 1...接附托架 473- 1...彎曲點 473- 2…彎曲點 474- 1…彎曲槓桿臂 474-2…彎曲槓桿臂 478-1...邊板 478-2…邊板 479…交叉支撐桿57 1353395 468-2...Tray bracket 472-1... Attachment bracket 473-1... Bending point 473-2... Bending point 474-1... Bending lever arm 474-2... Bending lever arm 478-1...side board 478-2...side board 479...cross support rod
5858
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US53418303P | 2003-12-31 | 2003-12-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200533794A TW200533794A (en) | 2005-10-16 |
TWI353395B true TWI353395B (en) | 2011-12-01 |
Family
ID=37779368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW93141486A TWI353395B (en) | 2003-12-31 | 2004-12-30 | Method and apparatus for maintaining parallelism o |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN101515549A (en) |
TW (1) | TWI353395B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5905320B2 (en) * | 2012-04-16 | 2016-04-20 | 東芝機械株式会社 | Grooving method and mirror surface processing method for film workpiece by fly cut |
US9698035B2 (en) * | 2013-12-23 | 2017-07-04 | Lam Research Corporation | Microstructures for improved wafer handling |
CN104388994B (en) * | 2014-10-09 | 2017-10-24 | 中国电子科技集团公司第五十五研究所 | Reduce the method for electrodeposited coating aliasing |
CN112135929B (en) * | 2018-04-20 | 2023-12-15 | 巴斯夫欧洲公司 | Composition for tin or tin alloy electroplating comprising inhibitors |
-
2004
- 2004-12-30 TW TW93141486A patent/TWI353395B/en not_active IP Right Cessation
-
2005
- 2005-01-03 CN CNA2009101186083A patent/CN101515549A/en active Pending
- 2005-01-03 CN CNB2005800055535A patent/CN100481356C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN100481356C (en) | 2009-04-22 |
CN1922723A (en) | 2007-02-28 |
TW200533794A (en) | 2005-10-16 |
CN101515549A (en) | 2009-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9714473B2 (en) | Method and apparatus for maintaining parallelism of layers and/or achieving desired thicknesses of layers during the electrochemical fabrication of structures | |
US20110315556A1 (en) | Methods and Apparatus for Forming Multi-Layer Structures Using Adhered Masks | |
US7412767B2 (en) | Microprobe tips and methods for making | |
US7273812B2 (en) | Microprobe tips and methods for making | |
US7363705B2 (en) | Method of making a contact | |
US20060051948A1 (en) | Microprobe tips and methods for making | |
US20050104609A1 (en) | Microprobe tips and methods for making | |
WO2003071008A2 (en) | Methods of and apparatus for making high aspect ratio microelectromechanical structures | |
US20080108221A1 (en) | Microprobe Tips and Methods for Making | |
US7241689B2 (en) | Microprobe tips and methods for making | |
US20050215023A1 (en) | Electrochemical fabrication process for forming multilayer multimaterial microprobe structures | |
US20060053625A1 (en) | Microprobe tips and methods for making | |
US20090320990A1 (en) | Electrochemical Fabrication Process for Forming Multilayer Multimaterial Microprobe Structures | |
TWI353395B (en) | Method and apparatus for maintaining parallelism o | |
US20150108002A1 (en) | Microprobe Tips and Methods for Making | |
US20050189959A1 (en) | Electrochemical fabrication process for forming multilayer multimaterial microprobe structures | |
US20230296645A1 (en) | Micromachined Mechanical Part and Methods of Fabrication Thereof | |
TW200536039A (en) | Cantilever microprobes for contacting electronic components and methods for making such probes | |
WO2005065431A2 (en) | Microprobe tips and methods for making |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |