TWI353344B - Method for producing copper indium chalcogenides p - Google Patents

Method for producing copper indium chalcogenides p Download PDF

Info

Publication number
TWI353344B
TWI353344B TW97103740A TW97103740A TWI353344B TW I353344 B TWI353344 B TW I353344B TW 97103740 A TW97103740 A TW 97103740A TW 97103740 A TW97103740 A TW 97103740A TW I353344 B TWI353344 B TW I353344B
Authority
TW
Taiwan
Prior art keywords
starting material
material containing
cis
solvent
chimeric
Prior art date
Application number
TW97103740A
Other languages
Chinese (zh)
Other versions
TW200932679A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW97103740A priority Critical patent/TWI353344B/en
Priority to US12/249,194 priority patent/US20090196817A1/en
Priority to DE602008006346T priority patent/DE602008006346D1/en
Priority to AT08171213T priority patent/ATE506325T1/en
Priority to EP08171213A priority patent/EP2085362B1/en
Publication of TW200932679A publication Critical patent/TW200932679A/en
Application granted granted Critical
Publication of TWI353344B publication Critical patent/TWI353344B/en

Links

Description

1353344 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種粉末之製作方法’特別是指一種 CIS系(copper indium chalcogenides)粉末之製作方法及其乾 材(target)之製作方法。 【先前技術】 為解決人類近幾十年來因過度開發所面臨的能源危機 與環境污染等問題,太陽能電池(solar cell)之開發已嚴然成 為解決能源危機等問題的主要研究課題。 在以二砸化銅銦(CuInSe〗)三元化合物所衍生出來的CIS 系之太陽能電池中,其p型半導體吸收層所常見的材料則 有 CuInSe2、Cu(InxGai-x)(SeyS2_y)、CuGnxAlbxKSeySa-y)等 。由於此等CIS系材料具備有高光電效率(efficiency)及低材 料成本等特點,因此,亦被此技術領域者所看好。1353344 IX. Description of the Invention: [Technical Field] The present invention relates to a method for producing a powder, and particularly to a method for producing a CIS (copper indium chalcogenides) powder and a method for producing the same. [Prior Art] In order to solve the problems of energy crisis and environmental pollution caused by overexploitation in recent decades, the development of solar cells has become a major research topic in solving problems such as the energy crisis. Among the CIS-based solar cells derived from the ternary compound of copper indium (CuInSe), the materials commonly used in the p-type semiconductor absorber layer are CuInSe2, Cu(InxGai-x) (SeyS2_y), CuGnxAlbxKSeySa. -y) Wait. These CIS materials are also favored by those skilled in the art because of their high photoelectric efficiency and low material cost.

Claire J· Carmalt 等人於 J. Mater· Chem·,1998,8(10), 2209-2211文章中公開一種CIS系粉末之製作方法。Claire J· Carmalt 等人’是混合 CuBr(0.186 g,1,30 mmol)、 InCl3(0.280 g,1.30 mmol)、Na2Se(2.60 mmol)及 C7H8(20 cm3);另,昇溫並迴流(reflux)約72小時後,將反應產物靜 置並抽取出C7H8以留下固態的反應產物;其中,CuBi可使 用CuC12(0.174 g,1.30 mmol)取代。進一步地,將固態的反 應產物予以磨碎並施予真空乾燥;最後,’對此等固態的反 應產物施予500°C持溫24小時的煅燒(calcining)製程以形成 黃銅礦晶相(chalcopyritephase)的CIS系粉末。 5A method for making a CIS-based powder is disclosed by Claire J. Carmalt et al., J. Mater Chem., 1998, 8(10), 2209-2211. Claire J. Carmalt et al. 'mixed CuBr (0.186 g, 1,30 mmol), InCl3 (0.280 g, 1.30 mmol), Na2Se (2.60 mmol) and C7H8 (20 cm3); another, warmed up and refluxed (about) After 72 hours, the reaction product was allowed to stand and C7H8 was taken to leave a solid reaction product; wherein CuBi was replaced with CuC12 (0.174 g, 1.30 mmol). Further, the solid reaction product is ground and subjected to vacuum drying; finally, 'the solid reaction product is subjected to a calcining process at 500 ° C for 24 hours to form a chalcopyrite crystal phase ( Chalcopyrite phase) CIS powder. 5

Claire J. Carmalt等人所發表的製作方法,不僅需經過 500°C持溫長達24小時的煅燒才得以取得黃銅礦晶相的CIS 系粉末。此外,值得注意的是,當CIS系粉末中存在有閃 辞礦晶相(sphalerite phase)時,亦將影響材料本身的光電效 率。然而,由此文獻之X射線繞射(X-ray diffraction,簡稱 XRD)能譜圖顯示可知,此方法仍存在有許多此技術領域所 不欲見的閃鋅礦晶相之繞射訊號峰。因此,此方法所製得 之CIS系粉末在太陽能電池的應用上,亦因其光電效率不 足而受到限制。Claire J. Carmalt et al. published a method in which a CIS powder of a chalcopyrite crystal phase was obtained not only after calcination at a temperature of 500 ° C for up to 24 hours. In addition, it is worth noting that when a sphalerite phase is present in the CIS powder, it will also affect the photoelectric efficiency of the material itself. However, the X-ray diffraction (XRD) spectrum of this document shows that there are still many diffracted signal peaks of the sphalerite crystal phase which are not desired in this art. Therefore, the CIS-based powder obtained by this method is also limited in the application of solar cells due to its insufficient photoelectric efficiency.

By Bin Li 等人於 Adv. Mater. 1999,/7, No. 17,1456-1459文章中公開一種CuInSe2之奈米鬚(nanowhiskers)及奈 米粒子(nanoparticles)的製作方法。By Bin Li等人,是於壓 力鋼(autoclave)内混合有 CuCl2.2H2〇(〇.221 g,1.26 mmol) 、InCl3.4H2O(0.380 g,1.29 mmol)、Se(0.205 g,2.59 mmol)及液位約達壓力锅的90%之含水的二乙基胺(hydrous diethylamine),封閉壓力锅並以180°C持溫15小時。進一步 地,使壓力鍋冷卻至室溫,於壓力鍋内的沉澱物是經過過 濾並利用蒸餾水及乙醇清洗數次後以移除其副產物》最後 ,將反應產物放置於真空環境下採用60°C的溫度乾燥4小 時以取得CIS系粉末bBy Bin Li et al., Adv. Mater. 1999, /7, No. 17, 1456-1459, discloses a method for making nanowhiskers and nanoparticles of CuInSe2. By Bin Li et al., were mixed with CuCl2.2H2〇 (〇.221 g, 1.26 mmol), InCl3.4H2O (0.380 g, 1.29 mmol), Se (0.205 g, 2.59 mmol) in an autoclave. The liquid level was about 90% of the aqueous diethylamine (hydrous diethylamine) of the pressure cooker, and the pressure cooker was closed and held at 180 ° C for 15 hours. Further, the pressure cooker is cooled to room temperature, and the precipitate in the pressure cooker is filtered and washed with distilled water and ethanol several times to remove the by-products. Finally, the reaction product is placed in a vacuum environment at 60 ° C. Dry at temperature for 4 hours to obtain CIS powder b

By Bin Li等人所使用的溶劑熱合成法(solvothermal synthesis)雖可得到呈黃銅礦晶相的CIS系粉末;然而,由 此文獻所揭示的XRD能譜圖顯示可知,此種溶劑熱合成法 所製得之CIS系粉末亦可見有許多此技術領域所不欲見的 1353344 閃鋅礦晶相之繞射訊號峰[即,⑽)、(211)、陶灣 等繞射面]。此外,由於壓力鋼越小壓力易控制,而壓力锅 越大壓力越不易控制;再者,於實施溶劑熱合成法時,用 來岔封其反應物的壓力鋼内未配置有攪拌器,其減少了反 應物之間的碰撞機率亦相對地降低了其反應速率。因此, 使用溶㈣合成法是無法達成CIS系粉末的量產化。The solvothermal synthesis method used by By Bin Li et al. can obtain a CIS-based powder in the form of a chalcopyrite crystal phase; however, the XRD spectrum shown in the literature shows that this solvothermal synthesis is known. The CIS powder obtained by the method can also be seen in many of the diffracted signal peaks of the 1353344 zinc blende crystal phase which is not desired in this technical field [ie, (10)), (211), and the diffraction surface of Taowan. In addition, since the pressure of the pressure steel is small, the pressure is easy to control, and the pressure of the pressure cooker is more difficult to control; further, in the solvothermal synthesis method, the pressure steel used for sealing the reactants is not provided with a stirrer, Reducing the probability of collision between reactants also relatively reduces the rate of reaction. Therefore, mass production of the CIS-based powder cannot be achieved by the dissolution (four) synthesis method.

經前述說明可知,取得高黃銅礦晶相的cis系粉末之 製作方法並使得其製作方法達到量產的效果,是研究開發 CIS系粉末之相關領域者所待突破的課題。 【發明内容】 <發明概要> 促使化合物呈結晶相的條件,其主要的決定因素是在 於反應溫度所提供的熱能是否足以使得化合物中的各原子 得以佔據於其於晶體中的晶格位置(丨attice site)。As apparent from the above description, the production method of the cis-based powder which has a high crystal phase of the chalcopyrite and the production method thereof are mass-produced, and it is a subject to be solved in the field of research and development of the CIS-based powder. SUMMARY OF THE INVENTION <Summary of the Invention> Conditions for promoting a compound to a crystalline phase, the main determining factor being whether the heat energy provided by the reaction temperature is sufficient for each atom in the compound to occupy its lattice position in the crystal (丨attice site).

值得一提的是,當複數種含有陰離子與陽離子的離子 性化合物所搭配使用的溶劑,是屬於可充分地自此等離子 性化合物中抓取出陰離子與金屬陽離子以分別形成一呈均 質相(homogeneous phase)之含有此等離子的前驅物 (precursor)的嵌合性(chelate)溶劑時;那麼,含有此等陽/陰 離子之前驅物在溶劑内經過一預定時間的迴流後並反應形 成具有特疋化學劑S比之晶相的過程中,其所需的反應能 量便會相對地下降。 因此’本發明主要是利用具有嵌合性之溶劑來抓取起 始物内的陰離子與陽離子以形成一呈均質相之含有此等陰 7 1353344 離子與陽離子之前驅物,待此前驅物於嵌合性溶劑内迴流 —預定時間後便可於反應能下降的情況下(非高溫高壓下)反 應形成具有預定化學劑量比之晶相。 〈發明目的〉 因此’本發明之目的,即在提供—插 甘促货種CIS系粉末之製 作方法。 本發明之另-目的,即在提供—種CIS系乾材之製作 方法。 於是,本發明CIS系粉末之製作方法,包含:於一含 有惰性氣體之反應槽内混合一含有Cu之起始物、一含有 ^,之起始物 '一含有M2之起始物及一嵌合性溶劑,以使該 嵌合性溶劑於該反應槽内抓取出該等起始物之陽離子與陰 離子,並形成一呈均質相之含有(^、仏與撾2之前趨物。 其中,該皇均質相之前趨物經迴流後進一步地反應形 成含有黃銅礦晶相的粉末,Μι是選自in、Ga,或此等之一 組合,M2是選自Se、S,或此等之一組合。 另,本發明CIS系靶材之製作方法,包含以下步驟: (a) 於一腔體内的一模具中填入如上述之製作方法所製 得之CIS系粉末; (b) 對該腔體施予減壓以形成一淨化腔體; (c) 對該腔體内的粉體施予升溫達一預定溫度並持溫一 預定時間; (d) 對該淨化腔體内的粉體施予升壓達一預定屢力並持 磨該預定時間’致使該CIS系粉末經由該預定溫度 8 及預疋塵力取得粉體敏密化(densification)的能量; 及 (e)移除該預定壓力並於該淨化腔體内引入惰性氣體以 冷卻該淨化腔體。 本發明之功效在於,不需在高溫高壓之製作條件下即 可取得高黃銅礦晶相的cIS系粉末,並使得其製作方法達 到量產的效果;另,因量產化之CIS系粉末之製作方法而 得以製作CIS系靶材。 【實施方式】 &lt;發明詳細說明&gt; 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例、九個具體例與兩個 比較例的詳細說明中,將可清楚的呈現。 本發明CIS系粉末之製作方法之一較佳實施例,包含 :於一含有惰性氣體之反應槽内混合一含有Cu之起始物、 —含有Ml之起始物、一含有M2之起始物及一嵌合性溶劑 ’以使該嵌合性溶劑於該反應槽内抓取出該等起始物之陽 離子與陰離子’並形成一呈均質相之含有Cu、與M2之 前趨物。 其中’該呈均質相之前趨物是被施予攪拌並經迴流後 進一步地反應形成含有黃銅礦晶相的粉末,是選自ιη、 Ga’或此等之一組合,M2是選自Se、S,或此等之一組合 1353344 (ethylenediamine,簡稱 ED) ' 二曱基曱醯胺(dimethyl formamide,簡稱 DMF)、二曱基乙醯胺(dimethyl acetamide) 、二曱基亞礙(dimethyl sulfoxide,簡稱 DMSO)、N-甲基。比 口各院(N-methylpyrrolidone,簡稱 NMP)、D比咬(pyridine),或 此等之一組合;適用於本發明之含有Cu之起始物是選自 CuCn、CuC12_2H20、CuS04,或此等之一組合;適用於本發 明之含有Μι之起始物是選自InCl3,4H20、In203、In(N03)3 、Ga、GaC〗3,或此等之一組合;適用於本發明之含有M2 之起始物是選自Se、Na2Se、S,或此等之一組合;且該反 應槽内的情性氣體是選自N2、Ar、He,或此等之一組合。 較佳地,該嵌合性溶劑的使用量是介於該反應槽之液位的 50%〜90%之間;該反應槽内之迴流溫度是介於90°C〜300°C 之間;該反應槽之迴流時間是介於4小時〜48小時之間。更 佳地,該反應槽内之迴流溫度是介於120°C〜300°C之間;該 反應槽之迴流時間是介於8小時〜48小時之間。 更佳地,該嵌合性溶劑是二甲基曱醯胺;該含有Cu之 起始物是CuCl ;該含有之起始物是InCl3_4H20與Ga之 一組合;該含有M2之起始物是Se ;且CuCl、InCl3’4H2〇、 Ga與Se的莫爾數比是介於0.90 : 0.88 : 0.22 : 2.20〜1.10 :0.72 : 0.18 : 1.90 之間。 更佳地,該嵌合性溶劑是二曱基曱醯胺;該含有Cu之 起始物是CuCl ;該含有M,之起始物是InCl3‘4H20 ;該含有 M2之起始物是Se ;且CuCl、InCl3.4H20與Se的莫爾數比 是介於 0.90 : 1.10 : 1.90 〜1.10 : 0.90 : 2.20 之間。 10 1353344 更佳地,該嵌合性溶劑是二甲基曱醯胺;該含有Cu之 起始物是CuCl ;該含有M!之起始物是Ιη203與Ga之一組 合;該含有M2之起始物是Se;且CuCl、ln203、Ga與Se 的莫爾數比是介於 0.90 : 0.88 : 0.22 : 2.20 〜1.10 : 0.72 : 0.18 : 1_90 之間。 更佳地,該嵌合性溶劑是二甲基曱醯胺;該含有Cu之 起始物是CuCl ;該含有之起始物是in(N〇3)3與Ga之一 組合;該含有M2之起始物是Se;且CuCl、In(N03)3、Ga 與Se的莫爾數比是介於0.90 : 0.88 : 0.22 : 2.20〜1.10 : 0.72 : 0.18 : 1.90 之間。 更佳地,該嵌合性溶劑是二曱基曱醯胺;該含有Cu之 起始物是CuCl ;該含有之起始物是inci3.4H20與Ga之 一組合;該含有M2之起始物是Na2Se ;且CuCl、It is worth mentioning that when a plurality of solvents containing anionic and cationic ionic compounds are used, it is sufficient to sufficiently remove anions and metal cations from the plasma compound to form a homogeneous phase (homogeneous). When a precursor containing the precursor of the plasma is used as a chelate solvent; then, the precursor containing the cation/anion is refluxed in a solvent for a predetermined period of time and reacted to form a characteristic chemistry In the process of the agent S compared to the crystal phase, the required reaction energy will decrease relatively. Therefore, the present invention mainly utilizes a solvent having chimerism to capture anions and cations in the starting material to form a homogeneous phase containing the ions and cation precursors of the cation 7 1353344, which are to be embedded in the precursor. Recirculation in a compatible solvent - after a predetermined period of time, a reaction having a predetermined stoichiometric ratio can be formed in the case where the reaction energy is lowered (non-high temperature and high pressure). <Object of the Invention> Therefore, the object of the present invention is to provide a method for producing a powder of a CIS-based powder. Another object of the present invention is to provide a method for producing a CIS dry material. Thus, the method for producing a CIS-based powder of the present invention comprises: mixing a starting material containing Cu, a starting material containing a substance, and a starting material containing M2 in an reaction tank containing an inert gas; a conjugated solvent, such that the chimeric solvent captures the cations and anions of the starting materials in the reaction tank, and forms a homogeneous phase (^, 仏, and 2 precursors.) The precursor of the homogenous phase is further reacted to form a powder containing a chalcopyrite crystal phase after refluxing, wherein Μι is selected from in, Ga, or a combination thereof, and M2 is selected from Se, S, or the like. Further, the method for producing a CIS-based target of the present invention comprises the following steps: (a) filling a mold in a cavity with a CIS-based powder obtained by the above-mentioned production method; (b) The chamber is subjected to a reduced pressure to form a purification chamber; (c) the powder in the chamber is heated to a predetermined temperature and held for a predetermined time; (d) the powder in the purification chamber Applying the body to a predetermined force and holding the predetermined time to cause the CIS powder to pass through the predetermined temperature 8 and pre-dusting force to obtain powder densification energy; and (e) removing the predetermined pressure and introducing an inert gas into the purification chamber to cool the purification chamber. The effect of the present invention is that It is possible to obtain a cIS-based powder having a high chalcopyrite crystal phase under high-temperature and high-pressure production conditions, and to achieve a mass production effect by the production method; and, in addition, a production method of a mass-produced CIS-based powder can be produced. [Embodiment] <Detailed Description of the Invention> The foregoing and other technical contents, features, and effects of the present invention will be described below with reference to a preferred embodiment, nine specific examples, and two A detailed description of the comparative example will be clearly shown. A preferred embodiment of the method for producing a CIS powder of the present invention comprises: mixing a starting material containing Cu in a reaction tank containing an inert gas, containing a starting material of M1, a starting material containing M2 and a chimeric solvent 'so that the chimeric solvent picks up the cation and anion of the starting materials in the reaction tank and forms a homogeneous Phase Cu, and M2 precursors. wherein 'the precursor before the homogeneous phase is agitated and further reacted after reflux to form a powder containing a chalcopyrite crystal phase, which is selected from ιη, Ga' or the like. In a combination, M2 is selected from Se, S, or a combination of 1353344 (ethylenediamine, ED) 'dimethyl formamide (DMF), dimethyl acetamide, Dimethyl sulfoxide (DMSO), N-methyl, N-methylpyrrolidone (NMP), D pyridine, or a combination thereof; suitable for use in the present invention The starting material containing Cu is selected from the group consisting of CuCn, CuC12_2H20, CuS04, or a combination thereof; the starting material containing the oxime suitable for the present invention is selected from the group consisting of InCl3, 4H20, In203, In(N03)3, Ga, GaC 3, or a combination of these; the starting material containing M2 suitable for use in the present invention is selected from the group consisting of Se, Na2Se, S, or a combination thereof; and the inert gas in the reaction tank is selected from N2, Ar, He, or a combination of these. Preferably, the amount of the chimeric solvent is between 50% and 90% of the liquid level of the reaction tank; the reflux temperature in the reaction tank is between 90 ° C and 300 ° C; The reflux time of the reaction tank is between 4 hours and 48 hours. More preferably, the reflux temperature in the reaction tank is between 120 ° C and 300 ° C; and the reflux time of the reaction tank is between 8 hours and 48 hours. More preferably, the chimeric solvent is dimethyl decylamine; the starting material containing Cu is CuCl; the starting material is InCl3_4H20 combined with one of Ga; the starting material containing M2 is Se And the Mohr number ratio of CuCl, InCl3'4H2〇, Ga and Se is between 0.90: 0.88: 0.22: 2.20~1.10: 0.72: 0.18: 1.90. More preferably, the chimeric solvent is dimethyl decylamine; the starting material containing Cu is CuCl; the starting material containing M is InCl3'4H20; the starting material containing M2 is Se; And the Mohr number ratio of CuCl, InCl3.4H20 and Se is between 0.90: 1.10: 1.90 〜1.10: 0.90: 2.20. 10 1353344 More preferably, the chimeric solvent is dimethyl decylamine; the starting material containing Cu is CuCl; the starting material containing M! is a combination of Ιη203 and Ga; the content containing M2 The starting material is Se; and the Mohr number ratio of CuCl, ln203, Ga and Se is between 0.90 : 0.88 : 0.22 : 2.20 〜1.10 : 0.72 : 0.18 : 1_90 . More preferably, the chimeric solvent is dimethyl decylamine; the starting material containing Cu is CuCl; the starting material is in combination with one of in(N〇3)3 and Ga; The starting material is Se; and the Mohr number ratio of CuCl, In(N03)3, Ga and Se is between 0.90: 0.88: 0.22: 2.20~1.10: 0.72: 0.18: 1.90. More preferably, the chimeric solvent is dimethyl decylamine; the starting material containing Cu is CuCl; the starting material is in combination with one of inci3.4H20 and Ga; the starting material containing M2 Is Na2Se; and CuCl,

InClr4H2〇、Ga與Na2Se的莫爾數比是介於0.90 : 0.88 : 0.22 : 2.20 〜1·1〇 : 0.72 : 0.18 : 1.90 之間。 更佳地’該嵌合性溶劑是二曱基曱醯胺;該含有Cu之 起始物是CuCldHzO;該含有Ml之起始物是InCl3.4H20 與Ga之一組合;該含有Μ2之起始物是se ;且CuC12.2H20 、InCl:r4H2〇、Ga與Se的莫爾數比是介於0·9〇 : 0.88 : 〇·22 · 2·2〇 〜1·1〇 : 0.72 : 0.18 : 1.9〇 之間。 更佳地’該嵌合性溶劑是二甲基曱醯胺;該含有Cu之 起始物是CuClr2H2〇;該含有Μι之起始物是InCl3.4H2〇 與Ga之一組合;該含有%之起始物是Na2Se ;且 (:ιι(:12‘2Ι12〇、Ιη(:13·4Η20、(^ 與 Na2Se 的莫爾數比是介於 11 丄 0.90 :〇別:〇.22 :2_20 〜11〇: 〇 72: 〇 i8:i 9〇 之間。 β更佳i也該肷合性溶劑是乙二胺;該含有a之起始物 疋C1 ’該3有Ml之起始物是InCl3.4H20與Ga之一組合 § 3有M2之起始物是Se ;且CuC1、InCl3 4H2〇、Ga與 的莫爾數比疋)1 於 0.90 : 0.88 : 0.22 : 2.20 〜1.10 : 0.72 :0.18 : 1.90 之間。 g * ’該欣合性溶劑是乙二胺;該含有Cu之起始物The Mohr number ratio of InClr4H2〇, Ga and Na2Se is between 0.90: 0.88 : 0.22 : 2.20 〜1·1〇 : 0.72 : 0.18 : 1.90. More preferably, the chimeric solvent is dimethyl decylamine; the starting material containing Cu is CuCldHzO; the starting material containing M1 is a combination of InCl3.4H20 and Ga; the starting of Μ2 The substance is se; and the Mohr number ratio of CuC12.2H20, InCl:r4H2〇, Ga and Se is between 0·9〇: 0.88 : 〇·22 · 2·2〇~1·1〇: 0.72 : 0.18 : Between 1.9 baht. More preferably, the chimeric solvent is dimethyl decylamine; the starting material containing Cu is CuClr 2 H 2 〇; the starting material containing Μ ι is a combination of InCl 3.4 H 2 〇 and Ga; The starting material is Na2Se; and (: ιι(:12'2Ι12〇, Ιη(:13·4Η20, (the molar ratio of ^^ to Na2Se is between 11 丄0.90: 〇: 〇.22:2_20 ~11 〇: 〇72: 〇i8:i 9〇. β is better i, the chelating solvent is ethylenediamine; the starting material containing a 疋C1 'The starting material of M3 is InCl3. Combination of 4H20 and Ga § 3 The starting material of M2 is Se; and the MoC number of CuC1, InCl3 4H2〇, Ga and 疋)1 is 0.90 : 0.88 : 0.22 : 2.20 〜1.10 : 0.72 :0.18 : 1.90 Between g * 'the eucommence solvent is ethylene diamine; the starting material containing Cu

是CUCl2.2H2〇;該含有%之起始物是inCi3 4H2〇與^之 、且。,該a有]VI2之起始物是Se ;且CuCl2 2H2〇、 nCl3 4H20、Ga與Se的莫爾數比是介於〇 9〇 : 〇 88 : 〇 2: :2·20 〜0·72: 0.18: 1.90 之間。 另,本發明CIS系靶材之製作方法之一較佳實施例, 包含以下步驟: (a) 於一腔體内的_模具中(圖未示)填入如上述之製作 方法所製得之CIS系粉末;It is CUCl2.2H2〇; the starting material containing % is inCi3 4H2〇 and ^. The starting material of the a] VI2 is Se; and the Mohr number ratio of CuCl2 2H2〇, nCl3 4H20, Ga and Se is between 〇9〇: 〇88 : 〇2: :2·20 ~0·72 : 0.18: 1.90 between. In another preferred embodiment of the method for fabricating a CIS-based target of the present invention, the method comprises the following steps: (a) filling in a mold in a cavity (not shown), and filling the method as described above. CIS powder;

(b) 對該腔體施予減壓以形成一淨化腔體; (c) 對該腔體内的粉體施予升溫達一預定溫度並持溫一 預定時間; (句對該淨化腔體内的粉體施予升壓達一預定壓力並持 壓該預定時間,致使該CIS系粉末經由該預定溫度 及預定壓力取得粉體緻密化的能量;及 (e)移除該預定壓力並於該淨化腔體内引入惰性氣體以 冷卻該淨化腔體。 值得一提的是’本發明該步驟(b)實施減壓的目的主要 12 1353344 是在於淨化該腔體;當該淨化腔體的壓力過大時,將於實 施該步驟(C)、(d)的過程中因該淨化腔體内的雜質殘留量過 大而產生本發明所不欲見的雜質化合物。因此,較佳地, 該步驟(b)之淨化腔體的壓力是介於10-2 Torr〜10_5 丁0汀之 間。 又值得一提的是,本發明該步驟((;)、(d)之主要目的是 在於使得該CIS系粉末產生緻密化的作用。在本發明之靶(b) applying a reduced pressure to the chamber to form a purification chamber; (c) applying a temperature rise to the predetermined temperature of the powder in the chamber for a predetermined period of time; The powder inside is pressurized to a predetermined pressure and held for a predetermined time, so that the CIS-based powder obtains powder densification energy through the predetermined temperature and the predetermined pressure; and (e) removing the predetermined pressure and purifying the An inert gas is introduced into the chamber to cool the purification chamber. It is worth mentioning that 'the step (b) of the present invention is mainly for decompressing the main purpose 12 1353344 is to purify the cavity; when the pressure of the purification chamber is too large In the process of carrying out the steps (C) and (d), an impurity compound which is not desired in the present invention is generated due to an excessive amount of impurities remaining in the purification chamber. Therefore, preferably, the step (b) The pressure of the purification chamber is between 10-2 Torr and 10_5 butyl 0. It is also worth mentioning that the main purpose of the step ((;), (d) of the present invention is to make the CIS powder Producing a densification effect. The target of the present invention

材的製作方法巾,該步驟⑷之升溫速率是決定於該步驟⑷ 的升麼速率’亦即,同時達該步驟⑷的預定溫度與該步驟 ⑷的預^力為原則。因此,較佳地,該㈣(e)之升溫速 率,介於2 t/min〜H) t/min之間;該步驟⑷之升壓速 率是介於1 MPa/min〜3 MPa/min之間。The heating method of the step (4) is determined by the rate of rise of the step (4), that is, the predetermined temperature of the step (4) and the pre-force of the step (4). Therefore, preferably, the heating rate of the (4) (e) is between 2 t/min and H) t/min; and the pressure increasing rate of the step (4) is between 1 MPa/min and 3 MPa/min. between.

此外,在本發明之乾材的製作方法中,主要是經由溫 度與屋力所產生的能量來使得該CIS彡粉末得以經由擴散 f燒結(Sintedng)的機制以產生緻密化。而此處值得-提的 是’當該步驟⑷、⑷之預定溫度、預定壓力或預定時間不 足時,將使得最終所製得之乾材的結構過於鬆散;反之, 當該步驟⑷之預㈣力或狀„過切,不僅對於粉體 ::化無實質上的貢獻度亦將造成無謂的生產成本;此處 更mu當該步驟⑷之預定 終所製得*材因相變“h t .呵時將使付最 不欲男㈣s u°n)而生成本發明所 500T:〜8〇(Τ(^π . J疋預疋咖度疋介於 18〇 Mp 1,該步驟⑷之預定堡力是介於60 MPa〜 a之間’該步驟⑷、⑷之預料間是介於i小時〜8 13 1353344 小時之間。 而值得一提的是,本發明之靶材的製作方法主要是經 由溫度與壓力所產生的能量來使得該CIS系粉末產生緻密 化;因此,當該預定溫度趨近上述所界定的5〇〇。〇時,是可 經由提昇該預定壓力來補足形成緻密化所需的能量。 &lt;具體例1&gt; 在本發明CIS系粉末之製作方法之一具體例丨中,該 反應槽内的惰性氣體是N2 ;該嵌合性溶劑是體積12〇〇 ml 的DMF ;該含有Cxi之起始物是CuCi ;該含有吣之起始物 是InCl3.4H2〇與Ga之一組合;該含有吣之起始物是&amp; ; 攪拌速率是300 rpm ;迴流溫度與迴流時間分別是丨肋艽與 48個小時。 此外’在該具體例1中,DMF於該反應槽内的液位約 達 60% ; Cua、InCI3.4H2〇、Ga 與 Se 的莫爾數比是! : 〇 8 .0.2 . 2 ’ 且 CuCl、InCl3.4H20、Ga 與 Se 的用量分別是 102.96 g、243_36g、14.56g 與 164.32 g。經本發明該具體例 1所製得之CIS系粉末是重量約339 77g且平均粒徑約i 〜5 μιη 左右的 CuIn〇.8Ga〇.2Se2 粉末。 參閱圖1,由本發明該具體例丨所製得之CIS系粉末的 XRD能譜圖之分析數據顯示可知,該具體例丨僅於約65。 與71°處分別出現有微弱之(4〇〇)與(316)等晶面的閃鋅礦晶 相繞射訊號峰。顯然地,本發明於18〇它的製程溫度下即可 製得大量且高純度之黃銅礦晶相的CIS系粉末。 &lt;具體例2&gt; 14 1353344 本發明CIS系粉末之製作方法之一具體例2大致上是 相同於該具體例1,其不同處僅在於,該含有吣之起始物 是InCl3.4H2〇 ;且CuC卜InCI3,4H20與Se的莫爾數比是1 .1 . 2。此外,在該具體例2中,CuCl、InCl3.4H20與Se 的用昼刀別疋102.96 g、304·2 g與164.32g。經本發明該具 體例2所製得之CIS系粉末是重量約349.旦且平均粒徑 約 1 μιη 〜5 μιη 的 culnse2 粉末。 φ 參閱圖2,由本發明該具體例2所製得之CIS系粉末的 XRD能譜圖之分析數據顯示可知,該具體例2僅於約65。 71與82處分別出現有微弱之(400)、(316)與(424)等晶面 的閃鋅礦日日相繞射訊號峰。顯然地,本發明於刚t的製程 度下即可製彳寸大量且高純度之黃銅礦晶相的系粉末 :具體例3&gt; 本發明cis系粉末之製作方法之一具體例3大致上是 t目同於該具體例1,其不同處僅在於,該含有之起始物 是1叫與&amp;之—組合;且Ml、In2〇3、以與Se的莫爾 數比是 1:08.09.,, 、 ..0.2 · 2。此外,在該具體例3中,CuC卜 Μ3、^ 與 Se 的用量分別是 102.96 g、229.63 g、14·56 g J g㉘本發明該具體例3所製得之CIS系粉末是重 量約339.47 g且平均粒和約 认士 仫約1 μπι 〜5 Pm 的 CUIn0.8Ga0 2Se2 粉禾。 XRD^H3 ’由本發明該具體例3所製得之CIS系粉末的 月曰之分析數據顯示可知,該具體例3僅於約Η。 15Further, in the method of producing the dry material of the present invention, the CIS tantalum powder is allowed to pass through a mechanism of diffusion f sintering to generate densification mainly by the energy generated by the temperature and the house force. It is worth mentioning here that 'when the predetermined temperature of the steps (4), (4), the predetermined pressure or the predetermined time is insufficient, the structure of the finally produced dry material will be too loose; otherwise, when the step (4) is pre-(4) Force or shape „overcutting, not only for the powder:: no substantial contribution will also cause unnecessary production costs; here more mu when the final step of the step (4) is made by the phase change “ht. Oh, it will make the most unwilling male (four) s u°n) and generate the 500T of the invention: ~8〇(Τ(^π. J疋前疋疋度疋 between 18〇Mp 1, the predetermined fort of step (4) The force is between 60 MPa and a. 'The steps (4) and (4) are expected to be between i hours and 8 13 1353344 hours. It is worth mentioning that the target of the present invention is mainly produced by the method. The energy generated by the temperature and pressure causes the CIS-based powder to be densified; therefore, when the predetermined temperature approaches the above-defined 5 〇〇 〇, it can be supplemented by raising the predetermined pressure to form a densification. Energy 1. Specific Example 1 A specific example of a method for producing a CIS-based powder of the present invention In the crucible, the inert gas in the reaction tank is N2; the chimeric solvent is DMF in a volume of 12 〇〇ml; the starting material containing Cxi is CuCi; the starting material containing ruthenium is InCl3.4H2 〇 One of the combinations of Ga; the starting material containing hydrazine is &amp;; the stirring rate is 300 rpm; the reflux temperature and the reflux time are respectively 丨 艽 and 48 hours. Further, in this specific example 1, DMF is in the reaction. The liquid level in the tank is about 60%; the molar ratio of Cua, InCI3.4H2〇, Ga and Se is ! : 〇8 .0.2 . 2 ' and the amount of CuCl, InCl3.4H20, Ga and Se is 102.96 respectively. g, 243_36g, 14.56g and 164.32 g. The CIS-based powder obtained by the specific example 1 of the present invention is a CuIn〇.8Ga〇.2Se2 powder having a weight of about 339 77 g and an average particle diameter of about i 〜5 μηη. 1. The analysis data of the XRD spectrum of the CIS-based powder obtained by the specific example of the present invention shows that the specific example is only about 65. There is a weak (4〇〇) and 71° respectively. (316) The crystallite phase of the sphalerite crystal phase is diffracted with a signal peak. Obviously, the invention can be fabricated at a process temperature of 18 〇 A large amount of high-purity CIS-based powder of a chalcopyrite crystal phase. <Specific Example 2> 14 1353344 One of the methods for producing a CIS-based powder of the present invention is substantially the same as the specific example 1, and the difference is only The starting material containing cerium is InCl3.4H2 〇; and the molar ratio of CuC 卜 InCI3, 4H20 to Se is 1.2. Further, in this specific example 2, the use of CuCl, InCl3.4H20 and Se with a file was 102.96 g, 304·2 g and 164.32 g. The CIS-based powder obtained by the specific example 2 of the present invention is a culnse 2 powder having a weight of about 349. denier and an average particle diameter of about 1 μm to 5 μm. φ Referring to Fig. 2, the analysis data of the XRD spectrum of the CIS-based powder obtained in the specific example 2 of the present invention shows that the specific example 2 is only about 65. At 71 and 82, respectively, there are weak (400), (316) and (424) crystal planes of the dilute zinc diurnal day diffraction signal peak. Obviously, the present invention can produce a large amount of high-purity chalcopyrite crystal phase powder under the degree of the system: Specific Example 3> One of the methods for producing the cis-based powder of the present invention is substantially It is the same as the specific example 1, except that the starting material of the containing is a combination of 1 and &amp; and Ml, In2〇3, and the molar ratio to Se is 1: 08.09.,, , ..0.2 · 2. Further, in this specific example 3, the amounts of CuC, 3, and Se were 102.96 g, 229.63 g, and 14.56 g J g28, respectively. The CIS powder obtained in the specific example 3 of the present invention was about 339.47 g by weight. And the average particle size and CUIn0.8Ga0 2Se2 powder of about 1 μπι to 5 Pm. XRD^H3' The analysis data of the cerium of the CIS-based powder obtained in the specific example 3 of the present invention shows that the specific example 3 is only about Η. 15

Uy3344 71與82處分別出現有微弱之(_)、(316)與(424)等晶面 =閃鋅礦晶相繞射訊號♦。顯然地,本發明於⑽。c的製程 ’皿度下即可製得大量且高純度之黃銅礦晶相的⑶系粉末 &lt;具體例4&gt;Uy3344 71 and 82 respectively have weak (_), (316) and (424) crystal planes = sphalerite crystal phase diffraction signal ♦. Obviously, the present invention is at (10). The process of c can produce a large amount of high-purity chalcopyrite crystal phase (3) powder &lt; specific example 4&gt;

本發明cis系粉末之製作方法之一具體例4大致上是 相同於該具體例卜其不同處僅在於,該含有Ml之起始物 是 _〇3)3與以之—組合;且 CuC1、in(N〇3)3、G^Se 的莫爾數比疋1 · G.8 : G.2 : 2。此外,在該具體例4中, CuCl Ιπ(Ν〇3)3、Ga 與 Se 的用量分別是 ι〇2 % g、⑽ 6 g 6 g與164.32 g。經本發明該具體例4所製得之cIS 系粉末是重量約339.77 g且平均粒徑約(_〜5 _的 CuIn〇.8Ga().2Se2 粉末。 ^閱圖4’由本發明該具體例4所製得之⑶系粉末的 XRD能譜圖之分析數據顯示可知,該具體例4僅於約65。One of the specific examples of the method for producing the cis-based powder of the present invention is substantially the same as the specific example. The difference is only that the starting material containing M1 is _〇3)3 and is combined with it; and CuC1; The molar ratio of in(N〇3)3, G^Se is 疋1 · G.8 : G.2 : 2. Further, in this specific example 4, the amounts of CuCl Ιπ(Ν〇3)3, Ga and Se were ι〇2 % g, (10) 6 g 6 g and 164.32 g, respectively. The cIS-based powder obtained by the specific example 4 of the present invention is a CuIn〇.8Ga().2Se2 powder having a weight of about 339.77 g and an average particle diameter of about _~5 _. Figure 4 is a specific example 4 of the present invention. The analysis data of the XRD spectrum of the obtained (3)-based powder showed that the specific example 4 was only about 65.

、71與82°處分別出現有微弱之(彻)、(316)與(424)等晶面 的閃辞礦晶相繞射訊號峰。顯然地,本發明於刚。c的製程 狐度下即可1得大$且向純度之黃銅礦晶相的⑶系粉末 &lt;具體例5&gt; 本發明CIS系粉末之製作方法之一具體例5大致上是 才曰目同於該具體例1,其不同處僅在於,該含有%之起始物 疋NazSe,且Cua、InC13,4H2〇、^與的莫爾數比 是9 0.88 . 0.22 . 2.2。此外,在該具體例$中,Cua、 16 1353344At 71 and 82°, there are diffractive (trans), (316) and (424) crystal planes respectively. Obviously, the present invention is just. (3) powder of a chalcopyrite crystal phase having a purity of $1 and a purity of the chalcopyrite crystal phase. Specific Example 5> One of the methods for producing the CIS-based powder of the present invention is substantially the only one. Same as the specific example 1, the difference is only that the % of the starting material 疋NazSe, and the Moir number ratio of Cua, InC13, 4H2〇, and ^ is 9 0.88 . 0.22 . In addition, in this specific example $, Cua, 16 1353344

InCl3.4H2〇、Ga 與 Na2Se 的用量分別是 92別 §、Μ? 7〇 g、 16.02g與286 g。經本發明該具體例5所製得之cis系粉末 是重量約360.54 g且平均粒徑約i叫〜5叫的 CuIn〇.8Ga().2Se2 粉末。 參閱圖5,由本發明該具體例5所製得之as系粉末的 XRD能譜圖之分析數據顯示可知,該具體例5僅於約 與7 Γ處分別出現有微弱之(400)與(3丨6)等晶面的閃鋅礦晶 相繞射訊號峰。顯然地,本發明於18〇t的製程溫度下即可 製得大量且高純度之黃銅礦晶相的CIS系粉末。 &lt;具體例6&gt; 本發明CIS系粉末之製作方法之一具體例6大致上是 相同於該具體例1,其不同處僅在於,該含有Cu之起始物 疋 CuC12.2H2〇 ;且 CuC12.2H20、InCl3.4H20、Ga 與 Se 的 莫爾數比是1 : 0.8 : 0.2 : 2。此外,在該具體例6中,The amounts of InCl3.4H2 〇, Ga and Na2Se were 92 §, Μ 7 〇 g, 16.02 g and 286 g, respectively. The cis-based powder obtained by the specific example 5 of the present invention is a CuIn〇.8Ga().2Se2 powder having a weight of about 360.54 g and an average particle diameter of about i to 5%. Referring to Fig. 5, the analysis data of the XRD spectrum of the as-based powder obtained in the specific example 5 of the present invention shows that the specific example 5 has weak (400) and (3) respectively at about 7 Γ.丨6) The sphalerite crystal phase of the isomorphous plane is diffracted by the signal peak. Obviously, the present invention can produce a large amount of high purity chalcogenide crystal phase CIS powder at a process temperature of 18 Torr. &lt;Specific Example 6&gt; One of the methods for producing the CIS-based powder of the present invention is substantially the same as the specific example 1, except that the Cu-containing starting material 疋CuC12.2H2〇; and CuC12 The molar ratio of .2H20, InCl3.4H20, Ga and Se is 1: 0.8 : 0.2 : 2. Further, in this specific example 6,

CuC12.2H2〇、inci3.4H20、Ga 與 Se 的用量分別是 177 32 〇 、243.36 g、14.56 g與164.32 g。經本發明該具體例6所製 得之CIS系粉末是重量約339.77 g且平均粒徑約} μιη〜$ μπι 的 CuIn0.8Ga0.2Se2 粉末。 參閱圖6,由本發明該具體例6所製得之CIS系粉末的 XRD能譜圖之分析數據顯示可知,該具體例6僅於約 與71處分別出現有微弱之(4〇〇)與(316)等晶面的閃鋅礦晶 相繞射訊號峰《顯然地,本發明於180°c的製程溫度下即可 製知大篁且尚純度之黃銅礦晶相的CIS系粉末。 另,於該腔體内的模具(圖未示)中填置由該具體例6所 17 1353344 製得之CuIn〇_8Ga〇_2Se2粉末約80 g ;進一步地,以5 °C/min 的升/m速率對該CuIn〇.8Ga〇.2Se2粉末施予升溫同時對該腔體 抽真空;當該腔體内的真空度達2〇χΙ〇-3 T〇rr左右時(歷時 約1小時),於該腔體内^Ar,並分別以相同的升溫速率 及1,7 MPa/min的升壓速率對該Cuin〇sGa〇2Se2粉末施予升 壓與升溫達該預定壓力與預定溫度(約歷時15小時广最後 ,於持壓與持溫歷時約4小時之後,移除該預定壓力並於 Ar的氛圍T自然冷卻以製得CIS系靶材。 在該具體例6中,該CIS系靶材的外觀是直徑與厚度 分別約3英叶㈣與3 mm的圓板狀;該預定 度分別是15〇]^^與780。〇。 ,、預疋/血The amounts of CuC12.2H2〇, inci3.4H20, Ga and Se were 177 32 〇 , 243.36 g, 14.56 g and 164.32 g, respectively. The CIS-based powder obtained in the specific example 6 of the present invention is a CuIn0.8Ga0.2Se2 powder having a weight of about 339.77 g and an average particle diameter of about ληη to $μπι. Referring to Fig. 6, the analysis data of the XRD spectrum of the CIS-based powder obtained in the specific example 6 of the present invention shows that the specific example 6 exhibits only weak (4〇〇) and (about) respectively. 316) Sphalerite crystal phase diffraction signal peak of isomorphous crystal "Obviously, the present invention can produce a CIS powder of a large-scale and purely chalcopyrite crystal phase at a process temperature of 180 ° C. In addition, a mold (not shown) in the cavity is filled with about 80 g of CuIn〇_8Ga〇_2Se2 powder prepared by the specific example 6 17 1353344; further, at 5 ° C/min. The CuIn〇.8Ga〇.2Se2 powder is heated and the vacuum is evacuated; the vacuum in the cavity is about 2〇χΙ〇-3 T〇rr (about 1 hour). And in the cavity ^Ar, and respectively boosting and heating the Cuin〇sGa〇2Se2 powder at the same heating rate and a rate of increase of 1,7 MPa/min to the predetermined pressure and the predetermined temperature (about duration) 15 hours wide Finally, after about 4 hours of holding and holding the temperature, the predetermined pressure is removed and naturally cooled in the atmosphere T of Ar to produce a CIS-based target. In this specific example 6, the CIS-based target The appearance is a disk shape with a diameter and a thickness of about 3 inches (4) and 3 mm, respectively; the predetermined degrees are 15 〇]^^ and 780. 〇., pre-twist/blood

參閱圖7’由本發明該具體例6之粉末所製得之m系 乾材的XRD能譜圖顯示可知’該具體例6之树的三大繞 射訊號峰分別為⑴2)、(2G4/22G)與(312)#晶面,顯然本發 明該具體例6之㈣是高純度的黃銅礦晶相之⑽系㈣ 本發明as系粉末之製作方法之一具體例7大致上^ 相同於該具體例6,其不同處僅在 疋 a χτ 〇 、该S有M2之起始物 疋 Na2Se ;且 CuC12.2H20、Incir4H n r 爾叙L曰 3 4H2〇、Ga與Na2Se的莫 :數比疋1:〇.8:〇.2:2。此外,在該具體例7中: CuC12.2H2〇、InCl3.4H2〇、Ga 與 195.05 g、219.〇2 13 1〇 、2:路用量分別是 ·“ g且平均粒徑約丨 18 1353344 〜5 的 CuIn〇.sGa〇.2Se2 粉末。 參閱圖8,由本發明該具體例7所製得之cis系粉末的 XRD能譜圖之分析數據顯示可知’該具體例7僅於= 與7r處分別出現有微弱之(400)與(316)等晶面的閃鋅礦晶 相繞射訊號蜂。顯,然地,本發明於18Qt的製程溫度下即可 製得大量且高純度之黃銅礦晶相的CIS系粉末。 &lt;具體例8&gt; 本發明CIS系粉末之製作方法之一具體例8大致上是 相同於該具體例1,其不同處僅在於,該喪合性溶劑是體積 約1200 ml的乙二胺(ED) Q經本發明該具體例8所製得之 CIS系粉末是重量約339 77 g且平均粒徑約i 〜的 CuIn〇.8Ga〇.2Se2 粉末。 參閱圖9,由本發明該具體例8所製得之CIS系粉末的 XRD忐谱圖之分析數據顯示可知,該具體例8僅於約65。 、71與82處分別出現有微弱之(400)、(316)與(424)等晶面 的閃鋅礦晶相繞射訊號峰。顯然地,本發明於18(rc的製程 脈度下即可製得大量且高純度之黃銅礦晶相的cis系粉末 〇 &lt;具體例9&gt; 本發明CIS系粉末之製作方法之一具體例9大致上是 相同於該具體例8,其不同處僅在於,該含有Cu之起始物 是 CUC12.2H20 ;且 CuCl2.2H2〇、Ιηα3.ο、以與“的 用量分別是 177.32 g、243.36 g、14 56 §與 164 32g。經本 發明該具體例9所製得之CIS系粉末是重量約349·44 g且 19 平均:徑約i _〜5 μιη的cUIn&quot;Ga。如粉末。 &gt;閱圖10,由本發明該具體例9所製得之CIS系粉末 。71。% D曰圖之分析數據顯示可知,該具體例9僅於約65 ” 82處分別出現有微弱之(4〇〇)、(316)與(424)等晶 面的閃鋅礦晶相繞射訊號峰。顯然地,本發明於i8()t的製 程溫度下即可製得大量且高純度之黃銅礦 晶相的CIS系粉 末。 :比較例&gt;Referring to Fig. 7', the XRD spectrum of the m-based dry material obtained by the powder of the specific example 6 of the present invention shows that the three major diffraction signal peaks of the tree of the specific example 6 are (1) 2), (2G4/22G, respectively). And (312)# crystal plane, it is apparent that (4) of the specific example 6 of the present invention is a high-purity chalcopyrite crystal phase (10). (IV) One of the methods for producing the as-based powder of the present invention is substantially the same as Specific example 6, the difference is only in 疋a χτ 〇, the S has M2 starting material 疋Na2Se; and CuC12.2H20, Incir4H nr 尔 曰L曰3 4H2〇, Ga and Na2Se Mo: number ratio 疋1 :〇.8:〇.2:2. Further, in this specific example 7, CuC12.2H2〇, InCl3.4H2〇, Ga and 190.55 g, 219.〇2 13 1〇, 2: the amount of the road is “g and the average particle diameter is about 18 1353344 〜 CuIn〇.sGa〇.2Se2 powder of 5. Referring to Fig. 8, the analysis data of the XRD spectrum of the cis-based powder obtained in the specific example 7 of the present invention shows that the specific example 7 is only at = and 7r respectively. A sphalerite crystal phase diffracted bee with a weak (400) and (316) crystal plane appears. Obviously, the present invention can produce a large amount of high-purity chalcopyrite at a process temperature of 18 Qt. Crystalline CIS powder. <Specific Example 8> One of the methods for producing the CIS powder of the present invention is substantially the same as the specific example 1, except that the fungicidal solvent is about a volume. 1200 ml of ethylenediamine (ED) Q The CIS-based powder obtained by the specific example 8 of the present invention is a CuIn®.8Ga〇.2Se2 powder having a weight of about 339 77 g and an average particle diameter of about i 〜. The analysis data of the XRD spectrum of the CIS-based powder obtained in the specific example 8 of the present invention shows that the specific example 8 is only about 65. Diffraction signal peaks of the zinc blende crystal phase with weak (400), (316) and (424) crystal planes appearing at 82. Obviously, the present invention can be fabricated under 18 (rc process pulse) A cis-based powder of a large amount of high-purity chalcopyrite crystal phase &lt;Specific Example 9&gt; One of the methods for producing the CIS-based powder of the present invention is substantially the same as the specific example 8, except that The starting material containing Cu is CUC12.2H20; and CuCl2.2H2〇, Ιηα3.ο, and the amount used are 177.32 g, 243.36 g, 14 56 § and 164 32 g, respectively. According to the specific example 9 of the present invention The obtained CIS-based powder is cUIn&quot;Ga having a weight of about 349·44 g and 19 average: diameter about i _~5 μηη. As a powder. &gt; Figure 10 shows the CIS system obtained by the specific example 9 of the present invention. The analysis data of the powder 71.% D曰 shows that the specific example 9 has only a weak (4〇〇), (316) and (424) crystal planes of sphalerite at about 65 ′′ 82. The crystal phase diffracts the signal peak. Obviously, the present invention can produce a large amount of high-purity chalcopyrite phase CIS powder at the process temperature of i8()t. : Comparative Example &gt;

β用來與本發明該等具體例相比較的-比較a 1〜2,大致 、疋相同於該具體例!,其不同處僅在於該比較例卜2是 刀別使用四氫°夫喃(tetrahydr〇furan,化學式為c4H80,簡稱 THF)與鼠仿(chi〇r〇f〇rm,化學式為c肥ο等不具喪合性的 溶劑。 二閱圖11〜12,由該等比較例之XRD能譜圖的分析數 據顯不可知’該等比較例因使用不具後合性之溶劑而無法β is used to compare with a specific example of the present invention - a 1 to 2, which is substantially the same as the specific example! The difference is only in the comparative example. 2 is the use of tetrahydrofuran (tetrahydrofuran, chemical formula is c4H80, THF for short) and mouse imitation (chi〇r〇f〇rm, chemical formula is c, etc.) Solvents that are not devastating. 2. Looking at Figures 11 to 12, the analytical data of the XRD spectra of these comparative examples are obscure. 'These comparative examples cannot be used because of the solvent without post-coherence.

有效地自起始物(即,CuC1、InCl3.4H2〇、以與㈣中抓取 其陽離子與陰離早.m i ^ 離子,因此,於18(TC之迴流溫度下無法直接 反應形成富含黃銅礦晶相之CIS系粉末,且於κ n〜12中 的 26.6。、45。盥 so C。# 丄 處未能顯示有(112)、(2〇4)、(220)與 (312)等晶面之三大繞射訊號學。 該等比較例與本發明該等具體例之細部差異是簡單地 整理於下列表丨·中。 20 1353344Effectively from the starting materials (ie, CuC1, InCl3.4H2〇, and (4) to grab their cations and get away from the early .mi ^ ions, therefore, at 18 (TC reflux temperature can not directly react to form a yellow-rich CIS powder of copper ore crystal phase, and 26.6.45 in κ n~12, 盥so C.# 未能 未能 未能 未能 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 The three major diffraction signals of the isomorphic plane. The differences between the comparative examples and the specific examples of the present invention are simply summarized in the following table. 20 1353344

^ 本發明因使用具嵌合性 之溶劑而得以在混合起始物與溶劑的過程中,藉由呈嵌八 性之溶劑抓取起始物中的陽離子與陰離子以形成呈均質相 的前驅物,並且在低於此嵌合性溶劑之沸點的迴流溫度條 件下(在本發明各具體例中是18(rc),使該前驅物得以直接 地反應形成富含黃銅礦晶相之CIS系粉末。 此外,本發明CIS系粉末之製作方法亦因其使用嵌合 性溶劑之特點而得以製得大量的CIS系粉末;因此,經由 本發明CIS S粉末之製作方法所製得的CIS系粉末更可進 步地經由叙末冶金(powder metaIlurgy)之製程來製成滅鐘 系統(sputtering system)專用之靶材,以利於太陽能電池產 業之開發。The present invention utilizes a chimeric solvent to capture a cation and an anion in the starting material in a process of mixing the starting material and the solvent to form a precursor in a homogeneous phase. And at a reflux temperature below the boiling point of the chimeric solvent (18 (rc) in each embodiment of the invention, the precursor is directly reacted to form a CIS system rich in chalcopyrite crystal phase Further, the method for producing a CIS-based powder of the present invention is also capable of producing a large amount of CIS-based powders due to the use of a chiral solvent; therefore, the CIS-based powder obtained by the method for producing a CIS S powder of the present invention It is more advanced to make a target for the sputtering system through the process of powder metaIlurgy to facilitate the development of the solar cell industry.

值知一提的疋’本發明自該具體例丨〜9所生成的cIS 系粉末量約達350 g左右 雖然該等具體例所使用的反應槽 21 1353344 是實驗室專用型且體積為2000 ml的反應槽;然而,當實施 本發明CIS系粉末之製作方法[即,化學濕式合成法 (chemical reflux synthesis method)]來生成 CIS 系粉末時所使 用的反應槽是更換成量產型的反應槽時,其Cis系粉末的 生成量不僅是可相對地增加;此外,於製作過程中,其製 '程溫度易控制;再者,與溶劑熱合成法相比較之下,本發 明亦可隨著攪拌動作以增加其反應速率;因此,更有助於 ^ 太陽能電池相關產業的開發。 综上所述,本發明CIS系粉末之製作方法及其耙材之 製作方法,不需在高溫高壓之製作條件下即可大量地製得 高純度之黃銅礦晶相的CIS系粉,而透過此量產化之製作 方法所製得的CIS系粉末更可因靶材的製作而輔助太陽能 電池相關產業的開發,確實達到本發明之目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 • 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是- XRD能譜圖,說明本發明CIS系粉末之製作 方法之一具體例1的晶相; 圖2是- XRD能譜圖,說明本發明as系粉末之製作 方法之一具體例2的晶相; 圖3疋- XRD能错圖,說明本發明⑶系粉末之製作 方法之一具體例3的晶相; 22 1353344 圖4是一 XRD能譜圖,說明本發明CIS系粉末之製作 方法之一具體例4的晶相; 圖5是一 XRD能譜圖,說明本發明CIS系粉末之製作 方法之一具體例5的晶相; 圖6是一 XRD能譜圖,說明本發明CIS系粉末之製作 方法之一具體例6的晶相; 圖7是一 XRD能譜圖,說明由本發明該具體例6所製 得之CIS系粉末所製成之靶材的晶相; 圖8是一 XRD能譜圖,說明本發明CIS系粉末之製作 方法之一具體例7的晶相; 圖9是一 XRD能譜圖,說明本發明CIS系粉末之製作 方法之一具體例8的晶相; 圖10是一 XRD能譜圖,說明本發明CIS系粉末之製 作方法之一具體例9的晶相; 圖11是一 XRD能譜圖,說明用來與本發明各具體例相 比較之一比較例1的晶相;及 圖12是一 XRD能譜圖,說明用來與本發明各具體例 相比較之一比較例2的晶相。 23 1353344 【主要元件符號說明】 無The value of the cIS system generated from the specific example 丨~9 of the present invention is about 350 g. Although the reaction tank 21 1353344 used in the specific examples is laboratory-specific and has a volume of 2000 ml. Reaction tank; however, the reaction tank used in the production of the CIS powder according to the method of producing the CIS powder of the present invention [i.e., chemical reflux synthesis method] is replaced by a mass production type reaction. In the case of the groove, the amount of the Cis-based powder is not only relatively increased; in addition, in the production process, the process temperature is easy to control; in addition, compared with the solvothermal synthesis method, the present invention can also Stirring action to increase the reaction rate; therefore, it is more conducive to the development of solar cell related industries. In summary, the method for producing a CIS-based powder of the present invention and the method for producing the same, can produce a high-purity CIS powder of a high-purity chalcopyrite crystal phase without requiring high-temperature and high-pressure production conditions. The CIS-based powder obtained by the mass production method can assist in the development of the solar cell-related industry by the production of the target, and indeed achieves the object of the present invention. The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are modified. All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an XRD spectrum showing the crystal phase of a specific example 1 of the method for producing a CIS powder of the present invention; and Fig. 2 is an XRD spectrum showing the production of the as-based powder of the present invention. One of the methods is the crystal phase of the specific example 2; Fig. 3 is a diagram showing the crystal phase of the specific example 3 of the method for producing the powder of the invention (3); 22 1353344 Fig. 4 is an XRD spectrum, illustrating The crystal phase of the specific example 4 of the method for producing a CIS-based powder; FIG. 5 is an XRD spectrum, illustrating a crystal phase of a specific example 5 of the method for producing a CIS-based powder of the present invention; and FIG. 6 is an XRD spectrum. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 7 is a view showing a crystal phase of a specific example 6 of the method for producing a CIS powder of the present invention; Fig. 7 is an XRD spectrum chart for explaining a target made of a CIS powder obtained by the specific example 6 of the present invention. Fig. 8 is an XRD spectrum showing the crystal phase of a specific example 7 of the method for producing a CIS powder of the present invention; and Fig. 9 is an XRD spectrum showing one of the methods for producing the CIS powder of the present invention. The crystal phase of the specific example 8; FIG. 10 is an XRD spectrum chart illustrating the method for producing the CIS powder of the present invention. Figure 9 is an XRD spectrum illustrating the crystal phase of Comparative Example 1 used in comparison with the specific examples of the present invention; and Figure 12 is an XRD spectrum showing The crystal phase of Comparative Example 2 is compared with each of the specific examples of the present invention. 23 1353344 [Description of main component symbols] None

24twenty four

Claims (1)

1353344 無_劃線版丨第’〇3740號專利申請案補充、修正後無劃線之說明書替 修正日期:100年10月6曰 申請專利範圍: 1. 一種CIS系粉末之製作方法,包含: 於一含有惰性氣體之反應槽内混合一含有cu之起 始物、一含有之起始物、一含有M2之起始物及一嵌 合性溶劑,以使該嵌合性溶劑於該反應槽内抓取出該等 起始物之陽離子與陰離子,並形成一呈均質相之含有cu 、Μ,與M2之前趨物; 其中,該呈均質相之前趨物經迴流後進一步地反應 形成含有黃銅礦晶相的粉末,Μι是選自In ' ,或此 等之一組合,Μ2是選自Se、s,或此等之一組合; 該嵌合性溶劑是選自乙二胺、二曱基甲醯胺或此等 之一組合;該含有Cu之起始物是選自cuci、 CUC12.2H2〇、CuSQ4,或此等之—組合;該含冑%之起 始物是選自 InClr4H2〇、In2〇3、In(N〇3)3、Ga、GaCi3, 或此等之一組合;及該含有m2之起始物是選自以、 Na2Se、S,或此等之—紐合。 2. 依據申請專利範圍第丨項所述之CIS系粉末之製作方法 ,其中,該嵌合性溶劑是二曱基甲醯胺;該含有Cu之 起始物是CuCl ;該含有Μι之起始物是InCi3 4h2〇與^ 之一組合;該含有%之起始物是Se ; CuC1、 InClr4H20 ' Ga與Se的莫爾濃度是介於〇 9〇 : 〇 88 : 0·22 · 2·20 〜1.1〇 : 0.72 : 〇 18 :丄 9〇 之間。 3. 依據申請專利範圍第丄項所述之⑽系粉末之製作方法 25 1353344 |^_劃線版 專740號專利#請_充、修正後無麟之·書替換頁 修正日期:100年10月6日 ’其中’該嵌合性溶劑B _田* β ㈠疋—甲基甲醯胺;該含有Cu之 起始物是CuCI ;該含右λΛ a丄 〆3有之起始物是inCl3.4H2〇 ;該 含有M2之起始物是Se. . 切疋 be,Cua、inci3.4H20 與 Se 的莫爾 濃度是介於 0.90 : l 1 〇 . 1 〇n t Λ Λ ΛΛ ηυ · 1.90 〜ι·ι〇 : 〇 90 : 2_20 之間。 4. 依據中4專利額第丨項所述之cis系粉末之製作方法 ’其中’該嵌合性溶劑是二甲基甲酿胺;該含有Cu之1353344 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Mixing a starting material containing cu, a starting material containing the starting material, a starting material containing M2, and a chimeric solvent in a reaction tank containing an inert gas to make the chimeric solvent in the reaction tank Grasing the cations and anions of the starting materials, and forming a homogenous phase containing cu, hydrazine, and M2 precursors; wherein, before the homogeneous phase, the reactants are further reacted to form yellow a powder of a copper ore phase, Μι is selected from In ', or a combination thereof, Μ2 is selected from Se, s, or a combination thereof; the chimeric solvent is selected from the group consisting of ethylenediamine and diterpene Mercaptoamine or a combination thereof; the starting material containing Cu is selected from the group consisting of cuci, CUC12.2H2, CuSQ4, or the like; the starting material containing 胄% is selected from the group consisting of InClr4H2〇 , In2〇3, In(N〇3)3, Ga, GaCi3, or a combination thereof; and the inclusion m2 is selected from the starting material, Na2Se, S, or such - A New together. 2. The method for producing a CIS-based powder according to the above application, wherein the chimeric solvent is dimethylformamide; the starting material containing Cu is CuCl; The substance is a combination of InCi3 4h2〇 and ^; the starting material containing % is Se; the Mohr concentration of CuC1, InClr4H20 'Ga and Se is between 〇9〇: 〇88 : 0·22 · 2·20 〜 1.1〇: 0.72 : 〇18: 丄9〇. 3. According to the application of the scope of the patent application (10), the method of making powder 25 1353344 | ^ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ On the 6th of the month, 'the chimeric solvent B _ tian * β (1) 疋-methyl carbamide; the starting material containing Cu is CuCI; the starting material containing λ Λ a 丄〆 3 is inCl3 .4H2〇; the starting material containing M2 is Se. . The molar concentration of cut, Coa, inci3.4H20 and Se is 0.90 : l 1 〇. 1 〇nt Λ Λ ΛΛ ηυ · 1.90 ~ι · ι〇: 〇90 : 2_20 between. 4. The method for producing a cis-based powder according to the above-mentioned Patent No. 4, wherein the chimeric solvent is dimethyl ketone; the Cu-containing 起始物是CuCl ;該含有Μι之起始物是1〇2〇3與以之一 組合;該含有M2之起始物是Se ; CuC卜In2〇3、Ga與 Se的莫爾濃度是介於〇 9〇 : 〇 88 : 〇 22 : 2 2〇〜n 〇·72 : 0.18 : 1.90 之間。 5. 依據申响專利範圍第1項所述之s系粉末之製作方法 ,其中,該嵌合性溶劑是二甲基甲醯胺;該含有CU之 起始物是CuCl ;該含有%之起始物是ιη(Ν〇3)3與Ga 之一組合;該含有M2之起始物是Se;CuC1、In(N〇3)3 、Ga與Se的莫爾濃度是介於〇 9〇: 0 88: 0 22: 2.20〜 1.10 : 0.72 : 0.18 : 1.90 之間。 6·依據申請專利範圍第丨項所述之CIS系粉末之製作方法 ’其中’該嵌合性溶劑是二甲基曱醯胺;該含有Cu之 起始物是CuCl ;該含有M,之起始物是InCl3.4H2〇與Ga 之一組合;該含有M2之起始物是Na2Se ; CuCl、 InClr4H2〇、Ga與Na2Se的莫爾濃度是介於ο.% : 〇 88 :0.22 : 2.20 〜1.1〇 : 0.72 : 〇· 18 : 1.90 之間。 7·依據申請專利範圍第1項所述之CIs系粉末之製作方法 S 26 1353344 -- 涵·線版丨第097103740號專利申請案補充、修正後無劃線之說明書替換頁 修正日期:100年10月6日 . ,其中,該嵌合性溶劑是二甲基甲醯胺;該含有cu之 起始物是ChC12.2H2〇 ;該含有Μι之起始物是 InCldHA與Ga之一組合;該含有吣之起始物是以; CuC12.2H20、InCl3-4H2〇、Ga與Se的莫爾濃度是介於 0·90 : 0·88 : 0·22 : 2.20 〜M0 : 〇 72 : 〇 18 :丄 9〇 之間 ' 〇 8. 依據申請專利範圍第1項所述之CIS系粉末之製作方法 籲’其中,該嵌合性溶劑是二甲基曱醒胺;該含有Cu之 起始物是CuC12.2H2〇 ;該含有吣之起始物是 InClr4H2〇與Ga之一組合;該含有μ〗之起始物是 . 他如;CuClr2H20 ' InCl3.4H20、Ga 與 Na2Se 的莫爾濃 度是介於 0.90 : 0.88 : 〇‘22 : 2.20 〜1.10 : 〇·72 : 0.18 : 1.90之間。 9. 依據申請專利範圍帛丨項所述之⑶系粉末之製作方法 j其中,該嵌合性溶劑是乙二胺;該含有Cu之起始物 疋CuCl ’ 6亥含有μ丨之起始物是InCl3.4H2〇與Ga之一 組〇,該含有M2之起始物是Se; CuCl、InCl3.4H20、 Ga與Se的莫爾濃度是介於0.90 : 0.88 : 0.22 : 2.20〜 - 1.1〇· 0.72: 0.18: 1·9〇 之間。 ,10.依射4專利範圍第!項所述之cis系粉末之製作方法 • :其中,該嵌合性溶劑是乙二胺;該含有Cu之起始物 疋CuCl2 2H2〇 ,該含有M丨之起始物是ΐη〔ΐ3.4Η2〇與Ga 之組合’該含有M2之起始物是Se ; cuci2.2H20 ' 27 I無劃線版]第097103740號專利申續安社 τ。月案補充、修正後無劃線之說明書替換頁 修正曰期:100年10月6曰 InCl3-4H2〇 ' Ga M Se έΑ 的莫爾濃度是介於0.90 : 0.88 : 〇·22:2·20 〜1·10:0·7^0·18:1·90 之間。 U.依據申請專利範圍第i項所述之⑶系粉末之製作方法 ’其中,該反應槽内的惰性氣體是選自N2、Ar、He,或 此等之一組合;該嵌合性溶劑的使用量是介於該反應槽 之液位的5〇Q/〇〜90%之間。 12. 依據申凊專利範圍第丨項所述之CIS系粉末之製作方法 ,其中,該反應槽内之迴流溫度是介於9〇〇c〜3〇(rc之間 ,5亥反應槽之迴流時間是介於4小時〜48小時之間。 13. —種CIS系靶材之製作方法,包含以下步驟: (a) 於一腔體内的一模具中填入如申請專利範圍第丨〜12 項任意一項之製作方法所製得之CIS系粉末; (b) 於介於10 2 Torr〜1〇-5 T〇rr之間的壓力下對該腔 體施予減壓以形成一淨化腔體; (c) 對該腔體内的粉體施予升溫達一預定溫度並持溫一 預定時間’其中’該升溫速率是介於2。(: /min〜1 〇 °C/min之間,該預定溫度是介於5〇〇°c〜800。(:之 間及該預定時間是介於1小時〜8小時之間; (d) 對該淨化腔體内的粉體施予升壓達一預定壓力並持 壓該預定時間’致使該CIS系粉末經由該預定溫度 及預定壓力取得粉體緻密化的能量,其中,該升壓 速率是介於1 MPa/min〜3 MPa/min之間,該預定 壓力是介於60 MPa〜180 MPa之間及該預定時間是 S 28 1353344 4 無劃線版I第097103740號專利申請案補充、修正後無劃線之說明書替換頁 修正日期:100年10月6曰 - 介於1小時〜8小時之間;及 (e) 移除該預定壓力並於該淨化腔體内引入惰性氣體以 冷卻該淨化腔體。The starting material is CuCl; the starting material containing Μι is 1〇2〇3 and is combined with one; the starting material containing M2 is Se; the molar concentration of CuCb In2〇3, Ga and Se is于〇9〇: 〇88 : 〇22 : 2 2〇~n 〇·72 : 0.18 : 1.90. 5. The method according to claim 1, wherein the chimeric solvent is dimethylformamide; the starting material containing CU is CuCl; The starting material is ιη(Ν〇3)3 combined with one of Ga; the starting material containing M2 is Se; the molar concentration of CuC1, In(N〇3)3, Ga and Se is 〇9〇: 0 88: 0 22: 2.20~ 1.10 : 0.72 : 0.18 : 1.90. 6. The method for producing a CIS powder according to the scope of the patent application of the invention, wherein the chimeric solvent is dimethyl decylamine; the starting material containing Cu is CuCl; The starting material is a combination of InCl3.4H2〇 and Ga; the starting material containing M2 is Na2Se; the Mohr concentration of CuCl, InClr4H2〇, Ga and Na2Se is between ο.%: 〇88:0.22: 2.20 〜1.1 〇: 0.72 : 〇· 18 : 1.90. 7. Preparation method of CIs powder according to item 1 of the patent application scope S 26 1353344 - Supplementary application of han·line version 丨 097103740, replacement of the instructions without correction after the correction page Correction date: 100 years October 6th, wherein the chimeric solvent is dimethylformamide; the starting material containing cu is ChC12.2H2〇; the starting material containing Μι is a combination of one of InCldHA and Ga; The starting material containing cerium is: CuC12.2H20, InCl3-4H2 〇, Mo and Se molar concentration is between 0.90:0·88: 0·22: 2.20 〜M0 : 〇72 : 〇18 :丄9〇' 〇8. The method for producing a CIS-based powder according to claim 1, wherein the chimeric solvent is dimethyl oxime; the starting material containing Cu is CuC12.2H2〇; the starting material containing ruthenium is a combination of InClr4H2 〇 and Ga; the starting material containing μ is: he is; CuClr2H20 'InCl3.4H20, the molar concentration of Ga and Na2Se is between 0.90 : 0.88 : 〇 '22 : 2.20 ~ 1.10 : 〇 · 72 : 0.18 : 1.90 between. 9. The method according to the invention of claim 3, wherein the chimeric solvent is ethylenediamine; the starting material containing Cu 疋CuCl '6 Hai contains a starting material of μ丨It is a group of InCl3.4H2 〇 and Ga, the starting material containing M2 is Se; the Mohr concentration of CuCl, InCl3.4H20, Ga and Se is 0.90 : 0.88 : 0.22 : 2.20~ - 1.1〇· 0.72: 0.18: 1·9〇. , 10. According to the scope of the 4 patents! The method for producing a cis-based powder according to the invention: wherein the chimeric solvent is ethylenediamine; the starting material containing Cu is CuCl2 2H2 〇, and the starting material containing M ΐ is ΐηΐ ΐ3.4Η2 The combination of 〇 and Ga 'The starting material containing M2 is Se; cuci2.2H20 '27 I unlined version] Patent No. 097103740 is applied for continuation. Replacement of the monthly case, correction of the unlined specification page replacement page correction period: 100 years October 6曰InCl3-4H2〇' Ga M Se έΑ The Mohr concentration is between 0.90 : 0.88 : 〇·22:2·20 ~1·10:0·7^0·18:1·90. U. The method for producing a powder according to item (3) of claim i wherein the inert gas in the reaction tank is selected from the group consisting of N2, Ar, He, or a combination thereof; the chimeric solvent The amount used is between 5 〇 Q / 〇 ~ 90% of the liquid level of the reaction tank. 12. The method for producing a CIS-based powder according to the above-mentioned claim, wherein the reflux temperature in the reaction tank is between 9 〇〇c and 3 〇 (rc, and the reflux of the 5 liter reaction tank) The time is between 4 hours and 48 hours. 13. A method for producing a CIS target, comprising the following steps: (a) filling a mold in a cavity as claimed in the first to the twentieth The CIS powder obtained by the method of any one of the items; (b) applying a pressure to the cavity under a pressure of between 10 2 Torr and 1 〇 -5 T rr to form a purification chamber (c) applying the temperature of the powder in the chamber to a predetermined temperature and holding the temperature for a predetermined time 'where' the temperature increase rate is between 2. (: /min~1 〇°C/min The predetermined temperature is between 5 〇〇 ° c and 800. (: between and the predetermined time is between 1 hour and 8 hours; (d) the powder in the purification chamber is boosted up to one The predetermined pressure is held for a predetermined period of time to cause the CIS-based powder to obtain powder densification energy via the predetermined temperature and a predetermined pressure, wherein the pressure-up rate Between 1 MPa/min and 3 MPa/min, the predetermined pressure is between 60 MPa and 180 MPa and the predetermined time is S 28 1353344 4 Patent application No. 097103740 After the unlined specification replacement page correction date: 100 years October 6 曰 - between 1 hour and 8 hours; and (e) remove the predetermined pressure and introduce inert gas into the purification chamber to cool the Purify the cavity. 2929
TW97103740A 2008-01-31 2008-01-31 Method for producing copper indium chalcogenides p TWI353344B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW97103740A TWI353344B (en) 2008-01-31 2008-01-31 Method for producing copper indium chalcogenides p
US12/249,194 US20090196817A1 (en) 2008-01-31 2008-10-10 Method for making a copper indium chalcogenides powder
DE602008006346T DE602008006346D1 (en) 2008-01-31 2008-12-10 Process for the preparation of copper indium chalcogenide powder
AT08171213T ATE506325T1 (en) 2008-01-31 2008-12-10 METHOD FOR PRODUCING COPPER INDIUM CHALCOGENIDE POWDER
EP08171213A EP2085362B1 (en) 2008-01-31 2008-12-10 Method for making a copper indium chalcogenides powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97103740A TWI353344B (en) 2008-01-31 2008-01-31 Method for producing copper indium chalcogenides p

Publications (2)

Publication Number Publication Date
TW200932679A TW200932679A (en) 2009-08-01
TWI353344B true TWI353344B (en) 2011-12-01

Family

ID=44865676

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97103740A TWI353344B (en) 2008-01-31 2008-01-31 Method for producing copper indium chalcogenides p

Country Status (1)

Country Link
TW (1) TWI353344B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4831258B2 (en) * 2010-03-18 2011-12-07 三菱マテリアル株式会社 Sputtering target and manufacturing method thereof
JP5418463B2 (en) * 2010-10-14 2014-02-19 住友金属鉱山株式会社 Method for producing Cu-Ga alloy sputtering target
TWI424078B (en) * 2010-10-28 2014-01-21 Heliohawk Optoelectronics Corp Method for Making Copper Indium Gallium Sulfur Sulfur Pentane Target

Also Published As

Publication number Publication date
TW200932679A (en) 2009-08-01

Similar Documents

Publication Publication Date Title
Kumar et al. Vacancy engineering in semiconductor photocatalysts: implications in hydrogen evolution and nitrogen fixation applications
Jing et al. Sb3+ doping-induced triplet self-trapped excitons emission in lead-free Cs2SnCl6 nanocrystals
Cheng et al. Lead-free, two-dimensional mixed germanium and tin perovskites
Mahor et al. Synthesis and near-infrared emission of Yb-doped Cs2AgInCl6 double perovskite microcrystals and nanocrystals
Gao et al. Synthesis of unique ultrathin lamellar mesostructured CoSe2− amine (protonated) nanobelts in a binary solution
Xiong et al. Synthesis and characterization of CuAlO2 and AgAlO2 delafossite oxides through low-temperature hydrothermal methods
Wang et al. Additive-modulated evolution of HC (NH2) 2PbI3 black polymorph for mesoscopic perovskite solar cells
Miao et al. Z-scheme Bi/Bi2O2CO3/layered double-hydroxide nanosheet heterojunctions for photocatalytic CO2 reduction under visible light
Yang et al. Synthesis of porous ZnS: Ag2S nanosheets by ion exchange for photocatalytic H2 generation
Dash et al. Microwave synthesis, photoluminescence, and photocatalytic activity of PVA-functionalized Eu3+-doped BiOX (X= Cl, Br, I) nanoflakes
Liu et al. Composite-hydroxide-mediated approach for the synthesis of nanostructures of complex functional-oxides
Shen et al. Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn2S4 under visible light irradiation
Chen et al. Ambient facile synthesis of gram-scale copper selenide nanostructures from commercial copper and selenium powder
Khan et al. Effect of oxygen content on the photoelectrochemical activity of crystallographically preferred oriented porous Ta3N5 nanotubes
Kawashima et al. NH3-assisted flux-mediated direct growth of LaTiO2N crystallites for visible-light-induced water splitting
Zhang et al. From 1D Chain to 3D Network: A New Family of Inorganic–Organic Hybrid Semiconductors MO3 (L) x (M= Mo, W; L= Organic Linker) Built on Perovskite-like Structure Modules
Ding et al. Assembling an affinal 0D CsPbBr3/2D CsPb2Br5 architecture by synchronously in situ growing CsPbBr3 QDs and CsPb2Br5 nanosheets: enhanced activity and reusability for photocatalytic CO2 reduction
Zheng et al. Close-packed colloidal SiO2 as a nanoreactor: Generalized synthesis of metal oxide mesoporous single crystals and mesocrystals
Elaouni et al. Bismuth tungstate Bi 2 WO 6: a review on structural, photophysical and photocatalytic properties
Liu Zinc Oxide Nano‐and Microfabrication from Coordination‐Polymer Templates
Wang et al. Self-trapped exciton emission in an Sn (II)-doped all-inorganic zero-dimensional zinc halide perovskite variant
TWI353344B (en) Method for producing copper indium chalcogenides p
CN101519307A (en) Method for preparing CIS powder and target thereof
CN103058265A (en) Preparation method of mesoporous nano flaky zinc oxide powder with high specific surface area
Wei et al. Manipulating luminescence and photocatalytic activities of BiVO4 by Eu3+ ions incorporation

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees