TWI352688B - - Google Patents

Download PDF

Info

Publication number
TWI352688B
TWI352688B TW96144230A TW96144230A TWI352688B TW I352688 B TWI352688 B TW I352688B TW 96144230 A TW96144230 A TW 96144230A TW 96144230 A TW96144230 A TW 96144230A TW I352688 B TWI352688 B TW I352688B
Authority
TW
Taiwan
Prior art keywords
vapor deposition
gas
film
substrate
iron
Prior art date
Application number
TW96144230A
Other languages
Chinese (zh)
Other versions
TW200922871A (en
Inventor
Jyh Ming Ting
Fu Yu Teng
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW96144230A priority Critical patent/TW200922871A/en
Publication of TW200922871A publication Critical patent/TW200922871A/en
Application granted granted Critical
Publication of TWI352688B publication Critical patent/TWI352688B/zh

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

九、發明說明: 【發明所屬之技術領域】 本發明係關於一種奈米破管之製造方法,特別係一 種藉由添加鋁至鐵矽合金催化劑中,使其可在低溫下快速 製造準直性奈米碳管之方法。 【先前技術】 自從奈米碳管被發現以來,有許多研究團隊一直專 注於奈米碳管的場發射特性,然而奈米碳管的方向性在場 發射特性方面佔有相當重要的地位,如何使奈米碳管垂直 於基本表面方向成長,更是目前重要的課題之一。 現今製備奈米碳管的方法,主要包含電弧放電法 (Arc-discharge )、化學氣相沉積法(Chemical Vap〇rIX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD The present invention relates to a method for manufacturing a nanotube, in particular, a method for rapidly producing collimation at a low temperature by adding an aluminum to a ferroalloy catalyst. The method of carbon nanotubes. [Prior Art] Since the discovery of the carbon nanotubes, many research teams have been focusing on the field emission characteristics of the carbon nanotubes. However, the directionality of the carbon nanotubes plays an important role in the field emission characteristics. How to make The growth of the carbon nanotubes perpendicular to the basic surface is one of the most important issues at present. Nowadays, a method for preparing a carbon nanotube mainly includes an arc discharge method (Arc-discharge) and a chemical vapor deposition method (Chemical Vap〇r).

Deposits,CVD )、脈衝雷射蒸鍍(ριι_ Deposition)、電漿輔助化學氣相沉積法(plasma触姐㈣ C VD )、微波電漿化學氣相沉積法(嫩贿^他爾 CVD )及雷射剝削法(iaser咖此⑽)等方法。 而在上述方法中,影響奈米碳管製程溫度與成長速 度的原因,主要是在於該催化劑的組成。催化劑的使用是 化學氣相沉積法合成奈米碳管中相當重要的步驟,其主要 功旎為催化分解碳氫化合物,及讓碳原子在其中擴散,因 此,催化劑之催化活性會直接影響碳管之成長速率,而催 化劑的催化活性則受控於製程溫度的高低。於習知以 CVD或MPCVD製造奈米碳管的製程中,因所採用之催 化劑皆需較高之催化溫度,使得奈米碳管製程溫度皆高於 5 550〇C。 太乎ΐίΓίίΓ高,麟級之勒會相限制且該 ^反成長亦會受到阻礙,此外,⑧會限制奈米碳管 在場發射平面器及積體電路上之應用。因此心乍 溫下準直性成長之奈米碳管,縣本發關作在低 【發明内容】 有鑑於習知技術的缺失,本發明之目的係提供一種 鐵石夕合金催化劑之添加物,以使高準直性之奈♦碳^在低 溫下快速成長;同時’所得之奈米碳管石墨層結構完整: 且奈米碳管管徑亦具高均勻性。此外,本發明提供之方法 可輕易融入傳統原有之製程步驟,方便使用者加/以應用。 本發明另一目的係提供一種具有奈米碳管之基板。 為達上述目的,本發明係提供一種準直性奈米碳管 之製造方法’其包含下列步驟:⑻提供一基板^b)披覆 一鋁薄膜於前述基板上;(c)披覆一鐵矽合金薄膜於前述 铭溥膜上;(d)將前述基板置於化學氣相沉積系統中;及(匀 於前述化學氣相沉積系統中通入含碳氣體及平衡氣體,以 反應生成奈米碳管。 在一較佳實施態樣中,前述步驟(a)之基板係為石夕 基板或玻璃基板。 在一較佳實施態樣中,前述步驟(b)之披覆一銘薄 膜之方法係為藏鑛、化學氣相沉積、物理氣相沉積、電錄 或壓印。其中前述鋁薄膜厚度較佳係為2〜5〇 nm,更佳係 為2〜6 nm ° 人今^乂佳實施態樣中,前述步驟(e)之披覆一鐵石夕 ;:電铲ί係為濺鍍、化學氣相沉積、物理氣相沉 1壓印。其中前述鐵料金薄膜厚度較 5〜50 nm,但不限於此範圍。 門、隹佳實施態樣中,前述步驟(e)及步驟(d)中 V匕含一蝕刻前述鐵矽合金薄膜之步驟。又,前述 氣體較佳係為氫氣、氧氣、氮氣、氨氣或 積::中^秦又’前述侧步驟係可於化學氣相沉 在一較佳實施態樣中,前述步驟(e)之 :】,/驟(e)之平衡驗較佳係為氫氣、氧氣 氨氣或其混合組成之氣體。又,前述步驟(e)之含^ 體及平衡氣體之流量比值較佳係為1/9〜4/9。X、= 驟(相沉積絲微波錢獅化學氣相 si,#金薄膜;及(戰長於前述财合金〇 膜上,長度為40〜50 nm之奈米碳管。 ㈣在:較佳實施態樣中’前述奈米碳管之長度係為 本發明將鋁添加入催化劑層中,藉此 低溫下快速成長,且藉林發明製得之奈米碳 1352688 ifj密度、ifj準直性、結晶性佳及管徑尺寸均勻之特性。 【實施方式】 本發明係關於一種低溫下快速成長準直性奈米碳管 之製造方法’其藉由將不同厚度之鋁薄膜擴散入鐵矽合金 薄膜之催化劑層中,進而使得催化劑層膨脹且非晶化二因 而促進碳擴散至催化劑層並藉此增快奈米碳管的成長速 • 率' … 第一圖係為钱刻鐵石夕合金薄膜(未含紹薄膜)後之 TEM剖面影像圖,其結果顯示蝕刻後僅在催化劑層表面 ^ 形成複數之鐵矽合金顆粒及鐵經氧化後所形成的Fe3〇4顆 • 粒,且催化劑層厚度從原先24 nm膨脹增加至42 nm,由 • 此得知,經蝕刻後鐵矽合金之催化劑層結構會變鬆散,因 而厚度增加。第二圖係為蝕刻鐵矽合金薄膜(含2nm鋁薄 膜)後之TEM剖面影像圖’其結果顯示蝕刻後催化劑層呈 現非晶結構,其表面亦會形成複數顆粒,且膨脹程度相較 • 於未含鋁薄膜之催化劑層更加嚴重,由原先26 nm( 2 nm (Al) + 24 nm (Fe-Si))膨脹至46 nm,此外,催化劑層平 坦的區域之厚度為18 nm,其相較於未含紹薄膜之催化劑 層的平坦區域厚度增加了 50%。再者,由於經由細後紹 薄膜已擴散入鐵矽合金薄膜之催化劑層中,因此第二圖中 無法觀察到鋁薄膜之影像。 第二圖(A)係為蝕刻鐵矽合金薄臈(含2 nm鋁薄膜)後 之fTEM線性掃描之影像圖,其結果顯示蝕刻後2nm之 紹薄臈完全擴散人财合金層巾。第三圖⑻係為沿著第 8 1352688 三圖(A)之直線剖面所標記之成分線性掃描圖,其中橫座 標由左而右係表示距離基板表面之距離。由第三圖(B) 中可付知銘擴散入鐵硬合金薄膜中深度達35 nm,且在離 石夕基板18 nm處,鋁的濃度開始增加,而當其到達28nm 時’铭的濃度達到最大值’此外’由圖中亦可得知紹擴散 之範圍係為18〜38 nm 〇 因此由第一圖至第三圖可知,本發明藉由一常用独 • 刻步驟,使鋁薄膜以擴敢方式進入催化劑層之中,進而達 到添加之效果,而鋁添加之效果可有效使催化劑層之結構 — 更鬆散,進而提高準直性奈米碳管之成長速度。 此外,本發明之技術即便未經餘刻步驟其依然可成 長出奈米碳管’相較於傳統僅含鐵矽合金薄膜之催化劑層 若無經過蝕刻步驟則無法成長出奈米碳管,本發明具有更 顯著之進步,但本發明之技術若經蝕刻步驟,則因^中介 層擴散入鐵矽合金層中,而使鐵矽合金催化劑層 4鬆散’進而提升準直性奈米碳管之成長速率。^更 以下係知:供利用本發明之實施例,然本實施例並非 用以限定本發明,任何熟悉此技藝者,在不脫離本發明之 精神和範圍内,當可作各種之更動與濁飾,因此,本發明 之保護範ϋ ’當視後附之巾請專職贿界定者為準x。 牲奈来躔瞽龙y備 :施例 步驟之準直性奋来石患 備(含2 nm 利用直流減鍵機於-石夕基材上賤鑛一厚度為2腿之 9 紹3,以形成縫,其藏鍍條件為鳴功率為50 w、Deposits, CVD), pulsed laser evaporation (ριι_ Deposition), plasma-assisted chemical vapor deposition (plasma-contact (4) C VD), microwave plasma chemical vapor deposition (Brown Brittle) and Ray Shooting and stripping method (iaser coffee (10)) and other methods. In the above method, the reason for affecting the temperature and growth rate of the carbon carbon control process is mainly due to the composition of the catalyst. The use of a catalyst is a very important step in the synthesis of carbon nanotubes by chemical vapor deposition. Its main function is to catalytically decompose hydrocarbons and allow carbon atoms to diffuse therein. Therefore, the catalytic activity of the catalyst directly affects the carbon nanotubes. The rate of growth, while the catalytic activity of the catalyst is controlled by the temperature of the process. In the process of manufacturing a carbon nanotube by CVD or MPCVD, the catalyst used in the process requires a higher catalytic temperature, so that the temperature of the nanocarbon control process is higher than 5 550 〇C. Too much ΐίΓίί high, the level of the Le will be limited and the anti-growth will also be hindered, in addition, 8 will limit the application of the carbon nanotubes in the field emission plane and integrated circuit. Therefore, the carbon nanotubes of the collimated growth of the heart and the heart are low. [Inventive content] In view of the lack of the prior art, the object of the present invention is to provide an additive of the iron alloy catalyst, The high-collimation Nai ♦ carbon ^ rapid growth at low temperatures; at the same time 'the resulting nano-carbon tube graphite layer structure is complete: and the carbon nanotube diameter is also highly uniform. In addition, the method provided by the present invention can be easily incorporated into the conventional process steps, which is convenient for the user to add/apply. Another object of the present invention is to provide a substrate having a carbon nanotube. In order to achieve the above object, the present invention provides a method for fabricating a collimated carbon nanotube, which comprises the steps of: (8) providing a substrate; b) coating an aluminum film on the substrate; (c) coating an iron a bismuth alloy film on the aforementioned imprinting film; (d) placing the aforementioned substrate in a chemical vapor deposition system; and (passing the above-mentioned chemical vapor deposition system to pass a carbon-containing gas and a balance gas to react to form a nano In a preferred embodiment, the substrate of the step (a) is a stone substrate or a glass substrate. In a preferred embodiment, the method of coating the film of the foregoing step (b) The system is for mining, chemical vapor deposition, physical vapor deposition, electro-recording or imprinting, wherein the thickness of the aluminum film is preferably 2 to 5 nm, and more preferably 2 to 6 nm. In the embodiment, the foregoing step (e) is coated with a slate; the electric shovel is a sputtering, chemical vapor deposition, physical vapor deposition 1 embossing, wherein the iron film thickness is 5 to 50 nm. , but not limited to this range. In the door and the best implementation, the above steps (e) and (d) V匕 includes a step of etching the foregoing iron-bismuth alloy film. Further, the gas is preferably hydrogen, oxygen, nitrogen, ammonia or product: the middle side is in the chemical vapor phase. In a preferred embodiment, the balance of the above step (e): /, (e) is preferably a gas composed of hydrogen, oxygen ammonia or a mixture thereof. Further, the foregoing step (e) includes The ratio of the flow rate of the body and the equilibrium gas is preferably 1/9 to 4/9. X, = (phase deposition silk microwave lion chemical vapor phase si, #金膜; and (the war is longer than the above-mentioned fatty alloy enamel film, The carbon nanotubes are 40 to 50 nm in length. (IV) In the preferred embodiment, the length of the aforementioned carbon nanotubes is that the invention adds aluminum into the catalyst layer, thereby rapidly growing at a low temperature, and borrowing The invention relates to the characteristics of nanofiber 1352688 ifj density, ifj collimation, crystallinity and uniform pipe diameter. [Embodiment] The invention relates to the manufacture of a rapidly growing collimated carbon nanotube under low temperature. a method of diffusing an aluminum film of different thickness into a catalyst layer of a ferroalloy film, The catalyst layer is expanded and amorphized, thereby promoting the diffusion of carbon to the catalyst layer and thereby increasing the growth rate of the carbon nanotubes. The first figure is a thin iron alloy film (not including the film). The post-TEM image of the TEM image shows that after the etching, only a plurality of iron-bismuth alloy particles and Fe3〇4 particles formed by oxidation of the iron are formed on the surface of the catalyst layer, and the thickness of the catalyst layer is increased from the original 24 nm expansion. At 42 nm, it is known that the structure of the catalyst layer of the iron-bismuth alloy is loosened and the thickness is increased after etching. The second figure is the TEM image of the etched iron-bismuth alloy film (containing 2 nm aluminum film). 'The results show that the etched catalyst layer exhibits an amorphous structure, and the surface also forms a plurality of particles, and the degree of expansion is more serious than that of the catalyst layer without the aluminum film, from the original 26 nm ( 2 nm (Al) + 24 The nm (Fe-Si)) swells to 46 nm, and the thickness of the flat region of the catalyst layer is 18 nm, which is 50% larger than the thickness of the flat region of the catalyst layer containing no film. Further, since the film has been diffused into the catalyst layer of the iron-bismuth alloy film through the thin film, the image of the aluminum film cannot be observed in the second figure. The second figure (A) is an image of a fTEM linear scan after etching a thin sheet of iron-bismuth alloy (containing a 2 nm aluminum film). The results show that the thin film of 2 nm after the etching completely diffuses the alloy layer. The third figure (8) is a linear scan of the composition marked along the line profile of Fig. 8 1352688 (A), wherein the abscissa is the distance from the left and right sides to the surface of the substrate. From the third figure (B), it can be diffused into the iron-hard alloy film to a depth of 35 nm, and at 18 nm from the substrate, the concentration of aluminum begins to increase, and when it reaches 28 nm, the concentration of the mark reaches The maximum value 'further' can also be seen from the figure as the range of diffusion is 18~38 nm. Therefore, as can be seen from the first to third figures, the present invention expands the aluminum film by a common single-step process. Dare to enter the catalyst layer to achieve the effect of addition, and the effect of aluminum addition can effectively make the structure of the catalyst layer - more loose, thereby increasing the growth rate of the collimated carbon nanotubes. In addition, the technology of the present invention can grow a carbon nanotube even without a residual step. Compared with a conventional catalyst layer containing only a samarium alloy film, the carbon nanotube cannot be grown without an etching step. The invention has a more significant progress, but the technique of the present invention, if subjected to an etching step, causes the iron-iron alloy catalyst layer 4 to be loosened by the diffusion of the interposer into the iron-bismuth alloy layer, thereby improving the collimated carbon nanotubes. Growth rate. The following is a description of the embodiments of the present invention, and the present embodiments are not intended to limit the present invention. Any one skilled in the art can make various changes and turbidity without departing from the spirit and scope of the present invention. Decoration, therefore, the protection of the present invention, 'when the attached towel, please define the full-time bribe.奈奈来躔瞽龙 y prepared: the collimation of the step of the example of the struggle to get the stone (including 2 nm using the DC reduction button on the - Shixi substrate on the tantalum ore thickness of 2 legs of 9 Shao 3, Forming a slit, the plating condition is 50 watts,

Torr、時間為30秒。接著以直流濺 又機雜-厚度為24 nm之财合金薄膜(賴滚度為 =6:於前述銘薄膜上,形成__,其贿條件 ^ ·贿功率為50 w、卫作壓力:〇 〇1 —、減渡時間3 为鐘。再將前述Fe_Si/A1/Sa於微波電漿辅助化學氣相沉 積糸統中,通入氫氣_前述鐵⑪合金薄 為丄微波功率為500 W、工作壓力:2〇 T〇rr、^ 5分鐘。接著藉由微波電漿加熱前述Fe_Si/Al/si至37〇它, 並通入曱烧與氫氣比例為4 tb 9之組合氣體,可得到一長 ,為42/zm之準直性奈米碳管,其操作條件為:微波^ 率為獅W、工作壓力:25 Torr、成長時間為5分鐘。 nm 步驟之準貧性奈来变管之势備(令2 鋁薄膜) ~~ ~~ 除了將通入氫氣姓刻前述鐵石夕合金薄膜之步驟省略 外,其它係依照實施例1同樣之方法製備出另-長度為 13ym之準直性奈米碳管。 準直jj查盘遥管之製備(含4 rnn 鋁薄膜) 除了將矽基材上濺鍍一鋁薄膜之厚度改成為4⑽, 且其濺鍍條件改為:濺鍍功率為 50 W、工作壓力為〇.01 τ〇ΓΓ、濺鍍時間為ί分鐘,其它係依照實施例1同樣之方 法製備出另-長度為46〃m之準直性奈米碳管。 fe輕全Ljj嫌统之準直性奋来砝管夕y備 钱刻步驟之」g統準直性奋来碳管之絮備(不 ±&mi_ ~ 利用直流濺鑛機於一矽基材上濺鑛一厚度為24 nm 之鐵矽合金薄膜(石夕的濃度為16.67%),以形成Fe_Si/Si, 其濺鍍條件為:濺鍍功率為50 W、工作壓力為〇.01 τ〇ΓΓ、 濺度時間為3分鐘。再將前述Fe_Si/Si置於微波電漿輔助 化學氣相沉積系統中,通入氫氣蝕刻前述鐵矽合金薄膜, 其操作條件為:微波功率為500 W、工作壓力:20 Torr、 钱刻時間為5分鐘。接著藉由微波電漿加熱前述Fe_Si/Si 至370 C ’並通入曱烧與氫氣比例為4比9之組合氣體, 可得到一長度為13以m之傳統準直性奈米碳管,其操作 條件為:微波功率為500 W、工作壓力:25 Torr、成長時 間為5分鐘。 达.較例2 :未經姓刻步驟之傳統車吉神奈米碳營之事据 鋁簿膜) 除了將通入氫氣餘刻前述鐵石夕合金薄膜之步驟省略 外,其它係依照比較例1同樣之方法製備,但僅獲得熱分 解礙沉積,無法製備出奈米碳管。 將前述利用本發明之方法製得及傳統方法之準直性 奈米碳管進行分析比較,其結果如下所述: 第四圖(A)係為比較例1之奈米碳管之SEM剖面影像 1352688 圖’第四圖(B)則係為實施例1之奈米碳管之sem剖面影 像圖’其結果顯示’實施例1之奈米碳管相較於比較例1 之奈米碳管有較好之準直性。 第五圖(A)係為比較例2奈米碳管之SEM剖面影像 圖,其結果顯示若不經蝕刻步驟,只蒸鍍鐵矽合金薄膜做 催化劑,,其奈米碳管無法成長。第五圖(B)係為實施例2 奈米碳官之SE1V[剖面影像圖,由圖中結果得知,當相較 於比較例2多蒸鍍一銘薄膜後,即便未經姓刻步驟,其依 然可成長出一長度為13am之奈米碳管,而所獲得之長 度相當=奈米碳管成長於經蝕刻後之鐵矽合金催化劑層 上所獲得之長度。由此可知,經本發明添加銘至鐵石夕合金 催化舰,無論衫錢倾刻麵,相餘傳統製備方 法,本發明之方法皆可製H更佳之準直性奈米碳管。 综上所述,本發明藉由將鋁中介層擴散入催化劑層 中之=術’進而使得催化劑層雜且非晶化,藉此增快奈 米碳管在低溫的成長速率,由傳統習知技術2 的成長速率增加至8.4Mm/min的成長速率,此外,藉由 製得之奈米碳管具有高均勻性、高密度、 问準直!·生且s徑尺寸均勻、結晶性佳之性質。 其它實施態樣 a 於本發明書之特徵係可使用任何方式結 :的特k取:所ΐ露之特徵可使用相同、相等或相似目 代此’除了特別陳述強調處之外,本說 日句路之特徵係為—系列鱗或相似特徵中的一個 12 1352688Torr, time is 30 seconds. Then, with a DC splash and a machine-thickness-thickness alloy film with a thickness of 24 nm (the radiance is =6: on the aforementioned Ming film, forming __, its bribe condition ^ · bribe power is 50 w, Wei Zuo pressure: 〇 〇1—, the time of the reduction is 3, and the Fe_Si/A1/Sa is in the microwave plasma-assisted chemical vapor deposition system, and the hydrogen is introduced into the system. The iron alloy is thin and the microwave power is 500 W. Pressure: 2 〇T 〇rr, ^ 5 minutes. Then heat the aforementioned Fe_Si/Al/si to 37 藉 by microwave plasma, and pass a combination gas of simmering and hydrogen ratio of 4 tb 9 to obtain a long It is a 42/zm collimated carbon nanotube with operating conditions of: microwave ^ rate lion W, working pressure: 25 Torr, and growth time of 5 minutes. nm step of quasi-poor nature Preparation (Order 2 aluminum film) ~~~~ In addition to the step of introducing the hydrogen gas to the above-mentioned iron alloy film, the other method was the same as in Example 1 to prepare a collimated nanometer having a length of 13 μm. Carbon tube. Preparation of collimation jj check disk (including 4 rnn aluminum film) In addition to changing the thickness of the aluminum film sputtered on the tantalum substrate to 4 (10), And the sputtering conditions were changed to: sputtering power of 50 W, working pressure of 〇.01 τ 〇ΓΓ, sputtering time of ί minutes, and other methods were prepared in the same manner as in Example 1 and the length was 46 〃m. Collimated carbon nanotubes. Fe light full Ljj suspicion of the collusion of the enthusiasm of the 夕 y y 备 备 备 备 备 」 」 g g g g g g g g g g g g g g g g g ( ( ( ( ( ( ( ( ( ( ( A DC sputtering machine was used to sputter a 24 nm thick iron-bismuth alloy film (the concentration of Shi Xi was 16.67%) to form Fe_Si/Si. The sputtering condition was: sputtering power was 50. W, the working pressure is 〇.01 τ〇ΓΓ, and the splattering time is 3 minutes. Then the Fe_Si/Si is placed in a microwave plasma-assisted chemical vapor deposition system, and the foregoing iron bismuth alloy film is etched by hydrogen gas, and the operation thereof is performed. The conditions are: microwave power is 500 W, working pressure: 20 Torr, and the engraving time is 5 minutes. Then the above Fe_Si/Si to 370 C ' is heated by microwave plasma and the ratio of simmering to hydrogen is 4 to 9 Combined gas, a conventional collimated carbon nanotube with a length of 13 m can be obtained under the operating conditions of microwave power of 500 W. Working pressure: 25 Torr, growth time is 5 minutes. Da. Comparative example 2: The traditional car Jishen Nano carbon camp without the surname step according to the aluminum film) In addition to the introduction of hydrogen, the aforementioned iron alloy film The steps were omitted except that the other methods were prepared in the same manner as in Comparative Example 1, but only the thermal decomposition barrier was obtained, and the carbon nanotubes could not be prepared. The above-mentioned collimated nano-particles obtained by the method of the present invention and the conventional method were prepared. The carbon tubes were analyzed and compared, and the results are as follows: The fourth graph (A) is the SEM cross-sectional image of the carbon nanotube of Comparative Example 1 1352688. The fourth graph (B) is the nanometer of Example 1. The sem cross-sectional image of the carbon tube showed that the carbon nanotube of Example 1 had better collimation than the carbon nanotube of Comparative Example 1. Fig. 5(A) is a SEM cross-sectional image of the carbon nanotube of Comparative Example 2, and the results show that if the iron-bismuth alloy film is vapor-deposited without using an etching step, the carbon nanotubes cannot grow. The fifth figure (B) is the SE1V [section image image of the carbon carbon official of Example 2, and it is known from the results of the figure that when the film is vapor-deposited compared with the comparative example 2, even if there is no step in the name It can still grow a carbon nanotube with a length of 13am, and the length obtained is equivalent to the length of the carbon nanotube grown on the etched iron-iron alloy catalyst layer. It can be seen that, by adding the Ming to the iron-stone alloy catalytic ship according to the present invention, the method of the present invention can produce a better collimated carbon nanotube of the H, regardless of the face of the shirt. In summary, the present invention makes the catalyst layer heterogeneous and amorphized by diffusing the aluminum interposer into the catalyst layer, thereby increasing the growth rate of the carbon nanotube at a low temperature, as is conventionally known. The growth rate of Technology 2 is increased to a growth rate of 8.4 Mm/min. In addition, the carbon nanotubes produced by the method have high uniformity, high density, and quasi-straight! · Raw and uniform s-diameter size, good crystallinity . Other embodiments a feature of the present invention may be used in any manner: a special feature: the features disclosed may be the same, equal or similar, and the term is used except for the special statement. The character of the sentence is a series of scales or similar features 12 1352688

實施例。 此外,依據本說明書揭露之内容,熟悉本技術領域 者係可輕易依據本發明之基本特徵,在不脫離本發明之 精神與範圍内,針對不同使用方法與情況作適當改變與 修飾,因此,其它實施態樣亦包含於申請專利範圍中。 13 1352688 【圖式簡單說明】Example. In addition, according to the disclosure of the present specification, those skilled in the art can easily make appropriate changes and modifications to different methods and situations without departing from the spirit and scope of the present invention. The implementation aspect is also included in the scope of the patent application. 13 1352688 [Simple description of the schema]

㈣二,係_鐵♦合金_(未含_膜)後之1'EM 剖面影像圖。 第二圖係為綱鐵石夕合金薄膜(含2麵 之 TEM剖面影像圖。 第二圖(A)係為钱刻鐵矽合金薄膜(含2腿鋁薄膜)後 之STEM線性掃插之影像圖。 第(4) Second, the image of the 1'EM profile after the _ iron ♦ alloy _ (without _ film). The second picture shows the TEM image of the gangue alloy film (including the TEM image of the two sides. The second picture (A) is the image of the STEM linear sweep after the carbon-stained iron alloy film (including the 2-leg aluminum film). First

成分線性掃描圖 第四圖(A)係為比較例1之奈米碳管之sem剖面影像 圖。 第四圖(B)係為實施例1之奈米碳管之SEM剖面影像 圖。 第五圖(A)係為比較例2基板上熱分解碳沉積之SEM 剖面影像圖。 第五圖(B)係為實施例2奈米碳管之SEM剖面影像Linear Scanning Chart of Component The fourth graph (A) is a sem cross-sectional image of the carbon nanotube of Comparative Example 1. The fourth graph (B) is a SEM cross-sectional image of the carbon nanotube of Example 1. Fig. 5(A) is a SEM cross-sectional image view of the thermal decomposition carbon deposition on the substrate of Comparative Example 2. Figure 5 (B) is an SEM cross-sectional image of the carbon nanotube of Example 2.

圖。 【主要元件符號說明】 無Figure. [Main component symbol description] None

Claims (1)

1352688_ 公告本 十、申請專利範園: 1. 一種準直性奈米碳管之製造方法,其包含下列步驟: (a) 提供一基板; (b) 披覆一铭薄膜於前述基板上; (c) 披覆一鐵矽合金薄膜於前述鋁薄膜上; (d) 將前述基板置於化學氣相沉積系統中;及 (e) 於前述化學氣相沉積系统中通入含碳氣體及平衡氣 體,以反應生成奈米碳管。 2·如申請專利範圍第1項所述之方法,其中前述步驟(a)之 基板係為梦基板或玻璃基板。 3·如申請專利範圍第1項所述之方法,其中前述步驟(b)之 披覆一鋁薄膜之方法係為濺鍍、化學氣相沉積、物理氣相 沉積、電鑛或壓印。 4·如申請專利範圍第1項所述之方法,其中前述步驟(b)之 銘薄膜厚度係為2〜50 nm。 5. 如申s青專利範圍第4項所述之方法,其中前述紹薄膜厚度 係為2〜6 nm。 6. 如申請專利範圍第1項所述之方法,其中前述步驟(c)之 彼覆一鐵矽合金薄膜之方法係為濺鍍、化學氣相沉積、物 理氣相沉積、電鍍或壓印。 7. 如申請專利範圍第1項所述之方法,其中前述步驟((〇及 步驟(d)中間進一步包含一蝕刻前述鐵矽合金薄膜之步驟。 8. 如申請專利範圍第7項所述之方法,其中前述蝕刻步驟使 用之氣體係為氫氣、氧氣、氮氣、氨氣或其混合組成之氣 體。 15 1352688 9.如申請專利範圍第7項所述之方法,其中前述蝕刻牛 於化學氣相沉積系統中進行。 乂 10.如申請專利範圍第1項所述之方法,其中前述步驟 操作溫度係為370°C〜460。 如申請專利範圍第1項所述之方法,其中前述步驟(e 化學氣相沉積系統之操作功率係為5〇〇〜丨W、工作壓六 係為10〜50Torr。 刀1352688_ Announcement 10, Patent Application Park: 1. A method for manufacturing a collimated carbon nanotube comprising the steps of: (a) providing a substrate; (b) coating a film on the substrate; c) coating a ferroalloy film on the aluminum film; (d) placing the substrate in a chemical vapor deposition system; and (e) introducing a carbon-containing gas and a balance gas into the chemical vapor deposition system In order to generate a carbon nanotube. 2. The method of claim 1, wherein the substrate of the step (a) is a dream substrate or a glass substrate. 3. The method of claim 1, wherein the method of coating an aluminum film in the step (b) is sputtering, chemical vapor deposition, physical vapor deposition, electrowinning or embossing. 4. The method of claim 1, wherein the film thickness of the foregoing step (b) is 2 to 50 nm. 5. The method of claim 4, wherein the film thickness is 2 to 6 nm. 6. The method of claim 1, wherein the method of coating the iron-iron alloy film of the foregoing step (c) is sputtering, chemical vapor deposition, physical vapor deposition, electroplating or embossing. 7. The method of claim 1, wherein the step (the middle of the step (d) further comprises the step of etching the foregoing iron-bismuth alloy film. 8. The method of claim 7 The method wherein the gas system used in the foregoing etching step is a gas composed of hydrogen, oxygen, nitrogen, ammonia or a mixture thereof. The method of claim 7, wherein the etching of the cattle in the chemical gas phase The method of claim 1, wherein the method of the first aspect of the invention is 370 ° C to 460. The method of claim 1, wherein the step (e) The operating power of the chemical vapor deposition system is 5〇〇~丨W, and the working pressure is 10~50 Torr. 12.如申請專利範圍第1項所述之方法,其巾前述步驟⑷ η 氣體係為以、乙烧、丙燒、苯或其混合組成之氣體。 申請專利範圍第i項所述之方法,其中前述步驟⑷之 縣衡乳體係為統、氧氣、氮氣、氨氣或其混合組成之氣 專利範圍第1項所述之方法,其中前述步驟⑷之 氣體及平衡氣體之流量比值係為1/9〜4/9。12. The method of claim 1, wherein the step (4) of the η gas system is a gas consisting of, ethidium, propane, benzene or a mixture thereof. The method of claim i, wherein the step (4) of the county is a method according to the first aspect of the invention, wherein the step (4) is the gas, the oxygen, the nitrogen, the ammonia or the mixture thereof. The flow ratio of the gas to the equilibrium gas is 1/9 to 4/9. 驟係 (e)之 專利範圍第1項所述之方法,其中前述步驟(e)之 匕予軋相沉積係為微波電漿辅助化學氣相沉 16.-種具有奈米碳管之基板,其包含: (a) —添加鋁之鐵矽合金薄膜;及 (b) 成長於前述鐵矽合金薄膜上,長度為40〜50 nm之奈 米碳管。 17 專利範圍第16項所述之基板,其中前述奈米碳管之 長又係為42〜46 nm。The method of claim 1, wherein the step (e) of the step (e) is to apply a vapor deposition phase to a microwave plasma-assisted chemical vapor deposition (16)-substrate having a carbon nanotube. The method comprises: (a) an aluminum-iron-iron alloy film added; and (b) a carbon nanotube having a length of 40 to 50 nm grown on the foregoing iron-bismuth alloy film. The substrate of claim 16, wherein the length of the carbon nanotubes is 42 to 46 nm.
TW96144230A 2007-11-22 2007-11-22 Preparing aligned carbon nanotube by adding a ferrosilicon catalyst containing aluminum TW200922871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96144230A TW200922871A (en) 2007-11-22 2007-11-22 Preparing aligned carbon nanotube by adding a ferrosilicon catalyst containing aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96144230A TW200922871A (en) 2007-11-22 2007-11-22 Preparing aligned carbon nanotube by adding a ferrosilicon catalyst containing aluminum

Publications (2)

Publication Number Publication Date
TW200922871A TW200922871A (en) 2009-06-01
TWI352688B true TWI352688B (en) 2011-11-21

Family

ID=44728367

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96144230A TW200922871A (en) 2007-11-22 2007-11-22 Preparing aligned carbon nanotube by adding a ferrosilicon catalyst containing aluminum

Country Status (1)

Country Link
TW (1) TW200922871A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI494268B (en) * 2011-03-25 2015-08-01 Univ Nat Cheng Kung Method of manufacturing aligned carbon nanotubes
JP5808468B1 (en) * 2014-09-01 2015-11-10 ニッタ株式会社 Catalyst particle holding structure for producing carbon nanotube and method for producing the same

Also Published As

Publication number Publication date
TW200922871A (en) 2009-06-01

Similar Documents

Publication Publication Date Title
US7754182B2 (en) Carbon nanotube array and method for forming same
Chen et al. Controlling steps during early stages of the aligned growth of carbon nanotubes using microwave plasma enhanced chemical vapor deposition
JP2007297698A (en) Method for manufacturing dlc film
TWI352688B (en)
TWI312380B (en)
Chen et al. The formation conditions of carbon nanotubes array based on FeNi alloy island films
JP2005239481A (en) Metal occlusion carbon nanotube aggregate, its manufacturing method, metal occlusion carbon nanotube, metal nanowire, and its manufacturing method
KR20070072849A (en) Synthesis of a self assembled hybrid of ultrananocrystalline diamond and carbon nanotubes
Yang et al. Effects of oxygen and nitrogen on carbon nanotube growth using a microwave plasma chemical vapor deposition technique
Teng et al. Growth of CNTs on Fe–Si catalyst prepared on Si and Al coated Si substrates
KR100891466B1 (en) Density controlled carbon nanotube field emission source, preparation method thereof, and density control method of carbon nanotube
JP2010083756A (en) Method of manufacturing carbon-based thin film
Ou et al. Characteristics of graphene-layer encapsulated nanoparticles fabricated using laser ablation method
Lee et al. Effects of post treatment on the field emission properties of CNTs grown by ECR-CVD
TW444067B (en) Process for preparing aligned carbon nanotubes and metal nanolines in the nanotubes
Chang et al. Low-temperature process in growing carbon nanotube
TWI314917B (en) Method for manufacturing carbon nanotubes array
Eum et al. Effect of gas phase composition cycling on/off modulation numbers of C2H2/SF6 flows on the formation of geometrically controlled carbon coils
Yamagiwa et al. One-step liquid-phase synthesis of carbon nanotubes with catalyst precursors of organometallic complexes
TWI321805B (en) Method for making a field emission cathode
Wang et al. Microwave plasma enhanced chemical vapor deposition growth of few-walled carbon nanotubes using catalyst derived from an iron-containing block copolymer precursor
Deng et al. Electron transferring from titanium ion irradiated carbon nanotube arrays into vacuum under low applied fields
JP2006219363A (en) Carbon thin film and its manufacturing method
Wang et al. Synthesis and improved electron field emission characteristics of Au-coated nano-carbon needle films
Vigolo et al. Localized CVD growth of oriented and individual carbon nanotubes from nanoscaled dots prepared by lithographic sequences