TWI352407B - Composite substrate structure for high heat dissip - Google Patents

Composite substrate structure for high heat dissip Download PDF

Info

Publication number
TWI352407B
TWI352407B TW96114580A TW96114580A TWI352407B TW I352407 B TWI352407 B TW I352407B TW 96114580 A TW96114580 A TW 96114580A TW 96114580 A TW96114580 A TW 96114580A TW I352407 B TWI352407 B TW I352407B
Authority
TW
Taiwan
Prior art keywords
heat dissipation
high heat
dielectric layer
composite substrate
substrate structure
Prior art date
Application number
TW96114580A
Other languages
Chinese (zh)
Other versions
TW200843053A (en
Inventor
Jen Dong Hwang
Cheng Chou Wong
Chih Jong Chang
Cheng Chuan Wang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW96114580A priority Critical patent/TWI352407B/en
Publication of TW200843053A publication Critical patent/TW200843053A/en
Application granted granted Critical
Publication of TWI352407B publication Critical patent/TWI352407B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

1352407 九、發明說明: " 【發明所屬之技術領域】 本發明係有關於一種高散熱複合基板結構,特別是有 關於一種具有金屬基複合基材的高散熱複合基板結構。 【先前技術】 隨著高功率高亮度發光二極體(HB LED)的發展,LED φ 應用於顯示器背光源、迷你型投影機、照明及汽車燈源等 市場潛力愈來愈引起注意。但由於目前LED的輸入功率只 有15〜20%轉換成光,近80〜85%轉換成熱,這些熱如無法 適時排出至環境,將使LED晶片的界面溫度過高而影響其 發光強度及使用壽命。因此LED的熱管理問題愈來愈受到 重視。欲降低LED的界面溫度,必須從LED封裝階段就 要考慮其散熱問題,以降低LED模組的熱阻抗,而其中最 重要的就是散熱基板的材料選用及介電層(絕緣層)的熱傳 • 導改善。 由中華民國及國外專利檢索發現有幾種電子半導體元 件的散熱基板,如中華民國第1239613號專利是以高熱導 和低膨脹係數的粉體混合,然後壓合該混合後之粉體成為 固形體,再以燒結的方法將該固形體燒結成高導熱低膨脹 之散熱基板;或者使該固形體燒結成多孔質的預形體,再 以高導熱的材料(Al,Cu)滲透進該燒結體之孔隙内,以形成 高導熱低膨脹係數之散熱基板。此方法所得到之複合材料 的散熱基板是以粉末冶金的方法所得到的,其工序較長成 0954-A22084TWF(N2):P54950138TW:chentf 5 1352407 本亦較高,同時很難得到真正高熱傳導係數的散熱基板。 中華民國弟1246394號專利所揭露的是以電路層、絕 緣層和金屬板三層結構所組成的導熱基板,藉金屬板上加 工之崁槽和其它層接合,此製程所製造出來的導熱基板有 如下的問題,因金屬基板之熱膨脹係數分別為23 PPm/K(A1) 及17 ppm/K(Cu)與半導體發光元件的熱膨脹係數(GaN:5.4 ppm/K,InP : 4.6 ppm/K,GaP : 5.3 pPm/K)差異相當大’ 在熱循環運作下容易產生熱變形,影響元件使用可靠度及 壽命,且其使用的絕緣層的熱傳導性不传,低於1 W/m.K, 所以使製造出來的導熱基板導熱效果木打折扣。 在W02006045267專利揭露直换銅接合基板(Direct bonding copper),係在陶瓷(Al2〇3、AlN)板與銅箔之間,先 通入氧氣使其與Cu反應而在銅板表面形成CuO,同時使 純銅的熔點由1083°C降低至1〇65。(:的共晶溫度。接著加熱 至高溫使氧化銅(CuO)與氧化紹或氣化銘(Al2〇3或A1N) 反應形成化合物,而使銅箔與陶究介電層緊密接合在一 起,具有很好的界面接合強度。此種具絕緣的陶瓷基板其 且介電層如為Al2〇3則其熱傳導率為24 W/nvK ’熱膨脹 係數為7.3 ppm/K;如為A1N則其熱傳導率為170 W/m.K, 熱膨脹係數為5.6 ppm/K,比較沒有〆據金屬基板所存在的 熱膨脹係數與半導體元件不匹配之問題,同時適合於高溫 環境及高功率或高電流電子半導體裝襄之使用。但此案所 使用的方法是尚溫熱擴散接合的方法’不但製程時間很 長、溫度高、環境要求又嚴苛,製作成本高且陶瓷基板的 0954-A22084TWF(N2):P54950138TW:chentf 6 1352407 ·' 尺寸限於4.5平方英寸以下,益、本田 “ J Γ無法用於大面積的基板上。 ··· 吴國專利US_6,5〇U〇3中揭露有關發光二極體之散熱 構造。其由發光二極體、電路板、和散熱基座所組成,其 中發光二極體由其所謂的散熱板和散熱基板兩層 結構將熱傳導出去,其中散熱基座為金屬材料所構成,一 般金屬材料之熱傳導高的如銘或鋼其熱膨脹係數相對的也 非常高’因此容易造成和半導體構件無法匹配而破壞,同 時其間之接合係=機械結構所完成,如銷(pin)和焊接的方 式接合,這不僅各易造成施工時結構體的變形和破壞同時 也容易產生熱阻抗的提升,使半導體元件無法有效率的將 熱傳導出去而造成破壞。 【發明内容】 本發明的主要目的是以金屬基複合材料作為電子半導 體元件的散熱基板,其不但比一般常用的印刷電路板、金 屬基板或陶瓷基板具有極高的熱傳導率及熱擴散率,能使 • 半導體元件所產生的熱很迅速的擴散和傳遞出去,同時金 屬基複合材料具有可以匹配半導體元件的熱膨脹係數,使 半導體元件不會在操作過程中因熱循環而產生過大的熱應 力和熱變形,造成電路失效及界面脫層等問題,增加半導 體元件的可靠性及使用壽命。 本發明之尚散熱複合基板的結構的一實施例包括一基 材、一介電層以及一電路層。基材包括一金屬複合材料 (Metal matrix composite base)。介電層係形成於基材上,電 路層係开>成於介電層上。一半導體元件係熱連接於基材且 0954-A22084TWF(N2) :P54950138TW:chentf p 11連接於該電路層,藉此半導體元件所產生的熱經由基 #傳遞至外界或散熱裝置上。 在上述實施例中,金屬複合材料包括一基地材料以及 強化材料,強化材料係摻雜於基地材料中。 在上述實施例中,強化材料可包括碳纖維(粉末狀、 知'纖維或長纖維)、石墨粉、天然石墨、鱗狀石墨或發泡 專或者疋以上材料兩種以上的混合。该強化材料也 可包括陶瓷顆粒及鑽石粉末,或陶瓷顆粒及鑽石粉末與上 迷含碳材料的混合。 在上述實施例中,基地材料可包括鋁、銅、辞、鍈、 鈦、銀及其合金。 、 上述實施例更包括一金屬化層,形成於基材與介 之間。 电層 在上述實施例中’金屬化層可為Ni、Ni-P、Ni-C〇、Sn、1352407 IX. INSTRUCTION DESCRIPTION: TECHNICAL FIELD The present invention relates to a high heat dissipation composite substrate structure, and more particularly to a high heat dissipation composite substrate structure having a metal matrix composite substrate. [Prior Art] With the development of high-power high-brightness light-emitting diodes (HB LEDs), the market potential of LED φ for display backlights, mini-projectors, lighting, and automotive light sources has become more and more noticeable. However, since the input power of the LED is only 15~20% converted into light, and nearly 80~85% is converted into heat, if the heat is not discharged to the environment in time, the interface temperature of the LED chip will be too high, which will affect its luminous intensity and use. life. Therefore, the thermal management of LEDs has received increasing attention. In order to reduce the interface temperature of the LED, it is necessary to consider the heat dissipation problem from the LED packaging stage to reduce the thermal impedance of the LED module, and the most important one is the material selection of the heat dissipation substrate and the heat transfer of the dielectric layer (insulation layer). • Improved. A heat-dissipating substrate of several electronic semiconductor components was found by the Republic of China and foreign patent searches. For example, the Republic of China No. 1239613 patent is a mixture of powders with high thermal conductivity and low expansion coefficient, and then the powder is solidified by pressing the mixture. And then sintering the solid body into a heat-dissipating substrate having high thermal conductivity and low expansion by sintering; or sintering the solid body into a porous preform, and then infiltrating the sintered body with a material having high thermal conductivity (Al, Cu) Within the pores to form a heat-dissipating substrate having a high thermal conductivity and a low expansion coefficient. The heat-dissipating substrate of the composite material obtained by the method is obtained by a powder metallurgy method, and the process is longer to 0954-A22084TWF (N2): P54950138TW: chentf 5 1352407 is also high, and it is difficult to obtain a truly high heat transfer coefficient. Heat sink substrate. The Chinese Patent Publication No. 1,426,394 discloses a heat-conducting substrate composed of a three-layer structure of a circuit layer, an insulating layer and a metal plate. The heat-transfer substrate manufactured by the process is bonded by a groove formed by a metal plate and other layers. The following problems occur because the thermal expansion coefficients of the metal substrate are 23 PPm/K (A1) and 17 ppm/K (Cu) and the thermal expansion coefficient of the semiconductor light-emitting element (GaN: 5.4 ppm/K, InP: 4.6 ppm/K, GaP) : 5.3 pPm/K) is quite large'. It is prone to thermal deformation under thermal cycling, affecting component reliability and life, and the thermal conductivity of the insulating layer used is not transmitted, less than 1 W/mK, so manufacturing The thermal conductivity of the heat-conducting substrate comes out of the wood. In WO2006045267, a direct bonding copper is introduced between a ceramic (Al2〇3, AlN) plate and a copper foil, and oxygen is first introduced to react with Cu to form CuO on the surface of the copper plate, and at the same time The melting point of pure copper is reduced from 1083 ° C to 1 〇 65. The eutectic temperature of (: is then heated to a high temperature to cause copper oxide (CuO) to react with oxidized or gasified (Al2〇3 or A1N) to form a compound, and the copper foil is tightly bonded to the ceramic dielectric layer. It has good interfacial bonding strength. The insulating ceramic substrate has a thermal conductivity of 24 W/nvK 'thermal expansion coefficient of 7.3 ppm/K if the dielectric layer is Al2〇3; and thermal conductivity if it is A1N. It has a thermal expansion coefficient of 5.6 ppm/K of 170 W/mK. It is not suitable for the mismatch of the thermal expansion coefficient of the metal substrate and the semiconductor component. It is also suitable for use in high temperature environments and high power or high current electronic semiconductor devices. However, the method used in this case is a method of thermal diffusion bonding. 'Not only the process time is long, the temperature is high, the environmental requirements are harsh, the fabrication cost is high, and the ceramic substrate is 0854-A22084TWF(N2): P54950138TW:chentf 6 1352407 ·' Size is limited to 4.5 square inches or less, Yi, Honda "J Γ can not be used on large-area substrates. ··· Wu Guo patent US_6,5〇U〇3 reveals the heat dissipation structure of the light-emitting diode. By hair The diode, the circuit board, and the heat dissipation base are formed, wherein the light-emitting diode is thermally conducted by a two-layer structure of a so-called heat dissipation plate and a heat dissipation substrate, wherein the heat dissipation base is made of a metal material, and the heat conduction of the general metal material is generally performed. High, such as Ming or steel, has a very high coefficient of thermal expansion, so it is easy to cause damage to the semiconductor components, and the joint between them is completed by mechanical structures, such as pin and solder joints. It is easy to cause deformation and damage of the structure at the time of construction, and it is easy to cause an increase in thermal resistance, so that the semiconductor element cannot efficiently conduct heat and cause damage. [The present invention] The main object of the present invention is to use a metal matrix composite material as a metal composite material. The heat-dissipating substrate of the electronic semiconductor component not only has a higher thermal conductivity and thermal diffusivity than a commonly used printed circuit board, metal substrate or ceramic substrate, but also enables the heat generated by the semiconductor element to be rapidly diffused and transmitted. At the same time, the metal matrix composite has a coefficient of thermal expansion that can match the semiconductor component. The semiconductor element does not cause excessive thermal stress and thermal deformation due to thermal cycling during operation, causing problems such as circuit failure and interface delamination, and increasing the reliability and service life of the semiconductor component. An embodiment of the structure includes a substrate, a dielectric layer, and a circuit layer. The substrate includes a metal matrix composite base. The dielectric layer is formed on the substrate, and the circuit layer is opened. On the dielectric layer, a semiconductor component is thermally connected to the substrate and 0954-A22084TWF(N2): P54950138TW:chentf p 11 is connected to the circuit layer, whereby heat generated by the semiconductor component is transmitted to the outside via the base # or heat dissipation On the device. In the above embodiment, the metal composite material includes a base material and a reinforcing material, and the reinforcing material is doped in the base material. In the above embodiment, the reinforcing material may include a mixture of two or more kinds of carbon fibers (powdered, known as "fiber or long fiber"), graphite powder, natural graphite, scaly graphite or foamed or enamel. The reinforcing material may also include ceramic particles and diamond powder, or ceramic particles and a mixture of diamond powder and the carbonaceous material. In the above embodiments, the base material may include aluminum, copper, rhodium, ruthenium, titanium, silver, and alloys thereof. The above embodiment further includes a metallization layer formed between the substrate and the dielectric. Electrical layer In the above embodiments, the metallization layer may be Ni, Ni-P, Ni-C〇, Sn,

Sn-Zn、Sn-Co、Cr、Cu、Ti、Ag 或 An。 U 在上述實施例中,介電層包括高分子基絕緣材料以 添加材料。添加材料為導熱粉體,並摻雜於高分子式 材料中。 土、心、,象 上述實施例更包括至少-通孔,貫穿介電層而 半導體元件係設於通孔中並與基材保持熱連接。 。 在另一實施例中,半導體元件係設置於介電層上,、 藉由介電層熱連接於基材。 θ 並 為了讓本發明之上述和其他目的、特徵、和優畔处 明顯易十董,下文特舉一較佳實施你卜並配合所附圖.示3 0954-A22084TWF(N2) :Ρ54950138TW:chentf 1352407 詳細說明如下: , 【實施方式】 本案發明之電子半導體發光元件用的高散熱複合基板 結構,主要包括一金屬基複合材料的基材、一高導熱的介 電層(絕緣層)及一電路層。其中該金屬基複合材料的基 材為一石墨強化或碳纖維強化的金屬基複合材料所製成, 具有絕高的熱傳導率(200〜800 W/m.K)及低熱膨脹係數 • (3〜10 ppm/K),對電子半導體的散熱性及降低異質材料之 熱應力有相當大之助益,優於習知的金屬基板及陶瓷直接 接合銅箔基板。同時能在高散熱複合基材上方被覆一層介 電層(絕緣層),主要目的在提供半導體元件和基材之間的 高介電性,提供給半導體裝置作為電路載板之用。 本發明之高散熱複合基板結構,如第1圖所示,主要 係包括一基材10、一介電層14以及一電路層16。介電層 14形成於該基材10上,電路層16形成於介電層14上, • 在介電層14上形成多數個通孔17,通孔17貫穿介電層 14,半導體元件20係設置於通孔17中,並熱接觸於基材 10,另外半導體元件20係以導線18電性連接於電路層16。 其中基材10包括一基地材料以及一強化材料,強化材 料係換雜於基地材料中。強化材料係以石墨纖維(粉末、短 纖維、長纖維…)、石墨粉、鱗狀石墨或發泡石墨或鑽石粉 末等,而基地材料則包括鋁、銅、鋅、鎂、鈦、銀及其合 金。由於金屬基複合材料製成的基材10本身會導電,因此 需覆上一介電層14以便製作電路層16,此介電層14可以 0954-A22084TWF(N2);P54950138TW:chentf 9 1352407 是高分子基絕緣膠材或陶瓷材料(如Al2〇3、Si〇2、Ti02、 MgO、AIN、BN、Si3N4,SiC·.等單體或兩種以上混合物), 其厚度由ΙΟμιη到150μηι不等。介電層的母材(matrix)—般 是以能耐高溫特性的環氧樹酯(epoxy)及聚醯亞胺 (polyimid)為主,而為提高母材的熱傳導率會再添加陶究粉 體(導熱粉體),如A1203、Si02、SiC、BN等,目前使 用絕緣膠材的熱傳導率約在1〜5 W/m.K之間。 在接合半導體元件20處的介電層14上留有通孔17是 因一般使用的介電層14的材料係以高分子基材為主,再添^ 加絕緣導熱的陶瓷粉末來提高其熱傳導率,但其熱傳導$ 一般均在1〜3W/m.K左右,即使用陶瓷絕緣材料,其熱傳 導率亦低於25W/m.K,對黏著在其上面的半導體元件而 言,其熱仍不易傳遞至下面的高導熱複合材料10上,因此 可以在介電層14直接留出通孔17 ’使半導體發光元件可 以直接黏著在高導熱的基材10上。此種做法基本上就是提 供可以Chip on Board或Matrix arrays的散熱基板,一方面 縮短熱傳路徑大大降低封裝層级的熱阻抗,另方面因半導 體元件與複合基板的熱膨脹係數相匹配,亦能降低熱應为 及熱變形之發生而提高元件的可靠度及壽命。 本發明之另一實施例,如第2圖所示,高導熱複合基 板結構包括一金屬基複合材料的基材10、一金屬化層12、 一介電層14及一電路層16所構成。本實施例與第1圖的 實施例的差異在於本實施例多了一金屬化層12,金屬化層 12係包圍基材10而形成。 0954-A22084TWF(N2);P54950138TW:chentf 1352407 · 在接合半導體元件20處的介電層14上則同樣留有通 孔17,通孔17主要目的在使半導體元件20直接接觸到金 屬化層12,縮短熱傳路徑,避開導熱性較差的介電層14。 由於上述所提之金屬基複合材料與其它異質材料不易直接 接合,因此在金屬基複合材料的基材10的表面上先進行金 屬化,如鑛上Ni、Cu、Ti、Cr、Ag或Cu等金屬層12以 利異質材料接合,如與散熱片、熱管、熱電元件、半導體 元件等之錫焊接合,另方面也可以改善表面粗糙度及防止 ® 複材表面脫碳之問題。 第3圖為本發明之高導熱複合基板結構的另一實施例 的示意圖。在本實施例中,半導體元件20係直接設置於介 電層14上,不具備前二實施例之通孔17,並以導線18電 性連接至電路層16。 第4圖為本發明之高導熱複合基板結構的另一實施例 的示意圖。在本實施例中,除了半導體元件20直接設置於 介電層14上之外,與第2圖所示的實施例一樣,在基材 • 10的夕卜圍形成金屬化層12。 發明之效果 本發明之高散熱複合基板結構以高導熱金屬基複合材 料作為電子半導體元件的散熱基材,同時搭配金屬化和介 電層的設計,使電路和散熱基板可以結合在一起。電子半 導體元件可以直接接合於散熱基板上,讓電子半導體元件 所產生的熱大部份可以直接經過金屬化層或金屬基複合材 料將熱傳遞出去,減少傳熱路徑,有效降低封裝層级的熱 0954-A22084TWF(N2):P54950138TW:chentf 1352407 阻。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。Sn-Zn, Sn-Co, Cr, Cu, Ti, Ag or An. U In the above embodiment, the dielectric layer includes a polymer-based insulating material to add a material. The added material is a thermally conductive powder and is doped into a polymeric material. Soil, core, and the like, the embodiment further includes at least a through hole extending through the dielectric layer and the semiconductor component is disposed in the through hole and maintained in thermal connection with the substrate. . In another embodiment, the semiconductor component is disposed on the dielectric layer and thermally coupled to the substrate by a dielectric layer. θ and in order to make the above and other objects, features, and advantages of the present invention obvious, the following is a preferred embodiment and is shown in the accompanying drawings. 3 0954-A22084TWF (N2): Ρ54950138TW:chentf 1352407 is described in detail as follows: [Embodiment] The high heat dissipation composite substrate structure for an electronic semiconductor light emitting device of the present invention mainly comprises a substrate of a metal matrix composite material, a dielectric layer (insulating layer) of high thermal conductivity, and a circuit. Floor. The substrate of the metal matrix composite material is made of a graphite-reinforced or carbon fiber-reinforced metal matrix composite material, and has high thermal conductivity (200~800 W/mK) and low thermal expansion coefficient (3~10 ppm/ K), which is quite helpful for the heat dissipation of electronic semiconductors and for reducing the thermal stress of heterogeneous materials, and is superior to conventional metal substrates and ceramics directly bonded copper foil substrates. At the same time, a dielectric layer (insulating layer) can be coated over the high heat dissipation composite substrate, and the main purpose is to provide high dielectric properties between the semiconductor device and the substrate, and to provide the semiconductor device as a circuit carrier. The high heat dissipation composite substrate structure of the present invention, as shown in Fig. 1, mainly comprises a substrate 10, a dielectric layer 14, and a circuit layer 16. A dielectric layer 14 is formed on the substrate 10, and a circuit layer 16 is formed on the dielectric layer 14. A plurality of via holes 17 are formed in the dielectric layer 14, and the via holes 17 are formed through the dielectric layer 14. The semiconductor device 20 is provided. The semiconductor element 20 is electrically connected to the circuit layer 16 by the wire 18 . The substrate 10 includes a base material and a reinforcing material, and the reinforcing material is mixed with the base material. The reinforcing material is graphite fiber (powder, short fiber, long fiber...), graphite powder, scaly graphite or foamed graphite or diamond powder, and the base material includes aluminum, copper, zinc, magnesium, titanium, silver and alloy. Since the substrate 10 made of the metal matrix composite itself is electrically conductive, a dielectric layer 14 is applied to form the circuit layer 16. The dielectric layer 14 can be 0854-A22084TWF(N2); P54950138TW:chentf 9 1352407 is high. Molecular-based insulating rubber or ceramic materials (such as Al2〇3, Si〇2, TiO2, MgO, AIN, BN, Si3N4, SiC·., etc., or a mixture of two or more), the thickness of which varies from ΙΟμιη to 150μηι. The matrix of the dielectric layer is generally made of epoxy and polyimid which are resistant to high temperature, and ceramic powder is added to improve the thermal conductivity of the base material. (thermally conductive powder), such as A1203, SiO2, SiC, BN, etc., the thermal conductivity of the currently used insulating rubber is about 1~5 W/mK. The through hole 17 is left in the dielectric layer 14 at the bonding semiconductor element 20 because the material of the dielectric layer 14 generally used is mainly a polymer substrate, and the insulating and thermally conductive ceramic powder is added to improve the heat conduction. Rate, but its heat conduction is generally around 1~3W/mK, that is, using ceramic insulating material, its thermal conductivity is also lower than 25W/mK, and the heat of the semiconductor component adhered to it is not easily transmitted to the below. The high thermal conductive composite material 10 can thus directly leave the through holes 17' in the dielectric layer 14 so that the semiconductor light emitting elements can be directly adhered to the highly thermally conductive substrate 10. This approach basically provides a heat sink substrate that can be used on Chip on Board or Matrix arrays. On the one hand, shortening the heat transfer path greatly reduces the thermal impedance of the package level, and in addition, the thermal expansion coefficient of the semiconductor component and the composite substrate can be matched to reduce Heat should be used to improve the reliability and life of the component. According to another embodiment of the present invention, as shown in Fig. 2, the highly thermally conductive composite substrate structure comprises a substrate 10 of a metal matrix composite, a metallization layer 12, a dielectric layer 14, and a circuit layer 16. The difference between this embodiment and the embodiment of Fig. 1 is that in this embodiment, a metallization layer 12 is formed, and the metallization layer 12 is formed to surround the substrate 10. 0954-A22084TWF(N2); P54950138TW:chentf 1352407 - A via hole 17 is also left on the dielectric layer 14 at the bonding semiconductor element 20, and the via hole 17 is mainly intended to directly contact the semiconductor element 20 to the metallization layer 12, The heat transfer path is shortened, and the dielectric layer 14 having poor thermal conductivity is avoided. Since the metal matrix composite material mentioned above is not easily directly bonded to other heterogeneous materials, metallization is first performed on the surface of the substrate 10 of the metal matrix composite material, such as Ni, Cu, Ti, Cr, Ag or Cu on the ore. The metal layer 12 is joined by a heterogeneous material, such as a solder joint with a heat sink, a heat pipe, a thermoelectric element, a semiconductor element, etc., and can also improve the surface roughness and prevent the problem of decarburization of the surface of the composite material. Fig. 3 is a schematic view showing another embodiment of the structure of the highly thermally conductive composite substrate of the present invention. In the present embodiment, the semiconductor device 20 is directly disposed on the dielectric layer 14, does not have the via hole 17 of the first embodiment, and is electrically connected to the circuit layer 16 by the wire 18. Fig. 4 is a schematic view showing another embodiment of the structure of the highly thermally conductive composite substrate of the present invention. In the present embodiment, the metallization layer 12 is formed on the substrate 10 in the same manner as in the embodiment shown in Fig. 2 except that the semiconductor element 20 is directly provided on the dielectric layer 14. EFFECTS OF THE INVENTION The high heat-dissipating composite substrate structure of the present invention uses a highly thermally conductive metal-based composite material as a heat-dissipating substrate for an electronic semiconductor component, and is also provided with a metallization and dielectric layer design so that the circuit and the heat-dissipating substrate can be combined. The electronic semiconductor component can be directly bonded to the heat dissipation substrate, so that most of the heat generated by the electronic semiconductor component can directly transfer heat through the metallization layer or the metal matrix composite material, thereby reducing the heat transfer path and effectively reducing the heat of the package level. 0954-A22084TWF(N2): P54950138TW: chentf 1352407 Resistance. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

0954-A22084TWF(N2);P54950138TW:chentf 1352407 【圖式簡單說明】 第1圖為本發明之高散熱複合基板結構的一實施例的 示意圖。 第2圖為本發明之高散熱複合基板結構的另一實施例 的示意圖。 第3圖為本發明之高散熱複合基板結構的另一實施例 的示意圖。 • 第4圖為本發明之高散熱複合基板結構的另一實施例 的示意圖。 【主要元件符號說明】 10〜基材; 12〜金屬化層; 14〜絕緣層; 16〜電路層; φ 17〜通孔; 18〜導線; 20〜半導體元件。 0954-A22084TWF(N2) :P54950138TW;chentf0954-A22084TWF(N2); P54950138TW:chentf 1352407 [Simplified Schematic] FIG. 1 is a schematic view showing an embodiment of a high heat dissipation composite substrate structure of the present invention. Fig. 2 is a schematic view showing another embodiment of the structure of the high heat dissipation composite substrate of the present invention. Fig. 3 is a schematic view showing another embodiment of the structure of the high heat dissipation composite substrate of the present invention. • Fig. 4 is a schematic view showing another embodiment of the structure of the high heat dissipation composite substrate of the present invention. [Major component symbol description] 10~substrate; 12~metallization layer; 14~insulation layer; 16~circuit layer; φ17~via; 18~wire; 20~semiconductor component. 0954-A22084TWF(N2) :P54950138TW;chentf

Claims (1)

1352407 100. 1. 1 3 修正日期:100.1.13 ^-j 修正本 年月曰修正替換頁 攀 J * * • · ,第 96〗H580 號 ‘ 十、申請專利範圍: 1.一種高散熱複合基板結構,用於一半導體元件,包 括: 一基d,包括一金屬複合材料,該金屬複合材料包括 一基地材料以及一強化材料,該強化材料係摻雜於該基地 材料中,該強化材料包括鱗狀石墨或發泡石墨,或者是鱗 狀石墨與發泡石墨的混合; 一介電層,形成於該基材上; 一金屬化層,形成於該基材與該介電層之間,並包圍 .該基材,以及 一電路層,形成於該介電層上,其中該半導體元件係 熱連接於該基材且電性連接於該電路層,藉此該半導體元 件所產生的熱係經由該基材傳遞至外界或其他的散熱裝置 上。 2. 如申請專利範圍第1項所述之高散熱複合基板結 構,其中該強化材料更包括陶瓷顆粒及鑽石粉末。 3. 如申請專利範圍第1項所述之高散熱複合基板結 構,其中該基地材料包括紹、銅、鋅、鎮、鈦、銀及其合 金。 4. 如申請專利範圍第1項所述之高散熱複合基板結 構,其中該金屬化層為鎳、鎳-鱗、鎳-始、錫、錫-鋅、錫-銘、絡、銅、欽、銀或金。 5. 如申請專利範圍第1項所述之高散熱複合基板結 構,其中該介電層包括高分子基絕緣材料。 14 1352407 .,第 96114580 號 L 1__ Γΐτβ-1 月日修正替換頁1 .. 一-日期:湖.1_13 修正本 • 6.如申請專利範圍第5項所述之高散熱複合基板結 構,其中該高分子基絕緣材料的基材為環氧樹酯或聚醯亞 胺。 7. 如申請專利範圍第5項所述之高散熱複合基板結 構,其中該介電層更包括一添加材料,摻雜於高分子基絕 緣材料中,該添加材料為導熱粉體。 8. 如申請專利範圍第7項所述之高散熱複合基板結 構,其中該導熱粉體為陶瓷氧化物。 9. 如申請專利範圍第1項所述之高散熱複合基板結 構,其中該介電層包括一複合物材料。 10. 如申請專利範圍第9項所述之高散熱複合基板結 構,其中該複合物材料在形成該介電層前之狀態,為膠態 或是帶狀。 11. 如申請專利範圍第1項所述之高散熱複合基板結 構,其中該介電層為一陶瓷絕緣層。 12. 如申請專利範圍第11項所述之高散熱複合基板結 構,其中該介電層包括 AIN, Si02,Al203, Zr02, Ti02,Mg0, BeO或其中兩種以上組成的混合物。 13. 如申請專利範圍第1項所述之高散熱複合基板結 構,其中該電路層係藉由熱壓合銅箔再蝕刻成電路或直接 用網印方式獲得。 14. 如申請專利範圍第1項所述之高散熱複合基板結 構,其更包括至少一通孔,貫穿該介電層而形成,該半導 體元件係設於該通孔中並與該基材保持熱連接。 15 1352407 辦V月日修王替換有1 ,第 96114580 號) —一》·-4$rSrim:m.l.l3 修正本 t 15.如申請專利範圍第14項所述之高散熱複合基板結 構,其中該通孔係利用機械鑽孔、雷射鑽孔或直接作成圖 案以網印方式形成。 16.如申請專利範圍第1項所述之高散熱複合基板結 構,其中該半導體元件係設置於該介電層上,並藉由該介 電層熱連接於該基材。1352407 100. 1. 1 3 Revision date: 100.1.13 ^-j Correction of this year's monthly correction replacement page C J * * • ·, 96〗 H580 ' X. Patent application scope: 1. A high heat dissipation composite substrate The structure is used for a semiconductor component, comprising: a substrate d comprising a metal composite material comprising a base material and a reinforcing material doped in the base material, the reinforcing material comprising scales Graphite or foamed graphite, or a mixture of scaly graphite and foamed graphite; a dielectric layer formed on the substrate; a metallization layer formed between the substrate and the dielectric layer, and Surrounding the substrate, and a circuit layer formed on the dielectric layer, wherein the semiconductor component is thermally connected to the substrate and electrically connected to the circuit layer, whereby the heat generated by the semiconductor component is via The substrate is transferred to the outside or other heat sink. 2. The high heat dissipation composite substrate structure according to claim 1, wherein the reinforcing material further comprises ceramic particles and diamond powder. 3. The high heat dissipation composite substrate structure according to claim 1, wherein the base material comprises Shao, copper, zinc, town, titanium, silver and alloys thereof. 4. The high heat dissipation composite substrate structure according to claim 1, wherein the metallization layer is nickel, nickel-scale, nickel-start, tin, tin-zinc, tin-ming, complex, copper, chin, Silver or gold. 5. The high heat dissipation composite substrate structure of claim 1, wherein the dielectric layer comprises a polymer based insulating material. 14 1352407 ., No. 96114580 L 1__ Γΐτβ-1 日 修正 替换 替换 替换 1 1 1 1 1 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. The base material of the polymer-based insulating material is epoxy resin or polyimide. 7. The high heat dissipation composite substrate structure of claim 5, wherein the dielectric layer further comprises an additive material doped in the polymer based insulating material, the additive material being a thermally conductive powder. 8. The high heat dissipation composite substrate structure of claim 7, wherein the thermally conductive powder is a ceramic oxide. 9. The high heat dissipation composite substrate structure of claim 1, wherein the dielectric layer comprises a composite material. 10. The high heat dissipation composite substrate structure according to claim 9, wherein the composite material is in a colloidal state or a ribbon shape before the formation of the dielectric layer. 11. The high heat dissipation composite substrate structure of claim 1, wherein the dielectric layer is a ceramic insulating layer. 12. The high heat dissipation composite substrate structure of claim 11, wherein the dielectric layer comprises AIN, SiO 2 , Al 203, ZrO 2 , Ti 2 , Mg 0 , BeO or a mixture of two or more thereof. 13. The high heat dissipation composite substrate structure according to claim 1, wherein the circuit layer is obtained by thermally pressing a copper foil and then etching into a circuit or directly by screen printing. 14. The high heat dissipation composite substrate structure of claim 1, further comprising at least one via formed through the dielectric layer, the semiconductor component being disposed in the via and maintaining heat with the substrate connection. 15 1352407 VV月日修王换换1,第96114580号)—一》·-4$rSrim:mll3 Amendment t 15. The high heat dissipation composite substrate structure as described in claim 14 of the patent application, wherein The through holes are formed by screen printing using mechanical drilling, laser drilling or direct patterning. 16. The high heat dissipation composite substrate structure of claim 1, wherein the semiconductor component is disposed on the dielectric layer and thermally coupled to the substrate by the dielectric layer. 1616
TW96114580A 2007-04-25 2007-04-25 Composite substrate structure for high heat dissip TWI352407B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96114580A TWI352407B (en) 2007-04-25 2007-04-25 Composite substrate structure for high heat dissip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96114580A TWI352407B (en) 2007-04-25 2007-04-25 Composite substrate structure for high heat dissip

Publications (2)

Publication Number Publication Date
TW200843053A TW200843053A (en) 2008-11-01
TWI352407B true TWI352407B (en) 2011-11-11

Family

ID=44822200

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96114580A TWI352407B (en) 2007-04-25 2007-04-25 Composite substrate structure for high heat dissip

Country Status (1)

Country Link
TW (1) TWI352407B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9397279B2 (en) 2013-12-27 2016-07-19 Industrial Technology Research Institute Electric conductive heat dissipation substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103363363B (en) * 2012-03-30 2016-03-23 展晶科技(深圳)有限公司 Light-emitting diode light bar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9397279B2 (en) 2013-12-27 2016-07-19 Industrial Technology Research Institute Electric conductive heat dissipation substrate

Also Published As

Publication number Publication date
TW200843053A (en) 2008-11-01

Similar Documents

Publication Publication Date Title
JP4015023B2 (en) ELECTRONIC CIRCUIT MEMBER, ITS MANUFACTURING METHOD, AND ELECTRONIC COMPONENT
JP5679557B2 (en) Substrate made of aluminum-graphite composite, heat radiation component using the same, and LED light emitting member
US20090266599A1 (en) Circuit board with high thermal conductivity and method for manufacturing the same
KR20120068831A (en) Led chip assembly, led package, and manufacturing method of led package
TW200835431A (en) Ceramic/metal composite structure and method of manufacturing the same
JP2005002470A (en) High thermal conduction and low thermal expansion composite material, heat radiation substrate, and their production method
CN1551340A (en) Semiconductor device and its manufacturing method
CN101369615B (en) Packaging method for low-thermal resistance high-power light-emitting diode
US20100301359A1 (en) Light Emitting Diode Package Structure
TWI499100B (en) Light emitting diode carrier assemblies and method of fabricating the same
JP2010098059A (en) Substrate for power module with heat sink, power module with heat sink, substrate for power module with buffer layer, and method of manufacturing substrate for power module with heat sink
JP2010098057A (en) Substrate for power module with heat sink, power module with heat sink and substrate for power module with buffer layer
JP2010077013A (en) Carbon-metal composite and circuit member or heat radiation member using the same
JP4104429B2 (en) Module structure and module using it
TWI352407B (en) Composite substrate structure for high heat dissip
JP4360847B2 (en) Ceramic circuit board, heat dissipation module, and semiconductor device
TW201105222A (en) Highly thermal conductive circuit board
KR20130099790A (en) Heterostructure for heat dissipation and method of fabricating the same
TWI463710B (en) Mrthod for bonding heat-conducting substraye and metal layer
US20090303685A1 (en) Interface module with high heat-dissipation
JP2008199057A (en) Electronic equipment and method of manufacturing the same
TW201212306A (en) LED heat-conduction substrate and heat-dissipation module structure
CN103887396A (en) A light-emitting assembly in which an LED chip is directly welded to the surface of a copper heat sink and a preparation method thereof
WO2010084824A1 (en) Aluminum/graphite composite, and heat radiation part and led luminescent member both formed using same
Occhionero et al. AlSiC for optoelectronic thermal management and packaging designs