TWI351825B - Selectively disabling interference cancellation ba - Google Patents

Selectively disabling interference cancellation ba Download PDF

Info

Publication number
TWI351825B
TWI351825B TW95106581A TW95106581A TWI351825B TW I351825 B TWI351825 B TW I351825B TW 95106581 A TW95106581 A TW 95106581A TW 95106581 A TW95106581 A TW 95106581A TW I351825 B TWI351825 B TW I351825B
Authority
TW
Taiwan
Prior art keywords
channel
burst
radio frequency
equalizer
length
Prior art date
Application number
TW95106581A
Other languages
Chinese (zh)
Other versions
TW200707925A (en
Inventor
Yang Baoguo
Zeng Huaiyu
Original Assignee
Broadcom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/151,030 external-priority patent/US7535980B2/en
Application filed by Broadcom Corp filed Critical Broadcom Corp
Publication of TW200707925A publication Critical patent/TW200707925A/en
Application granted granted Critical
Publication of TWI351825B publication Critical patent/TWI351825B/en

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Noise Elimination (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

九、發明說明: 【發明所屬之技術領域】 '本發及蜂;^無線通訊I;、統,更具體地,本發明涉及與無線通 訊系統内的鱗終端處理的接收資料雜侧的有色料等干擾的消 除0 【先前技術】 蜂窩無線軌紐支援全世界大錄祕的無麵信服務。雖然 鲁蜂窩無線ifH錄姻於提供語音職服務,但是躲也支援資料 通t 、料通b服務的需求隨者大衆逐漸的接受和廣泛使用互聯網而 得到極大的發展。以前的資料通信服務都是通過有線網路提供的,而 今天的蜂g無制戶要求他觸無祕端也支援㈣通信。許多無線 用戶都希望能使用關的蜂高電話、個人無線資料助理、無線手提電 腦和/或其他無線賴上_浪、訪_箱和執行其他的資料通信活 動。對於無線通信系統的資料通信需求正隨著__移不斷增加。 _因此’财的無線通信祕正按照難秘發制㈣通信需求在不 斷的改進和發展當令。 蜂窩無線網路包括有“網路基礎設施”,與其對應的服務覆蓋區 内的無線終端無線通信。細路基礎設施—般包括分佈在服務區内的 夕個基站每個基站均支援各自蜂窩單元(S—組磁區)内的無線通 信。基站與基站控制H (BSCs)連接,每個基站控制器控制多個基站。 每個基站控娜讀-個軸交射c (MSC)連接。每個基站控制 器一般還直接或間接地與互聯網連接。 1351825 ^ 作時,每個基站與其單元/磁區覆蓋範圍内的多個無線終端通 .#。BSC與基站連接並在MSC與服務基站之間路由語音通信。Msc •將語音通信路由至另一個MSC或路由至ps.Bsc在服務基站與包 喊連接因_齡組龍網路之·的料通信,基站到無線終 端的傳輸鶴“正向鏈路,,,秘無雜制基㈣雜稱爲 鏈路”。 基站與其朋^務的無線終端之間的無線鏈路一般根據一個或多個操 魯作標準運行。這些操作鮮狀了無線舰的分配、建立、服務和斷 ^的方式。目前業界普遍使㈣蜂窩標準是全球移動通訊系統(GSM) 私準。GSM標準’或簡稱GSM ’在歐洲甚至全球範圍廣受歡迎。儘 b GSM最初/、應用於語音通訊,經過改進其也可以支援資料傳輸。 GSM通用分組無線業務(GPRS)業務以及GMS (或全球)的增強資 料率廣進(EDGE)業務與GSM共存,共用GSM標準的通道帶寬、 守間片(slot)結構和時間片時限(迦timing)。GpRS標準和 標準也可以用作其他標準的增強通路(mi㈣i〇n _),例如Η心 和太平洋數位蜂窩標準(pDC)。 爲了提尚EDGE在200KHZ GSM通道下的資料率,除了採用gsm 的標準高斯最小頻移鍵控(GMSK)調製外,還採用更高級的調製, 如8-PSK (8進制相移鍵控)。EDGE接受九種不_ (自發地和快速 選擇地)空間接介面式,又稱爲調製和編碼方案(MCSs),具有不同 各度的錯誤控制織。娜細的暫態需要,高MCS料㈤cs Μ) 使用8-PSK (局資料率)調製進行空中傳輸,低MCS模式(mcs⑷ 1351825 月\义日修正替換頁 使用GMSK (低資料率)調製進行空中傳輸。 - 當蜂窩電話處於接收模式的時候’同通道和相鄰通道的 • GMSK/8PSK信號以有色噪音出現,甚至在對於處於接收模式下的蜂 离電話接收器來說也疋澡音。爲了能夠更好地接收發送給蜂窩電話的 資訊,蜂窩電話要儘量消除這些干擾信號。現有的消除這些干擾的技 術包括對接收的符號進行通道均衡化。然而,現有的通道均衡化技術 不能有效地消除同信號和相鄰通道的噪音。因此,需要對該干擾消除 |技術進行改進。 【發明内容】 根據本發明的另-個方面,提供—種多分支等化器處理模組,選 擇性地啟動干擾消除以處理接收的射頻脈衝串,包括: 通道長度估計模組,用於: 確定與所述射頻脈衝_相關的通道長度; 所述通道長度與預定通道長度難相比小於所賴值時,即所述 &gt;通道具雜从色散糾,選雜地無轉干制除處理; ,第一等化ϋ ’基於已知調試相進行觸,對麵脈衝串進行均 衡,並從所述射頻脈衝串中提取資料位元; 、首旦♦冑bl§在與所騎舰_相關的通道長度麟述預定通 調 ΐ 於所賴辦,基於至麵述已_序列進行 -頻脈衝串中提取另一資 5式對所述射頻脈衝串進行均衡,並從所述射 料位元。 優選地’所述第二等絲魏根據從所述射頻脈衝串愤取出的 切 1825 再編碼m位元進行調試。 消除t地’所述通道長度軸組在町情況下選擇性地啟動干擾 的有色噪音閾 值相=:::相_有色__與預定 閾值時。 =所述射麵物_峨嫩編碰相比小 於所述 &gt;優選地,所述預定的通道長度間值基於丘陵通道獲得。 n撕繼__崎_脈衝串相關的 通道長度調整所述第—等化ϋ的等化n狀態數量。 優選地’所述多分支等化器處理模組還包括: 解交錯器,對從所述第-等化器提取出的資料位元進行解交錯,· 通道解碼器’對包括所述提取出的資料位元賴進行解碼; 進行調試; 再編碼器,對所賴進行再編碼以生成再編碼資料位元;, 交錯器,對賴再編碼位元和所述已知調試序顺行交錯, 生成再編碼脈衝串,其中所述第二等化器還可基於所述再編碼脈_ 所述解父錯器對所述另一資料位元進行解交錯; 行解碼 所述通道解碼H對包括有至少部分所述另—#料位元㈣—幅進 優選地,由所述通道長度估計模組進行檢測以續定何時選擇性地 啟動干擾消除處理的所述接收的射頻脈衝串包括第—組射頻脈衝串. 9 1351825 由所述第一等化器和第-蓉 括第-㈣俯备虫 所述接收的射頻脈衝串包 括第-、减舰射,其t所述第—組射紐衝串位 頻脈衝串之前; 所4第一紐射 且所述脈衝串組包括·· 4個射頻脈衝_;或 半速率自適應錢率編碼語音的2個脈衝串。 根據本發明的-個方面,提供—種無線終端,包括: 射頻前端,用於接收射頻脈衝串; 基帶處理器,與所述射頻前端通信連接 前端用於從所述射頻脈衝串中生成基帶信號;▲处理器和射頻 通道長度估计模組’用於: 確疋與所述射頻脈衝串相關的通道長度; 通道具有較大的色散度時,選擇性地無效掉干擾齡處理;权 多分支等化器處理模組,與所述基帶 接’:述多分支等化器處理模組從所述基帶處理器接二:組連 所述多分支等化器處理模組進一步包括: 1 且 .第-糾H ’基於已知糊相物觸,騎舰 4丁均衡’並從所述射頻脈衝串中提取資料位元; 進 第二等储,基於包括所述已知赠相和再編碼資料位 =再Γ的脈衝串進行調試’其中所述至少部分再編碼的脈衝串 α處理解生成,所述第二等化器對所述軸脈衝串進 1351825 並從所述射頻脈衝串中提取另一資料位元; 其中,所述基帶處理器和多分支等化器處理模組結合起來用於: 從軟決策中生成資料塊;或 當與所述射頻脈衝串相_通道長度與所述預定通道長度閾 值相比大於所述_時,從另—軟決策中生成資料塊。 解交錯器’對所述資料塊進行解交錯; 通道解碼II,對從所述資料塊獲得㈣料巾貞進行解碼. 資 料塊; 再編碼器,對所述資進行再編碼以生成至少部分再編碼的 交錯器,制歧少科再編碼㈣概進时錯 少部分再編碼麟Φ。 ⑽所成至 消除=地’所魏道纽料做在町紐τ_㈣啟動干擾 與所述射頻脈衝串相關的有色噪音的測量值與 值相比大於所述閾值時; Μ h s閾 閾值2所述射頻脈衝串相關的信噪比與财信嗓比閾值相比小於所述 優選地’所述預定的通道長度閾值基於丘陵通道獲得。 優選地’所述通道長度估計模組還基於與所述射頻脈衝串相關的 k道長度調整所述第-等化n的等化器狀紐量。 、 優選地,續賴度料進碰_確定㈣ 啟動干擾消除處理的所述接收的__串包括 11 頻脈衝串之前 ‘所述第二組射 且所述脈衝串組包括: 4個射頻脈衝串;或 半速率自適應多速率編碼語音的2個脈衝串。 優選地,所述通道長度估計模组還在基於與射頻脈衝串相關的通 =度選擇性地啟轩擾齡時,減少所述第—等化器地等化器狀態 數置。 優選地’所述_脈衝串包括攜帶所述資料位觸高斯最小頻移 鍵控符號和谓的8柿赌/高斯最小鮮鍵控符號。 根據本發明的-個方面,提供_種對接收的射頻脈衝串進行均衡 的方法’包括如下步驟: 檢測接收的射頻脈衝串以便確定與所述射頻脈衝串相關的通道長 度; 建立預疋通道長度閾值以便選擇性地啟動干擾彡肖除處理; 確定與所述射頻脈衝串相關的通道長度; 比較所述與射頻脈衝串相關的通道長度與所述預定的通道長度閣 值田所述與射頻脈衝串相關的通道長度與所述預定的通道長度閾值 相比大於所述閾值時,啟動干擾消除處理; 使用已知調試序列調試第一等化器; 使用所述第化器對所述接收的射頻脈衝串進行均衡; 12 1351825 對所述射頻脈衝串進行^^一~—1 ;1多所述射頻脈衝Φ進行解碼’獲得提取出的資料位元; .從所述提取出的資料位元中解碼出資科幀; 其令’干擾消除處理包括: 對所述資料t貞進行再編碍,生成再編碼資料位元; 對所述再編碼資料位元進行交錯; 使用所述已知調試序列和所述再編碼資料位元調試第二等化器. • 1崎述第二等化輯所述接㈣射__進行_,從中提 取出另一資料位元; 對所述提取出的另一資料位元進行解交錯; 從所述解交錯後的另一資料位元中解喝出另一資·。 優選地,所述方法還包括: 確定與所述射頻脈衝•相騎有色臂音的測量值; 確定與所述射頻脈衝串相關的通道比。 在以下if况下選擇性地啟動干擾消除 的測量值與預定的有色噪音閾 與所述射頻脈衝串相關的有色噪音 值相比大於所述閾值時; 預定信噪比閾值相比小於所述 與所述射頻脈衝串相關的信噪比與 閾值時。 13 1 優選地’所述方法還包括 處理: 優選地,所述方法還包括:力 .選擇性地啟動侧除時,減頻脈射相_通道長度 .β 等儲鱗化n狀態數量。 無線通=Γ物與顺相編崎娜鍵控 【實施方式】 施例進行描述,各附圖中相 以下將結合附圖對本發明的優選實 同的標號表示相同或相對應的部件。 •南斯最小頻移鍵控(GMSK)調製系統在實域内可用作單輸入雙 2出系統模型,該模㈣虛擬的單發雙收魏。如本發_實施例所 2紹的’將多天線的干擾消除技術應用㈣應系統便可以充分解 、、、上述的需求W及其他的需求。本發日·供-種乡分支的等化器處理 模組,用於消除與接收的射頻脈衝串相關的干擾。該多分支等化器處 理挺組包括多辦化器處理分支。—鱗化减理分支通過已知的調 成序列進行麟麟魏的射鑛_精均齡。織對得到的結 鲁果進行進—步處理,翻於賴第二等储處理分支。紐第二等化 器處理77支對接收朗賴脈衝φ進行均衡以産生齡干擾信號的輸 出,從而改進對射頻脈衝串的處理。 圖1疋根據本發明-個實施例的支援多個無線終端的蜂窩無線 通信系統100 #一部分的示意圖。蜂窩無線通信系統100包括移動交 換中〜(MSV) 101、GPRS服務支援節點/edge服務支援節點 (SGSN/SESN) 1〇2、基站控制器(BSCs) 152 及 154、以及基站 1〇3、 104、105 和 1〇6。SGSN/SESN 102 通過 GPRS 閘道支援節點(GGSN) 14 上351825 112連接到互聯網上。傳統的語音終端⑵與psTN⑽連接。基於網 •際協定的語音服務(VoIP)終端123以及個人電腦125與互聯網ιΐ4 •連接。MSC 101與公共交換電話網(pSTN) 11〇連接。 每個基站1G3· 106觸-鱗窩單元組磁區提供無線通信服務 支援。包括正向鏈路部分和反向鏈路部分的無線鏈路對基站和其服務 的無線終^之間的無線通k提供支援。這些無線鏈路産生的同通道或 相鄰通道信號將以有色噪音或白噪音的形式出現。如前所述這些噪 •音對想要的信號産生干擾。因此,本發明提供一種在低信噪比(SNR) 或低信擾比(SIR)環境下消除這種干擾的技術。 上述的無線鏈路可支援數位資料傳輸、ν〇ΙΡ傳輸及其它數位多媒 體傳輸。蜂窩無線通信系統100還可以反向相容,支援類比操作。蜂 窩無線通信系統100也支援GSM標準和EDGE擴展標準。蜂窩無線 通^系統100還支援GPRS。此外’本發明還可適用於其他標準,例 如TDMA標準、CDMA標準等等。總的來說,本發明應用於數位通 ®信技術’可處理干擾通信的識別和消除問題。 無線終端 116、118、120、122、124、126、128 和 130 通過與基 站103-106之間的無線鏈路與蜂窩無線通信系統10〇連接。如圖所示, 無線終端包括蜂窩電話116和118、手提電腦120和122、臺式電腦 124和126、資料終端128和130。而且,蜂窩無線通信系統100還支 援與其他無線終端的資料傳輸。衆所周知,手提電腦12〇和122、臺 式電腦124和126、資料終端128和13〇以及蜂窩電話116和118等 設備都能夠在互聯網114上進行“上網衝浪”、收發資料通信例如電 15 1351825 Γ收發文相魏行其蹄觸作。大部分__作_下載速 财嚴格要纟,€略#繼_。,縣物的離 ==都支援赚鮮,終端116损還可支援‘ 圖2是無線終端200的功能框圖。圖2令所示的無線終端包 括RF收發器202、數位處理部件2〇4以及容置在殼體内的各種其他 部件。數位處理部件2〇4包括兩個主要的功能部件,一個是物理層處 ❿理、語音編解碼器以及基帶編解碼模組娜另—個是協處理、人機 界面模組208。數位信號處理器是物理層處理、語音編解碼器以及基 帶編解碼齡206 t駐要部件,峨處(例如_指令集計算 (RISC)處理器)是輔助運算器、人機界面模組2〇8的主要部件。d兕 又稱爲無、線介面處理器(RIP),RKC處理器又稱爲系統處理器。但是, 這些名稱並不是對這些部件的功能的限制。 RF收發器202與天線203、數位處理部件204以及爲無線終端200 籲的所有部件供電的電池224連接。物理層處理、語音編解碼器以及基 帶編解碼模組206則與協處理、人機界面模組208、麥克風226、剩叭 228連接。協處理、人機界面模組2〇8與各個部件連接,例如但不限 於個人計算/資料終端設備介面21〇、鍵區212、用戶識別模組(SIM) 埠213、攝像頭214、快閃記憶體216、SRAM 218、LCD 220以及LEDs 222。當連接有攝像頭214和LCD 220時,這些部件可以支援靜態和/ 或動態圖像。因此,圖2所示的無線終端200可以通過蜂窩網路支援 音頻和視頻服務。 16 疋個GS]V[幀的結構以及通過該gsm幀傳送資料塊的方式 的不思圖。持續時間爲2Gms的刪臟均分成4個子巾貞,每個子傾 ~ ’片時間Of彳時間片7。每個時間片的持續時間大概爲 625us ’包括左側部分⑽娜)、右侧部分(離细〇)和中間部分 ( 此)該時間片的射頻脈衝串的左侧和右侧部分攜帶資料,而 中間部分爲調試序列。 GSM鴨的4個時間片的射頻脈衝串可傳送RLC塊的-段、-個 鲁完整的RLC塊或兩個咖塊,具體取決於所侧補和鱗關 、弋&quot;如貞料塊八通過第1個四分之一鴨中時間片0、第2個四 刀之中貞中的時間片〇、第3個四分之一财的時間片〇以及第*個 四分之一财的時間片G來傳送。資料塊A可帶有咖塊的一段、 -個或兩個RLC塊。同理,資料塊B通過第i個四分之—㈣時間片 第個四刀之幢中的時間片卜第3個四分之一射的時間片1 以及第4個四分之一射的時間片i來傳送。每組時間片(即該G· 射每個子_時間片咖MCS模式對於該g_來說是穩定的, 但疋對於柯咖巾貞之_獨。❹卜,該_貞_組時間 片的MCS模式’例如每個子幢的時間片〇與每個子幢的時間片π中 的任一個,都不—找同。虹塊可攜帶語音資料或其他資料。 圖4所示爲將資料映射爲射頻脈衝串的過程的示意圖。原始的資 料未編碼並帶有資料塊報頭,編·作對該㈣塊執行外部編碼並 认資料塊的錯誤檢_正。外輪焉操作—般使_冗餘校驗 (⑽或者法爾碼(FireC〇de)。如圖所示,外部編碼操作在該資料 17 丄妁1825 後面附加尾位元和/或塊編碼序列(BCS)。在cs_i編碼方案中,使用 塊編碼和卷積編碼將報頭和資料編碼在一起。在非cs_i編碼方案中, 一般對報頭和資料分別進行編碼。 法爾碍支极錯誤糾正和錯誤檢測,是一種縮短的二進位迴圈碼, 在報頭和資料的每位元後面附加冗餘位。法爾碼的完全錯誤檢測能力 使得未檢率只有,的可能。塊編碼操作對㈣加人冗餘位元以進行 錯誤檢顺’進雜誤纟怔時計算附加的冗餘,以制正目無線通道 產生的傳輸錯誤。_錯誤糾正或編碼方案基於卷積編碼進行。 卷積、、扁碼器產生的某些几餘位在發送前可以先進行收縮處理。收 縮處理可以增加卷積編碼率並減少發送的每個資料塊的冗餘。此外, 收縮處理還可以降低帶寬需求,這樣可以使卷積編碼信號符合於可用 通道位兀流。經過卷積編碼和收縮處理後的位元被傳送到交錯器,交 錯器將不同位元流混合(shuffie)並將交錯後的位元率分割成㈣所 示的4個脈衝串。 藝® 5所不驗射娜料愤復f料麟棘的示賴。一般接 收4個棚脈衝串並經過處理後組成一個資料塊。接收到*個射頻脈 衝串後將,、σ併以形成一個編碼資料塊。然後對該編碼資料塊進行 解收縮處理(如果需要的話),依據内部解碼方案進行解碼,然後依據 外部解碼方案進行解碼。解碼後的㈣塊包括資料塊報頭和資料。根 據資料和報_編碼方式,部分解碼可標識資料。IX. Description of the invention: [Technical field to which the invention pertains] 'The present invention and the bee; ^Wireless communication I;, more specifically, the present invention relates to a colored material on the side of the received data processed by the scale terminal in the wireless communication system Elimination of interference, etc. [Prior Art] Cellular wireless railroads support the world's most documented and unrecognized services. Although Lu cellular wireless ifH is accommodating to provide voice service, the need to hide and support the data, and the demand for the service is greatly developed with the increasing acceptance of the public and the widespread use of the Internet. The previous data communication services were provided through the wired network, and today's bee-gathered households require him to contact (4) communications. Many wireless users want to use off-the-shelf phones, personal wireless data assistants, wireless laptops and/or other wireless devices, and other data communication activities. The data communication needs for wireless communication systems are increasing with __ shift. _ Therefore, the financial communication secret of the company is in the process of continuous improvement and development in accordance with the difficulty of secret communication (4) communication needs. A cellular wireless network includes a "network infrastructure" that wirelessly communicates with wireless terminals within its corresponding service coverage area. The fine-path infrastructure generally includes the base stations distributed throughout the service area. Each base station supports wireless communication within the respective cellular unit (S-group magnetic zone). The base station is connected to base station control Hs (BSCs), and each base station controller controls a plurality of base stations. Each base station controls the read-to-axis intersection c (MSC) connection. Each base station controller is also typically connected directly or indirectly to the Internet. At 1351825, each base station communicates with multiple wireless terminals within its cell/magnetic coverage. #. The BSC is connected to the base station and routes voice communications between the MSC and the serving base station. Msc • Routing voice communication to another MSC or routing to ps.Bsc in the service base station and packet shouting connection due to the communication of the _ age group network, the base station to the wireless terminal transmission crane "forward link, , secret no miscellaneous basis (four) miscellaneous called the link. The wireless link between the base station and its wireless terminals typically operates in accordance with one or more operational standards. These operations are fresh in the way of the distribution, establishment, service, and disconnection of wireless ships. At present, the industry generally makes the (four) cellular standard a global mobile communication system (GSM). The GSM standard, or GSM for short, is very popular in Europe and even worldwide. B GSM is initially / applied to voice communication, and it can also support data transmission after improvement. GSM General Packet Radio Service (GPRS) service and GMS (or global) Enhanced Data Rate Forward (EDGE) service coexist with GSM, sharing GSM standard channel bandwidth, Slot structure and time slice timing ). The GpRS standards and standards can also be used as enhancement paths for other standards (mi(4)i〇n_), such as the Heart and Pacific Digital Cellular Standard (pDC). In order to improve the data rate of EDGE in the 200KHZ GSM channel, in addition to the standard Gaussian Minimum Shift Keying (GMSK) modulation of gsm, more advanced modulation, such as 8-PSK (8-ary phase shift keying) is used. . EDGE accepts nine spatial interfaces that are not (spontaneously and quickly selected), also known as modulation and coding schemes (MCSs), with varying degrees of error control. Na's transient needs, high MCS material (five) cs Μ) use 8-PSK (office data rate) modulation for air transmission, low MCS mode (mcs(4) 1351825 month/day correction replacement page using GMSK (low data rate) modulation for aerial Transmission - When the cellular phone is in receive mode 'The same channel and adjacent channels • The GMSK/8PSK signal appears as colored noise, even for the bee-off phone receiver in receive mode. The ability to better receive information sent to the cellular telephone, the cellular telephone should try to eliminate these interference signals. Existing techniques for eliminating these interferences include channel equalization of the received symbols. However, existing channel equalization techniques cannot effectively eliminate The noise of the same signal and adjacent channels. Therefore, the interference cancellation technology needs to be improved. SUMMARY OF THE INVENTION According to another aspect of the present invention, a multi-branch equalizer processing module is provided to selectively activate Interference cancellation to process received RF bursts, including: a channel length estimation module, configured to: determine a phase with the RF pulse The length of the channel is closed; when the length of the channel is less than the value of the predetermined channel, the channel is miscellaneously corrected, and the selected area is not processed by the drying process; 'Based on the known debugging phase, the opposite pulse train is equalized, and the data bits are extracted from the RF pulse train; and the first dan ♦ 胄 bl § in the channel length associated with the riding ship _于 所 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The wire is debugged according to the cut 1825 re-encoded m-bit taken from the RF pulse burst. Eliminate the colored noise threshold phase of the channel length axis group selectively initiating interference in the case of the town =:: : phase _ colored __ with a predetermined threshold value = = the face material _ 峨 编 编 compared to the above > Preferably, the predetermined channel length value is obtained based on the hilly channel. n tearing __ Saki-burst-related channel length adjusts the equalization of the first-equivalent n Preferably, the multi-branch equalizer processing module further includes: a deinterleaver that deinterleaves the data bits extracted from the first equalizer, and the channel decoder' Decoding the extracted data bits for decoding; performing re-encoding; re-encoding the re-encoding to generate re-encoded data bits;, interleaver, re-encoding bit and the known debugging sequence Row interleaving, generating a re-encoded burst, wherein the second equalizer may further deinterleave the another data bit based on the re-encoding pulse_the de-parent; row decoding the channel decoding Preferably, the H pair includes at least a portion of the other material level (four)-amplitude, and the channel length estimation module detects to continuously renew the received RF burst when the interference cancellation process is selectively initiated. Including the first group of radio frequency bursts. 9 1351825 The radio frequency pulse train received by the first equalizer and the first-fourth-fourth quadrant worm includes a first-, a minus-fire, and the t-the first- Group injection before the bit frequency pulse train; The burst and the burst group includes four radio frequency pulses _; or two bursts of half rate adaptive money rate encoded speech. According to an aspect of the present invention, a wireless terminal is provided, including: a radio frequency front end for receiving a radio frequency burst; a baseband processor, the front end of the communication front end is configured to generate a baseband signal from the radio frequency pulse train ▲ processor and RF channel length estimation module 'is used to: determine the channel length associated with the RF burst; when the channel has a large dispersion, selectively disable the interference age processing; weight multi-branch, etc. The processing module is connected to the baseband: the multi-branch equalizer processing module is connected to the baseband processor: the multi-branch equalizer processing module is further configured to include: 1 and - correcting H 'based on the known paste phase touch, riding the ship 4 D'Equal' and extracting the data bit from the RF burst; entering the second storage, based on including the known gift phase and re-encoded data bits = Γ Γ 进行 进行 </ RTI> wherein the at least partially re-encoded burst α process is de-generated, the second equalizer pairs the axis pulse into 1351825 and extracts another from the RF burst Data bit Wherein the baseband processor and the multi-branch equalizer processing module are combined to: generate a data block from a soft decision; or when compared to the radio frequency burst phase channel length and the predetermined channel length threshold When the _ is greater than the _, the data block is generated from the other soft decision. Deinterleaver 'deinterleaving the data block; channel decoding II, decoding (4) the material frame from the data block. The data block; re-encoder, re-encoding the resource to generate at least part of the The coded interleaver, the system is re-encoded (4) when the advance is wrong, the part is re-encoded. (10) When the result is determined to be 消除hs threshold threshold 2, the measured value of the colored noise associated with the radio frequency pulse burst is greater than the threshold value; The RF pulse train associated signal to noise ratio is less than the preferred 'the predetermined channel length threshold' based on the hilly channel compared to the financial 嗓 threshold. Preferably said channel length estimation module further adjusts the equalizer value of said first-equalization n based on a k-channel length associated with said radio frequency burst. Preferably, the continuation of the material feed _determination (4) the received __ string of the interference cancellation process includes the 11-frequency burst before the second group of shots and the burst group includes: 4 radio frequency pulses String; or 2 bursts of half rate adaptive multirate encoded speech. Preferably, the channel length estimation module further reduces the equalizer state of the first equalizer when the age is selectively activated based on the pass degree associated with the radio frequency pulse train. Preferably, said _burst comprises a parameter of a Gaussian minimum frequency shift keying symbol carrying said data and a gamma/Gaussian minimum fresh keying symbol. According to an aspect of the invention, a method for equalizing a received radio frequency burst includes the steps of: detecting a received radio frequency burst to determine a channel length associated with the radio burst; establishing a pre-channel length a threshold for selectively initiating an interference chirping process; determining a channel length associated with the radio frequency burst; comparing the channel length associated with the radio frequency burst with the predetermined channel length and said RF pulse Initiating interference cancellation processing when the string-related channel length is greater than the predetermined channel length threshold; debugging the first equalizer using a known debug sequence; using the secondizer to the received RF The pulse train is equalized; 12 1351825 performs the ^1~~1 on the radio frequency pulse train; and the plurality of radio frequency pulses Φ are decoded to obtain the extracted data bit element; from the extracted data bit Decoding an asset frame; wherein the 'interference cancellation process comprises: re-blocking the data t, to generate a re-encoded data bit; The material bit is interleaved; the second equalizer is debugged using the known debug sequence and the re-encoded data bit. • 1 (2), the second, the second, the fourth, the fourth, the __, the _, the _ Another data bit; deinterleaving the extracted another data bit; and extracting another capital from another data bit after the deinterlacing. Preferably, the method further comprises: determining a measured value of the colored arm tone with the radio frequency pulse; determining a channel ratio associated with the radio frequency pulse train. Selectively initiating the interference cancellation measurement value when the predetermined colored noise threshold is greater than the threshold value associated with the radio frequency pulse string; the predetermined signal to noise ratio threshold is less than the The RF signal is related to the signal to noise ratio and the threshold value. 13 1 Preferably the method further comprises: processing: Preferably, the method further comprises: a force to selectively initiate the side division, the frequency reduction pulse phase _ channel length . DESCRIPTION OF THE PREFERRED EMBODIMENT The present invention will be described with reference to the accompanying drawings. • The Nans Minimum Shift Keying (GMSK) modulation system can be used as a single-input dual-out system model in the real domain. The model (4) is virtual single-shot and dual-received. As described in the present invention, the multi-antenna interference cancellation technology is applied (4), and the system can fully solve the above requirements and other requirements. The equalizer processing module of the distribution day of the distribution day is used to eliminate the interference associated with the received RF burst. The multi-branch equalizer processing set includes a multi-processor processing branch. The squamous-reduction branch performs the mining of the Linlin Wei by the known modulation sequence. The knot obtained by the weaving is processed in a step-by-step manner, and is turned over to the second storage branch. The New Second Equalizer processes 77 outputs that equalize the received Langlai pulse φ to produce an aged interference signal, thereby improving the processing of the RF burst. 1 is a schematic diagram of a portion of a cellular radio communication system 100 that supports a plurality of wireless terminals in accordance with an embodiment of the present invention. The cellular radio communication system 100 includes a mobile switching medium (MSV) 101, a GPRS service support node/edge service support node (SGSN/SESN) 1, a base station controller (BSCs) 152 and 154, and base stations 1〇3, 104. , 105 and 1〇6. The SGSN/SESN 102 is connected to the Internet via the GPRS Gateway Support Node (GGSN) 14 on the 351825 112. The conventional voice terminal (2) is connected to the psTN (10). A Voice over Internet Protocol (VoIP) terminal 123 and a personal computer 125 are connected to the Internet. The MSC 101 is connected to a public switched telephone network (pSTN) 11A. Each base station 1G3·106 touch-scale cell group magnetic zone provides wireless communication service support. The wireless link, including the forward link portion and the reverse link portion, provides support for the wireless communication between the base station and the wireless terminals it serves. The same channel or adjacent channel signals generated by these wireless links will appear as colored or white noise. As mentioned earlier, these noises interfere with the desired signal. Accordingly, the present invention provides a technique for eliminating such interference in a low signal to noise ratio (SNR) or low signal to interference ratio (SIR) environment. The above wireless link can support digital data transmission, ν〇ΙΡ transmission and other digital multimedia transmission. The cellular wireless communication system 100 is also backward compatible to support analog operations. The cellular wireless communication system 100 also supports the GSM standard and the EDGE extension standard. The cellular radio system 100 also supports GPRS. Further, the present invention is also applicable to other standards such as a TDMA standard, a CDMA standard, and the like. In general, the present invention is applied to the digital communication technology to handle the identification and elimination of interference communications. The wireless terminals 116, 118, 120, 122, 124, 126, 128, and 130 are coupled to the cellular wireless communication system 10B via a wireless link with the base stations 103-106. As shown, the wireless terminals include cellular telephones 116 and 118, laptops 120 and 122, desktop computers 124 and 126, and data terminals 128 and 130. Moreover, cellular wireless communication system 100 also supports data transmission with other wireless terminals. As is well known, laptops 12 and 122, desktop computers 124 and 126, data terminals 128 and 13 and cell phones 116 and 118 are capable of "surfing", transmitting and receiving data communications, such as electricity, on the Internet 114. 1351825 Γ Γ 文 魏 魏 魏 魏 魏 魏 。 。 。 。. Most of the __ _ download speed is strictly strict, € slightly #继_. The county property's departure == supports the earning, and the terminal 116 loss can also support ‘. FIG. 2 is a functional block diagram of the wireless terminal 200. The wireless terminal shown in Fig. 2 includes an RF transceiver 202, a digital processing unit 2〇4, and various other components housed within the housing. The digital processing unit 2〇4 includes two main functional components, one is a physical layer processing, a speech codec, and a baseband codec module. The other is a co-processing and human-machine interface module 208. The digital signal processor is a physical layer processing, speech codec, and baseband codec age 206 t resident component, such as the _ instruction set computing (RISC) processor is a auxiliary operator, human interface module 2〇 The main components of 8. Also known as the no-line interface processor (RIP), the RKC processor is also known as the system processor. However, these names are not a limitation of the functionality of these components. The RF transceiver 202 is coupled to an antenna 203, a digital processing component 204, and a battery 224 that powers all of the components that are invoked by the wireless terminal 200. The physical layer processing, the speech codec, and the baseband codec module 206 are coupled to the coprocessing, the human interface module 208, the microphone 226, and the remaining 228. The co-processing, human-machine interface module 2〇8 is connected to various components, such as but not limited to a personal computing/data terminal device interface 21, a keypad 212, a user identification module (SIM) 213, a camera 214, and a flash memory. Body 216, SRAM 218, LCD 220, and LEDs 222. These components can support both static and/or dynamic images when the camera 214 and LCD 220 are connected. Thus, the wireless terminal 200 shown in Figure 2 can support audio and video services over a cellular network. 16 GS GS]V [The structure of the frame and the way in which the data block is transmitted through the gsm frame. The dirty matter with a duration of 2 Gms is divided into 4 sub-frames, each of which has a period of time O. The duration of each time slice is approximately 625us 'including the left part (10) Na), the right part (from the fine side) and the middle part (this). The left and right parts of the RF burst of the time slice carry data, and The middle part is the debug sequence. The GSM duck's 4 time slice RF bursts can transmit the - segment of the RLC block, a complete RLC block or two coffee blocks, depending on the side complement and scale, 弋 &quot; Through the first quarter of the duck time slice 0, the second time of the middle of the four knives, the third quarter of the time and the fourth quarter of the money Time slice G is transmitted. The data block A can carry one, one or two RLC blocks of the coffee block. In the same way, the data block B passes the i-th quarter-(four) time slice, the time slice in the first four-knife block, the third quarter shot of the time slice 1 and the fourth quarter shot. Time slice i is transmitted. Each set of time slices (ie, the G· shot each sub-time slice MCS mode is stable for the g_, but for the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ group time chip MCS The pattern 'for example, the time slice of each sub-building is not the same as any of the time slices π of each sub-building. The rainbow block can carry voice data or other data. Figure 4 shows the mapping of data to radio frequency pulses. Schematic diagram of the process of the string. The original data is unencoded and has a data block header, which is used to perform external coding on the (4) block and recognize the error check of the data block. The outer rim operation generally makes the _ redundancy check ((10) Or Fire Code (FireC〇de). As shown in the figure, the external encoding operation appends the tail bit and/or block coding sequence (BCS) after the data 17 丄妁 1825. In the cs_i coding scheme, block coding and The convolutional coding encodes the header and the data together. In the non-cs_i coding scheme, the header and the data are generally encoded separately. The Falun error correction and error detection are a shortened binary loop code in the header. And add redundancy after each bit of the data The full error detection capability of the Farr code makes the undetected rate only possible. The block coding operation pairs (4) adding redundant bits for error checking, and calculating additional redundancy when making errors. Transmission error caused by the wireless channel. _ Error correction or coding scheme is based on convolutional coding. Convolution, some bits generated by the flat coder can be shrunk before transmission. Shrink processing can increase convolution The coding rate reduces the redundancy of each data block sent. In addition, the shrinking process can also reduce the bandwidth requirement, so that the convolutional coded signal can be made to conform to the available channel bit turbulence. The convolutional coded and contracted bits It is transmitted to the interleaver, which shuffles the different bit streams and divides the interleaved bit rate into four bursts as shown in (4). Art® 5 does not test Na Naifu The thorns are generally received. Four shed bursts are received and processed to form a data block. After receiving * RF bursts, σ is combined to form an encoded data block. Then the encoded data block is solved. Shrink processing (if needed), decoding according to the internal decoding scheme, and then decoding according to the external decoding scheme. The decoded (four) block includes the data block header and data. According to the data and the newspaper-encoding method, the partial decoding can identify the data.

圖6是從發送的語音财恢復資料的過程的示意圖。這—過程盜 圖湘處理相似。-般發送持續時間爲I的語音㈣中該I 18 .在脈衝串中傳輪,該2°ms語音齡第二半 .如㈣,—組娜_從第一語 ':開_ 1Gms (毫秒),語桃的第:半以及後一 二=〇的第_半被編瑪並交錯在所述_組4㈣脈衝 =。=KP脈衝串進行處理時,生成的編瑪塊生成一個資料 辟糾&quot;咐二半収語音^第一 生成的語音&amp;的第-半可與語音t的第二半合併以 生成與有效浯音幀η相關的資料。 少:===相_#料進行再編碼至 的語音_第二半合併,+和財触脈衝串恢復 使用迴圈m 生成一°曰幀的資料。該語音幀可生效並 語音鴨進進行取’從而生成有效語料。然射對該有效 1地再建脈衝串:= 旦是=使用該再編媽語氣的第二半來部分 可産生H 柄°。S巾貞n的第二半被經過分割和交錯處理, ^編碼的職衝串。由於語紙竭: 知調武序列-起,可以更好地調試第二等化器處理分支。串”已 wlAsZlT!T200 ^aAm ^ψ 和圖8β中所示的操作對應㈣μ射-個對應時間片 19 1351825 二的:伽脈辭。這些操作㈣前端、基帶處理器和等化器處理 果、·且執仃。运些操作一般由上述部件中的一個來執行。但是,這也 •不同部件_處理職責可以不同而不脫離本發明的範圍。 。二 如圖8A所示,首先,rf前端接收一個咖_對應時間片内 的^衝串(步驟叫然後㈣前端將該即脈衝串轉換爲基帶 。乂驟8〇4)。爲了完成本發明,即前端發送-個中斷給基帶處 勒(步驟_)。因此,如圖8A所示,該拙前端執行步驟8咖6。 接著’基帶處理器接收所述基帶信號(步驟並型操作中 :前端:基帶處理器或調製器/解調器採樣該類比基帶錢以龍基 貪:進仃數位化。接收到基帶信號(數位形式的)以後基帶處理 器執仃^咖狀碰職^ _ 8ig)。_格式的盲檢 ^確__錢_齡式。_ gsm鮮的—個特定 施例中’該調製格式可以是高斯最小頻移鍵控(⑽张)調製或者 相移鍵控(8PSK)調製格式。基帶處理器作出判斷(步驟叫並 基於檢測到的調製格式繼續執行财兩個分支中的一個。 對於GMSK調製格式,基帶處理輯基帶信號進行反向旋轉和頻 ^鱗(步驟814)。,然後,基帶處理輯基帶信號執行脈衝串功 =步驟_)。然後,通過換頁連接符A接至圖犯,在步雜 處理料處觸辦限、财、物她_計。隨後,基帶 行自動增益控制環的計算(步驟叫域,基帶處理器確 信號的軟決策比例因數(步驟似)。執行步驟824後基帶 处理器對該基帶信號進行匹配濾'波(步驟826)。 20 / 4 _·826在下文中稱爲均衡前處理操作。基帶處理器通過執 :這些均衡前處理操作,生成處理後的基帶信號。錢,完成這此均 衡前處理操作後,基帶處理器向等化器模組發出命^ 一 &quot;等化减,、’且以夕刀支等化器的方式工作,將在後續結合圖9進行 2介紹。接下來,等化器模組在接收到所述命令後,基於不同的調 例如〇職調製編Κ調製)對處理後的基帶信號執行均 敍Γ乍、。等化續組從基帶處理器接收處理後的基帶信號、設置或 触並對該基帶域的左側部分執行最大似然序列估計(MLSE) ㈣化處理(步驟叫如前圖3中所示’每娜脈衝串包括資料 器側部分' 中間部分和右邊部分。一般來說,在步驟微中,等化 驟=’等化器模组對該處理後的基帶信號的右側部分進行均衡(步 串的均衡對應蝴部分㈣蝴。脈衝 衝串_ 6知賴序列來進行。但是,本發 的针施例可以利用再編碼或者部分再編碼的資料來改善均衡化過 =====處理,其中第—分支執行脈衝串的均衡化且第二 =第刀支對-組脈衝串的處理結果執行第二次均衡化處理。 脈衝串㈣梅模組向基帶處理器發出一個中斷信號,指出對祕 軟決策等化11模組接收 側,和二據從等化器模組接收到的軟_定左 基二:=分的平均相位(步驟832)。烟^^ 、等域組接收的軟決策進行頻率估計和跟縱(步驟娜)。步 21 1351825 -驟脱或步驟854和步驟836的操作又稱爲“均衡後處理”。步糊 •的操作執行以後,RF脈衝串的處理結束。 _ 8A,當在步驟_中盲檢測的是贿調製時,基帶處理 姑等餘模組執行步驟8U右邊的流程。首先,基帶處理器對該基 帶㈣執彳了反向_和_校正(步驟818)。然後絲處理器對該美 帶信號執行脈衝串功率估計(步職9)。再通過換頁連接符B參^ 紐中對應的流程’接下來基帶處理器執行時限、通道、噪音和信噪比 •料(步驟84〇)。然後在步驟842中,基帶處理器執行agc環的計 算接著’基帶處理器計算等化器模組將要使用的決策反饋等化器 (DeciskmFeedbackEqualizer,·)係數(步驟 844)。生成該 相關處理將在後續結合圖9騎詳細。接著,基轉理器對該基 2信號執行均衡_理操作(步驟846)。最後,基帶處理器確定該基 帶信號的軟決策比例因數(步驟848)。基帶處理器3〇執行的步驟 8腿8又觀針對8PSK婦絲舰的“均衡祕理,,操作。步驟 848結束以後,基帶處理器向等化器模組發出命令以對該處理後的基 帶信號進行均衡。 接收到基帶處理器的命令後,等化器模組從基帶處理器接收處理 後的基帶信號、設置和參數’並開始對該基帶信號的均衡化操作。首 先’等化器模組準傷在對8PSK調製處理的基帶信號進行均衡時要使 用的狀癌值(步驟850)。圖中所示的實施例中,該等化器模組使用最 大後驗概率(MAP)等化器。然後,該等化器模組使用_等化器 對該處理後的基帶信號的左右兩側部分進行均衡,生成該處理後的基 22 λ ΟΔΟ λ ΟΔΟ 號的均衡化 ==_)。步_完成·等·向基帶 .發出中斷域’表示其已完成對該處理後的基帶信 處理。 然後’基_||從轉化·接收軟 ^於該軟綱峨_細觸蝴靖种2 _Γ)854)° ·騎4晴卿^細__°跟蹤(步 736&gt;步驟854和步驟836的操作又稱爲均衡後處理操作。步驟836 後,對該特定RF脈衝串的操作結束。 儘管上述介财所福操作由無祕端的特定部件來 Γ ’這些操作還可以由不_部件來完成。例如,某些其他實施例 ,均衡插作可由基帶處理器或者系統處理器來執行。此外,解碼操 作頁可以由基帶處理m統處理ϋ來執行。 圖9所示爲根據本發明一個實施例執行單天線干擾消除(SAIC) 的多分支等化器處理模組900的結構示意圖韻^衡有兩種方法: 1)聯合檢測(JD) ; 2)盲干擾消除(BIC)。本發明_ BIC方法。 圖9中所示的各個部分可以是硬體、由處理器(例如圖2中的挪或 2〇8)執行陳體或者是硬軸軟_結合。多分她旧處理模植 900包括第-等化器處理分支和第二等化器處理分支。反向旋 轉模組接收基帶脈衝串帽目⑴和正交⑼齡,此基帶脈衝串 對應圖3-7中所描述的处脈衝串。該反向旋轉模組對接收的!和Q 脈衝串樣本進行反向娜,產生Ϊ和Q脈_縣(脈射)。通道長 度估計模組906舰些脈_進躲_確定觀魏錢道延時擴 23 1351825 -展量。通道長度或通道延時擴展將影響GSM/GPRS/EDGE接收器的性 .能和複雜度。通道長度越長’就需要在第—等化器_越多的通道切 .片(channeUip)進行估計。這就說明,在雌長度的賊序列的情況 下’越長的通道的通道估計精度越小。最長的傳播模型是Gs廳dge 規範中的丘陵(hilly terrain,HT)通道。此外,單天線干擾消除() 技絲難應用於HT通道,這是因爲HT通道的等化器係數數量太大, 並且該係數的料魅不是很好。而且,爲了適雜長的通道切片, • HT通道下SAIC的複雜度也相對增加。因此,多分支等化器需要能識 別具有長延時擴展的通道(例如HT通道)以執行SAic。識別到這樣 的通道時’ S分支等化II就可以剌干擾彡肖除技術(ASIC),只使用 現有的處理技術。 儘管現有的處理技術僅用於具有長延時擴展的通道,例如Ητ通 道’ GSM/Gm/EDGE中的現有處理技術可峨已知通道色散度中受 φ益。例如,第一等化器處理分支902中的MLSE接收器可自適應地針 對不同的通道選料化綠態數,柯是對财通道餅使用一侧 定地最大狀態數。這種自舰選擇法關改善小色散通道的性能。 一個實施例中,爲了適應ΗΤ通道,使用具有6個通道切片的視 窗來估計該通道。正確的通道辦_應該在該視窗包含有最大通道 能量的位置處。鱗限可通過搜尋得^具有較小色散的通道的時限 變化越大’例如農村地區(1^)和典型的城市地區(TU)傳播模型 中。這些將後續結合圖10和圖η進行介紹。 圖1〇是小色散通道的通道估計視窗位置的示意圖,如^和11; 24 通〔模1_這些通道的長度小於視窗的大小。如果不考慮噪音,通道 •估計可財多個最佳視窗位置’只要該視窗巾包括有3個主通道切 片圖10中不出了兩個最佳位置。但是,如果使用最大通道能量標準 來k擇視_位置’因爲存在噪音,不同的脈衝串的窗口位置將不同。 圖11所示爲大色散通道如HT通道的通道估計視窗位置的示意 圖。該通道長度和視窗大小相同,因而只有—個最佳視窗位置包含了 全部的通道能量。因此,該HT通道的通道估計時限變化很小。 •基於通道估計時限的二階統計,可以確定通道的色散。以下將介 紹如何估時限限並生成統計值。 接收器對每個脈衝串的通道估計執行時限估計。該時限估計操作 有3個步驟。首先,使用已知調試序列對中間位置(感碰㈣驗) 附近接收的脈衝串執行交叉相關,如下式: .詰〆63 + 女 + /&gt;(/) ^ = •其中,y(D是接收到的GSM/EDGE脈衝串,a①是已知的 GSM/EDGE調試序列,具有16個符號,雜交又相關後的結果。接 下來’對响序财的不_置計算通道長賴6的情盯的通道能 量。 4)令㈣”..,7 其中e(i)是通道能量。這樣的話,通道估計的時機就是具有最大 通道能量的位置處。6 is a schematic diagram of a process of restoring data from a transmitted voice. This is similar to the process of stealing. - Send the duration I is the voice (4) of the I 18 . In the burst, the 2° ms is the second half of the speech. For example, (4), - Group Na_ from the first language ': On _ 1Gms (milliseconds ), the first and second of the syllables and the second half of the 〇 = 〇 are half-coded and interleaved in the _ group 4 (four) pulse =. When the @KP burst is processed, the generated marshalling block generates a data arguing &quot;咐二半收音^ The first generated speech &amp; the first half can be combined with the second half of the speech t to generate and validate The data related to the arpeggio frame η. Less: ===phase_# material to re-encode to the voice_second half merge, + and financial touch burst recovery Use the loop m to generate a frame of data. The speech frame is validated and the voice is taken to generate an effective corpus. However, the shot is reconstructed for the valid one: = Dan is = the second half of the re-edited mother's tone can be used to generate the H handle °. The second half of the S frame is divided and interleaved, and the coded job string. Because of the linguistic exhaustion: knowing the tuning sequence, you can better debug the second equalizer processing branch. The string "wlAsZlT!T200 ^aAm ^ 对应 corresponds to the operation shown in Figure 8β (four) μ--corresponding time slice 19 1351825 two: gamma words. These operations (four) front-end, baseband processor and equalizer processing, And these operations are generally performed by one of the above components. However, this also • different components _ processing responsibilities may be different without departing from the scope of the invention. 2, as shown in Figure 8A, first, the rf front end Receiving a _string in the corresponding time slice (the step is called then (4) the front end converts the burst into a baseband. Step 8 〇 4). In order to complete the present invention, the front end sends an interrupt to the baseband. Step _). Therefore, as shown in FIG. 8A, the 拙 front end performs step 8 café 6. Then the 'baseband processor receives the baseband signal (step merging operation: front end: baseband processor or modulator/demodulator) Sampling the analogy with the base money to the dragon base greedy: the digitization of the input. After receiving the baseband signal (digital form), the baseband processor is obscured by the servant ^ _ 8ig). _ format blind check ^ _ _ money _ ageing. _ gsm fresh - a specific example in the 'modulation The format may be a Gaussian Minimum Shift Keying ((10)) modulation or a Phase Shift Keying (8PSK) modulation format. The baseband processor makes a decision (steps and continues to perform one of the two branches based on the detected modulation format). For the GMSK modulation format, the baseband processing baseband signal is inverse rotated and frequency scaled (step 814). Then, the baseband processing baseband signal performs the burst power = step_). Then, the page break connector A is connected to the map. In the case of the miscellaneous materials, the limit, the money, and the material are measured. Then, the calculation of the baseband line automatic gain control loop (step is called the domain, the baseband processor does determine the soft decision scale factor of the signal (step-like). After step 824, the baseband processor performs matching filtering on the baseband signal (step 826). 20 / 4 _·826 is hereinafter referred to as equalization pre-processing operation. The baseband processor performs the processing by these pre-equalization operations. The baseband signal. After the completion of the pre-equalization processing operation, the baseband processor issues a command to the equalizer module, and the work is performed by the equator. 2 will be introduced later in conjunction with Figure 9. Next, after receiving the command, the equalizer module performs a uniformization of the processed baseband signal based on different tunings such as 〇 modulation modulation and modulation. The equalization group receives the processed baseband signal from the baseband processor, sets or touches and performs maximum likelihood sequence estimation (MLSE) on the left portion of the baseband domain (steps are as shown in FIG. 3 above). 'The perna pulse train includes the middle part and the right part of the side portion of the data. In general, in the step micro, the equalization = 'equalizer module equalizes the right part of the processed baseband signal (step The equalization of the string corresponds to the butterfly part (four) butterfly. The pulse stringing _ 6 knows the sequence to proceed. However, the needle embodiment of the present invention can use re-encoded or partially re-encoded data to improve the equalization over===== process, wherein the first branch performs the equalization of the burst and the second = the first branch pair-group The processing result of the burst performs a second equalization process. The pulse train (four) Mei module sends an interrupt signal to the baseband processor, indicating that the soft-decision equalization 11 module receiving side, and the second data received from the equalizer module are soft left-base two: = The average phase (step 832). The soft decision of the smoke ^^, and other domain groups is subjected to frequency estimation and follow-up (steps). Step 21 1351825 - The trip or the operation of steps 854 and 836 is also referred to as "equalization post-processing". After the operation of the step is performed, the processing of the RF burst ends. _ 8A, when the blind detection is a bribe modulation in step _, the baseband processing awaiting module performs the flow on the right side of step 8U. First, the baseband processor performs a reverse _ and _ correction on the baseband (4) (step 818). The wire processor then performs a burst power estimate on the band signal (step 9). Then through the corresponding flow in the page change connector B, the baseband processor executes the time limit, channel, noise, and signal-to-noise ratio (step 84〇). Then in step 842, the baseband processor performs the calculation of the agc loop and then the baseband processor computes the decision feedback equalizer (DeciskmFeedbackEqualizer, ...) coefficients to be used by the equalizer module (step 844). The generation of this correlation process will be detailed later in conjunction with Figure 9. Next, the base processor performs an equalization operation on the base 2 signal (step 846). Finally, the baseband processor determines a soft decision scale factor for the baseband signal (step 848). Step 8 of the baseband processor 3 is performed on the 8PSK "Equilibrium Secretion, Operation. After the end of step 848, the baseband processor issues a command to the equalizer module to the processed baseband. The signal is equalized. After receiving the command from the baseband processor, the equalizer module receives the processed baseband signal, settings, and parameters from the baseband processor and begins equalization of the baseband signal. First, the equalizer mode The group cancer value is used in the equalization of the 8PSK modulated baseband signal (step 850). In the embodiment shown in the figure, the equalizer module is equalized using the maximum posterior probability (MAP). Then, the equalizer module equalizes the left and right sides of the processed baseband signal using the _ equalizer to generate equalization of the processed base 22 λ Ο Δ Ο λ Ο Δ = == _). Step_Complete·etc. To baseband. Issue interrupt field' indicates that it has completed the processing of the baseband signal after the processing. Then 'base_|| from conversion/receive soft^ to the soft outline峨_细触蝶靖2 _Γ)854)°·Riding 4 Qingqing^fine__°Tracking (step 736&gt; The operations of steps 854 and 836 are also referred to as equalization post-processing operations. After step 836, the operation of the particular RF burst is terminated. Although the above operations are performed by specific components without secrets, 'these operations are still This may be done by a non-component. For example, in some other embodiments, the equalization interpolation may be performed by a baseband processor or a system processor. Further, the decoding operation page may be executed by the baseband processing system. There are two methods for constructing a multi-branch equalizer processing module 900 for performing single antenna interference cancellation (SAIC) according to an embodiment of the present invention: 1) joint detection (JD); 2) blind interference cancellation ( BIC). The invention _ BIC method. The various parts shown in Fig. 9 may be hardware, executed by a processor (such as the shift or 2 〇 8 in Fig. 2) or a hard axis soft _ combination. The old processing module 900 includes a first equalizer processing branch and a second equalizer processing branch. The reverse rotation module receives the baseband burst hat (1) and orthogonal (9) age, and the baseband burst corresponds to FIG. 3-7. The pulse train described. To the rotating module, the received and Q pulse samples are reversed, and the Ϊ and Q pulse _ county (pulse) are generated. The channel length estimation module 906 ships some veins _ into the hiding _ determine the observation of the Wei Qiandao delay expansion 23 1351825 - Extensibility. Channel length or channel delay extension will affect the performance, power and complexity of the GSM/GPRS/EDGE receiver. The longer the channel length, the more channels need to be sliced in the first-equalizer_ (channeUip) estimates. This shows that in the case of a female-length thief sequence, the longer the channel estimation accuracy is, the smaller the propagation model is. The longest propagation model is the hilly terrain (HT) channel in the Gs hall dge specification. . In addition, the single-antenna interference cancellation () technique is difficult to apply to the HT channel because the number of equalizer coefficients of the HT channel is too large, and the coefficient of the coefficient is not very good. Moreover, in order to accommodate the long channel slicing, the complexity of the SAIC under the HT channel is relatively increased. Therefore, multi-branch equalizers need to be able to recognize channels with long delay spreads (such as HT channels) to perform SAic. When such a channel is identified, the S-branch equalization II can interfere with the ASIC and use only existing processing techniques. While existing processing techniques are only used for channels with long delay spreads, existing processing techniques such as Ητ channel' GSM/Gm/EDGE can benefit from known channel dispersion. For example, the MLSE receiver in the first equalizer processing branch 902 can adaptively select the number of green states for different channels, and the value of the maximum state of the ground for the use of the channel. This self-ship selection method improves the performance of small dispersion channels. In one embodiment, to accommodate the ΗΤ channel, a window with 6 channel slices is used to estimate the channel. The correct channel should be located where the window contains the maximum channel energy. The scale limit can be changed by searching for the time limit of the channel with smaller dispersion, such as in rural areas (1^) and typical urban areas (TU). These will be described later in connection with FIG. 10 and FIG. Figure 1 is a schematic diagram of the channel estimation window position of the small dispersion channel, such as ^ and 11; 24 pass [modulo 1_the length of these channels is smaller than the size of the window. If noise is not considered, the channel can be estimated to have multiple optimal window positions as long as the window towel includes 3 main channel slices. Figure 20 shows no two optimal positions. However, if the maximum channel energy standard is used to k _position' because there is noise, the window positions of the different bursts will be different. Figure 11 is a schematic illustration of the channel estimation window position for a large dispersion channel such as an HT channel. The channel is the same length as the window, so only the best window position contains all the channel energy. Therefore, the channel estimation time variation of the HT channel is small. • Based on the second-order statistics of the channel estimation time period, the dispersion of the channel can be determined. The following sections describe how to estimate time limits and generate statistics. The receiver estimates the execution time estimate for the channel of each burst. This time limit estimation operation has 3 steps. First, a cross-correlation is performed on a pulse train received near the intermediate position (touch (four) test) using a known debug sequence, as follows: .诘〆63 + female + /&gt;(/) ^ = • where y(D is Received GSM/EDGE burst, a1 is a known GSM/EDGE debug sequence with 16 symbols, and the result of hybridization is related. Next, 'the calculation of the channel is not long. The channel energy of staring. 4) Let (4) ".., 7 where e(i) is the channel energy. In this case, the timing of channel estimation is the position with the largest channel energy.

Vct =argmpe(/) 25 1351825 其中η〇!是估算出來的進行通道估計的時機。 .接收器工作時,與基站舣連接,保持-段長時間跟縱 過接收器時間跟縱環可以得出。㈣和如的均方差可由下式得出· s = hLT)2 對從第η個脈衝串獲得的均方差進一步取指數平均數可得到:Vct = argmpe(/) 25 1351825 where η〇! is the estimated timing for channel estimation. When the receiver is working, it is connected to the base station, and the hold-segment can be obtained for a long time with the receiver time and the vertical loop. (4) The mean square error of sum is as follows: s = hLT) 2 Further taking the exponential average of the mean square error obtained from the nth pulse train can be obtained:

Save -£ave'^-(X) + €-a 其中α是指數常量。該常量越小,平均值越大。 #圖12所示爲㈣.G1時不同傳播模型下的時限均方差的示意圖。 從圖12中可以看出’ HT通道的均方差比小色散通道如RA或TU通 道的小很多。因此,如果比較該均方差與預定通道長度閾值,從圖12 中可以很合易識別出Ητ通道或其他類似的具有長延時擴展的通道。 例如該預定通道長度間值可以是τ1ΐΓ_τ=3。如果計算得到的均方 時限差比ThreShHT小,‘观〜,_通道具有較大的色散度。 鲁因此’應該停止使用干擾消除處理(SAIC)以防止接收器性能的降低。 另一方面’當eave&gt;ThreshHT時,應該減少現有的隱兕接收器中的 化器狀態數以改善性能。 回到圖9切換器9〇9基於決策使干擾消除處理生效或無效。在 ,、他實施例巾’爲了確定是否使干擾消除處理(即第二等化器處理分 支)生效或無效,這些標準可與其他因素邏輯地結合在一起例如但 不If於SNU疋否有有色噪音以及接收的脈衝串受嚼音限制或干擾限 制的確定。 &lt; 一個實施例巾H化器處理分支902包括傳統的脈衝串等化 26 1351825 .器。這些樣本隨後將進行均衡,而其他樣本組成-個資料包,例如㈣ 包某些操作條件下,除了進行脈衝串級的均衡外還執行第二等化 -器處理分支的叠代處理。 脈衝串等化器,包括WQ有限脈應滤波器9〇8和_以及 最小平方估計(MLSE)等化器912,對從反向旋轉模組接收的每個脈 衝串進行處理這些部件由調試模組913使用每個脈衝串内的中間部 件的已知調試序列(TS)進行賴。另—方面,這些部件可在多個脈 衝♦串上進行調試。第一等化器處理分支9〇2産生軟決策,其中多個軟 決策代表解碼_每個資難元。每個軟採樣被提供給交錯, 經過交錯處理後再送到通道解碼器916中。通道解碼器916從該軟採 樣中解碼出資_ (即,代表每個資料位元的多個軟採樣經過解碼器 進行解碼後生成解碼後硬位元)。 通道解碼器916生成的資料帕由再編碼器918進行確認並進行再 鲁編碼’從而產生再編碼資料位元。交錯器92()接收所述再編碼資料位 ^ ’生成再編碼資料脈衝串。然後使用該再編碼資料脈衝串以及已知 調試序列對第二等化器處理分支310進行調試。 第二等化器處理分支904包括用於存儲多個脈衝串的暫存器似 以及I和Q FIR濾波器924和926。ϊ和Q濾波器似和挪由調試 模組928使用已知調試序列以及至少部分地再編碼脈衝㈣行調試。 通過這個方法’第二等化器處理分支使用至少部分地再編碼資料和已 知調試序列對Ϊ和q RF滤波器進行賴。當切換器_根據通道長度 估計模組907的輪出啟動第二等化器處理分支時,這些操作改善暫^ 27 1351825 器922巾處理後的脈衝串的遞。…Q遽波器經調試後,用於處理 .儲存的脈衝串。得到的結果在加法器93〇中相加,這樣便得出另一組 •軟採樣,然後提供給交錯器914和通道解碼$ 916進行處理後生成另 一組資料位元。 圖13更詳細地說明了圖9中多分支等化器的第—分支。在理想調 試的情況下,2分支線性等化器和決策反饋等化器(dfe)與傳統的 接收器相比,均能達__性能改進。由於只有%個調靖號,如 •圖所示,第-處理分支可使贼量可調整_狀麵波器_對前 饋遽波器908和910進行調試。 圖14更詳細地說明圖9中多分支等化器的第二分支。進行通道解 碼以後,資料被再編碼並用於調試7切片線性等化器⑽似和你。 第二分支使麟性等化n的原因是用於_交錯。與—個語音幢相關 的再編碼位元可能只提供脈衝串的一半(甚至資料位元)。決策反饋等 化器⑽E)需要連、續採樣以用於反饋滤波器。而且,線性等化器⑽ 比決策反化H⑽E) „。細_全再編敬元的實施例 中選擇鹏科是LE用於該第二分支。儘加4中暫存㈣位於 切換器909的下游,該暫存器922也可以放在切鋪9〇9的上游。這 樣安排能齡證無論通縣絲計池9G7或城㈣器9似處於 何種狀態’接收的RF脈衝串都存儲在記憶體内。這樣,當該多分支 等化器的第二分支由於通道長度估計模組9〇7或切換控制器贿刀的 輸出啟動時’便立即可以使用該脈衝串。 圖15是使用干擾消除技術對接收的即脈衝串進行均衡的流程 28 =狀Γ _中接收多個脈衝串,然後在步驟中進行如前所 • =2轉。帅料,使料—等罐關9中的第一等化 序列對:第即脈衝串進行處理,在步驟1506中,使用已知調試 :J==處理分支進行調試。接收到的即脈衝串可提供 分支内支以及第—等化11處理分支。在第二等化器處理 存斋或其他記憶體位置存儲該接收的RF脈衝串以進行 序列H細观+ ’第,器處理分細已基於已知調試 脈衝串rrmr贿姆咖均衡後的即 心,傭在烟別帽其進行交錯 二1514 : Γ2中對其進行解碼’從而獲得提取出的資料位元。步 ’魏提取A的資触材解碼產 ,蝴輸心她帥it 當前—組職衝串獲得的資料與從前一_脈衝串獲 I ’、、〜併’生成-個有效語音巾貞。紐賴語音巾貞再編碼以生 糾編錢伽元在倾⑽_找處理,生 部==ΙΓ蝴權㈣編侧貞時包括有 處理=二從記憶趙中重新獲取w脈衝串並使用第二等化器 使用i二等絲1延個步驟包括獲取一個或多個即脈衝串並 衝_二等彳=分支進行處理。步驟1522中,_編碼資料脈 以使用第1 物職。雜㈣,在轉1524中便可 使用第二等化器處理分支對該好脈衝串進行均衡,其中第二等化 29 1351825 器處理分支不僅基於已知調試序列還基於通道解碼器最初輸出的至卜 —些部分地再編碼的資料位元進行賊。這使得第二等絲處理八= 能夠不翻用已知調試序列還利用再編碼資料位元對其進行更^ 衡和調試,因域提供比第—等化器處理分支更好的輪出。第二等化 器處理分支生成另-組軟決策,經過步驟1526巾的交錯處物步驟 1528甲的解竭後,在步驟153〇中産生另一個資料幀。 以下將進—步介紹級最小平料道料(LS.)關接料 方法’該紐_於在E臓岐用的方法。錢,_賴序列估 汁該通道。然後,當其爲腦的前鎮和反鑛波器時,計算賴波器 和MLSE的參數。這種間接調試方法存在的一個問題是,由於㈣^ =常在低弧下工作,通道估計(CE)性能很差,通道估計誤差在計 算遽波器係數時被傳遞。 圖13中的MLSE輸入的信號模财看作是lsi通道加噪音。假設 f反饋滤波器的脈衝回應是_増,bM},調試的目的是獲 得預據波器係數刪〜fl(Lr獅),·柳 號並對應接收的信號的MLSE參數b。 基於以上模式,MLSE輪入的噪音由以下得出: /=〇 其中,X1和X2分別是反向旋轉輸出J和Q,s是調試序號,d是系 統延時。以向量形式表示即爲: 30 1351825 n(k+l) η(]ς+Ν)_ x^k+d) x^k+d+ΐ) XjQc+d+N)Save -£ave'^-(X) + €-a where α is the exponential constant. The smaller the constant, the larger the average. #图12 is a schematic diagram showing the time-averaged variance of different propagation models in (4).G1. It can be seen from Figure 12 that the mean square error of the HT channel is much smaller than that of the small dispersion channel such as the RA or TU channel. Therefore, if the mean square error and the predetermined channel length threshold are compared, the Ητ channel or other similar channel with long delay spread can be easily identified from FIG. For example, the predetermined channel length value may be τ1ΐΓ_τ=3. If the calculated mean square time difference is smaller than ThreShHT, the 'view~, _ channel has a larger dispersion. Lu therefore should stop using interference cancellation processing (SAIC) to prevent receiver performance degradation. On the other hand, when eave&gt;ThreshHT, the number of states in the existing concealed receiver should be reduced to improve performance. Returning to Fig. 9, the switcher 9〇9 makes the interference cancellation process valid or invalid based on the decision. In order to determine whether to make the interference cancellation process (ie, the second equalizer processing branch) valid or invalid, these criteria can be logically combined with other factors, such as but not if the SNU is colored. The noise and the received bursts are determined by chewing tone limits or interference limits. &lt; One embodiment towel H processor processing branch 902 includes conventional pulse train equalization 26 1351825 . These samples will then be equalized, while the other samples constitute a packet, for example (4). Under certain operating conditions, in addition to the equalization of the burst level, the iterative processing of the second equalizer branch is performed. The pulse equalizer, including the WQ finite pulse filter 9〇8 and _ and the least squares estimation (MLSE) equalizer 912, processes each burst received from the inverse rotation module. Group 913 uses the known debug sequence (TS) of the intermediate components within each burst. On the other hand, these components can be debugged on multiple pulses. The first equalizer processing branch 〇2 generates a soft decision in which a plurality of soft decisions represent decoding _ each refusal element. Each soft sample is provided to the interleave, which is interleaved and sent to the channel decoder 916. The channel decoder 916 decodes the capital from the soft sample (i.e., a plurality of soft samples representing each data bit are decoded by the decoder to generate decoded hard bits). The data packet generated by channel decoder 916 is acknowledged by re-encoder 918 and re-encoded&apos; to produce re-encoded data bits. The interleaver 92() receives the re-encoded data bit ^' to generate a re-encoded data burst. The second equalizer processing branch 310 is then debugged using the recoded data burst and the known debug sequence. The second equalizer processing branch 904 includes register-like and I and Q FIR filters 924 and 926 for storing a plurality of bursts. The ϊ and Q filters are similar to the debug module 928 using a known debug sequence and at least partially re-encoding the pulse (four) line debug. By this method, the second equalizer processing branch uses the at least partially re-encoded data and the known debug sequence to perform the Ϊ and q RF filters. When the switcher_starts the second equalizer processing branch according to the round-out of the channel length estimation module 907, these operations improve the handoff of the bursts processed by the 222. ...Q chopper is used to process the stored bursts after debugging. The resulting results are summed in adder 93, which results in another set of soft samples, which are then provided to interleaver 914 and channel decoded $916 for processing to generate another set of data bits. Figure 13 illustrates the first branch of the multi-branch equalizer of Figure 9 in more detail. In the case of ideal tuning, the 2-branch linear equalizer and the decision feedback equalizer (dfe) can achieve __ performance improvement over conventional receivers. Since there are only a few adjustments, as shown in the figure, the first-processing branch allows the thief to adjust the _-surface waver _ to debug the feedforward choppers 908 and 910. Figure 14 illustrates the second branch of the multi-branch equalizer of Figure 9 in more detail. After channel decoding, the data is re-encoded and used to debug the 7-slice linear equalizer (10) and you. The reason why the second branch equalizes n is to be used for _interlacing. The re-encoded bit associated with a speech block may only provide half of the burst (even the data bit). The decision feedback equalizer (10) E) requires continuous, continuous sampling for the feedback filter. Moreover, the linear equalizer (10) is selected to reflect the H(10)E). In the embodiment of the fine _ full re-editing element, the Pengke is selected for the second branch. The temporary storage (4) is located downstream of the switch 909. The register 922 can also be placed upstream of the cut shop 9〇9. In this way, regardless of the state of the pass count card pool 9G7 or the city (four) device 9, the received RF bursts are stored in the memory. In this way, when the second branch of the multi-branch equalizer is activated by the channel length estimation module 9〇7 or the output of the switching controller, the pulse train can be used immediately. Figure 15 is the use of interference cancellation. The process of equalizing the received bursts is 28 = Γ _ receives a plurality of bursts, and then in the step as before = = 2 turn. handsome, make the material - the first of the cans The equalization sequence pair: the first burst is processed, and in step 1506, the known debug: J== processing branch is used for debugging. The received burst, which can provide the branch inner branch and the first equalize 11 processing branch. Store the connection in the second equalizer processing memory or other memory location The RF pulse train is used to perform the sequence H meso + ', the device processing sub-divided has been based on the known debugging pulse train rrmr bribes after the balance of the heart, the commission in the cigarette cap it is interlaced two 1514: Γ 2 Decoding is performed to obtain the extracted data bit. Step 'Wei extracted A's material touch material decoding production, and the heart loses her handsome it. The current data obtained from the group is obtained from the previous _burst I', ~ and 'generate-a valid voice towel. New Zealand voice towel 贞 re-encoded to entangle the money gamma in the dump (10) _ find processing, the birth department == ΙΓ butterfly right (four) side of the 贞 include processing = two from the memory Zhao Zhong re-acquires the w burst and uses the second equalizer to use the second-order filament 1 to extend the steps including acquiring one or more bursts and rushing the second-order 彳= branch for processing. In step 1522, the _coded data The pulse is used to use the first object. Miscellaneous (four), in the 1524, the second equalizer processing branch can be used to equalize the good burst, wherein the second equalization 29 1351825 processing branch is not only based on the known debug sequence. Based on the initial output of the channel decoder, some partial re-editing The data bit is used to carry the thief. This makes the second wire processing eight = can not use the known debugging sequence and use the re-encoded data bit to better balance and debug, because the domain provides better than the first equalizer processing The branch is better rounded. The second equalizer processes the branch to generate another set of soft decisions. After the decompression of the interleaved step 1528 of step 1526, another data frame is generated in step 153. Step-by-step introduction to the minimum level material (LS.) method of closing the material 'This method is used in E. The money, _ Lai sequence estimates the channel. Then, when it is the front town of the brain The parameters of the tiling device and the MLSE are calculated when the anti-mineral wave device is used. The problem with this indirect debugging method is that the channel estimation (CE) performance is poor due to (4)^ = often working in a low arc, and the channel estimation error is poor. It is passed when calculating the chopper coefficient. The signal model of the MLSE input in Figure 13 is considered to be the lsi channel plus noise. Assume that the impulse response of the f-feedback filter is _増, bM}, and the purpose of the debugging is to obtain the pre-cord filter coefficient 〜~fl(Lr lion), and the number of the MLSE parameter b corresponding to the received signal. Based on the above mode, the noise of the MLSE wheel is derived from: /=〇 where X1 and X2 are the reverse rotation outputs J and Q, respectively, s is the debug number, and d is the system delay. Expressed in vector form: 30 1351825 n(k+l) η(]ς+Ν)_ x^k+d) x^k+d+ΐ) XjQc+d+N)

Xi(k+d-Lf+\) ..· 工1(女+ Λ?+1 - Zy+1)太2(克+3 + 1) Xtik+d+N-^+^^lc+d+N)… ^(k+d-Lf+l) ^{k+d+l-Lf+X) x2(k+d+N-Lf+\) /ι(〇) AiLf -Ο λ⑼ s(k) ϊ(Α:+1) …s(]c-Lb+\) ... s(k+l-Lb +1) 'm s(k+N) -. s(k+N-Lb+l)f^Ll&gt; ^ 爲了方便起見,下式中黑體小寫字母是向量,黑體大寫字母是矩 陣: n=Xf-Sb 等化器的任務是找出能最小化MLSE輸入噪音的f和b, min |ju||2 由於調試序號的數量受到限制,對£和b的聯合優化對嗓音很敏 感。以下介紹-種·減小職波器f的料參數的次優方法。 ,預滤波器輸出(Xf)和調試符號之間的交叉相關可通過咖輸 通道上進行。這樣的話,b衝表示。在職波器 出處觸何㈣料as_GE),咖聽編 b = S+Xf 數最==_4(P一㈣灿換可《將該函 min fXi(k+d-Lf+\) ..·工1(女+ Λ?+1 - Zy+1)Too 2(g+3 + 1) Xtik+d+N-^+^^lc+d+N )... ^(k+d-Lf+l) ^{k+d+l-Lf+X) x2(k+d+N-Lf+\) /ι(〇) AiLf -Ο λ(9) s(k) ϊ( Α:+1) ...s(]c-Lb+\) ... s(k+l-Lb +1) 'ms(k+N) -. s(k+N-Lb+l)f^Ll&gt; ^ For convenience, the lowercase letters in black are vector, and the uppercase letters are matrix: n=Xf-Sb The task of the equalizer is to find f and b that minimize the noise of the MLSE input, min |ju|| 2 Since the number of debug sequences is limited, the joint optimization of £ and b is sensitive to voice. The following describes the sub-optimal method for reducing the material parameters of the occupational wave device f. The cross-correlation between the pre-filter output (Xf) and the debug symbols can be performed on the coffee channel. In this case, b is indicated. In-service wave device, what is the source (four) material as_GE), coffee listening and listening b = S+Xf number most ==_4 (P one (four) can change can "the letter min f

l|Xf'SS+Xf||2 = min^ss+)Xf||2 = minrA 31 1351825 一其中A=x,(1 - s s+) x,且〇,是轉置操作啊組⑽)。 •爲了避免出現平凡解(trivialsolution),需要對其應用約束。兩種常用 .的約束是單位範數(Unit_n_)約束和線性約束。當約束范數爲】時, 最優解是對應最小特徵值的A的特徵向量: f = eigvec(A) 還可以對f應用線性約束。例如’可以將[)的第丨個元素固定爲^ 也就是說,MLSE通道b的第i個切片(tap)是丨。c是s+x的第土行 鲁向量。這樣,該線約束如下: 由此,最優解爲:l|Xf'SS+Xf||2 = min^ss+)Xf||2 = minrA 31 1351825 One of them is A=x, (1 - s s+) x, and 〇 is the transpose operation group (10)). • To avoid trivial solutions, you need to apply constraints to them. The two commonly used constraints are unit norm (Unit_n_) constraints and linear constraints. When the constraint norm is 】, the optimal solution is the eigenvector of A corresponding to the smallest eigenvalue: f = eigvec(A) Linear constraints can also be applied to f. For example, 'the last element of [) can be fixed to ^, that is, the i-th slice of the MLSE channel b is 丨. c is the earthy line of s+x. Thus, the line constraint is as follows: Thus, the optimal solution is:

f=AV 線性約束通常比單位範數約束更好。在線性約束中,如果選擇第 一個切片爲一,上述的最小化標準就相當於DFE標準。對角線填充在 高SIR範圍中使用。 1在HT通道條件下’或者是其他類似的具有長時延擴展的通道下, 干擾消除處理會使得性能比傳統處理更差。由於具有較短的預濾波器 長度,長時延通道還會産生較大的衰減。爲了解決這個問題,加入一 個轉換器來啟動或無效干擾消除處理。該切換器可以是SNR、有色噪 音鑒別器和通道輪廓檢測器(channel profile detector)的任何組合。 圖16A和16B是使用通道估計模組啟動或無效干擾消除均衡化處 理以對接收的RF脈衝串進行均衡的流程圖。步驟16〇〇中,接收多 個脈衝串,然後在步驟1602中對其進行如前所述的反向旋轉處理。步 32 1351825 帮_中確定估計的通道長度或通道色散度的職值,例如圖 所介紹的均方差。辦祕巾,制第—#化_如圖㈠ ,化器處理分支處理該RF脈衝串,該第一等化器處理分支在步驟= 中使用已知調試序舰行調試。接收的处脈衝串可提供給第 器處齡扣及第二等化H處理分A。在第二#储處理分支内 用暫存器或其他記憶體位置存儲該接收的卵脈衝串。第 理分支在烟_、腿和16M _接收_脈衝串進行处 解父錯和解碼。步驟祕中,從提取_料位元帽個資料 ^判斷點1618中,確定該估計的通道長度或通道色散度的測量值愈 預^的閾值她妓更有利。如職錢有利,則只由第一料 =分支生成資料_夠了。但是,如果步驟i6i8中該測量值盘 一疋間值概沒有優勢,财要第二等化器處理分支。當 信號與GMSK信餘干㈣妓這種情況。 m 碼資料位元。語音幢處理中,這需要將從當前組卵 =:Γ語音一碼生成再編蝴位元二 于纽立幀時7=24中進行交錯處理,生成再編碼資料脈衝串。應用 m 該再編碼資料脈衝串包括有部分再編碼的位元。 喊2^,從記憶體中重新獲取W脈衝串,並使用第二等化 ^ L卜轉⑽脈衝串並使用第二 ° ”灯處理。步驟1628中’提供所述再編碼資料脈衝串 33 1351825 .以對第二等化器處理分支進行調試。這樣,存儲在記憶體中 •衝串可在步驟刪中使用第二等化器處理分支進行處理复 脈 .化器處理分支不僅基於已知賴序列還基於通道解碼等 少-些部分地再編碼的資料位元進行調試。這使得第二等化 = 支能夠不僅利用已知調試序列還利用再編碼資料位元對I進理分 均衡和調試,因而能提供比第—等化器處理分支更好的輪出^好的 化器處理分支生成另—崎決策,經過步驟1632中的交 一等 •⑹4令的解碼後,在步驟163付產生另_個_。曰处步驟 總的來說,本發明提供一種多分支等化器處理模組,用 接收的射頻脈衝串相關的干擾。所述多分支等化器處理模电包括^ 等化器處理分之和第:等化财理分支。所述第—雜妓 於已知調試序列進行調試並對接收的财脈衝串進行均衡。土 的軟採樣樣核_轉換成:_元。所糊錄樣本 和通道解進行處理,從而從所述軟採樣樣本中生成資料位:益 碼幢。再編碼器對所述解進行再編碼,生成再編碼或至少^ ^ ’生成至少部分再編碼的脈衝串。所述第二等化器處理分支使用 所述至少部分再編碼的資料位元調試其内的線性等化器。接收的虾 Γ等串儲在暫存器内,在對所述線性等化器進行調試後,所述 ==將接收的w脈衝串從暫存器中取_其進行 2處理讀便生成另-軟採樣樣本錢t,並隨後轉換成另 枓h。所述另-軟採樣樣本由所述解交錯器和通道解碼 34 1351825 •理,從而生成另-解碼丨貞。這樣可以消除干擾信號顧得更好的對接 •收的RF脈衝串的處理精度。所述第二等化器處理分支可基於測量得 •到的通道條件選雜地啟滅無效。具有長延時舰地通道條件^需 要無效掉干擾處理,_這樣會使性能比傳_處理方法更差。 本專業普通技術人員會意識到,術語“基本上,,或“大約,,正 如這裏可能關的’ m目躺術語提供—觀内可接受的公差。這種 業内可接受的公差從小於1%到·,並對應於,但不限於,元件值、 積體電路處理波動、溫度波動、上升和下降時間和/或熱雜訊。本專業 普通技術人員還會意朗,術語“可操作地連接,,,正如這裏可能用 到的’包括通過另-個元件、元件、電路或模組直接連接和間接連接, 其中對於間接連接,中間插入元件、元件、電路或模組並不改變㈣ 的資訊’但可以調整其電流電平、電壓電平和/或功率電平。正如本專 2普通技術人員會意識到的,推斷連接(亦即,—個元件根據推論連 #個7G件)包括兩個元件之間用相同於“可操作地連接,,的方 :接和間接输正如本專業f通技術人員還會意識到的,術語“比 ,果有矛J正如這裏可能用的,指兩個或多個元件、專案、信號 2比較提供個想要的關係。例如’當想要的關係是信號i具 2的振巾4 ’當錢i的振幅大於錢2的娜或信號2 、田小於信號1振幅時,可以得到有_比較結果。 ^出於轉和說明的目的對本發_優選實施例進行了介紹。 明眚對本發明触盡魏制,基於上勒容陳導或者根據本發 '丁〜、用的^求,還可以對本發明的實酬進行修改或變更。爲了 35 1351825 -解釋本發_原理和實際翻,以便本領域的普通技術人員能夠實施 .本發明’選擇了上述齡個實施例進行介紹。很明顯,本發明的範圍 由權利要求及其等效替換來定義。此外,還可以對本發明進行各種改 變、替換和變更而不脫離本發明的範圍和精神實質。 【圖式簡單說明】 ' 圖1是根據本發明支援多個無線終端的蜂窩無線通信系統的一部分 的示意圖; 籲圖2是根據本發明構建的無線終端的功能框圖; 圖3是-個GSM帕的結構以及由該娜φ貞傳送資料塊的方式的示意 ®· 圖4是下行鏈路傳輸形式的示意圖; 圖5纽—系列的射頻脈衝串信號中恢復資料塊的過程示意圖; 圖6是從-系列的射頻脈衝串信號中恢復語音資料的過程示意圖; 圖71從資料或語音_號中恢復脈衝串的過程示意圖; •圖从疋無線終端在接收和處理射舰衝串時的操作流程圖; 圖8Β疋無線終端在接收和處理射頻脈衝串時的操作流程圖; 圖9疋根據本發明—個實施例的多分支脈衝串等化㈣框圖; 圖1〇疋小色散通道的通道估計視窗位置(wind〇w p〇siti〇n)的示意 ΓΒΓΙ · 圍, 圖11疋大色散通道崎道估計視窗脈衝位置的示意圖; 圖12是在不同傳播模型下的均方實現誤差的示意圖; 圖13疋根據本發明-個實關的脈衝等化㈣示意圖; 36 1351825 圖14是根據本發明一個實施例的脈衝等化器的示意圖; .圖15是根據本發明一個實施例的操作流裎圖; ‘圖16A疋根據本發明一個實施例的操作流程圖; 圖16B是根據本發明—個實施例的操作流程圖。 【主要元件符號說明】 1〇〇蜂寓式無線通信系統 1〇1移動交換中心(MSC) 102 GPRS業務支援節點/EDGE業務支援節點(SGSN/Sesn) • 103、104、105、106 基站 110 PSTN (公共交換電話網) 112 GPRS閘道支援節點(GGSN) 114因特網 116、118蜂窩式移動電話 120、122膝上型電腦 121語音終端 123語音(IP語音)終端 125個人電腦 124、126臺式電腦 128、130資料終端 200無線終端 152、154基站控制器(MSC) 202射頻收發器 204數位處理元件 208人機介面功能塊 212鍵盤 214照相機 218靜態記憶體(SRAM) 222發光二極體(LED) 226麥克風 203天線 206基帶編/解碼器(CODEC)功能塊 210個人電腦/資料終端設備介面 213用戶識別卡(SIM卡)埠 216快閃記憶體 220液晶顯不幕(LCD) 224電池 37 1351825 900夕分支等化器處理模組 904第二等化器處理分支 907通道長度估計模組 濾波器 909切換器 228揚聲器 902第一等化器處理分支 906反旋模組 908、9101和q有限脈衝回應(ρπ) 907Α切換控制器 912 最小平方估測(Minimum Least Squares Estimation,簡稱 MLSE ) 等化器 914解交錯器 918重編碼器 922緩衝器 928訓練模組 913訓練模組 916通道解碼器 920交錯器 924、9261和Q有隊脈衝濾波器(FIR) 930加法器The f=AV linear constraint is usually better than the unit norm constraint. In linear constraints, if the first slice is chosen to be one, the above-mentioned minimum standard is equivalent to the DFE standard. Diagonal fill is used in the high SIR range. 1 Under HT channel conditions' or other similar channels with long delay spread, interference cancellation processing can make performance worse than conventional processing. Long delay channels also produce large attenuation due to the shorter pre-filter length. To solve this problem, a converter is added to initiate or disable interference cancellation processing. The switch can be any combination of SNR, colored noise discriminator and channel profile detector. 16A and 16B are flow diagrams for using a channel estimation module to initiate or disable interference cancellation equalization processing to equalize received RF bursts. In step 16A, a plurality of bursts are received, and then in step 1602, the reverse rotation processing as described above is performed. Step 32 1351825 Help determines the estimated channel length or channel dispersion value, such as the mean square error described in the figure. Handle the secret towel, the system - #化_Figure (1), the processor processing branch handles the RF pulse train, the first equalizer processing branch is debugged in step = using the known debug sequence ship. The received pulse train can be provided to the first stage buckle and the second equalized H processing point A. The received egg burst is stored in the second #store processing branch using a scratchpad or other memory location. The rational branch performs the parent error and decoding on the smoke_, leg, and 16M_receive_burst. In the secret step, from the extraction _ level cap data ^ judgment point 1618, it is more advantageous to determine the estimated channel length or the measured value of the channel chromaticity. If the job is profitable, then only the first material = branch generation data is enough. However, if there is no advantage in the value of the measured value in step i6i8, the second equalizer handles the branch. When the signal is related to the GMSK letter (four) 妓 this case. m code data bit. In the speech building process, it is necessary to perform interleaving processing from the current group egg =: Γ voice one code generation re-encoding bit 2 to the new frame 7=24 to generate a re-encoded data burst. Application m The re-encoded data burst includes partially re-encoded bits. Shout 2^, re-acquire the W burst from the memory, and use the second equalization to rotate the (10) burst and use the second °" light processing. In step 1628, 'provide the recoded data burst 33 1351825 Debugging the branch of the second equalizer processing. In this way, it is stored in the memory. • The string can be processed in the step by using the second equalizer to process the branch. The processing branch is not only based on the known The sequence is also debugged based on less-partially re-encoded data bits, such as channel decoding, which enables the second equalization = branch to utilize both the known debug sequence and the re-encoded data bits to balance and debug the I. Therefore, it is possible to provide a better rounding out of the processing branch of the first equalizer processing branch, and to generate another-salt decision by the processing of the intersection of the first and the sixth (6) 4 in step 1632, and then generate the generated in step 163. In addition, the present invention provides a multi-branch equalizer processing module for receiving interference associated with a radio frequency burst. The multi-branch equalizer processing mode includes: Processor processing The equalization of the financial branch. The first-complex is debugged by the known debug sequence and the received financial burst is equalized. The soft sampled kernel of the soil is converted into: _ meta. The paste sample and the channel solution are performed. Processing, thereby generating a data bit from the soft sampled sample: a code block. The recoder re-encodes the solution to generate a re-encode or at least ^^' generate a at least partially re-encoded burst. The equalizer processing branch uses the at least partially re-encoded data bit to debug the linear equalizer therein. The received shrimp or the like is stored in the register, after debugging the linear equalizer, The == takes the received w burst from the register _ which performs 2 processing reads to generate another-soft sampled sample money t, and then converts to another 枓h. The other-soft sampled sample is described by The deinterleaver and channel decode 34 1351825 will generate another decoding, which can eliminate the processing precision of the interfering signal received by the interfering signal. The second equalizer processing branch can be Selecting the ground based on the measured channel conditions Invalidation is invalid. With long delay ship channel conditions ^ need to eliminate interference handling, _ this will make the performance worse than the transmission method. Those of ordinary skill in the art will recognize that the term "substantially, or "about," As can be seen here, the 'm-line terminology provides an acceptable tolerance. This industry-acceptable tolerance ranges from less than 1% to · and corresponds to, but is not limited to, component values, integrated circuit processing fluctuations. Temperature fluctuations, rise and fall times, and/or thermal noise. It will also be apparent to those skilled in the art that the term "operably connected, as may be used herein" includes passing through another component, component, circuit. Or module direct connection and indirect connection, where for the indirect connection, the intermediate insertion component, component, circuit or module does not change the information of (4) 'but its current level, voltage level and/or power level can be adjusted. As will be appreciated by those of ordinary skill in the art, the inferred connection (i.e., the component is inferred from the #7G piece) includes the same as the "operably connected," Indirect transmission, as will be appreciated by those skilled in the art, the term "ratio, as it may be used here, refers to two or more components, a project, and a signal 2 comparison to provide a desired relationship. For example, 'when the desired relationship is the vibrating towel 4' of the signal i with 2, when the amplitude of the money i is greater than the sum of the money 2 or the signal 2, and the field is less than the amplitude of the signal 1, a _ comparison result can be obtained. The present preferred embodiment has been described for the purposes of turning and description. Alum's exhaustion of the invention is based on the above, and it is also possible to modify or change the actual payment of the present invention based on the above-mentioned Le Rong Chen or according to the present invention. For the purposes of 35 1351825 - the explanation of the present invention is explained in the light of the principle and the actual turning, so that those skilled in the art can carry out the invention. It is apparent that the scope of the invention is defined by the claims and their equivalents. In addition, various modifications, changes and changes may be made to the present invention without departing from the scope and spirit of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a portion of a cellular wireless communication system supporting multiple wireless terminals in accordance with the present invention; FIG. 2 is a functional block diagram of a wireless terminal constructed in accordance with the present invention; FIG. 3 is a GSM Schematic diagram of the structure of the Pa and the manner in which the data block is transmitted by the Na?? Figure 4 is a schematic diagram of the downlink transmission form; Figure 5 is a schematic diagram of the process of restoring the data block in the RF-series signal of the New Zealand series; Schematic diagram of the process of recovering speech data from the series of RF burst signals; Figure 71 Schematic diagram of the process of recovering bursts from data or speech_numbers; • Operation flow from the wireless terminal when receiving and processing the shots Figure 8 is a flow chart of the operation of the wireless terminal when receiving and processing the radio frequency burst; Figure 9 is a block diagram of the multi-branch pulse train equalization (4) according to an embodiment of the present invention; Estimate the position of the window (wind〇wp〇siti〇n) 围 · 围, Figure 11 示意图 large dispersion channel esoteric channel estimation window pulse position; Figure 12 is under different propagation models Schematic diagram of a mean square error; FIG. 13 is a schematic diagram of a pulse equalization (four) according to the present invention; 36 1351825 FIG. 14 is a schematic diagram of a pulse equalizer according to an embodiment of the present invention; An operational flow diagram of an embodiment; 'Fig. 16A' is an operational flow diagram in accordance with one embodiment of the present invention; and Fig. 16B is an operational flow diagram in accordance with an embodiment of the present invention. [Description of main component symbols] 1 〇〇 寓 无线 无线 无线 移动 移动 移动 移动 移动 移动 移动 移动 移动 移动 GPRS GPRS EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE EDGE (Public Switched Telephone Network) 112 GPRS Gateway Support Node (GGSN) 114 Internet 116, 118 Cellular Mobile Phone 120, 122 Laptop 121 Voice Terminal 123 Voice (IP Voice) Terminal 125 Personal Computer 124, 126 Desktop Computer 128, 130 data terminal 200 wireless terminal 152, 154 base station controller (MSC) 202 radio frequency transceiver 204 digital processing component 208 human interface function block 212 keyboard 214 camera 218 static memory (SRAM) 222 light emitting diode (LED) 226 microphone 203 antenna 206 baseband encoder/decoder (CODEC) function block 210 PC/data terminal device interface 213 user identification card (SIM card) 埠 216 flash memory 220 liquid crystal display (LCD) 224 battery 37 1351825 900分支 branch equalizer processing module 904 second equalizer processing branch 907 channel length estimation module filter 909 switch 228 speaker 902 first equalizer processing branch 906 anti-rotation module 908, 9101 and q finite impulse response (ρπ) 907Α handover controller 912 Minimum Least Squares Estimation (MLSE) equalizer 914 deinterleaver 918 re-encoder 922 buffer 928 training module 913 training module Group 916 channel decoder 920 interleaver 924, 9261 and Q group pulse filter (FIR) 930 adder

3838

Claims (1)

«51825 十、申請專利範圍·· 選擇性地啟動干擾消除以處理接收的 1、一種多分支等化器處理模組 射頻脈衝串,包括: 通道長度估計模組,用於: 確定與所述射頻脈衝串相關的通道長度; $具有較大的紐麟,選紐地無效掉干制除處理;«51825 X. Patent Application Range · Selectively activate interference cancellation to process received 1. A multi-branch equalizer processing module RF burst, including: Channel length estimation module, for: determining and RF The length of the channel associated with the burst; $ has a larger Newlin, and the selection is invalid; 第一等化器’基於已知調試序顺行調試,對射舰衝串進行均 衡,並從所述射頻脈衝串+提取資料位元; 等化11,在與所述射頻脈衝串_的通道長度與所述預定通 道長度閾值概小於所賴值時,基於至少所述已知賴序列進 仃調試^對所述射舰衝串進行均衡,並從所述射頻脈衝串中提 取另一資料位元。 2、如申請專利第丨項所述之多分支等化器處理模組,其中,所述 魯》二等化器還能根據從所述射頻脈衝串中提取出的再編碼資料位 元進行調試。 3、如申請專利範圍第1項所述之多分支等化器處理模組,其中,所述 長度估梢、錄以下情況下選擇性地啟動干擾;肖除處理: 與所述射頻脈__的有色噪音_量織駭的有色聲音闊 值相比大於所述間值時; 與所述麵脈衝串相關的信臂比與預定信噪比閣值相比小於所述 閾值時。 39 1351825 _ • 丨0日修正货应 _ 4、如申請專利範圍第1項所述之多分支等化器處理模組,其中,所述 預定的通道長度閾值基於丘陵通道獲得0 :5、如申請專利範圍第1項所述之多分支等化器處理模組其中,所述 通道長度估計模組還基於與所述射頻脈衝串相關的通道長度調二 所述第一等化器的等化器狀態數量。 6、一種無線終端,包括: 射頻前端,用於接收射頻脈衝串; # *帶處理器’與所述射頻_通信連接,所述基帶處理器和射頻 前端用於從所述射頻脈衝串中生成基帶信號; ' 通道長度估計模組,用於: 確定與所述射頻脈衝串相關的通道長度; 所述通道長度與預定通道長度嶋目比擔所述驗時,即所述 通道具有較大的级度時,選擇性地無效掉干制除處理;The first equalizer 'equalizes the debug based on the known debug sequence, equalizes the shot string, and extracts the data bit from the RF burst +; equalizes 11, in the channel with the RF burst _ And when the length and the predetermined channel length threshold are less than the value, the at least one of the known ship sequences is equalized, and another data bit is extracted from the RF pulse train. yuan. 2. The multi-branch equalizer processing module of claim 2, wherein the Lu's second equalizer is further configurable according to a re-encoded data bit extracted from the RF burst. . 3. The multi-branch equalizer processing module according to claim 1, wherein the length estimation and recording of the interference are selectively initiated in the following cases; the shaving process: and the radio frequency pulse __ The colored noise _ the woven woven ridge has a colored sound threshold greater than the inter-value; the letter-arm ratio associated with the surface burst is less than the threshold compared to the predetermined signal-to-noise ratio. 39 1351825 _ 丨 日 修正 修正 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 多 多 多 多 多 多 多 多 多 多 多 多 多 多 多 多 多 多 多 多 多 多 多 多 多The multi-branch equalizer processing module of claim 1, wherein the channel length estimation module further adjusts the equalization of the first equalizer based on a channel length associated with the radio frequency burst The number of states. 6. A wireless terminal, comprising: a radio frequency front end for receiving a radio frequency burst; a ** processor with a radio frequency communication connection, the baseband processor and a radio frequency front end for generating from the radio frequency burst a baseband signal; a channel length estimation module, configured to: determine a length of a channel associated with the radio frequency burst; the length of the channel is greater than a predetermined channel length, that is, the channel has a larger When the level is selected, the dry selection process is selectively invalidated; 多分支等化器處理模組,與所述基帶處理器和模式選擇模組連 接’所述多分支等化器處理模組從所述基帶處理器接收基帶传 遽,且所述多分支等化器處理触進—步包括·· ° 第一等化H,基於_試相進彳爾,職麵衝 衡,並從所述射頻脈衝串中提取資料位元; 一 第二等化器’基於包括所述已知調試序列和再編碼資料位元的至 &gt;部分再編碼的脈衝串進行糊,射賴 仃句衡,私所述射舰衝串中提取另—資料位元; 40 丄351825 其中 月1分日换貝 所述基帶處理器和多分支等化器處理模組結合起來用於 從軟決策中生成資料塊;或 » 當與所述射娜衝串相_通道長度與所述預定通道長度閾值相 比大於所述閾值時,從另一軟決策中生成資料塊。 解交錯器,對所述資料塊進行解交錯; 通道解碼^,舰所述資料塊麟的龍舰行解碼; 再編碼器,對所述資料巾貞進行再編碼以生成至少部分再編碼的資 料塊; 交錯器’騎述至少部分再編碼的賴塊進行交錯,生成所述至 少部分再編碼脈衝串。 7、如申請專機圍第6項所述之無線終端,其中,所述通道長度估計 模組在以下情況下選擇性地啟動干擾消除處理: 與所述射頻脈衝串相關的有色操音的測量值與預定的有色噪音間 值相比大於所述閾值時; 與所述射頻脈衝串相關的信噪比與預定信噪比間值相比小於所述 閾值時。 &gt;、-種對接收㈣頻脈衝串進行均衡的方法,包括如下步驟·· Γ接收的射頻脈衝串以便確定與所述射頻脈衝串相_通道長 度; 紅敢通縣度難簡選雜地啟動谓耻處理; 確疋與所述射頻脈衝串相_通道長度; 比較所述卿舰__輪長物峨騎道長度間 41 丄 腦;te ^述與射頻脈衝串相關的通道長度與所述預定的通道長度 擇性地所述間值時’即所述通道具有較大的色散度時,選 ”、、’掉干擾消除處理,啟動干擾消除處理; 吏用已知調試序列調試第—等化器; 一等化器對所述接收的射頻脈衝串進行均衡; 對所述射頻脈衝串進行解交錯,· ===衝串進行解碼,獲得提取出的資料位元; “出的資料位元巾解碼^資料幢; 其中,干擾消除處理包括: 十斤述資料触行再編碼,生成再編碼資料位元· 對所述再編赠触搞行交錯; , ϋ所述已知觸相和所述再編碼雜位元調試第二等化器. 器對所述接收的射頻脈衝串進行-,從中提 對所述提取出的另—資料位元進行解交錯 ,從所述解交錯後的另一資料位元中日 9、 如申請專利範圍第8 ’、、 貝料幀。 万去,其中,所述方法還包括: 確疋與所述射頻脈衝串相關的有色噪音的測量值; 確定與所述射頻脈衝串相關的通道比。 10、 如申請專利範圍第9項所述之 以下情況下選擇性地啟動干擾消除處理所述方法還包括:在 串相_有色料的測量值與預定的有色 值相比大於所述閾值時; 匈 42 1351825a multi-branch equalizer processing module coupled to the baseband processor and the mode selection module, wherein the multi-branch equalizer processing module receives baseband transmission from the baseband processor, and the multi-branch equalization The handler handles the touch-step including ··° first equalization H, based on the _ trial phase, the job balance, and extracts the data bit from the RF burst; a second equalizer is based on Included by the known debug sequence and the re-encoded data bit to the > partially re-encoded burst, paste the slogan, and extract the other data bit in the private ship; 40 丄 351825 Wherein the baseband processor and the multi-branch equalizer processing module are combined for generating a data block from the soft decision; or » when the length is the same as the length of the channel A data block is generated from another soft decision when the predetermined channel length threshold is greater than the threshold. Deinterleaver, deinterleaving the data block; channel decoding ^, the ship's data block Lin's dragon ship line decoding; re-encoder, re-encoding the data frame to generate at least partially re-encoded data Block; the interleaver 'rides at least partially re-encoded blocks for interleaving to generate the at least partially re-encoded bursts. 7. The wireless terminal of claim 6, wherein the channel length estimation module selectively activates interference cancellation processing in the following cases: a measured value of the colored operational sound associated with the radio frequency burst When the threshold value is greater than the predetermined colored noise value, the signal-to-noise ratio associated with the radio frequency burst is less than the predetermined signal-to-noise ratio value. &gt;, a method for equalizing a received (four) frequency pulse train, comprising the following steps: · receiving a radio frequency pulse train to determine the length of the channel with the radio frequency burst _ channel length; Starting the shame processing; determining the length of the channel with the radio frequency burst _ channel length; comparing the length of the __ wheel length object 峨 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 When the predetermined channel length is said to be the inter-value value, that is, when the channel has a large dispersion degree, select "," "off interference cancellation processing, start interference cancellation processing; Debug with the known debug sequence - etc. The equalizer equalizes the received RF pulse train; deinterleaves the RF pulse train, and === rushes the string to obtain the extracted data bit; The towel erasing ^ data building; wherein, the interference cancellation processing comprises: ten kilograms of data touch re-encoding, generating re-encoding data bits · interleaving the re-wrapping touch; ϋ the known phase and the Re-encoding chaotic Debugging the second equalizer. The device performs - on the received radio frequency burst, and deinterleaves the extracted another data bit from the other data bit in the deinterleaved 9. If the patent application scope is 8', the bedding frame. In the above, the method further comprises: determining a measured value of the colored noise associated with the radio frequency burst; determining a channel ratio associated with the radio frequency burst. 10. The method of selectively initiating interference cancellation processing as described in claim 9 of the patent application, wherein the method further comprises: when the measured value of the phase-phase material has a greater than the threshold value compared to a predetermined colored value; Hungary 42 1351825 與所述射頻脈衝串相關的信噪比與預定信噪比閾值相比小於所述 閾值時。The signal to noise ratio associated with the radio frequency burst is less than the predetermined signal to noise ratio threshold. 4343
TW95106581A 2005-05-09 2006-02-27 Selectively disabling interference cancellation ba TWI351825B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US67899605P 2005-05-09 2005-05-09
US11/151,030 US7535980B2 (en) 2005-03-01 2005-06-13 Selectively disabling interference cancellation based on channel dispersion estimation

Publications (2)

Publication Number Publication Date
TW200707925A TW200707925A (en) 2007-02-16
TWI351825B true TWI351825B (en) 2011-11-01

Family

ID=46727994

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95106581A TWI351825B (en) 2005-05-09 2006-02-27 Selectively disabling interference cancellation ba

Country Status (1)

Country Link
TW (1) TWI351825B (en)

Also Published As

Publication number Publication date
TW200707925A (en) 2007-02-16

Similar Documents

Publication Publication Date Title
US7826575B2 (en) Selectively disabling interference cancellation based on channel dispersion estimation
US7903728B2 (en) Equalize training method using re-encoded bits and known training sequences
US8068539B2 (en) Adaptive interference cancellation algorithm using speech mode dependent thresholds
US8213492B2 (en) Channel estimation method operable to cancel a dominant disturber signal from a received signal
US7684481B2 (en) High speed data packet access minimum mean squared equalization with direct matrix inversion training
CN1893403B (en) Channel estimation processing module and method to cancel a dominant disturber signal from a received signal
US7848400B2 (en) Retransmission of reordered/coded data in response to presumed receiver decoding failure
US7505513B2 (en) Colored noise detection algorithms
JP2002043990A (en) Receiving device for wireless communication
WO2009117877A1 (en) Estimation of error propagation probability to improve performance of decision-feedback based systems
TWI351825B (en) Selectively disabling interference cancellation ba
US8208857B2 (en) Successive interference cancellation in code division multiple access system using variable interferer weights
US7804893B2 (en) Feedback of reinterleaved correctly decoded data block to decoder for use in additional channel decoding operations of channel coded word containing data block
US20140164002A1 (en) Joint decoding apparatus and method, necessity judging method and apparatus, and receiver
TWI327009B (en) Single antenna interference cancellation within a wireless terminal
CN105827556A (en) Bidirectional turbo equalization method and system and underwater acoustic communication system
TWI323095B (en) Equalizer training method using re-encoded bits and known training sequences
TWI324465B (en) Channel estimation method operable to cancel a dominant disturber signal from a received signal
US20100246634A9 (en) Acquisition of spreading factors (SFS) of multiple transmitted signals in code division multiple access system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees