TWI345895B - Multi-stage receiver for wireless communication - Google Patents
Multi-stage receiver for wireless communication Download PDFInfo
- Publication number
- TWI345895B TWI345895B TW095144483A TW95144483A TWI345895B TW I345895 B TWI345895 B TW I345895B TW 095144483 A TW095144483 A TW 095144483A TW 95144483 A TW95144483 A TW 95144483A TW I345895 B TWI345895 B TW I345895B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- matrix
- processor
- received
- combiner
- Prior art date
Links
Landscapes
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
Description
1345895 九、發明說明: 【發明所屬之技術領域】 本揭示案大體係關於通信’且更具體言之係關於用於接 收一多輸入多輸出(ΜΙΜΟ)傳輸的技術。 【先前技術】1345895 IX. Description of the Invention: [Technical Field of the Invention] The present disclosure relates to communication 'and more specifically to techniques for receiving a multiple input multiple output (MIMO) transmission. [Prior Art]
ΜΙΜΟ傳輸係自多個(Μ)發射天線至多個(ν)接收天線之 傳輸。舉例而t: ’發射器可自Μ個發射天線同時發射職 資料流。A f資料流由线環境而&纟真且進一步由雜訊 及干擾而致降級。接收器經由N個接收天線而接收所發射 之資料抓。自每一接收天線接收之信號含有按比例縮放及 延遲版本之發射資料流。發射資料流因此分散在來自N個 接收天線之N個所接收的信號中。接收器接著藉由空間-時 間均衡器處理N個所接收信號,以恢復發射資料流。 接收器可動態地得出空間-時間均衡器之係數以說明信 號特性之變化^此等信號特性可係關於通道及干擾統計、 ㈣資料流之空間-時間處理等。均衡器係數之得出係計 算密集的。更新此等均衡器係數以匹配信號特性之最快變 化可導致非常複雜之接收器。以較慢速率更新此等均衡器 係數可導致效能降級。 因此,在此項技術中需要有效地接收MlM〇傳輸之技 術。 【發明内容】 本文描述了用於有效地接收MlM0傳輸之技術。接收器 接收由發射器發射之多個信號並處理多個所接收信號以獲 116763.doc 得所接收資料。接收器可以多級處理所接收資料。第 二藉由前端遽波器對所接„料執行錢/均衡化理 (例如’補償、抑制或緩和)非準時信號分量。第二級 由一或多個組合器矩陵卢 稽 合準時信號分量。準時及 —級之㈣波資料以組 時及非準時信號分量可基於發射時間 而加以區別。在接收器處,準時信號分量可包含追 二與所要符號同時被發射之其他符號的 ,刀里,時號分量可包含並非準時信號分量之产 =分量’諸如追蹤至在所要符號之前及之後被發射之复^ 符號的信號分量。 ’、 前端濾波器並不視杯斛$南 规發射15處之資料特定處理而定,而組 合器矩陣可為發射器處之資料特定處理的函數。定 處理可對應於(例如)用於發送資料之通道化碼、發射^ 陣、增益等。舉例而兮,少 ° 利用分碼多工(CDM)之ΜΙΜΟ 傳輸中,可得出一單—針4山命4 早則鳊濾波器並將其用於所有通道化 1且可得出不同組合器矩陣以用於每-通道化碼。將 接收器處理分為多級符仆^ 夕級簡化“端滤波器及組合器矩陣之得 出,同時達成良好效能。 了以相同或不同速率單獨更新 端濾波器及組合器矩陣。 根據一態樣,描述一種包括 裝置。處理器對所接收資料進…處:器及,體之 貢料進仃濾波以處理多個所接收資 料中之非準時信號分量並獲得經滤波資料。處理器亦處理 經滤波資料以對多個發射信號#且合準時信號分量。 根據另-態樣,描述-種包括至少一處理器及一記憶體 I16763.doc 1345895 之裝置。處理器得出一前端濾波器以用於處理多個接收信 號中之非準時信號分量且亦得出多個組合器矩陣以用於對 藉由多個通道化碼發送之多個發射信號組合準時信號分 量。處理器藉由前端濾波器對所接收樣本進行濾波並獲得 多個通道化碼之經濾波符號。處理器藉由用於通道化碼之 組合器矩陣進一步對每一通道化碼之經濾波符號進行處 理,以獲得通道化碼的輸出符號。 下文進一步詳細描述本揭示案之各種態樣及特徵。 【實施方式】 本文描述之接收器處理技術可用於各種通信系統,諸如 分碼多向近接(CDMA)系統、分時多向近接(TDMA)系統、 分頻多向近接(FDMA)系統、正交FDMA(OFDMA)系統、 單載波FDMA(SC-FDMA)系統等。CDMA系統利用分碼多 工(CDM)且使用不同通道化碼而並行傳輸調變符號。 CDMA系統可利用諸如寬頻CDMA(W-CDMA)、cdma2000 等之無線電技藝。cdma2000涵蓋了 IS-2000、IS-856及IS-95標準。TDMA系統可利用諸如全球行動通信系統(GSM) 之無線電技藝。W-CDMA及GSM描述於來自稱為"第三代 合作夥伴計劃"(3GPP)之組織的文件中。cdma2000描述於 來自稱為"第三代合作夥伴計劃2"(3GPP2)之組織的文件 中。3GPP及3GPP2文件係公眾可用的。OFDMA系統利用 正交分頻多工(OFDM)且在正交副載波上之頻域中傳輸調 變符號。SC-FDMA系統利用單載波分頻多工(SC-FDM)且 在正交副載波上之時域中傳輸調變符號。 116763.doc 1345895 本文所描述之技術亦可用於下行鏈路以及上行鏈路上之 MIM〇傳輸。下行鏈路(或前向鏈路)係指自基地台至無線 設備之通信鏈路,且上行鏈路(或反向鏈路)係指自無線設The transmission is transmitted from multiple (Μ) transmit antennas to multiple (ν) receive antennas. For example, the t: 'transmitter can simultaneously transmit the job stream from one transmit antenna. The A f data stream is degraded by the line environment & true and further by noise and interference. The receiver receives the transmitted data grab via the N receive antennas. The signal received from each receive antenna contains a scaled and delayed version of the transmitted data stream. The transmitted data stream is thus dispersed among the N received signals from the N receive antennas. The receiver then processes the N received signals by a space-time equalizer to recover the transmitted data stream. The receiver can dynamically derive the coefficients of the space-time equalizer to account for changes in signal characteristics. These signal characteristics can be related to channel and interference statistics, (4) space-time processing of data streams, and the like. The calculation of the equalizer coefficients is computationally intensive. Updating these equalizer coefficients to match the fastest changes in signal characteristics can result in very complex receivers. Updating these equalizer coefficients at a slower rate can result in performance degradation. Therefore, there is a need in the art to efficiently receive the technology of MlM transmission. SUMMARY OF THE INVENTION Techniques for efficiently receiving M1M0 transmissions are described herein. The receiver receives the plurality of signals transmitted by the transmitter and processes the plurality of received signals to obtain the received data. The receiver can process the received data in multiple stages. Secondly, the front-end chopper performs a money/equalization (eg, 'compensation, suppression, or mitigation') of the non-punctual signal component of the received material. The second stage is composed of one or more combiners. Component. Punctual and level-of-four (4) wave data can be distinguished based on the time of the group and non-punctual signal components. At the receiver, the on-time signal component can include other symbols that are simultaneously transmitted with the desired symbol. Here, the time component may include a component that is not a component of the on-time signal = such as a signal component that is tracked to a complex symbol that is transmitted before and after the desired symbol. ', the front-end filter does not see the cup 南 $ south gauge emission 15 The data is specific to the processing, and the combiner matrix can be a function of the data specific processing at the transmitter. The processing can correspond to, for example, a channelization code, a transmission matrix, a gain, etc. for transmitting data.兮, less ° Using the code division multiplexing (CDM) ΜΙΜΟ transmission, you can get a single-pin 4 mountain 4 early 鳊 filter and use it for all channelization 1 and can get different combiner matrix For the per-channelization code, the receiver processing is divided into multi-level servants to simplify the "end filter and combiner matrix" while achieving good performance. The end filter and combiner matrix are updated separately at the same or different rates. According to one aspect, a device is described. The processor performs filtering on the received data: the device and the body, and processes the non-punctual signal components of the plurality of received data and obtains the filtered data. The processor also processes the filtered data to signal a plurality of transmitted signals # and align the time. According to another aspect, a device comprising at least one processor and a memory I16763.doc 1345895 is described. The processor derives a front end filter for processing non-punctual signal components of the plurality of received signals and also derives a plurality of combiner matrices for puncturing the plurality of transmit signals transmitted by the plurality of channelized codes Signal component. The processor filters the received samples by a front end filter and obtains filtered symbols of the plurality of channelized codes. The processor further processes the filtered symbols of each channelization code by a combiner matrix for the channelization code to obtain an output symbol of the channelization code. Various aspects and features of the present disclosure are described in further detail below. [Embodiment] The receiver processing techniques described herein can be used in various communication systems, such as a code division multi-directional proximity (CDMA) system, a time division multi-directional proximity (TDMA) system, a frequency division multi-directional proximity (FDMA) system, and orthogonality. FDMA (OFDMA) system, single carrier FDMA (SC-FDMA) system, and the like. CDMA systems utilize code division multiplexing (CDM) and transmit modulation symbols in parallel using different channelization codes. CDMA systems may utilize radio technologies such as Wide Frequency CDMA (W-CDMA), cdma2000, and the like. Cdma2000 covers IS-2000, IS-856 and IS-95 standards. TDMA systems may utilize radio technologies such as the Global System for Mobile Communications (GSM). W-CDMA and GSM are described in documents from an organization called "3rd Generation Partnership Project" (3GPP). Cdma2000 is described in a document from an organization called "3rd Generation Partnership Project 2" (3GPP2). 3GPP and 3GPP2 documents are publicly available. An OFDMA system utilizes orthogonal frequency division multiplexing (OFDM) and transmits modulation symbols in the frequency domain on orthogonal subcarriers. The SC-FDMA system utilizes single carrier frequency division multiplexing (SC-FDM) and transmits modulation symbols in the time domain on the orthogonal subcarriers. 116763.doc 1345895 The techniques described herein are also applicable to MIM〇 transmissions on the downlink as well as on the uplink. The downlink (or forward link) refers to the communication link from the base station to the wireless device, and the uplink (or reverse link) refers to the wireless device.
圖1展示用於ΜΙΜΟ傳輸之發射器11〇及接收器15〇的方塊 圖。對於下行鏈路傳輸,發射器11〇係—基地台之部分, 且接收器15G係-無線設備之部分。對於上行鏈路發射, 發射器11G係-無線設備之部分,且接收器⑼係一基地台 之部分。基地台通常為與無線設備通信之固定台且亦可稱 為節點Β、存取點等。無線設備可為靜止或行動的且亦可 稱為使用者裝備(UE)、行動台、終端機、台、用戶單元 等。無線設備可為蜂巢式電話、個人數位助理(pDA)、無 線數據機、膝上型電腦、掌上型設備等。Figure 1 shows a block diagram of a transmitter 11 and a receiver 15 for transmission. For downlink transmission, the transmitter 11 is part of the base station and the receiver 15G is part of the wireless device. For uplink transmission, the transmitter 11G is part of a wireless device and the receiver (9) is part of a base station. A base station is typically a fixed station that communicates with wireless devices and can also be referred to as a node, an access point, and the like. A wireless device can be stationary or mobile and can also be referred to as a user equipment (UE), mobile station, terminal, station, subscriber unit, and the like. The wireless device can be a cellular phone, a personal digital assistant (pDA), a wireless data modem, a laptop, a palmtop device, and the like.
備至基地台之通信鍵路。為清楚起見,下文描述用於 CDMA系統中之MIM◦傳輸的技術,其可^w_cdma、 cdma2000或某個其他CdmA無線電技藝。 在發射器110處,發射資料處理器(τχ資料處理器)112接 收訊務資料及信號發射、處理(例如,編碼、交錯及符號 映射)所接收資料,並提供資料符號。處理器112亦產生且 多路發射具有資料符號之導頻符號。於本文使用時,資料 符號為用於訊務資料或信號發射之符號,導頻符號為用於 導頻之符號,且符號通常為複合值。資料符號及導頻符號 可為來自諸如PSK或QAM之調變機制之調變符號。導頻為 發射器及接收器先驗已知的資料》ΤΧ ΜΙΜΟ處理器114如 下文所述對資料及導頻符號執行空間或空間-時間處理, H6763.doc 1345895 且將輸出符號提供至多個(M)CDMA調變器116&至U6m。 每一CDMA調變器116如下文所述處理其輸出符號,且將 輸出碼片提供至相關聯之發射器單元(TMTR)丨i 8。每一發 射器單元118處理(例如,轉換為類比、放大、濾波及升頻 轉換)其輸出碼片且產生經調變信號。來自M個發射器單元 118a至118m之M個經調變信號分別自M個天線以“至12〇爪 被發射。 在接收器150處,多個(N)天線152&至15211在無線環境中 經由各種傳播路徑而接收所發射信號,且分別將N個所接 收信號提供至N個接收器單元(11(;^11)1543至15牝。每一接 收器單元154處理(例如,濾波、放大、降頻轉換及數位化) 其所接收之信號,且將所接收樣本提供至通道處理器156 及均衡器/CDMA解調器160。如下文所述’處理器156得出 用於前端濾波器/均衡器之係數及用於一或多個組合器矩 陣的係數。單το 160藉由前端濾波器及CDMA解調變執行 均衡,且提供經濾波之符號。接收(RX)MIM〇處理器【Μ組 合空間尺寸上之經濾波符號且提供偵測之符號,偵測之符 號為發射之資料符號的估計^ Rx資料處理器172處理(例 如’符號解映射、解交錯及解碼)摘測之符號且提供經解 碼之資料。一般而言,在發射器110處,藉由均衡器/ CDMA解調器160、RX MIM〇處理器17〇&RX資料處理器 172進行之處理補充藉由CDMA解調器ιΐ6、τχ 處理 器II4及TX資料處理器U2進行之處理。 控制器/處理器13〇及180分別在發射器11〇及接收器“Ο 116763.doc •10· 1345895 處指導各種處理單元之操作。記憶體132及182分別儲存用 於發射器110及接收器150之資料及程式碼。Prepare the communication key to the base station. For clarity, the techniques for MIM(R) transmission in a CDMA system are described below, which may be ^w_cdma, cdma2000 or some other CdmA radio technology. At transmitter 110, a transmit data processor (τ χ data processor) 112 receives the received data from the traffic data and signals, processes (e. g., encodes, interleaves, and symbol maps) the received data and provides the data symbols. Processor 112 also generates and multiplexes pilot symbols having data symbols. As used herein, a data symbol is a symbol used for traffic data or signal transmission, a pilot symbol is a symbol for a pilot, and the symbol is typically a composite value. The data symbols and pilot symbols can be modulation symbols from a modulation mechanism such as PSK or QAM. The pilot is a known prior to the transmitter and receiver. The processor 114 performs spatial or spatial-time processing on the data and pilot symbols as described below, H6763.doc 1345895 and provides the output symbols to multiple ( M) CDMA modulator 116 & to U6m. Each CDMA modulator 116 processes its output symbols as described below and provides the output chips to an associated transmitter unit (TMTR) 丨i 8. Each transmitter unit 118 processes (e. g., converts to analog, amplifies, filters, and upconverts) its output chips and produces a modulated signal. M modulated signals from M transmitter units 118a through 118m are respectively transmitted from M antennas at "to 12 jaws. At receiver 150, multiple (N) antennas 152 & to 15211 are in a wireless environment. The transmitted signals are received via various propagation paths, and the N received signals are respectively provided to N receiver units (11 (; 11 11) 1543 to 15 牝. Each receiver unit 154 processes (eg, filters, amplifies, Down-converting and digitizing) the received signal and providing the received samples to the channel processor 156 and the equalizer/CDMA demodulator 160. As described below, the processor 156 is derived for the front-end filter/ The coefficients of the equalizer and the coefficients used for the one or more combiner matrices. The single το 160 performs equalization by the front-end filter and CDMA demodulation, and provides filtered symbols. Receive (RX) MIM 〇 processor [Μ Combining the filtered symbols on the spatial size and providing the detected symbols, the detected symbols are the estimates of the transmitted data symbols. The Rx data processor 172 processes (eg, 'symbol demapping, deinterleaving, and decoding) the extracted symbols and Provided decoded In general, at the transmitter 110, the processing by the equalizer/CDMA demodulator 160, the RX MIM〇 processor 17〇& RX data processor 172 is supplemented by the CDMA demodulator ιΐ6, τχ The processor II4 and the TX data processor U2 perform processing. The controller/processors 13A and 180 respectively instruct the operation of various processing units at the transmitter 11 and the receiver "Ο 116763.doc • 10· 1345895. 132 and 182 store data and code for the transmitter 110 and the receiver 150, respectively.
圖2說明一 MIMO-CDM發射。對於CDM,多達C個符號 可藉由C個通道化碼經由一發射天線而同時發送,其中一 般C21。此等通道化碼可為W-CDMA中之正交可變展頻因 子(OVSF)碼、cdma2000中之沃爾什碼(Walsh code)、其他 正交碼或擬正交碼、偽隨機碼等。每一通道化碼為一特定 序列之碼片。在該序列中之碼片之數目為通道化碼之長度 或展頻因子。一般而言,任一集合之一或多個通道化碼可 用於每一發射天線,且通道化碼可具有相同或不同之展頻 因子。為簡單起見,以下描述假設通道化碼具有相同之展 頻因子。同一集合之C個通道化碼可再用於Μ個發射天線 中之每一者。對於ΜΙΜΟ,多達Μ個符號可經由Μ個發射 天線而同時發送。對於MIMO-CDM,多達ΟΜ個符號可藉 由C個通道化碼經由Μ個發射天線而同時發送。可對C個通 道化碼中之每一者單獨執行ΜΙΜΟ處理。對每一通道化碼 在所有Μ個發射天線上執行ΜΙΜΟ處理。可對Μ個發射天 線中之每一者單獨執行CDM處理。對於每一發射天線,對 所有C個通道化碼執行CDM處理。 圖3展示用於一發射天線m之CDMA調變器11 6的方塊 圖,其中。CDMA調變器116可用於圖1中之 CDMA調變器11 6a至116m中之每一者。CDMA調變器116包 括一用於每一用於訊務資料及/或信號發射之通道化碼的 資料處理器310及一用於導頻之導頻處理器320。 116763.doc -11 - 1345895 在資料處理器310内,展頻器312藉由具有碼片序列训 之通道化碼c來展頻用於資料之輸出符號(⑷,其中4 符號索引’且k為碼片索引。倍增器314用増益gmc按比例 縮放展頻器312之輪出’且提供用於通道化碼c之資料碼 片。在導頻處理器320内,展頻器322藉由用於導頻之通道 化碼P來展頻用於導頻之輸出符號‘力)。倍增器324以增 益心,c按比例縮放展頻器322之輸出,且提供導頻碼片。增 益%/及分別確定用於通道化碼^及導頻之發射功率 量。求和器330將用於所有通道化碼之資料與導頻碼片求 和。擾頻器332將求和器33〇之輸出與用於發射器11〇之擾 頻序列P(幻相乘,且提供用於發射天線所之輸出碼片 ym{k) ° 一般而言,c個通道化碼之任何數目及任何幾者可用於 Μ個發射天線中之每一者。在一設計中,對所有M個發射 天線而言,同一通道化碼用於導頻。在另一設計中,對於 Μ個發射天線而言,M個通道化碼用於導頻,且剩餘之c· Μ個通道化碼可再用於厘個發射天線中之每一者。如圖3中 所示’同一擾頻序列可用於所有Μ個發射天線。或者,_ 不同擾頻序列可用於每一發射天線。亦可以其他方式執行 展頻及擾頻。 ΜΙΜΟ通道係由發射器U0處之μ個發射天線與接收器 150處之Ν個接收天線之間的傳播環境形成。對於每—通道 化碼,可自Μ個發射天線並行發送l個資料符號,其中 hL^nin{M,Ν} »接收器150可對L之不同值(及可能地不同 116763.doc -12- 發射矩陣/向量)分析MIM0通道之效能(例如,輸送幻且 可選擇達成最佳效能之L值(及發射矩陣/向量 通道化碼c執行 向 發射器110可在每一符號週期$中對每一 如下發射器空間處理: 方程式(1) 資料符號之Lx = , c = 7,...,C > 其中:L⑷= [U5)62 c(“⑷f為 量, 廷°為用於通道化碼c之LxM發射矩陣, 毛⑷H⑷為輸出符號之舰向量且 ,,T"主—M _ 表不移項。 ⑽之每素可對應於—不同資料流。資料流可具有 S : “益在該種情況下,矩陣I對不同資料流可具有不 同行標準。方程式⑴藉由L展示空間編碼。亦可執行諸如 空時發射分集(STTD)之空間時間編竭,但其未展示於方 程式(1)中。 不同發射㈣可用於^㈣細模式,諸如封閉迴路發 射分集(CLTD)、每天線速率控制(PARC)、碼再用貝爾實 驗室空間·時間(CRBLAST)、雙發射適應性陣列(D_txaa) 等。表1列出了某些MIM0模式,且對於每一模式,給出 L、M、屯及資料符號源。在表μ u為選自集合" β'π ]Γ > [1 β^π/4γ , μ eJ^/4,T , η .π/ 之2x2矩陣 jit/Λ _-y'3n/4 ,73π/4 J L1 6 J t1 e7 ]7之2父1向量。L-iJtaa可為選自集合 為〜對角線為一且在其他處為零之單位矩陣。 116763.doc •13- 1345895 表1 ΜΙΜΟ模式 L M Be 資料符號源 CLTD 1 2 來自一單一編碼訊框。 PARC L=M >2 Bc=i 來自L個不同編碼訊框。 CRBLAST L=M >2 Sc=I 來自一單一編碼訊框。 D-TXAA L=M =2 來自多達L個編碼訊框。 發射器110可在每一符號週期S中對每一發射天線w執行 如下CDMA處理: ^ (^) = Σ Sm,c vc (k mod C) · dmfi (k div C) I · P(k) C=, 」,W = 1,_‘,M,方程式(2) 其中符號週期^對應於由S = kdivC = Lk/C」給出之碼片週期 灸。對於未使用之每一通道化碼’增益心。可設定為等於 石災用丹有不同展頻 历之CDMA處理可表達為: ym^ ' Vc^k modCc)'dmAk div Cc)\p(/t) ^ , 其中Cc為通道化碼e之展頻因子,且 NPC為用於發射天線-之通道化碼的數目。 為簡單起見,以下描述假設具有展 用於每一發射天续, 頻因子C之通道化蝎 赞射天線。在方程 具有展頻因子c之通道化碼e進行輸.制藉由 例縮放以獲得資料碼片。 由增益按比 次個輸出符號 ^,符號多個c 道化碼個碼片Μ幻相 116763.doc -14- 1345895 乘而達成展頻。對用於所有c個通道化碼之資料及導頻碼 片進行求和且進一步以擾頻序列進行擾頻以獲得用於 發射天線m之輸出碼片%(A:)。對河個發射天線中之每一者 執行同一 CDMA處理。 在每一碼片週,灸中於接收器150處所接收的樣本可表達 i.(k))=E2L(k) + n(k), 方程式(3) 其中:31(幻為輸出碼片之Txl向量,其中τ在下文中描述, Η為RXT通道回應矩陣,其中尺在下文中描述, 1(无)為接收之樣本的Rx 1向量,且 1L(灸)為Rx 1雜訊向景。 接收器150可以碼片速率之尺倍數位化自每一接收天線接 收之信號,其中K為過取樣率且一般。在每一碼片週 期灸中,接收器150可自每一接收器154獲得Ε.κ個樣本,且 藉由自N個接收器154&至154n堆疊Ν·Ε.Κ個樣本而形成 毛(灸)。Ε為以碼片數目計之接收器15〇處之前端均衡器之長 ^ 般而α,EU且可基於接收器複雜性與效能之間的 折衷而選擇。釘幻包括用個碼片週期之來自\個接收天 線之R個接收樣本,其中R=n.e.k。 矩陣11含有用於所有發射及接收天線對之時域通道脈衝 回應。如圖1中所示,在每一發射天線與每一接收天線之 間存在一傳播通道,或在M個發射天線與N個接收天線之 間存在總共M.N個傳播通道》每—傳播通道具有一由無線 116763.doc •15· yj ^ j 環境確定> 4dt + 線之心 疋脈衝回應。每一發射天線個接收天 …早輸人多輸出(SIMO)通道之回應可μ 陣Sm給出。Η 士幻Λ〜 Η —^列之數目由1(岣中輸入項之數目確定。 卜數目由均衡器長度Ε以及發射天線所與Ν個接收天 ”之間的脈衝回應之時間間隔確定。L可如下給出:Figure 2 illustrates a MIMO-CDM transmission. For CDM, up to C symbols can be simultaneously transmitted via a transmit antenna via C channelization codes, typically C21. Such channelization codes may be orthogonal variable spreading factor (OVSF) codes in W-CDMA, Walsh codes in cdma2000, other orthogonal codes or quasi-orthogonal codes, pseudo-random codes, etc. . Each channelization code is a chip of a particular sequence. The number of chips in the sequence is the length of the channelization code or the spreading factor. In general, one or more channelization codes of either set can be used for each transmit antenna, and the channelization codes can have the same or different spread spectrum factors. For the sake of simplicity, the following description assumes that the channelization codes have the same spreading factor. The C channelization codes of the same set can be reused for each of the two transmit antennas. For ΜΙΜΟ, up to 符号 symbols can be sent simultaneously via one transmit antenna. For MIMO-CDM, up to 符号 symbols can be transmitted simultaneously via C transmit codes via one transmit antenna. The ΜΙΜΟ processing can be performed separately for each of the C channelization codes. Perform ΜΙΜΟ processing on each of the two transmit antennas for each channelization code. CDM processing can be performed separately for each of the launch antennas. For each transmit antenna, CDM processing is performed on all C channelized codes. Figure 3 shows a block diagram of a CDMA modulator 116 for a transmit antenna m. A CDMA modulator 116 can be used for each of the CDMA modulators 116a through 116m of FIG. The CDMA modulator 116 includes a data processor 310 for each channelization code for traffic data and/or signal transmission and a pilot processor 320 for pilots. 116763.doc -11 - 1345895 In the data processor 310, the spreader 312 spreads the output symbol for the data by using the channelization code c of the chip sequence training ((4), where 4 symbol index ' and k is the code The slice index multiplexer 314 scales the round-trip of the spreader 312 with the benefit gmc and provides a data chip for the channelization code c. Within the pilot processor 320, the spreader 322 is used by the pilot The channelized code P of the frequency is used for spreading the output symbol 'force' of the pilot. The multiplier 324 boosts the output of the spreader 322 by scaling, and provides pilot chips. The gain %/ and the amount of transmit power used for the channelized code and the pilot are determined separately. Summer 330 sums the data for all channelization codes with the pilot chips. The scrambler 332 combines the output of the summer 33 with the scrambling sequence P for the transmitter 11 (phantom multiplication and provides the output chip for the transmit antenna ym{k) ° in general, c Any number and any number of channelization codes can be used for each of the transmit antennas. In one design, the same channelization code is used for pilots for all M transmit antennas. In another design, for each transmit antenna, M channelization codes are used for the pilot, and the remaining c·one channelization codes can be reused for each of the plurality of transmit antennas. As shown in Figure 3, the same scrambling sequence can be used for all of the transmit antennas. Alternatively, _ different scrambling sequences can be used for each transmit antenna. Spreading and scrambling can also be performed in other ways. The channel is formed by the propagation environment between the μ transmit antennas at transmitter U0 and the one of the receive antennas at receiver 150. For each-channelized code, one data symbol can be sent in parallel from one transmit antenna, where hL^nin{M, Ν} » receiver 150 can have different values for L (and possibly different 116763.doc -12- The transmit matrix/vector) analyzes the performance of the MIM0 channel (eg, transports the magic and selects the L value for the best performance (and the transmit matrix/vector channelization code c is executed to the transmitter 110 for each symbol period of $ for each The following transmitter spatial processing: Equation (1) Lx = of the data symbol, c = 7,..., C > where: L(4) = [U5)62 c ("(4)f is the quantity, and the °° is used for channelization The LxM emission matrix of code c, gross (4)H(4) is the ship vector of the output symbol and, T" main-M_ table does not move the item. (10) Each element can correspond to - different data streams. The data stream can have S: "Yes in this In this case, matrix I can have different row standards for different data streams. Equation (1) can be spatially coded by L. It can also perform spatial time exution such as space-time transmit diversity (STTD), but it is not shown in equation (1). ). Different emissions (4) can be used in ^ (four) fine mode, such as closed loop emission points Set (CLTD), Daily Line Rate Control (PARC), Code Reuse Bell Lab Space/Time (CRBLAST), Dual Launch Adaptive Array (D_txaa), etc. Table 1 lists some MIM0 modes, and for each The mode gives the L, M, 屯 and data symbol sources. In the table μ u is selected from the set " β'π ] Γ > [1 β^π/4γ , μ eJ^/4, T , η .π / 2x2 matrix jit / Λ _-y'3n / 4, 73π / 4 J L1 6 J t1 e7 ] 7 2 parent 1 vector. L-iJtaa can be selected from the set of ~ diagonal is one and in other Unit matrix of zero. 116763.doc •13- 1345895 Table 1 ΜΙΜΟ mode LM Be data symbol source CLTD 1 2 from a single coded frame. PARC L=M > 2 Bc=i from L different coded frames CRBLAST L = M > 2 Sc = I from a single coded frame. D-TXAA L = M = 2 from up to L coded frames. Transmitter 110 can transmit for each symbol period S The antenna w performs the following CDMA processing: ^ (^) = Σ Sm,c vc (k mod C) · dmfi (k div C) I · P(k) C=, ”, W = 1, _', M, equation (2) where the symbol period ^ corresponds to that given by S = kdivC = Lk/C" Sheet moxibustion period for each channel code 'Unused gain heart. It can be set equal to the stone disaster. The CDMA processing with different spreading frequency can be expressed as: ym^ 'Vc^k modCc)'dmAk div Cc)\p(/t) ^ , where Cc is the channelization code e Frequency factor, and NPC is the number of channelization codes used for the transmit antenna. For the sake of simplicity, the following description assumes a channelized 赞 射 antenna that exhibits a frequency factor C for each transmission. In the equation, the channelization code e with the spreading factor c is used for transmission and scaling to obtain data chips. The gain is achieved by multiplying the gain by the ratio of the next output symbol ^, the symbol of multiple c-coded chips, illusion 116763.doc -14- 1345895. The data and pilot chips for all c channelization codes are summed and further scrambled with a scrambling sequence to obtain the output chip %(A:) for the transmit antenna m. The same CDMA processing is performed on each of the river transmitting antennas. At each chip week, the sample received at the receiver 150 in the moxibustion can express i.(k))=E2L(k) + n(k), Equation (3) where: 31 (magic output chip Txl vector, where τ is described below, Η is the RXT channel response matrix, where the ruler is described below, 1 (none) is the Rx 1 vector of the received sample, and 1L (moxibustion) is the Rx 1 noise direction. 150 may multiply the signal received from each of the receiving antennas, where K is the oversampling rate and is generally. In each moiré cycle, the receiver 150 may obtain Ε from each of the receivers 154. κ samples, and by the N receivers 154 & 154n stacked Ν·Ε.Κ samples to form hair (moxibustion). Ε is the number of chips in the receiver 15 之前 front end equalizer ^, α, EU and can be chosen based on the trade-off between receiver complexity and performance. Nail illusion includes R received samples from \ receiving antennas with a chip period, where R = nek. Used for time domain channel impulse responses for all transmit and receive antenna pairs, as shown in Figure 1, at each transmit antenna and each connection There is a propagation channel between the antennas, or there are a total of MN propagation channels between the M transmitting antennas and the N receiving antennas. Each of the propagation channels has a wireless 116763.doc •15· yj ^ j environment determined > 4dt + Line heart pulse response. Each transmit antenna receives the day... The response of the early input multiple output (SIMO) channel can be given by the μ array Sm. Η Λ Λ Η Η ^ — ^ The number of columns is 1 (岣中The number of inputs is determined. The number of bits is determined by the time interval between the equalizer length Ε and the impulse response between the transmitting antenna and the receiving days. L can be given as follows:
Ε + 方程式(4) 中/»»,《為以碼片之_截·曰士本+ γ 1 , 数目计之發射天線所與接收天線《之間 的脈衝回應之時間間隔。 如下’矩陣廷包含_子矩陣&,其中讲=1,…,m: 方程式(5) Η具有RxT之尺寸,其中τ=τι+τ„ +Τ Μ 對於Μ個發射天線,向量⑽)包含難子向量l⑷,其 中w 1,···,Μ。每一子向量^(免)包括集中在碼片週期女、來 自一發射天線讲的^個輸出碼片。向量又(幻及子向量l⑷ 可表達為: 'LW ^(^-LTm/2-lJ)- yW = 以) 及 = ym(k) 上MW_ .ym(k + [Tm/2-l\) 方程式(3)亦可表達為: 方程式(6) χ^)=Σηη,ι„,^) +sw 〇 方程式(7) m»l 116763.doc -16 - 對於方程式⑺中所示之模型,在每一碼片週射中,將 Tm個輸出碼片自每一發射天線所且經由一 WMO通道與廷^ 之回應起發送至N個接收天線。玉(幻中之所接收樣本 包括來自所有Μ個發射天線之貢獻。办)、汾)及这可為相 對較大的。作為一實例’在Μ=2、Ν=2、κ=2、Ε=20、 Τ=48及R=80之情況下,L(幻可為判“向量廷可為8〇以8矩 陣’且2_(幻可為8〇χι向量。 雜訊可假設為固定之複合隨機向量,其中 方程式(8) E{n⑴卜0,且 方程式(9) 其中五{ }為預期運算,9為所有零之向量,这m*RxR雜訊 協方差矩陣,且”心表示配對移項。方程式(8)及(9)指示雜 訊具有零均值及為区^„之協方差矩陣。 接收器15 0可如下藉由對於通道化碼^以一組[個遽波器 對毛(幻中之所接收樣本進行濾波且接著對經濾波之樣本進 行解展頻及解擾頻而對於每一通道化碼c恢復Ks)中之資 料符號: λ 1 (i+l)C—1 ^C(J) —c iW'[vc(^modC)-^(it)]' 方程式(10) 方程式(11) =見〔无 X(A) + B⑽· [ve(A: mod C} · p(A)]* =Wf [H0c(5) + nc(i)] =Wf xc(s) f i Γί+υ〇-ι 其中登c W = 入β m〇d cj ·〆切· 116763.doc -17- 1345895Ε + Equation (4) /»», "The interval between the impulse response between the transmitting antenna and the receiving antenna" in terms of the number of snippets and gentlemen + γ 1 . As follows, 'matrix _ submatrix &, where =1,...,m: equation (5) Η has the size of RxT, where τ=τι+τ„ +Τ Μ for one transmit antenna, vector (10)) contains Difficult vector l(4), where w 1,···,Μ. Each sub-vector ^ (free) includes the output chips concentrated in the chip period, from a transmitting antenna. Vector (phantom and sub-vector) l(4) can be expressed as: 'LW ^(^-LTm/2-lJ)- yW = to) and = ym(k) MW_ .ym(k + [Tm/2-l\) Equation (3) can also be expressed For: Equation (6) χ^)=Σηη, ι„,^) +sw 〇 Equation (7) m»l 116763.doc -16 - For the model shown in equation (7), in each chip shot The Tm output chips are sent from each of the transmitting antennas to the N receiving antennas via a WMO channel and a response from the WMO channel. Jade (the sample received by the Magic Center includes contributions from all of the transmitting antennas), and this can be relatively large. As an example, in the case of Μ=2, Ν=2, κ=2, Ε=20, Τ=48, and R=80, L (the illusion can be judged as “the vector can be 8 〇 to 8 matrix” and 2_(The magic can be 8〇χι vector. The noise can be assumed to be a fixed compound random vector, where equation (8) E{n(1) is 0, and equation (9) where five { } is the expected operation and 9 is all zeros. Vector, the m*RxR noise covariance matrix, and the "heart" indicates the pairwise shift term. Equations (8) and (9) indicate that the noise has a zero mean and a covariance matrix for the region. The receiver 15 0 can be borrowed as follows Recovering Ks for each channelized code c by a set of [chopper-paired samples for the channelized code] and then de-spreading and descrambling the filtered samples In the data symbol: λ 1 (i+l)C—1 ^C(J) —c iW'[vc(^modC)-^(it)]' Equation (10) Equation (11) = See [None X(A) + B(10)· [ve(A: mod C} · p(A)]* =Wf [H0c(5) + nc(i)] =Wf xc(s) fi Γί+υ〇-ι c W = into β m〇d cj · 〆切·116763.doc -17- 1345895
i W · [vc (k mod C)p{k)}' = H 0C (j) + nc (s) 方程式(12) ,方程式(13) 及為用於通道化碼<:之1^11個整體濾波器, 為kcb)之估計,且 "*"表示複合配對。 色(0為用於通道化碼^之解展頻符號的Txl向量且係基於 # 所發射碼片而獲得。acG)為用於通道化碼c之解擾頻及解 展頻之後的RX1雜訊向量。L⑷保存里(幻之統計,其獨立 於通道化碼C。^(J)為用於通道化碼C之解展頻符號的RX1 向量且係基於所接收樣本而獲得。^包括用於通道化碼c 之S亥組L個濾波器。方程式(1 〇)指示藉由之處理可等效 地對中之符號執行而非對1(灸)中之所接收樣本執行。 濾波器I可為Weiner濾波器,其可按如下得出:i W · [vc (k mod C)p{k)}' = H 0C (j) + nc (s) Equation (12), Equation (13) and 1^11 for channelization code <: An overall filter, estimated for kcb), and "*" indicates composite pairing. Color (0 is the Txl vector used to decode the spread spectrum symbol of the channelization code and is obtained based on the transmitted chip of #. acG) is the RX1 miscellaneous after the descrambling and despreading of the channelization code c Signal vector. L(4) is saved (the statistic of magic, which is independent of the channelization code C. ^(J) is the RX1 vector for the despread symbol of the channelization code C and is obtained based on the received samples. ^included for channelization The L filters of the S group of the code c. The equation (1 〇) indicates that the symbol can be equivalently executed by the processing instead of the received sample in the 1 (moxibustion). The filter I can be Weiner A filter, which can be derived as follows:
Wc =E{ zc(s) £ (ί)}-1 ·Ε{χ£ (s) bf (5)} =[Η £ {Θε(s) 0f (s)} KH + ]-' · [H £ {0C(s) bf (s)}]Wc = E{ zc(s) £ (ί)}-1 ·Ε{χ£ (s) bf (5)} =[Η £ {Θε(s) 0f (s)} KH + ]-' · [H £ {0C(s) bf (s)}]
= [HrcHw+Rnn]-1HL 方程式(14) 方程式(15) = Rc1Hrc=R;1 Φ, 其中 , 方程式(16) 方程式(17)= [HrcHw+Rnn]-1HL Equation (14) Equation (15) = Rc1Hrc=R;1 Φ, where , Equation (16) Equation (17)
E{0c(s)b?(s)} » XE{0c(s)b?(s)} » X
Rc = HrcHn+R 116763.doc -18- 1345895 £c為色⑴之ΤχΤ協方差矩陣。l為色⑷與L〇)之TxL相 關矩陣且可指示所發射之信號的特性。&為無線通道、信 说及雜訊統S十之RxR相關矩陣。矩陣匕、Xc及Kc經由發射 矩陣I及增益而視通道化碼C而定。 矩陣£c可表達為: 方程式(18) 其中I]為He之並不視通道化碼c而定之一部分β可展示,l 之僅Μ個元素為非零的。匕之非零元素之指數使得RxL矩 陣I可表達為:Rc = HrcHn+R 116763.doc -18- 1345895 £c is the covariance matrix of the color (1). l is the TxL correlation matrix of colors (4) and L〇) and can indicate the characteristics of the transmitted signal. & is the RxR correlation matrix for wireless channels, signaling and noise systems. The matrices X, Xc and Kc are determined by the transmission matrix I and the gain depending on the channelization code C. The matrix £c can be expressed as: Equation (18) where I] is He and does not depend on the channelization code c, one part of β can be shown, and only one element of l is non-zero. The exponent of the non-zero element makes the RxL matrix I can be expressed as:
Hyc =〇c = HGCBc > 方程式(19) 其中:H為含有迂之]\4個”準時”行的RXM矩陣,且 為含有V^.gm,c之Μ X Μ對角矩陣,沿著對角之 w=l,...,M且在其他處為零。 如方程式(5)中所示,g_對於發射天線含有 Τ = Τι+Τ2+_·· + Τμ個行8豆含有Η之Μ個行,或對於每一發射天 線含有一行。Η之Μ個行乘以公幻中具有其與方程式(1〇)中 之解展頻器運算對準之碼片時間的Μ個元素。此等Μ個行 可如下文所述加以識別。 方程式(17)中之矩陣也可接著表達為:Hyc =〇c = HGCBc > Equation (19) where: H is the RXM matrix containing the \4" punctuality" rows, and is the ΜX Μ diagonal matrix containing V^.gm,c along The diagonal w=l,...,M and is zero elsewhere. As shown in equation (5), g_ contains Τ = Τι + Τ 2+_·· + Τ μ rows of 8 beans containing Η for the transmitting antenna, or one row for each transmitting antenna. The row is multiplied by the element of the phantom that has its chip time aligned with the solution spreader operation in equation (1〇). These lines can be identified as described below. The matrix in equation (17) can also be expressed as:
Be =nrcRH+RmBe =nrcRH+Rm
= +Rm+nlclHcnH = Ε+Φε of 方程式(20) 116763.doc -19· 1345895 其中 R = HEHH+Enn。 方程式(14)中之矩陣I可接著表達為 方程式(21)= +Rm+nlclHcnH = Ε+Φε of Equation (20) 116763.doc -19· 1345895 where R = HEHH+Enn. The matrix I in equation (14) can then be expressed as equation (21)
Wc =Κ;'ΗΟ,Β0 = [! + 〇, Φ^Γ'ΗΟ,Β, =R"' HGc Bc (I + Bf Gc Hw R1 HGc BJ1 = FAC 其中:E = I 一1H,且 方程式(22) 方程式(23)Wc =Κ; 'ΗΟ,Β0 = [! + 〇, Φ^Γ'ΗΟ,Β, =R"' HGc Bc (I + Bf Gc Hw R1 HGc BJ1 = FAC where: E = I -1H, and the equation ( 22) Equation (23)
方程式(24) 在方程式(23)中,;^為並不視通道化碼而定之相對較大 的RXM矩陣。在方程式㈤中,^為含有見中之所有依賴 碼之矩陣的較小的MxL矩陣》 方程式⑽至㈣指示接收器15()處之處理可以兩級執 行。第-級藉由並不視通道化碼而定之前端滤波器請接 收之樣本现進行滤波’且進—步對㈣波之樣本進行解 展頻及解擾頻以獲得經渡波之符號。可對於所有通道化竭 使用單-前端濾、波器。第二級對於每—通道化碼^對經據 波之符號與組合器料“以組合以獲得用於該通道化瑪 之經偵測之符號。可以相同速率或不同速率單獨更新前端 滤波器及組合器矩陣。 可以各種方式執行多級接收器處理。在以下描述中,導 頻符號假設為《 H之發射料且❹用於m個發射天線 同一通道化碼p而發送。導頻符號亦假設為 父的,使得叫P⑻皆⑻卜!,其中為在符 116763.doc •20- 號週期ί中自Μ個發射天線發送之導頻符號的Mxl向量。 在一接收器設計中,得出前端濾波器I且將其用於第一 級(例如’用於圖1中之區塊160),且組合器矩陣&經計算 以用於每一通道化碼且用於第二級(例如,用於圖1中之區 塊 170)〇 對於符號位準訓練,可如下使用最小平方標準基於導頻 符號而得出濾波器: ^p = 1Sin Σ ιι^χρω-^ωιι2 · 方程式(25) 其中:心⑷為解展頻導頻符號之Rxl向量, ^為RxM候選濾波器矩陣, 丛p為基於導頻符號而得出之RXM濾波器矩陣,且 P為用於得出之導頻符號的數目。 雖然使用導頻通道化碼而非通道化碼c,但是可如方程 式(13)中所示而獲得&⑴中之解展頻導頻符號。最小平方 標準自所有候選濾波器矩陣中選擇一候選濾波器矩陣,使 得右手側之數量最小化。所選擇之濾波器矩陣提供為最小 平方濾波器矩陣%。 在極限情況下,方程式(25)中P — oo時,%可表達為: 方程式(26) yVp=[E{xp(s)zHp(s)}Vl E{xp(s)bHp(s)} 〇 對於符號位準訓練,可如下得出。如方程式(13)中所 示’ 中之解展頻導頻符號可自所接收之樣本而獲得。 可計算且對足夠數目之導頻符號平均化R X R外積 116763.doc -21- 知⑻知(s)。亦可計算且平均化RXM外積知⑻皆⑻。可基於 兩個經半 ’ ’卞巧化之外積而計算亦可基於遞歸最小平方 ()塊最小平方或此項技術中已知之某些其他技術而 得出I。 對於碼片位準訓練,可如下使用最小平方標準基於所接 收之樣本而得出濾波器: (Jo+P)C-i —p 丛尸石c 11迅抑)-fep⑺·νρ(Α:ιη〇(ΙΟ)·/7(Λ)||2 。 , 方程式(27) 八中b〇) (幻為藉由對導頻符號進行展頻及擾頻而 獲知' 之導頻碼片的Μχ 1向量。 在極限情況下,方程式(27)中時,%可表達為: I,㈣離i彻你),·氣方程式⑽ 對於碼片位準訓練,可如下得出I。可基於所接收之 ,本而十算RxR外積说)呈"⑴且對足夠數目之導頻符號將 其平均化《亦可計算且平均化RxM外積说⑴~α)抑)。 接著可基於兩個經平均化之外積而計算仏。 自方程式(22),1可表達為: wP =rHGp(i+GPrrHG r* — p ) =ιαΡα+-ρΡτι 方程式(29) 方程式(30) 其中:L=irrsSp。Equation (24) In equation (23), ^ is a relatively large RXM matrix that does not depend on the channelization code. In equation (5), ^ is a smaller MxL matrix containing a matrix of all the dependent codes in the equation. Equations (10) through (4) indicate that the processing at receiver 15() can be performed in two stages. The first stage is filtered by the sample received by the front end filter without depending on the channelization code, and the sample of the (four) wave is despread and descrambled to obtain the sign of the transit wave. Single-front-end filters and filters can be used for all channels. The second stage separately updates the front-end filter at the same rate or at different rates for each channel-based code and the combination of the symbol and the combiner to obtain the detected symbols for the channel. Combiner matrix. Multi-stage receiver processing can be performed in various ways. In the following description, the pilot symbols are assumed to be "transmitted by H" and transmitted for the same channelization code p of m transmit antennas. The pilot symbols are also assumed. For the parent, make P(8) both (8) b!, which is the Mxl vector of the pilot symbol transmitted from one transmit antenna in the period 116763.doc • 20-number period ί. In a receiver design, the front end is obtained. Filter I and use it for the first stage (eg, 'for block 160 in Figure 1), and the combiner matrix & is calculated for each channelization code and for the second level (eg, For block 170 in Figure 1) For symbol level training, the filter can be derived based on the pilot symbols using the least squares criterion as follows: ^p = 1Sin Σ ιι^χρω-^ωιι2 · Equation (25) : Heart (4) is the Rxl vector of the despread pilot symbol ^ is the RxM candidate filter matrix, the bundle p is the RXM filter matrix derived based on the pilot symbols, and P is the number of pilot symbols used to derive. Although pilot channelization codes are used instead of channelization codes c, but the despread pilot symbols in & (1) can be obtained as shown in equation (13). The least squares criterion selects a candidate filter matrix from all candidate filter matrices, minimizing the number of right-hand sides. The selected filter matrix is provided as the least squares filter matrix %. In the limit case, when P - oo in equation (25), % can be expressed as: Equation (26) yVp = [E{xp(s)zHp (s)}Vl E{xp(s)bHp(s)} 〇 For symbol level training, it can be obtained as follows: The despread pilot symbols in ' as shown in equation (13) can be received from Obtained from the sample. It can be calculated and averaged RXR outer product for a sufficient number of pilot symbols 116763.doc -21- (8) know (s). It can also be calculated and averaged RXM outer product (8) are all (8). ' 'The calculation of the outer product can also be based on the recursive least squares () block least squares or this technique Some other techniques known in the art result in I. For chip level training, the filter can be derived based on the received samples using the least squares criterion as follows: (Jo+P)Ci —p plexus c 11 ))-fep(7)·νρ(Α:ιη〇(ΙΟ)·/7(Λ)||2 . , Equation (27) 八中b〇) (The magic is by spreading and scrambling the pilot symbols) Know the Μχ 1 vector of the pilot chip. In the limit case, in equation (27), % can be expressed as: I, (4) from i), gas equation (10) for chip level training, I is obtained as follows. Based on the received, the RxR outer product is expressed as "(1) and averaged for a sufficient number of pilot symbols. It is also possible to calculate and average the RxM outer product (1)~α). The enthalpy can then be calculated based on the two averaged outer products. From equation (22), 1 can be expressed as: wP = rHGp(i + GPrrHG r* - p ) = ια Ρ α + - ρ Ρ τι Equation (29) Equation (30) where: L = irrsSp.
MxM矩陣l可估計如丁: 1 J〇+ P—1 £ρ=7· Σ Α S-S〇 方程式(31) 116763.doc -22- 1345895 在極限情況下,P —〇〇時,b之估計變得更加精確。與 I類似,亦可基於導頻碼片而非導頻符號而估計匕。 可如下基於方程式(29)而得出前端遽波器£ : 方程式(32) 可如下基於方程式(24)及(30)而得出組合器矩陣心: 方程式(33)The MxM matrix l can be estimated as D: 1 J〇 + P - 1 £ρ = 7 · Σ Α SS 〇 equation (31) 116763.doc -22- 1345895 In the extreme case, P - 〇〇, the estimated change of b More precise. Similar to I, it is also possible to estimate 匕 based on pilot chips instead of pilot symbols. The front-end chopper can be derived based on equation (29) as follows: Equation (32) The combiner matrix core can be derived based on equations (24) and (30) as follows: Equation (33)
可基於^及b將濾波器&達如下:The filter & can be based on ^ and b as follows:
Wc =EGCBC(I + Bf · =¾(卜玉(卜 方程式(34)Wc =EGCBC(I + Bf · =3⁄4(卜玉(卜 equation (34)
如方程式(32)中所示,前端濾波器E可基於^及b而得 出’里p及£p又可基於導頻符號或碼片而估計。如方程式 (33)中所示’用於每一通道化碼^之組合器矩陣心可基於 £p、用於導頻及資料之增益矩陣b及^,及用於通道化碼 c之發射矩陣I而得出。t亦稱為訊務對導頻之比且可 由接收器獲知(例如’經由信號發射)或估計。估計訊務對 導頻之比通常已足夠,且無需單獨估計&及1。 接收器150可如下恢復LQ)中之資料符號: tCO = 乂 [如(+f V _ 憎 m〇d 〇 · _]·〕 W i=iC )。 方程式(35) 接收器150可以兩級執行方程式(35)之處理。在第一級之 I16763.doc -23- 1345895 . 第一部分,接收器150可如下在每一碼片週期免中執行吁山 濾波: Y.W=FHx(k). 方程式(36) 其中χ(Ατ)為經渡波樣本的Mx 1向量》 在第一級之第二部分’接收器150可如下對於备_ ^ 通道 化碼c對經濾波之樣本進行解展頻及解擾頻: Λ | (ί+丨)C-1 -c^ = _/n' Σ v(A:)-[vc(^modC)-/7(^)]* • λ *=5C , 方程式(37) 其中士⑺為經濾波符號的Mxl向量,其為^(ί)之估計。As shown in equation (32), the front end filter E can be derived based on ^ and b and can be estimated based on pilot symbols or chips. As shown in equation (33), the combiner matrix for each channelization code can be based on £p, the gain matrices b and ^ for pilot and data, and the transmit matrix for channelization code c. I got it. t is also known as the traffic to pilot ratio and can be known (e.g., 'transmitted via a signal) or estimated by the receiver. Estimating the ratio of traffic to pilot is usually sufficient and there is no need to separately estimate & and 1. Receiver 150 can recover the data symbols in LQ) as follows: tCO = 乂 [eg (+f V _ 憎 m〇d 〇 · _]·] W i=iC ). Equation (35) The receiver 150 can perform the processing of Equation (35) in two stages. In the first stage, I16763.doc -23- 1345895. In the first part, the receiver 150 can perform the mountain filtering in each chip period as follows: YW=FHx(k). Equation (36) where χ(Ατ) For the Mx 1 vector of the wave sample, in the second part of the first stage, the receiver 150 can despread and descramble the filtered samples for the following _ ^ channelization code c: Λ | (ί+丨)C-1 -c^ = _/n' Σ v(A:)-[vc(^modC)-/7(^)]* • λ *=5C , equation (37) where 士士(7) is filtered The Mxl vector of the symbol, which is an estimate of ^(ί).
在第二級中,接收器150可如下對於每一通道化碼^執 組合: T 方程式(38) 接收器1 50亦可如下恢復中之資料符號:In the second stage, the receiver 150 can be combined for each channelization code as follows: T Equation (38) The receiver 1 50 can also recover the data symbols in the following:
h〇(s) = Af fw .(+^(k). [Vc{k m〇d C). p{k)]. *=fC 。 方程式(39) 亦可以兩級執行方程式(39)。在第一級之第一部分中, 接收器150可對於每一通道化碼c對所接收之樣本進行解展 頻及解擾頻以獲得用於該通道化碼的解展頻符號。在第一 ,之第二部分中,接收器150可藉由同一前端濾波器F對於 每通道化碼c對解展頻符號執行濾波以獲得用於該通道 ,碼的經濾波之符號。在第二級中,接收器⑽可將用於 每一通道化碼e之經濾波符號與用於該通道化碼之組合器 矩陣4。加以紐_合。 116763.doc -24- 1345895 私係基於導頻符號或碼片而獲得且可能並未聚合至最 佳設定’(例如)因為有限數目之導頻符號(p)用於訓練。在 該等情況下,使用基於烏而得出之£及怎可導致效能降 級。 在另一接收器設計中,\y田你田认银 &用作用於第一級之前端濾波 器。組合器矩陣也經計算用於盔 ,s .. ., rff I丹用於母一通道化碼C且用於第二 級0H〇(s) = Af fw .(+^(k). [Vc{k m〇d C). p{k)]. *=fC . Equation (39) can also be performed in two stages (39). In a first portion of the first stage, receiver 150 may despread and descramble the received samples for each channelization code c to obtain despread symbols for the channelization code. In the first, second portion, the receiver 150 may perform filtering on the despread symbols for each channelization code c by the same front end filter F to obtain filtered symbols for the channel, code. In the second stage, the receiver (10) can filter the symbols for each channelization code e with the combiner matrix 4 for the channelization code. Add a new _. 116763.doc -24- 1345895 Private is obtained based on pilot symbols or chips and may not be aggregated to the optimal setting' (for example) because a limited number of pilot symbols (p) are used for training. In such cases, the use of the U-based and how can lead to performance degradation. In another receiver design, \y Tian Tiantian Silver & is used as the first stage front end filter. The combiner matrix is also calculated for the helmet, s .. ., rff I Dan for the parent one channelization code C and for the second level 0
藉由]^獲得之經遽波符號可表達為: ?c(-s) =yiHP xc{s) = W^HGC Bc bc(i) + nc(5) =Ae bc(j) + ne(i) 其中:ac=<h^Sc,且 為用於通道化碼c之經濾波符號 kc(*s)中之資料符號可獲得為: 方程式(40) 方程式(41) 的Μχ 1向量。The chopped symbol obtained by ^^ can be expressed as: ?c(-s) = yiHP xc{s) = W^HGC Bc bc(i) + nc(5) = Ae bc(j) + ne(i Where: ac = < h^Sc, and the data symbol in the filtered symbol kc(*s) for the channelization code c can be obtained as: Μχ 1 vector of equation (40) Equation (41).
fec(i) = Df zc(j), 方程式(42) 其中么為用於通道化碼c之MχL組合器矩陣。 可如下基於最小均方誤差(MMSE)標準而得出么且人 陣么: ° 器矩 SC = (AC + U4C。 雜訊協方差矩陣也”可如下加 方程式(43) 以估計: 116763.doc •25· 1345895 j J〇+P-l -m-C = P ' s^cl~p{S)'hp(s)] [ZM- A,(,)b/.)]" _ 1 〜 方程式(44) 其中、喝HQ,。方程式(44)中之第二等式得自心之無偏 估計僅為之事實。Fec(i) = Df zc(j), where equation (42) is the MχL combiner matrix for the channelization code c. Can be derived based on the Minimum Mean Square Error (MMSE) criterion as follows: ° The moment SC = (AC + U4C. The noise covariance matrix is also) can be estimated by adding Equation (43) as follows: 116763.doc •25· 1345895 j J〇+Pl -mC = P ' s^cl~p{S)'hp(s)] [ZM- A,(,)b/.)]" _ 1 ~ Equation (44) Among them, drink HQ, the second equation in equation (44) is derived from the unbiased estimation of the heart is only the fact.
MxL矩陣心可表達為: 方程式(45)The MxL matrix heart can be expressed as: Equation (45)
如方程式(45)中所示,可基於⑷自導頻符號或碼片估計 且可應用於所有通道化碼之矩咕及⑻特定用於通道化碼 c之訊務對導頻之比g &及發射矩陣i而對於每一通道化 瑪c计舁矩陣4C。如方程式(43)中所示,可基於⑷可應用 於所有通道化碼之雜訊協方差矩陣u (b)經計算用於通 道化碼c之矩陣&而對於每一通道化碼^計算組合器矩陣 込。As shown in equation (45), it can be based on (4) self-pilot symbols or chip estimates and can be applied to the matrices of all channelized codes and (8) traffic-to-pilot ratios specific to the channelized code c g & And the emission matrix i and the matrix 4C for each channel. As shown in equation (43), it can be calculated based on (4) a noise covariance matrix u (b) applicable to all channelization codes, a matrix & for channelization code c, and a calculation for each channelization code Combiner matrix 込.
組合器矩陣也亦可如下經估計用於每一通道化碼e : C=1 ’且 方程式(46) 方程式(47) 其中EzZ為用於L(J)之ΜχΜ協方差矩陣。 在方程式(46)中,可計算用於每一通道化碼之外積 ιωβω,接著以同一發射矩陣也而對所有通道化碼將其 平均化,且進一步對足夠數目之符號週期將其平均化以獲 知協方差矩陣»接著可基於心及之倒數而計算也。 116763.doc -26 · 接收器150可如下恢復中之資料符號: fic(^) = Dc ^~ι=· ^ W^x(A:) [vc(A:modC) p(jfc)]* iC )。 方程式(48) 在方程式(48)中,接收器15〇可藉由前端濾波器對接 收之樣本進行遽波,接著對於每一通道化碼c對經遽波之 樣本進行解展頻及解擾頻,且接著將用於每一通道化碼之 經濾波符號與組合器矩陣也加以組合。 接收器150亦可如下恢復中之資料符號: he(s) = Dc WP -= · £ x(A:). [Vc{k mod C) · ^(yfc)]* *=iC 。 方程式(49) 在方程式(49)中,接收器15〇可對於每一通道化碼c對接 收之樣本進行解展頻及解擾頻,接著藉由前端濾波器%對 用於每一通道化碼之解展頻符號進行濾波,且接著將用於 每一通道化碼之經濾波符號與組合器矩陣么加以組合。 亦可以其他方式以多級來執行接收器處理。下文描述— 特定接收器設計。 圖4展示圖1中之接收器150内的各種區塊之一設計的方 塊圖。在此設計中,先於CDMA解調變而執行前端滤波。 區塊160包括一前端濾波器/均衡器410及一 CDMA解調器 420。解調器420包括用於多連C個用於訊務資料之通道化 碼的C個解擾頻器/解展頻器422a至422C。區塊170包括用 於多達C個用於訊務資料之通道化碼的C個組合器432a至 432C。 在通道處理器156内,時序估計器442確定所接收信號之 116763.doc -27· 1345895 ,時序單元442可估計不同天線之通道脈衝回應及/或功率 .延遲概況,且可確定通道脈衝回應及/或功率延遲概況之 重心。接著單元442可基於該重心而確定所接收信號的時 序。 係數計算單元444基於接收之樣本而得出遽波器%之係 數,(例如)如方程式(28)中所示。單元444亦可基於似、 塊最小平方或某其他技術而得出^。來自單元料2之時序 • 資訊可用於訓練,(例如)以使局部產生之導頻碼片與接收 之樣本對準。單元444將^提供至前端濾波器41〇。 濾波器410藉由私對接收之樣本训執行前端遽波/均衡 化,且提供經濾波之樣本。在解調器42〇内,每一單元 對於一不同通道化碼對經濾波樣本進行解展頻及解擾頻, 且提供用於該通道化媽的經濾波之符號。 單疋446對用於導頻通道化碼p之經濾波樣本進行解展頻 及解擾頻《單元422及446基於單元442所提供之時序而執 • 行解展頻及解擾頻。通道估計器448基於來自單元446之經 濾波導頻符號而估計MxM矩陣及?2。單元45〇對於每一通 道化碼計算外積匕⑺^⑺,對所有通道化碼及符號週期平 均化該外積,且提供相關矩陣也2,(例如)如方程式(46)中 所不。單元452如下基於來自單元448之矩陣及〖亘、來自單 兀450之相關矩陣及碼特定矩陣而對於每一通道化碼c得 出組合器矩陣也之係數: 方程式(50) 〇。=这=:^昼仏Bc。 116763.doc •28· 1345895 在RX ΜΙΜΟ處理器η0内,每一組合器452基於組合器 矩陣么而組合用於一不同通道化碼c之經濾波符號,且提 供用於該通道化碼的經偵測之符號。 接收器150可估計所接收信號之品質,其可由信號干擾 雜訊比(SINR)等加以量化。來自方程式(42)之經偵測符號 可表連為:The combiner matrix can also be estimated for each channelization code e: C = 1 ' and Equation (46) Equation (47) where EzZ is the covariance matrix for L(J). In equation (46), the product ιωβω for each channelization code can be calculated, then averaged for all channelization codes with the same emission matrix, and further averaged for a sufficient number of symbol periods. Knowing the covariance matrix » can then be calculated based on the reciprocal of the heart and also. 116763.doc -26 · Receiver 150 can recover the data symbols as follows: fic(^) = Dc ^~ι=· ^ W^x(A:) [vc(A:modC) p(jfc)]* iC ). Equation (48) In equation (48), the receiver 15〇 can chop the received samples by the front-end filter, and then despread and descramble the chopped samples for each channelization code c. The frequency, and then the filtered symbols and combiner matrices for each channelization code are also combined. The receiver 150 can also recover the data symbols as follows: he(s) = Dc WP -= · £ x(A:). [Vc{k mod C) · ^(yfc)]* *=iC . Equation (49) In equation (49), the receiver 15A can despread and descramble the received samples for each channelization code c, and then use the front-end filter % pair for each channelization. The decoded spread symbols of the code are filtered, and then the filtered symbols for each channelized code are combined with the combiner matrix. Receiver processing can also be performed in multiple stages in other ways. Described below - specific receiver design. 4 shows a block diagram of one of the various blocks within the receiver 150 of FIG. In this design, front-end filtering is performed prior to CDMA demodulation. Block 160 includes a front end filter/equalizer 410 and a CDMA demodulator 420. Demodulator 420 includes C descrambler/despreaders 422a through 422C for interfacing C channelized codes for traffic data. Block 170 includes C combiners 432a through 432C for up to C channelization codes for traffic data. Within channel processor 156, timing estimator 442 determines 116763.doc -27 - 1345895 of the received signal, timing unit 442 can estimate the channel impulse response and/or power. delay profile for the different antennas, and can determine the channel impulse response and / or the center of gravity of the power delay profile. Unit 442 can then determine the timing of the received signal based on the center of gravity. The coefficient calculation unit 444 derives the coefficient of the chopper % based on the received samples, for example, as shown in the equation (28). Unit 444 can also be derived based on a similarity, block least squares, or some other technique. Timing from Unit 2 • Information can be used for training, for example, to align locally generated pilot chips with received samples. Unit 444 provides ^ to front end filter 41A. Filter 410 performs front-end chopping/equalization by the sample training received by the private pair and provides filtered samples. Within the demodulator 42A, each unit despreads and descrambles the filtered samples for a different channelization code and provides filtered symbols for the channelized mom. The unit 446 despreads and descrambles the filtered samples for the pilot channelization code p. Units 422 and 446 perform despreading and descrambling based on the timing provided by unit 442. Channel estimator 448 estimates the MxM matrix based on the filtered pilot symbols from unit 446. 2. Unit 45 计算 computes the outer product 7(7)^(7) for each channelization code, averages the outer product for all channelization codes and symbol periods, and provides a correlation matrix of 2, for example, as in equation (46). Unit 452 derives the coefficients of the combiner matrix for each channelization code c based on the matrix from unit 448 and the correlation matrix from the unit 兀 450 and the code specific matrix as follows: Equation (50) 〇. = This =: ^ 昼仏 Bc. 116763.doc • 28· 1345895 Within the RX® processor η0, each combiner 452 combines the filtered symbols for a different channelized code c based on the combiner matrix and provides a pass for the channelized code The symbol of the detection. Receiver 150 can estimate the quality of the received signal, which can be quantified by signal interference noise ratio (SINR) or the like. The detected symbols from equation (42) can be linked as:
^c(5) =DC Ac + nc(j) =hc l?c(-y)+wc(i) 方程式(51) 其中Lf 且及々尸以仏⑴。lCs)之協方差可給定為 =丑丨_) s>)丨。匕⑷之協方差可給定為这零=μ n。 之第/個元素之sinr可表達為: SINR {bt^(s)} =-ΙΑί^ρΐ2 Σμ,αοι2^c(5) = DC Ac + nc(j) = hc l?c(-y) + wc(i) Equation (51) where Lf and the corpse are 仏 (1). The covariance of lCs) can be given as = ugly _) s >) 丨. The covariance of 匕(4) can be given as zero = μ n. The sinr of the /th element can be expressed as: SINR {bt^(s)} =-ΙΑί^ρΐ2 Σμ,αοι2
方程式(52) 其中.rLcd G為b之第(7, /)個元素,且 ^•W W, C (X 〇 為 Kw W, C 之第(7, 個元素。 SINRP/.^)}為藉由通道化碼c發送之第/個資料流的 SINR,且可用於選擇用於該資料流之資料傳輸率。每一通 道化碼c之SINR視用於該通道化碼之發射矩陣屯而定。接 收器150對於不同可能之發射矩陣確sSINR,且選擇具有 最高SINR之發射矩陣。接收器15〇可將反饋資訊發送至發 射器110。此反饋資訊可包含對於每一通道化碼所選擇之 發射矩陣、每—通道化碼之SINR或資料傳輸率、所有通道 化碼之平均SINR或資料傳輸率等。 116763.doc -29· 1345895 一般而言,前端濾波可於第一李 信號中之非準時信號分量。,*、’及中執行以處理M個接收 發射前在發射器處之處理方式端濾波器—般並不視信號在 前端濾波器可應用於所有诵^ 對於CDM發射而言, 號分量以恢復L個發射之:號道化二第二級可组合準時信 可視信號在發射前之處 wn盗矩 〜社不式(例如,發射器所传 發射矩陣I及增益料⑹及复 ㈣所使用之 ’、 因素(例如,通道回;® g 及信號統計达„)而定。 艰、W厲Η 圖5展示一在接收器處恢箱_ ΜΙΜΟ傳輸之過程5〇〇的設 計。得出用於處理(例如,補禮 南仏、抑制或緩和)多個所接收 信號中之非準時信號分量的前端渡波器(區塊512)。前端滅 波器並未隔離非準時信號分量。實情為,前端遽波器以一 所要/有益之方式處理非準時信號分量且亦(附帶地)處理準 時信號分量。亦得出用於對於多個所發射信號組合準時信 號分量的至少-組合器矩陣(區塊514)。前端渡波器可為如 方程式(32)中所示而得出之£,且組合器矩陣可為如方程 式(33)中所示而得出之怎。前端濾波器亦可為如方程式(26) 或(28)中所示而得出之;^,且組合器矩陣可為(例如)如方 程式(43)、(47)或(50)所示而得出之;^。亦可以其他方式得 出前端濾波器及組合器矩陣。可基於用於導頻之所接收資 料且根據(例如)最小平方標準而得出前端濾波器。可基於 用於發送資料之發射矩陣、用於資料之增益、通道回應估 計、前端濾波器、信號及/或雜訊統計等而得出組合器矩 陣。亦可根據MMSE或某其他標準而得出組合器矩陣。 116763.doc -30- 1345895 1345895Equation (52) where .rLcd G is the (7, /) element of b, and ^•WW, C (X 〇 is Kw W, and the number of C (7, element. SINRP/.^)} is borrowed The SINR of the first data stream sent by the channelization code c, and can be used to select the data transmission rate for the data stream. The SINR of each channelization code c depends on the transmission matrix used for the channelization code. Receiver 150 determines the sSINR for different possible transmit matrices and selects the transmit matrix with the highest SINR. Receiver 15A can send feedback information to transmitter 110. This feedback information can include the selected for each channelization code. Transmit matrix, SINR or data transmission rate per channelization code, average SINR or data transmission rate of all channelization codes, etc. 116763.doc -29· 1345895 In general, front-end filtering can be used in the first Li signal. The on-time signal component.,*, 'and the middle of the processing to process the M receivers before the transmission is processed at the transmitter end-like filter - the non-view signal is applied to the front-end filter for all 诵^ for CDM transmission, Number component to recover L transmissions: No. 2 Alignment time signal visible signal before the launch wn thief ~ social type (for example, transmitter transmitted matrix I and gain material (6) and complex (four) used ', factors (for example, channel back; ® g and signal The statistics are up to „). Difficult, W Li Η Figure 5 shows a design of the process of recovering the box _ ΜΙΜΟ transmission at the receiver. It is obtained for processing (for example, ritual, suppression or mitigation) The front-end ferrocoupler of the non-punctual signal component of the received signal (block 512). The front-end chopper does not isolate the non-punctual signal component. In fact, the front-end chopper processes the non-punctual signal component in a desired/beneficial manner. And (also incidentally) processing the on-time signal component. Also resulting in at least a combiner matrix for combining the on-time signal components for the plurality of transmitted signals (block 514). The front-end ferrite can be as shown in equation (32) And the resulting matrix, and the combiner matrix can be derived as shown in equation (33). The front-end filter can also be obtained as shown in equation (26) or (28); And the combiner matrix can be (for example As shown in equation (43), (47) or (50); ^. The front-end filter and combiner matrix can also be derived in other ways. It can be based on the received data for the pilot and according to (for example The front-end filter is derived from the least squares criterion. The combiner matrix can be derived based on the transmit matrix used to transmit the data, the gain for the data, the channel response estimate, the front-end filter, the signal and/or the noise statistics, and the like. The combiner matrix can also be derived from MMSE or some other standard. 116763.doc -30- 1345895 1345895
接收之資_波以處理多個所接收信號中 號分量(區塊516)。經較之資㈣處理以對發^ 信號組合準時信號分量(區塊518)。所接收資料可 時:個以上符號週期以處理非準時信號分量 '經據波資: 可經處理歷時—符號週期以組合準時信號分量。接收之資 料及經遽波之資料可以樣本、符號等形式給出。 貝 …對:藉由多個通道化碼發送之CDM發射而言,可得出一 早-刖端濾波器且將其用於處理非準時信號分量,且可得 出夕個組合态矩陣且將其用於對於多個通道化碼組合準時 信號分量。在—機制中,首先藉由前《波器對所接收之 資料進行錢以獲得中間資料。接著對於每-通道化碼對 中間資料進行解展頻以獲得用於通道化碼m皮之資 料。對於每-通道化碼’藉由一用於該通道化碼之組合器 矩陣進-步處m皮之f料以獲得用於該通道化碼之輸 出資料。在另—機制中,首先對於每-通道化碼對所接收 —資料進行解展頻以獲得用於通道化碼之解展頻資料。接 — 同則%濾波器對用於每一通道化碼之解展頻資料 進行遽波以獲得用於通道化碼的經滤波之資料。對於每-通c化碼’藉由一用於該通道化碼的組合器矩陣進一步處 理經濾'波之資料以獲得用於該通道化碼之輸出資料。 子於CDM而έ ’可基於所接收資料及已知導頻,例如基 於()用於碼片位準訓練之所接收資料及已知導頻碼片的樣 本或(b)自用於符號位準訓練之所接收資料及已知導頻符號 獲知的解展頻導頻符號而得出前端濾波器。可基於用於多 116763.doc -31 · 個通道化碼之發射拓陸 輯矩陣1於多個通道化碼之增益 '通道 回應估汁、前端濾波器、作 1口琉及/或雜訊統計等或並人 而得出組合器矩陣。前婭冶.士 „ Λ 八,。 估計(例如)為wpwg。 τ j八丨』地The received resource_waves are processed to process a plurality of received signal median components (block 516). The punctual signal component is combined (block 518) by the processing of the signal (4). The received data may be more than one symbol period to process the non-punctual signal component 'via the wave: can be processed for the duration of the symbol period to combine the on-time signal components. The information received and the data obtained by chopping can be given in the form of samples, symbols, etc. ...... Pair: With CDM transmissions sent by multiple channelization codes, an early-end filter can be derived and used to process non-punctual signal components, and a combined state matrix can be derived and Used to combine on-time signal components for multiple channelization codes. In the mechanism, the money is first obtained by the former wave device to obtain the intermediate data. The intermediate data is then despread for each channelization code to obtain the data for the channelization code. For each per-channelization code, the output data for the channelization code is obtained by a matrix of the combiner matrix for the channelization code. In another mechanism, the received data is first despread for each channelized code to obtain the spread spectrum data for the channelized code. The same-% filter filters the despread spread data for each channelization code to obtain filtered data for the channelization code. For each pass-through code, the filtered 'wave' data is further processed by a combiner matrix for the channelized code to obtain output data for the channelized code. Sub-CDM and may be based on received data and known pilots, such as based on () received data for chip level training and samples of known pilot chips or (b) self-signed symbol level The front-end filter is obtained by training the received data and the despread pilot symbols obtained by the known pilot symbols. Can be based on the multi-channelization code for the multiple 116763.doc -31 · channelization code of the spread matrix matrix 1 in the multi-channelization code gain 'channel response estimation, front-end filter, 1 port and / or noise statistics Or combine to get the combiner matrix.前娅冶.士 „ Λ 八,. Estimated (for example) as wpwg. τ j gossip
多級接◎亦可用於其他通㈣統。舉例而言,在分時 多工(TD聯統中,可基於第_時間間隔中所接收之導頻 而付出則端慮波器’且可基於在第二時間間隔中所使用之 發射矩陣而得出詩第二時間間隔的組合器矩陣。可藉由 前端濾波器對在第二時間間隔中接收之資料進行濾波,且 可藉由組合器矩陣進一步處理經遽波之資料。 -般而言’濾波器可基於導頻而得出,其可在一特定通 道化碼及/或時間間隔且使用特定發射矩陣及增益而發 送。自導頻得出之濾波器可用於得出資料濾波器,其可在 其他通道化碼及/或時間間隔且可能使用不同發射矩陣及 增益而發送。 • 肖於CDMA而言’準時與非準時信號分量可藉由其發射 時間而加以區別。接收器可處理一樣本視窗以恢復由發射 器所發射之所要符號。均衡器之時序確定相對於該視窗而 發射所要符號之時間瞬間。接收器獲得之樣本含有包括準 時及非準時彳s號分量的不同額外信號分量。準時信號分量 為用於所要符號以及與所要符號同時發射之其他符號的信 號分3:。所有其他信號分量為非準時信號分量,其包括追 蹤至在所要符號之前及之後發射之符號的信號分量。 符號可由發射函數發射,其可能視一或多個參數而定。 116763.doc •32· 舉例而S,發射函數可潮雜妹·.网 視符旎週期·5、通道化碼C、頻槽或 副載波指數《等而定,且 且了表不為。為簡單起 見’發射函數可視三個參數〜及”,或元組㈣而定。 用=於不同符號之發射函數可為正交的使得僅當❿、 1〜”2時</(51,">1,〜),办2而,《2)>钟,其可表達為 (5l,Cl,Wl) = (*s2,c2,/i2)。 彳m括⑷來自由元組心1,”1)所界定之所要 ::函數加…。之所要信號分量及㈨來自其他發射函 〜其中(从物之其他信號分量。第一級 广端德波可處理其他信號分量。第二級中之組合器可 處理所要信號分量。 對於CDM而言,用於符號週^之發射函數由長度為C之 ㈣Μ細㈣序確定。用於符號週期认通道 化碼c之發射函數可表為 ^ ^ 八)自以發射函數/(he丨)發 射之苻旒的觀點來看,接收之信號含有以下: 1.應於/〇^)(衫心)之非準時信號分量, 2mc)且包含以下幾者之準時信號分量: a·自所要通道化碼謂應於加,,ι)之準時信號分量,及 b,自其他通道化碼輯應於取咖叫之準時信號分 量0 前端滤波器處理對應於/(,,c)之非準時信號分量。藉由前 ='波器進行之解擾頻及解展頻亦消除來自其他料化碼 且對應於取Cl)之準時信號分量。組合器處理來自所要通 道化碼且對應於/(〜,〇)之準時信號分量。 116763.doc •33- 1345895 在不利用讀之單載波系統中,發射函數可僅為隨時間 變化之數位△且可給定為八㈣㈣。隨著時間,推移,△之 位置隨時間而改變。Multi-level connection ◎ can also be used for other communication systems. For example, in time division multiplexing (in the TD system, the terminal filter can be paid based on the pilot received in the first time interval) and can be based on the transmission matrix used in the second time interval. The combiner matrix of the second time interval of the poem is obtained. The data received in the second time interval can be filtered by the front end filter, and the chopped data can be further processed by the combiner matrix. 'Filters can be derived based on pilots, which can be transmitted at a particular channelization code and/or time interval and using a particular transmit matrix and gain. The pilot derived filter can be used to derive a data filter, It can be transmitted at other channelization codes and/or time intervals and possibly with different transmit matrices and gains. • In CDMA, 'punctual and non-punctual signal components can be distinguished by their transmit time. The receiver can handle a sample window to recover the desired symbol transmitted by the transmitter. The timing of the equalizer determines the time instant of transmitting the desired symbol relative to the window. The sample obtained by the receiver includes punctuality and Different extra signal components on time 彳 s component. The punctual signal component is a signal 3 for the desired symbol and other symbols transmitted simultaneously with the desired symbol. All other signal components are non-punctual signal components, including tracking to The signal component of the symbol transmitted before and after the symbol. The symbol can be transmitted by the transmit function, which may depend on one or more parameters. 116763.doc •32· For example, S, the transmit function can be a miscellaneous girl. Cycle · 5, channelization code C, frequency bin or subcarrier index "etc. and the table is not. For the sake of simplicity, the 'emission function can be seen from three parameters ~ and", or tuple (four). = The emission function of different symbols can be orthogonal such that only ❿, 1~"2</(51,">1,~), 2, and 2)> Expressed as (5l, Cl, Wl) = (*s2, c2, /i2).彳m enclosed (4) from what is defined by the tuple heart 1, "1):: function plus .... the desired signal component and (9) from other transmit letters ~ where (the other signal components of the object. first-level wide-end German The wave can process other signal components. The combiner in the second stage can process the desired signal component. For CDM, the transmit function for the symbol period is determined by the (four) Μ fine (four) order of length C. It is used for the symbol period recognition channel. The emission function of the code c can be expressed as ^ ^ 八) From the point of view of the emission function / (he丨) emission, the received signal contains the following: 1. should be in /〇^) (shirt heart) Non-punctual signal component, 2mc) and includes the following on-time signal components: a. The required channelized code from the desired channelization code is added, ι), and b, from other channelization codes. Called the on-time signal component 0 The front-end filter processes the non-punctual signal component corresponding to /(,,c). The descrambling and despreading by the front =' filter also eliminates the other materialized codes and corresponds to Take the on-time signal component of Cl). The combiner processes the code from the desired channel and corresponds to /( , 〇) The on-time signal component 116763.doc •33- 1345895 In a single-carrier system that does not use reading, the emission function can only be a digit Δ that varies with time and can be given as eight (four) (four). Over time, over time, The position of Δ changes with time.
在基於。歷之系統中’發射函數可用於不同副載波且 可給定為/(u) ’其中#為副載波指數。〇fdm中之副載波 可對應於⑽中之通道化碼。發射器可藉由⑷以快速傅 立葉反變換(IFFT)將N個資料/導頻符號轉換為時域以獲得 N個時域樣本及(b)將一循環前置項附加至時域樣本以:得 一OFDM符號而自—給定發射天線在符號週期中 於N個副載波上發送料/導頻符號。接收器可藉由⑷ 移除接收之樣本中之循環前置項及(b)以快速傅立葉變換 (FFT)將N個接收之樣本轉換為頻域以獲得用於職副載波 之N個接收之符號而獲得用於—給定接收天線的所接收資 料/導頻符號。所接收符號可對應於方程式(4〇)中之匕(4, 其中下標C以副載波指數„替換。對於〇FDM,準時信號分 量可為自不同發射天線在特^副載波上發送的信號分量。 非準時信號分量可為在其他副載波上發送之信號分量。前 端遽波器可由FFT及接收器處之循環前置項移除而實施。 組合器矩陣么可對於每—副載波而進行計算且可用於組合 來自所有用於該副載波之接收天線的所接收符號。 熟習此項技術者應瞭解,可使用多種不同技藝及技術中 之任一者表示資訊及信號。I例而tf穿以上描述而引 用之資料、指令、命令、資訊、信號、位元、符號及碼片 可由電壓、電流、電磁波、磁場或粒子、光學場或粒子或 116763.doc •34· 其任一組合來表示 熟習此項技術者應進一步瞭解,結合本文之揭示案所描 述的各種說明性邏輯區塊、模組、電路及演算法步驟可實 施為電子硬體、電腦軟體或兩者之組合。為清楚地說明硬 體及軟體之此可互換性,各種說明性組件、區塊、模組、 電路及步驟已在上文中大體依據其功能性而加以描述。該 功旎性實施為硬體或是軟體視外加於整個系統上之特定應 用及5又什約束而定。熟習此項技術者可對於每一特定應用 以不同方式實施所描述之功能性,但該等實施決策不應解 釋為引起自本揭示案之範疇的偏離。 結合本文之揭示案所描述之各種說明性邏輯區塊、模組 及電路可以經設計以執行本文描述之功能的通用處理器、 數位信號處理器(DSP)、特殊應用積體電路(ASIC)、場可 程式化閘陣列(FPGA)或其他可程式化邏輯設備、離散閑或 電晶體邏輯、離散硬體組件或其任—組合來實施或執行。 通用處理器可為微處理器’但在替代實施例中,處理器可 為任何習知處理器、控制器、微控制器或狀態機。處理器 亦可實施為計算設備之組合,例如Dsp與微處理器之組 合、複數個微處理n之組合、連同—Dsp㈣之—或多個 微處理器之組合或任何其他該種組態。 結合本文之揭示案所描述之方法或演算法的步驟可直接 以硬體、以處理器所執行之軟體模組或以兩者之組合而實 施。軟體模組可常駐於RAM記憶體、快閃記憶體、R0M^ 憶體、EPR⑽記憶體、EEP職記憶體、暫存器、硬碟、 116763.doc •35· 1345895 抽取式碟、CD-ROM或此項技術中已知的任何其他形式之 儲存媒體中。例示性儲存媒體耦接至處理器,使得處理器 可自儲存媒體讀取資訊且將資訊寫入儲存媒體。在替代實 施例中,儲存媒體可整合至處理器中。處理器及儲存媒體 可常駐於ASIC中。ASIC可常駐於使用者終端機中。在替 代實施例中,處理器及儲存媒體可作為離散組件而常駐於 使用者終端機中。Based on. The 'emission function' can be used for different subcarriers in the system and can be given as /(u) ' where # is the subcarrier index. The subcarrier in 〇fdm may correspond to the channelization code in (10). The transmitter may convert (N) data/pilot symbols into time domain by the inverse fast Fourier transform (IFFT) to obtain N time domain samples and (b) append a cyclic preamble to the time domain samples by: An OFDM symbol is derived and the given transmit antenna transmits the material/pilot symbols on the N subcarriers in the symbol period. The receiver may (4) remove the cyclic preamble in the received samples and (b) convert the N received samples into the frequency domain by fast Fourier transform (FFT) to obtain N receptions of the serving subcarriers. The received data/pilot symbols for the given receive antenna are obtained by the symbol. The received symbol may correspond to 匕 (4, where subscript C is replaced by subcarrier index „. For 〇FDM, the punctual signal component may be a signal transmitted from a different transmit antenna on a subcarrier. The non-punctual signal component can be a signal component transmitted on other subcarriers. The front end chopper can be implemented by removing the FFT and the cyclic preamble at the receiver. The combiner matrix can be done for each subcarrier. Calculated and used to combine received symbols from all receive antennas for the subcarrier. Those skilled in the art will appreciate that information and signals can be represented using any of a variety of different techniques and techniques. The materials, instructions, commands, information, signals, bits, symbols and chips cited in the above description may be represented by voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or particles or any combination of 116763.doc • 34· Those skilled in the art will further appreciate that the various illustrative logic blocks, modules, circuits, and algorithm steps described in connection with the disclosure herein can be implemented as electronically hard. , computer software, or a combination of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. The functional implementation is hardware or software depending on the particular application and the constraints imposed on the overall system. Those skilled in the art can implement the described functionality in different ways for each particular application, but Such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure. The various illustrative logic blocks, modules, and circuits described in connection with the disclosure herein can be implemented as a general purpose processor designed to perform the functions described herein. , digital signal processor (DSP), special application integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete idle or transistor logic, discrete hardware components or any of them - The general purpose processor may be a microprocessor 'but in an alternative embodiment, the processor may be any conventional processor, controller, microcontroller or state The processor can also be implemented as a combination of computing devices, such as a combination of a Dsp and a microprocessor, a combination of a plurality of microprocessors n, together with -Dsp(4)- or a combination of multiple microprocessors or any other such configuration. The steps of the method or algorithm described in connection with the disclosure herein may be implemented directly in hardware, in a software module executed by a processor, or in a combination of the two. The software module may reside in RAM memory, flashing Memory, R0M^ memory, EPR (10) memory, EEP memory, scratchpad, hard disk, 116763.doc • 35· 1345895 removable disk, CD-ROM or any other form known in the art In the storage medium, the exemplary storage medium is coupled to the processor such that the processor can read the information from the storage medium and write the information to the storage medium. In an alternative embodiment, the storage medium can be integrated into the processor. The processor and storage media can be resident in the ASIC. The ASIC can be resident in the user terminal. In an alternate embodiment, the processor and storage medium may reside as discrete components resident in the user terminal.
揭示案之先前描述經提供以使任一熟習此項技術者能夠 製造或使用本揭示案。熟習此項技術者將易於瞭解對本揭 示案之各種修改,且本文所界定之一般原理可在不偏離本 揭示案之精神或範疇之情況下應用於其他更改。因此,本 揭示案不欲限於本文所描述之實例,而係與與本文所揭示 之原理及新穎特徵一致的最廣泛範_ 一致。 【圖式簡單說明】 圖1展示一發射器及一接收器之方塊圖。The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the present disclosure will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Therefore, the present disclosure is not intended to be limited to the examples described herein, but is consistent with the broadest scope of the principles and novel features disclosed herein. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a block diagram of a transmitter and a receiver.
圖2說明一 MIMO-CDM傳輸。 圖3展示一 CDMA調變器之方塊圖。 圖4展示接收器内之各區塊的設計。 圖5展示在接收器處恢復一ΜΙΜΟ傳輸之過程。 【主要元件符號說明】 110 發射器 112 發射資料處理器(τχ資料處理器) 114 ΤΧ ΜΙΜΟ處理器 116 CDMA調變器 116763.doc -36- 1345895Figure 2 illustrates a MIMO-CDM transmission. Figure 3 shows a block diagram of a CDMA modulator. Figure 4 shows the design of the various blocks within the receiver. Figure 5 shows the process of recovering a transmission at the receiver. [Main component symbol description] 110 Transmitter 112 Transmit data processor (τχ data processor) 114 ΤΧ ΜΙΜΟ processor 116 CDMA modulator 116763.doc -36- 1345895
116a-11 6m CDMA調變器 118a-11 8m 發射器單元 120a- 120m 天線 130 控制器/處理器 132 記憶體 150 接收器 152a-152n 天線 154a-154n 接收器單元(RCVR) 156 通道處理器 160 均衡器/CDMA解調器/區塊 170 接收(RX)MIMO處理器/區塊 172 RX資料處理器 180 控制器/處理器 182 記憶體 310 資料處理器 312 展頻器 314 倍增器 320 導頻處理器 322 展頻器 324 倍增器 330 求和器 332 擾頻器 410 前端濾波器/均衡器 420 CDMA解調器 116763.doc -37- 1345895 422a-422c 解擾頻器/解展頻器 432a-432c 組合器 442 時序估計器 444 係數計算單元 446 ττ〇 一 早兀 448 通道估計器 450 一 早兀 452 στ» — 早兀 116763.doc -38-116a-11 6m CDMA modulator 118a-11 8m transmitter unit 120a-120m antenna 130 controller/processor 132 memory 150 receiver 152a-152n antenna 154a-154n receiver unit (RCVR) 156 channel processor 160 equalization / CDMA Demodulator / Block 170 Receive (RX) MIMO Processor / Block 172 RX Data Processor 180 Controller / Processor 182 Memory 310 Data Processor 312 Spread Spectrum 314 Multiplier 320 Pilot Processor 322 Spreader 324 Multiplier 330 Summer 332 Scrambler 410 Front End Filter/Equalizer 420 CDMA Demodulator 116763.doc -37- 1345895 422a-422c De-scrambler/De-spreader 432a-432c Combination 442 timing estimator 444 coefficient calculation unit 446 ττ〇 early 兀 448 channel estimator 450 early 兀 452 στ» — early 兀 116763.doc -38-
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US74115905P | 2005-11-30 | 2005-11-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200733609A TW200733609A (en) | 2007-09-01 |
TWI345895B true TWI345895B (en) | 2011-07-21 |
Family
ID=40107402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW095144483A TWI345895B (en) | 2005-11-30 | 2006-11-30 | Multi-stage receiver for wireless communication |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101317340B (en) |
TW (1) | TWI345895B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102075303B (en) | 2009-11-25 | 2014-06-04 | 华为技术有限公司 | Method and device for sending pilot frequency |
CN107819482B (en) * | 2017-10-27 | 2019-10-08 | 盐城师范学院 | Data communication transmitting method in a kind of cordless communication network |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6801565B1 (en) * | 1999-06-25 | 2004-10-05 | Ericsson Inc. | Multi-stage rake combining methods and apparatus |
JP2007528670A (en) * | 2004-03-09 | 2007-10-11 | トムソン ライセンシング | Hybrid RAKE / equalization receiver for spread spectrum systems |
-
2006
- 2006-11-30 TW TW095144483A patent/TWI345895B/en not_active IP Right Cessation
- 2006-11-30 CN CN200680044631.7A patent/CN101317340B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101317340B (en) | 2015-06-10 |
CN101317340A (en) | 2008-12-03 |
TW200733609A (en) | 2007-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5180093B2 (en) | Multistage handset for wireless communication | |
JP6309443B2 (en) | MIMO detection with on-time symbol interference cancellation | |
EP1357693B1 (en) | CDMA transceiver techniques for multiple input multiple output (mimo) wireless communications | |
JP4395063B2 (en) | Wireless transmission using adaptive transmit antenna array | |
Zhou et al. | OFCDM: a promising broadband wireless access technique | |
RU2476994C2 (en) | Pilot transmission and channel estimation for multiple-input single-output (miso) and multiple-input multiple output (mimo) systems | |
KR100906276B1 (en) | Receiver structures for spatial spreading with space-time or space-frequency transmit diversity | |
US7133459B2 (en) | Space-time transmit diversity | |
US7778355B2 (en) | Space-time transmit diversity | |
WO2012060237A1 (en) | Wireless transmission device, wireless receiving device, wireless communication system, control program and integrated circuit | |
KR20050092057A (en) | Efficient multiple input multiple output system for multi-path fading channels | |
WO2005114868A1 (en) | Continuous beamforming for a mimo-ofdm system | |
JP4567749B2 (en) | Method and apparatus for performing chip level equalization using combined processing | |
US7929413B2 (en) | Transmission system, transmission method, transmitter, receiver, decoding method, and decoder | |
JP4299302B2 (en) | Apparatus and method for precoding multi-carrier signals | |
TWI345895B (en) | Multi-stage receiver for wireless communication | |
WO2012169428A1 (en) | Wireless relay device, wireless transmission device, wireless receiving device, wireless communication system, control program and integrated circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |