TWI345783B - Nonvolatile memory cells, monolithic three dimensional memory arrays and methods for programming such memory arrays - Google Patents

Nonvolatile memory cells, monolithic three dimensional memory arrays and methods for programming such memory arrays Download PDF

Info

Publication number
TWI345783B
TWI345783B TW96111498A TW96111498A TWI345783B TW I345783 B TWI345783 B TW I345783B TW 96111498 A TW96111498 A TW 96111498A TW 96111498 A TW96111498 A TW 96111498A TW I345783 B TWI345783 B TW I345783B
Authority
TW
Taiwan
Prior art keywords
memory
layer
resistivity
diode
conductor
Prior art date
Application number
TW96111498A
Other languages
Chinese (zh)
Other versions
TW200805376A (en
Inventor
S Brad Herner
Tanmay Kumar
Christopher J Petti
Original Assignee
Sandisk 3D Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/395,995 external-priority patent/US7812404B2/en
Application filed by Sandisk 3D Llc filed Critical Sandisk 3D Llc
Publication of TW200805376A publication Critical patent/TW200805376A/en
Application granted granted Critical
Publication of TWI345783B publication Critical patent/TWI345783B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

九、發明說明: 【發明所屬之技術領域】 本么月係關於種可重寫非揮發性記憶體陣列,其中每 -單元包含串聯之二極體及阻抗物切換元件。 【先前技術】 σ人已知可在咼阻抗狀態與低阻抗狀態之間可逆轉換的 阻抗物切換材料。此等兩個穩定阻抗狀態使得此等材料成 為供在可重寫非揮發性s己憶體陣列中使用之具吸引力選 項然而,歸因於單元間之干擾危險、高沒漏電流及無數 製造挑戰,使得非常難以形成此等單元之大型、高密度陣 列0 因此,需要一種使用可不難製造並經可靠程式化之阻抗 物切換元件的大型可重寫非揮發性記憶體陣列。 【發明内容】 本發明藉由以下申請專利範圍來界定,且不應將此部分 中之内谷看作對彼等申請專利範圍之限制。一般而言,本 發明係針對一種包含二極體及阻抗物切換材料之非揮發性 記憶體單元。 本發明之一第一態樣提供一非揮發性記憶體單元,其包 έ 個一極體,及一阻抗物切換元件,其包含一層電阻 率切換金屬氧化物或氮化物化合物,該金屬氧化物或氮化 物化合物僅包括一種金屬,其中該二極體及該阻抗物切換 元件為該記憶體單元之部分。 本發明之另一態樣提供複數個非揮發性記憶體單元,其 119762.doc 1345783 X y Alx〇y、Mgx〇y、Cox〇y、Crx〇y、v Zrx〇y、BxNy及幻為。 X y nx〇y、 情::月I之另k佳實施例提供—種用於形成整體三維記 隐體陣列之方法’豸方法包含 ^ ^ ^ ^驟.a)在一基板上形 =弟-錢體層,該第一記憶體層藉由包含以下步驟之 2而形成:1)形成第一複數個二極體…)形成第-複 :抗物切換元件’該等元件包含選自由以 =:叫〇:、Nbx〇y、叫、財外、㈣、叫办、 吁等[吨 Vx〇y、ZnX〇y、Zrx〇y、BxNA A〗XNy,其中 ^ 極體中之每一者與該等阻抗物切換元件中之_ =聯配置…)在該第一記憶體層上及在該基板上整體 形成至少一第二記憶體層。 一相關實施例提供―種用於形成整體三維記憶體陣列之 方去’該方法包含以下步驟··形成第-複數個大體上平 2、大體上共面之導體’其在基板上之第—高度處且在第 一:向上延伸;形成第二複數個大體上平行、大體上共面 之。體:其在第一高度上之第二高度處且在—不同於第— 方向之第二方向上延伸;形成第一複數個阻抗物切換元 牛-亥等7C件包含選自由以下組成之群的材料·犯〇 ' 湯x〇y、乃為、Hfx〇y、Α】χ%、叫為、c。為、_:、 x〇y Znx〇y、Zrx〇y、BxNy及 A】xNy ;形成第一複數個二 極體’其令該等第一二極體及該等第一阻抗物切換元件係 在第—高度上及在第二高度下;在該等第二導體上形成第 一二極體;及在該等第二導體上形成第三導體。 H9762.doc 1345783 個第一記憶體單元,每一筐 母卜冗憶體單元包含:-形成於 基板上之弟一底部導體,·^哲 低ί等體,6亥第—底部導體包含一層銘、紹 δ金或銅,·-阻抗物切換㈣,·及—形成於該第—底部導 體上之二極體;及π)整體形成於該第一記憶體層上之至少 一第二記憶體層。 』本㈣m樣提供1用於程式化記憶料列中之 §己憶體單元的方法,盆中今#达 …… 憶體單元包含金屬氧化物或 氮化物化合物之一電阻率切故 換層,該金屬氧化物或氮化物 化&物包括恰好一種全屬,兮+ 亥方法包含:藉由將電阻率切 換層自第一電阻率狀態改變 式化記憶體單元,其中…:广化電阻率狀態來程 第一釦式化電阻率狀態儲存記憶 體皁7C之資料狀態。 本發明之-柄關態樣提供—種用 感 陣列中之記憶體單元的方法,W 11己隐體 a ^ 万法其中該記憶體單元包含:全 ^氧化物或氮化物化合物之-電阻率切換層,該金;氧: 物或氛化物化合物包括恰好一種金屬;及一包含 體材料之二極體,該電阻率 日日+導 置,該方法包含:i)將第—。玄二極體電性串聯配 元,1中1 g 程式化脈衝施加至記憶體單 :之第Γ—程式化脈衝:a)可偵測地改變電阻率切換 之第一電阻^ Μ可制地改變多晶半導體材料 :電阻率狀態且可偵測地改變多晶半導體:層= 率狀態;及ii)讀取記憶體單 弟-電阻 -電阻率狀態用以储存資料且二::電阻率切換層之第 4且该^日日半導體材料之第二電 119762.doc * ί〇. 1345783 阻率狀態用以儲存資料。 可車獨或彼此組合而倍用太#由k ^ 阳便用本文中所描述之本發明之態樣 及實施例中之每一者。 現將參看隨附圖式來描述較佳態樣及實施例。 f實施方式】 多種材料展示可逆電阻率切換性能。此等材料包括硫族 化^、碳聚合物、触鑛及某些金屬氧化物及氮化物。具IX. Description of the Invention: [Technical Field] The present invention relates to a rewritable non-volatile memory array in which each unit includes a diode in series and an impedance switching element. [Prior Art] The σ person is known to be an impedance switching material that can be reversibly converted between a 咼 impedance state and a low impedance state. These two stable impedance states make these materials an attractive option for use in rewritable non-volatile suffix arrays, however, due to interference hazards between cells, high no-leakage currents, and numerous manufacturing The challenge is that it is very difficult to form large, high-density arrays of such cells. Therefore, there is a need for a large rewritable non-volatile memory array that uses resistive switching elements that are not difficult to fabricate and that are reliably programmed. SUMMARY OF THE INVENTION The present invention is defined by the following claims, and should not be construed as limiting the scope of the claims. In general, the present invention is directed to a non-volatile memory unit comprising a diode and an impedance switching material. A first aspect of the present invention provides a non-volatile memory cell including a monopole body and an impedance switching element including a resistivity switching metal oxide or nitride compound, the metal oxide Or the nitride compound comprises only one metal, wherein the diode and the impedance switching element are part of the memory unit. Another aspect of the invention provides a plurality of non-volatile memory cells, 119762.doc 1345783 X y Alx〇y, Mgx〇y, Cox〇y, Crx〇y, v Zrx〇y, BxNy, and illusion. X y nx〇y, 情:: Another good embodiment of the month I provides a method for forming an overall three-dimensional stealth array '豸 method includes ^ ^ ^ ^ a. a) on a substrate shape = brother a money body layer, the first memory layer being formed by comprising the following steps: 1) forming a first plurality of diodes ...) forming a first-to-complex: anti-object switching element 'the elements comprising selected from: Called 〇:, Nbx〇y, 叫, 财, (4), 叫, 吁, etc. [TxVx〇y, ZnX〇y, Zrx〇y, BxNA A] XNy, where each of the polar bodies In the equal impedance switching element, at least one second memory layer is formed on the first memory layer and on the substrate. A related embodiment provides a means for forming an overall three-dimensional memory array. The method includes the steps of: forming a plurality of substantially planar 2, substantially coplanar conductors - the first of which on the substrate - Height and at first: extending upward; forming a second plurality of substantially parallel, substantially coplanar. a body: extending at a second height at a first height and extending in a second direction different from the first direction; forming a first plurality of impedance switching elements, such as a cow, and the like, comprising a group selected from the group consisting of The material · 〇 〇 ' soup x 〇 y, is, Hfx 〇 y, Α χ 、, called, c. , _:, x〇y Znx〇y, Zrx〇y, BxNy, and A]xNy; forming a first plurality of diodes that cause the first diodes and the first impedance switching element systems Forming a first diode on the second conductor at a first height and at a second height; and forming a third conductor on the second conductor. H9762.doc 1345783 first memory unit, each basket of memory unit contains: - a bottom conductor formed on the substrate, · ^zhe low, etc., 6 Haidi - bottom conductor contains a layer of Ming And δδ gold or copper, the - impedance switching (four), and - the diode formed on the first bottom conductor; and π) integrally formed on the first memory layer at least one second memory layer. 』This (4) m sample provides a method for staging the § memory unit in the memory material column, the basin is now #达...... The memory unit contains a metal oxide or a nitride compound, and the resistivity is changed. The metal oxide or nitrided & material comprises exactly one type of genus, and the method includes: changing the resistivity switching layer from the first resistivity state to the memory cell, wherein:: broadening the resistivity The state of the first buttoned resistivity state stores the data state of the memory soap 7C. The method of the present invention provides a method for using a memory cell in a sense array, and the W 11 has a hidden body a ^ 10,000 method in which the memory cell comprises: a total oxide or a nitride compound - resistivity Switching layer, the gold; oxygen: the compound or the compound compound comprises exactly one metal; and a diode comprising the bulk material, the resistivity is + day, the method comprises: i) the first. Xuan Erji electrical series matching element, 1 1 g stylized pulse is applied to the memory single: the third 程式-stylized pulse: a) detectably change the resistivity switching first resistance ^ Μ can be made Changing the polycrystalline semiconductor material: resistivity state and detectably changing the polycrystalline semiconductor: layer = rate state; and ii) reading the memory single brother - resistance - resistivity state for storing data and two:: resistivity switching The fourth of the layers and the second electric of the semiconductor material 119762.doc * 〇. 1345783 The resistivity state is used to store the data. Each of the aspects and embodiments of the invention described herein may be used by car alone or in combination with each other. Preferred aspects and embodiments will now be described with reference to the accompanying drawings. f Implementation] A variety of materials exhibit reversible resistivity switching performance. Such materials include chalcogenides, carbon polymers, ore and some metal oxides and nitrides. With

體口之#在僅包括—種金屬並展現可靠電阻率切換性能 之金屬氧化物及氮化物,如PagniaA s〇tnick在,,心他Body ##includes only metal-based oxides and nitrides that exhibit reliable resistivity switching properties, such as PagniaA s〇tnick, in his heart

Switching in Electroformed Metal-Insulator-Metal Device" (Phys. Stat· Sol⑷刚,ll 65 (i988))中所述。此群包括 (例如)Nix〇y、Nb為、Tix〇y、Hfx〇y、Alx〇y、Mg為、 C〇xOy CrxOy、Vx〇y、Znx〇y、Zrx〇y、BxNy及 AlxNy,其中 乂及7在〇與1之間。實例係化學計量化合物NiO、Nb2〇5、Switching in Electroformed Metal-Insulator-Metal Device" (Phys. Stat. Sol (4), ll 65 (i988)). The group includes, for example, Nix〇y, Nb, Tix〇y, Hfx〇y, Alx〇y, Mg, C〇xOy CrxOy, Vx〇y, Znx〇y, Zrx〇y, BxNy, and AlxNy, wherein乂 and 7 between 〇 and 1. Examples are stoichiometric compounds NiO, Nb2〇5,

Ti02、Hf02、ai2〇3、Mg〇、c〇〇、Cr〇2、v〇、Zn〇、Ti02, Hf02, ai2〇3, Mg〇, c〇〇, Cr〇2, v〇, Zn〇,

Zr〇、BN及AIN ’但亦可使用非化學計量化合物。可以一 初態(例如,相對較低之電阻率狀態)形成此等材料中之一 者之層。在施加足夠電壓之後,該材料便切換至穩定之高 電阻率狀態。此電阻率切換為可逆的;適當電流或電壓之 隨後施加可用於使電阻率切換材.料返回至穩定之低電阻率 狀態。可將此轉換重複許多:欠。對於某些材料而言,初態 為高電阻率而非低p且抗。t此論述係關於”電m率切換^ 料、"電阻率切換金屬氧化物或氮化物”、”阻抗物切換記 隐組7L件’或類似術語時,將理解意謂一可逆電阻率切換 119762.doc 丄 材料。 二:電阻率切換材料因此有關於供在非揮發性記憶體陣 4用。舉例而言,-電阻率狀態可對應於資料”〇”, 阻率狀態對應於資料T…材料中之某些材 抖可具有兩種以上之稃定雷 — H電阻率狀態,貫際上,某些材料 可㈣夠達成複數個資料狀態中之任何資料狀態。 二吏用此等材料來製成記憶體單元’高電阻 電阻率狀態之間的電阻率罢显V ?执 狀〜〜、低 冤阻羊差異必須足夠大以可不難偵測。 j而°處於问電阻率狀態之材料的電阻率應為處於低 電p率狀態之材料的電阻率的至少三倍。當此論述係關於 電阻率切換詩、"電阻率切換金屬氧化物或氮化物,,、 阻4几物切換記憶體元件”或類似術語時,將理解’低阻抗 與高阻抗或者低電阻率狀態或高電阻率狀態之間 : 至少三倍。 、 然而,對在大型非揮發性記憶體陣列中使用料電阻率 切換:料存在許多障礙。在一可能配置中形成複數個記 憶體單元(每一記憶體單元為如圖1中所示),其包含·· _阻 抗物切換記憶體元件2(包含指定f阻率切換材料中之一 者)’其安置於呈一交叉點陣列之導體之間(例如,頂部導 體4與底部導體6之間)。藉由在頂部導體4與底部導體6之 間鈀加電壓來程式化阻抗物切換記憶體元件2。 ,以交叉點陣列g己置而成的A等單元之一大型陣列中, 將藉由相同頂部導體或底部導體來定址許多單元。當需要 相對較大電壓或電流時,存在危險:與待被定址之::共 119762.doc -12· 1345783 用一頂部或底部導體的記憶體單元將被暴露至足夠電壓或 電流而在彼等半選單元中產生非所要之阻抗物切換。視所 使用之偏壓機制而定,跨過未選單元之過多汽漏電流亦可 為關切之事。 在本發明中,使二極體與電阻率切換材料成對以形成一 γ重寫非揮發性記憶體單元,該記憶體單元可在一大型、 南密度陣列中經形成及經程式化。使用本文中所描述之方 法,此陣列可得以可靠地製造及程式化。 儘管許多實施例係可能的且將描述一說明性選擇,但圖 2中展不了根據本發明而形成的記憶體單元之一簡單型 式。該單元包括底部導體2〇〇,該底部導體2〇〇包含導電材 料’例如重播雜半導體材料、導電石夕化物或較佳為金屬 (例如,鎢、紹或銅)。一頂部導體4〇〇形成於此上,該頂呷 導體可具有與底部導體相同之材料。橫桿狀頂部導體 及底部導體較佳在不同方向上延伸:例如,其可垂直。該 等導體可根據需要而包括導電障壁層或黏著層。串聯配置 而成之—極體3〇及阻抗物切換元件! 18安置於頂部導體彻 與底部導體200之間。其他層(例如,障壁層)亦可被包括於 導體200與400之間。在跨過阻抗物切換元件⑴施加電壓 或穿過阻抗物切換元件118施加電流之後’阻抗物切換元 件118便自低阻抗狀態轉換至高阻抗狀態,或者自 :態轉換至低阻抗狀態。自低阻抗至高阻抗之轉換係可逆: 二極體30充當-單向間,其在一方向上比在另—方向上 119762.doc 1345783 更容易地傳導電流。在前向方向上之臨界"接通"電壓以 下,二極體30傳導很少電流或不傳導電流。藉由使用適當 偏壓機制,當選擇個別單元來進行程式化時,鄰近單元2 二極體可用於電性隔離彼等單元之阻抗物切換元件且因此 • 防止非故意程式化,只要跨過未選或半選單元之電壓不超 ' 過一極體之接通電壓(當在正向方向上施加時)或反向崩^ 電壓(當在反向方向上施加時)。 • 可製造具有介入二極體及阻抗物切換元件之複數個此等 頂部導體及底部導體,從而形成第一記憶體層,該第—圮 憶體層之一部分展示於圖3中。在較佳實施例中,可在此 第一記憶體層上·堆疊形成額外記憶體層,從而形成非常密 集之整體三維記憶體陣列。該記憶體陣列由在一基板(例 如,單晶石夕基板)上之沈積及生長層形成。支撐電路有利 地形成於在記憶體陣列之下的基板中。 一種用於製造可可靠製造之密集型非揮發性一次可程式 鲁化§己憶體陣列的有利方法被教示於Herner等人之美國申請 案第10/326,470號(下文中為,470申請案,自廢棄以來)中, 且§亥申請案以引用的方式併入本文中。相關記憶體陣列及 其使用及製造方法被教示於Herner等人之美國專利申請案 第 10/955,549 號"Nonvolatile Memory Cell Without aZr〇, BN and AIN' can also be used as non-stoichiometric compounds. A layer of one of these materials can be formed in an initial state (e.g., a relatively low resistivity state). After a sufficient voltage is applied, the material switches to a stable high resistivity state. This resistivity is switched to be reversible; subsequent application of a suitable current or voltage can be used to return the resistivity switching material to a stable low resistivity state. This conversion can be repeated a lot: owe. For some materials, the initial state is high resistivity and not low p and resistant. t This discussion is about "reciprocal resistivity switching" when "electric m rate switching material, "resistivity switching metal oxide or nitride", "impedance switching switching group 7L piece" or similar terms 119762.doc 丄 material. 2: Resistivity switching material is therefore used for non-volatile memory array 4. For example, the resistivity state can correspond to the data "〇", the resistivity state corresponds to the data T... Some materials in the material can have more than two kinds of 雷--H resistivity states. In some cases, some materials can (4) reach any data state in a plurality of data states. The resistivity between the high-resistance resistivity states of the memory cell is made V. The difference between the low-resistance and the low-yield sheep must be large enough to be detected. j°° is in the material of the resistivity state. The resistivity should be at least three times the resistivity of the material at a low electrical p-rate. When this discussion is about resistivity switching poems, "resistivity switching metal oxides or nitrides, Body element" or similar , It will be understood that between the 'low-impedance and high-impedance or low-resistivity state or the high-resistivity state: at least three times. However, there are many obstacles to the use of material resistivity switching in large non-volatile memory arrays. Forming a plurality of memory cells in a possible configuration (each memory cell is as shown in FIG. 1), comprising: - _ impedance switching memory component 2 (including one of specified f resistivity switching materials) It is placed between conductors in an array of intersections (for example, between the top conductor 4 and the bottom conductor 6). The impedance switching memory element 2 is programmed by palladium applying a voltage between the top conductor 4 and the bottom conductor 6. In a large array of cells such as A, where the cross-point array g is already set, many cells will be addressed by the same top or bottom conductor. When a relatively large voltage or current is required, there is a danger: with the address to be addressed: 119762.doc -12· 1345783 The memory cells with a top or bottom conductor will be exposed to sufficient voltage or current at them. Undesirable impedance switching occurs in the half-selected unit. Depending on the biasing mechanism used, excessive steam leakage current across unselected cells can also be a concern. In the present invention, the diodes are paired with a resistivity switching material to form a gamma rewritten non-volatile memory cell that can be formed and programmed in a large, south density array. This array can be reliably fabricated and programmed using the methods described herein. While many embodiments are possible and will describe an illustrative selection, one simple form of memory cell formed in accordance with the present invention is not shown in FIG. The unit comprises a bottom conductor 2A comprising a conductive material', e.g., a re-synthesized semiconductor material, a conductive stellite or preferably a metal (e.g., tungsten, sulphur or copper). A top conductor 4 is formed thereon, and the top turn conductor may have the same material as the bottom conductor. The crossbar top conductor and the bottom conductor preferably extend in different directions: for example, they may be vertical. The conductors may include a conductive barrier layer or an adhesive layer as needed. Made in series - the body 3〇 and the impedance switching element! 18 is disposed between the top conductor and the bottom conductor 200. Other layers (e.g., barrier layers) may also be included between the conductors 200 and 400. The impedance switching element 118 transitions from a low impedance state to a high impedance state, or from a state to a low impedance state, after a voltage is applied across the impedance switching element (1) or a current is applied through the impedance switching element 118. The transition from low impedance to high impedance is reversible: The diode 30 acts as a - unidirectional, which conducts current more easily in one direction than in the other direction 119762.doc 1345783. In the forward direction, the critical "on" voltage, the diode 30 conducts little or no current. By using an appropriate biasing mechanism, when individual cells are selected for programming, the adjacent cells 2 diodes can be used to electrically isolate the impedance switching components of their cells and thus • prevent unintentional stylization as long as it crosses the The voltage of the selected or half-selected cell does not exceed the turn-on voltage of the one-pole (when applied in the forward direction) or the voltage of the reverse collapse (when applied in the reverse direction). • A plurality of such top and bottom conductors having intervening diodes and impedance switching elements can be fabricated to form a first memory layer, a portion of which is shown in FIG. In a preferred embodiment, additional memory layers can be stacked on the first memory layer to form a very dense overall three-dimensional memory array. The memory array is formed by a deposition and growth layer on a substrate (e.g., a single crystal substrate). The support circuitry is advantageously formed in the substrate below the memory array. An advantageous method for the manufacture of a dense, non-volatile, one-time, programmable, and refractory array that can be reliably fabricated is taught in U.S. Patent Application Serial No. 10/326,470, the entire disclosure of which is incorporated herein by reference. This has been incorporated herein by reference. RELATED MEMORY Arrays and their use and methods of manufacture are taught in U.S. Patent Application Serial No. 10/955,549 to "Nonvolatile Memory Cell Without a

Dielectric Antifuse Having High-and Low-Impedance States”(於2004年9月29曰申請且下文中為,549申請案)中; Herner等人之美國專利申請案第11/〇15,824號"N〇nv〇iatiie Memory Cell Comprising a Reduced Height Vertical 119762.doc • 14 - 1345783"Dielectric Antifuse Having High-and Low-Impedance States" (applied September 29, 2004, and hereinafter, 549 application); U.S. Patent Application Serial No. 11/15,824 "N〇nv 〇iatiie Memory Cell Comprising a Reduced Height Vertical 119762.doc • 14 - 1345783

Diode”(於2004年12月17曰申請且下文中為,824申請案) 中;及Herner等人之美國專利申請案第1〇/954,577號 "Junction Diode Comprising Varying Semiconductor Compositions" (於2004年9月29曰申請且下文中為·577申請案)中,所有申 請案為本申請案之受讓人所擁有且以引用的方式併入本文 中。在此等被併人之中請案中所教示之方法將用於製造根 據本發明之記憶體陣列。Diode" (applied at December 17, 2004 and hereinafter referred to as Application No. 824); and U.S. Patent Application Serial No. 1/954,577, "Junction Diode Comprising Varying Semiconductor Compositions" (in 2004) In the September 29 application and the 577 application below, all applications are owned by the assignee of the present application and incorporated herein by reference. The method taught will be used to fabricate a memory array in accordance with the present invention.

製造選項 般而言,所選之電阻 較佳實施例包括若干重要變化 率㈣材料之特性及意欲使用記憶體單元之方式將判定哪 些貫把例為最有利之實施例。Manufacturing Options In general, the preferred embodiment of the resistor includes a number of important rate of change (iv) characteristics of the material and the manner in which the memory unit is intended to be used to determine which embodiment is the most advantageous embodiment.

無方向性對方向性切換:_般而言,較早指定之阻抗物 切換金屬氧化物及氮化物展現兩個一般種類之切換性能中 ,-者。參看圖4UV曲線圖’在圖表上之區域八中,此 等材料中之某些材料最初處於低電阻率狀態。不難針對所 施加之電壓而使電流流動直至達到第一電屋%。在電” 處,電阻率切換材料轉換至區域B中所示之高電阻率狀 態’且減小電流。在某一臨界較高電遷%處,該材料切換 回至初始低電阻率狀態,且增加電流。箭頭指示狀態改變 之次序。此轉換係可重複的。對於此等材料而言, 偏麼之方向祐;^音i . m M JIL ^ 、, ,此等材料將被稱作無方向 ,可稱為重設電壓,而電壓、可稱為設定電壓。 另方面’其他電阻率切換材料如圖&及讣中所示 現且將被稱為方向性。方向性f PH + i η Γ生電阻率切換材料亦可以圖5a lZ9762.doc -J5. 電:Γ二所:之低阻抗狀態而形成。不難針對所施加之 :流動直至達到第-電屡V,(重設電•在電 所-^向性電阻率切換材料轉換至圖Μ之區域Β中 轉換回至低電阻率狀能電阻率切換材料 — 心必須施加—反向電壓。如圖5b中 斤不,方向性電阻率切換材料在區域 :抗物直至臨界反向電厂™定電壓)。在此電= =電:率切換材料恢復至低電阻率狀態。箭頭指示狀態 拖广人序。(某些材料最初以高電阻率狀態而形成。切 換性能係:同的, ·為簡單起見,僅描述一種初態)。 f較佳貫施例中,可使無方向性電阻率切換材料與大體 上早向—極體成對。—個此二極體為圖^所示之p i n二 極體。較佳p-i-η二極體由半導體材料(例如,石夕)形成,且 包括二底部重摻雜區域12,其具有第—電導率類型;一 1本質區域14 ’其未被有意播雜;及一頂部重摻雜區域 八具有與第一電導率類型相反之第二電導率類型。 在圖6之—二極體中,底部區域12為n型,而頂部區域16 為Ρ型;#需要’則可將極性反向。 ,一域_未被有意㈣= :〖生的在許多製造過程中,本質沈積矽中之缺陷導 致此材料表現得仿佛為輕_。在某些實施例中,可較佳 ▽夂雜此區域。在施加電壓之後,此二極體便如由圖8之[ 4所示而表現。纟非常低之電壓下,很少或無電流流 動。在臨界電壓V3(二極體之接通電壓)下,該二極體開始 】】9762.d〇c -16- 1^45783 傳導且顯著正向電流流動。當將二極體置於低及適度反向 電壓(如圖8之區域D中)下時,很少或無電流流動;二極體 充當單向閥。 而,在施加非常高之反向電塵%之後,二極體便將經 党突崩潰且一反向電流將開始流動。此事件可對二極體且 有破壞性(雖然理想上其不會)。回想起無方向性阻抗物: 換材料之設定電壓及重設電壓需要僅一個方向上之電流。 因此,可成功地使圖6之一二極體與無方向性阻抗物切 換材料成對。 然:’如圖5a及5bgV曲線圖中所說明,對於成功切 換而言’必須將方向性電阻率切換材料暴露至正向及反向 電饥兩者。圖5b中所示之低電阻率_高電阻率轉換需要反 向電抓(在電厘乂2處)。反向電流僅在反向崩潰電覆(圖8之 電藶:4)下之早向二極體中達成,該反向崩潰電屋通常相 對較高’例如至少為9伏特。 方向性電阻率切換材料因此可能無法有利地與單向二極 體成對。實情為,可使此等材料與可逆非歐姆設備(亦 即,允許任—方向上之電流的設備)成對。一個此設備為 齊納二極體。圖7中展示了-例示性齊納二極體。將看 見,此二極體具有為第-電導率類型之第-重摻雜區域12 及為相反電導率類型之第二重摻雜區域16。可將極性反 向。在圖7之齊納二極體中不存在本質區域;在某些實施 例中’可存在非常薄之本質區域。圖9展示了齊納二極體 之I V曲線圖。5亥齊納二極體在正向偏壓下如p小打二極體 II9762.doc 旦 表現其具有接通電MV3®然而,在反向偏塵下,一 達到臨界電壓V4,齊納二極體便將允許一反向電流流動 在齊納二極體中,臨界反向電壓V4之量值大體上低於單向 二極體之量值°需要適度電麼下之此可控反向電流以將方 D電阻率切換材料自高電阻率轉換至低電阻率狀能,如 較早所描述及圖对所展示(在電塵%處)。因此在^用方 2性電阻率切換材料的本發明之實施例中,齊納二極體為 2佳的。(實際上,具有非常小之本質區域的p-i_n二極體 常Hr)極體之間的差別係假的’但可由熟習此項技術者 但材料並不需要正向及反向方向兩者上之電流, 電路、〔了在任—方向上達成電阻率切換。對於某些 電路配置而言,則可有利地 — 齊納二極體成對。 …方向性電阻率切換材料與Non-directional versus directional switching: _ In general, the earlier specified impedance switching metal oxides and nitrides exhibit two general types of switching performance. Referring to Figure 4, the UV graph 'in the eighth region of the graph, some of these materials are initially in a low resistivity state. It is not difficult to cause current to flow until the first electric house % is reached for the applied voltage. At the electrical", the resistivity switching material transitions to the high resistivity state shown in region B and reduces the current. At a certain higher threshold, the material switches back to the initial low resistivity state, and Increase the current. The arrow indicates the order in which the state changes. This conversion is repeatable. For these materials, the direction of the bias is good; ^ sound i . m M JIL ^ ,, , these materials will be called no direction The voltage can be referred to as the reset voltage, and the voltage can be referred to as the set voltage. In addition, other resistivity switching materials as shown in & and 讣 will now be referred to as directionality. Directionality f PH + i η Γ The raw resistivity switching material can also be formed as shown in Figure 5a lZ9762.doc -J5. Electricity: Γ二: Low impedance state. It is not difficult to apply: flow until reaching the first-electrical V, (reset electricity) The electro-mechanical resistivity switching material is switched to the region of the graph Β and converted back to the low resistivity-like resistivity switching material—the heart must be applied—the reverse voltage. As shown in Figure 5b, the directional resistivity Switch material in the area: anti-object to critical reverse power plant TM constant voltage) Here, the electric == electric: rate switching material returns to the low resistivity state. The arrow indicates that the state is prolonged. (Some materials are initially formed in a high resistivity state. The switching performance is: the same, · for simplicity Only one initial state is described. f is preferred in the embodiment, the non-directional resistivity switching material can be paired with the substantially early-polar body. One of the diodes is the pin two shown in FIG. Preferably, the pi-η diode is formed of a semiconductor material (eg, Shi Xi) and includes a two-bottom heavily doped region 12 having a first conductivity type; a 1 intrinsic region 14 'not intentionally And a top heavily doped region VIII having a second conductivity type opposite to the first conductivity type. In the diode of Figure 6, the bottom region 12 is n-type and the top region 16 is Ρ-type ; #需要' can reverse the polarity. A domain _ is not intentionally (four) =: 〖In many manufacturing processes, the defects in the essence of deposition cause the material to behave as if it is light _. In some implementations In an example, it is preferable to noisy this area. After applying a voltage, the pole This is shown by [4] in Figure 8. At very low voltages, little or no current flows. At the threshold voltage V3 (the turn-on voltage of the diode), the diode begins]] 9762 .d〇c -16- 1^45783 Conductive and significant forward current flow. When the diode is placed under a low and moderate reverse voltage (as in region D of Figure 8), little or no current flows; The diode acts as a check valve. However, after applying a very high amount of reverse dust, the diode will collapse through the party process and a reverse current will begin to flow. This event can be destructive to the diode. Sex (although ideally it will not). Recall that there is no directional impedance: the set voltage and reset voltage of the material need only one direction of current. Therefore, one of the diodes of Figure 6 can be successfully used. The directional impedance switching materials are paired. However: As illustrated in the graphs of Figures 5a and 5bgV, the directional resistivity switching material must be exposed to both positive and negative electrical hunger for successful switching. The low resistivity_high resistivity transition shown in Figure 5b requires a reverse electrical catch (at electrical centistoke 2). The reverse current is only achieved in the early dipole in the reverse collapsed electrical blanket (electrode: 4 of Figure 8), which is typically relatively high, e.g., at least 9 volts. The directional resistivity switching material may therefore not be advantageously paired with the unidirectional diode. In fact, these materials can be paired with reversible non-ohmic devices (i.e., devices that allow any current in the direction). One such device is a Zener diode. An exemplary Zener diode is shown in FIG. It will be appreciated that the diode has a first heavily doped region 12 of the first conductivity type and a second heavily doped region 16 of the opposite conductivity type. The polarity can be reversed. There is no essential region in the Zener diode of Figure 7; in some embodiments, there may be a very thin essential region. Figure 9 shows the I V plot of the Zener diode. 5 Hai Zener diodes under forward bias, such as p-small diode II9762.doc, it has a turn-on MV3®, however, under reverse dust, one reaches the threshold voltage V4, Zener II The polar body will allow a reverse current to flow in the Zener diode. The magnitude of the critical reverse voltage V4 is substantially lower than the value of the unidirectional diode. This requires a moderately controlled reverse. The current is converted from a high resistivity to a low resistivity energy, as described earlier and as shown in the figure (at the electric dust %). Therefore, in the embodiment of the invention in which the material resistivity switching material is used, the Zener diode is preferably two. (In fact, the difference between p-i_n diodes and Hr) with very small intrinsic regions is false 'but can be used by those skilled in the art but the material does not require both forward and reverse directions. The current, the circuit, and the resistivity switching in the direction of the direction. For some circuit configurations, it may be advantageous to have the Zener diodes paired. ...directional resistivity switching materials and

本文中使用術語”接面二極體π以七片目士 P 特性的半導體設備, θ八非歐姆傳導之 料“、.有兩個終端電極,且由半導體枯 科製成,其在—電極處 牛導體材 包括具有接觸之卩型半導另—電極處為㈣°實例 極俨月 導奴材料及η型半導體材料的ρ·η - =體及”二極體(諸如齊納二極體)以及ρ ρ - 專Ρ小η二極體中本質 體,在該 Μ Φ ' 半導體材料插入於ρ型丰g 體材科與!!型半導體材料之間。 、P生牛導 高電流需求:為重吱雷 率切換材料令率切換材料而在無方向性電組 於某些材料而:生至低電阻率狀態的轉變,對 J *要一相對較离 门之電W。對於此等材 IJ9762.doc 1345783 料而言,可較佳地使二極體為鍺或鍺合金,其與矽相比在 一給疋電壓下提供較高之電流。As used herein, the term "semiconductor device with a junction diode π with seven pieces of P-characteristics, θ eight non-ohmic conduction material", has two terminal electrodes, and is made of semiconductors, at the electrode The bovine conductor material consists of a contact-type semi-conducting type of semi-conducting electrode at the (four)° example 俨 导 导 材料 material and η-type semiconductor material ρ·η - = body and "diode (such as Zener diode) And ρ ρ - specializes in the small η diode in the intrinsic body, in which the Φ Φ semiconductor material is inserted between the ρ-type abundance body material and the !! type semiconductor material. P, the cattle lead high current demand: for the weight The 吱 rate switching material allows the rate to switch materials while in a non-directional group of electricity in some materials: the transition to a low resistivity state, for J * to be relatively relatively far from the gate of the electric W. For this material IJ9762. Doc 1345783 It is preferred that the diode be a tantalum or niobium alloy which provides a higher current at a given voltage than helium.

稀有金屬接點及低溫度製造:已觀測到,當電阻率切換 材料破夹於可由(例如)Ir、pt、_Au形成之稀有金屬接 點之間時’杈早所提及之某些金屬氧化物及氮化物的電阻 ㈣換會更容易及可#地達成i1G中展示了根據本發明 之阜元之一實例(其中使用稀有金屬接點)。電阻率切換元 件11 8係在稀有金屬層11 7與11 9之間。 士然而,使用稀有金屬提出了挑戰。當被暴露至高溫下 時’稀有金屬傾向於快速擴散,且可損害設備之其他部 分。舉例而言,在圖〗〇中,稀有金屬層1]7鄰近於半導體 一極體30。稀有金屬廣泛擴散於二極〇Rare metal contacts and low temperature fabrication: It has been observed that when the resistivity switching material is sandwiched between rare metal contacts that can be formed, for example, from Ir, pt, _Au, some of the metal oxides mentioned earlier The resistance of the material and the nitride (4) is easier to change and the example of the element according to the invention (where rare metal contacts are used) is shown in i1G. The resistivity switching element 11 8 is between the rare metal layers 11 7 and 11 9 . However, the use of rare metals presents a challenge. When exposed to high temperatures, rare metals tend to diffuse rapidly and can damage other parts of the equipment. For example, in the figure, the rare metal layer 1]7 is adjacent to the semiconductor body 30. Rare metals diffuse widely in the dipole

將損害設備效能。當電阻率切換元件形成於 之間時,則可有利地最小化處理溫度。該二極體可為石夕、 鍺或矽-鍺合金。較矽而言,鍺可在較低溫度下結晶,且 隨者矽-鍺合金之鍺含量增加,結晶溫度降低。當使用稀 有金屬接點時’由鍺或鍺合金形成之二極體可為較佳的。 多晶矽(在此論述中,多晶矽(p〇lycrystaUine silic〇n)將 被稱為多晶矽(p咖出⑽),而多晶鍺㈣仰似丨 germanium)將被稱為多晶鍺(尸〇/少以㈣如丨.細))之習知沈積 及結晶溫度相對較高,從而再現按照慣例形成之與具有相 對較低熔點之某些金屬不相容的多晶矽二極體之使用。舉 例而言 當被暴露至約475。(:以上之溫度下時,鋁導線開 始軟化並擠壓出。為此原因,在,47〇、,549及申請案之 H9762.doc 1345783 許多實施例中,較佳在導體中使用鎢,因為鎢配線可承受 較向溫度。然而,若使用鍺或鍺合金,則錯之較低沈積溫 度及結晶溫度可允許在導體中(例如,在圖10之導體200及 400中)使用铭或甚至是鋼。此等金屬具有低薄層電阻,且 因此通常為較佳的(若熱衡算允許其使用),但是可替代使 用鶴或某—其他導電材料。當低溫受到青睞時,Herner等 人之任何教不、美國專利申請案第11/125,606號"出咖 Density Nonv〇iatUe Mem〇ry Array l ㈣Will damage device performance. When the resistivity switching element is formed between, the processing temperature can advantageously be minimized. The diode may be a stone, a bismuth or a bismuth-tellurium alloy. In contrast, niobium crystallizes at a lower temperature, and as the niobium content of the niobium-niobium alloy increases, the crystallization temperature decreases. When a rare metal contact is used, a diode formed of tantalum or niobium alloy may be preferred. Polycrystalline germanium (in this discussion, polycrystalline germanium (p〇lycrystaUine silic〇n) will be called polycrystalline germanium (pca out (10)), while polycrystalline germanium (four) will look like germanium) will be called polycrystalline germanium (corpse/less) The deposition and crystallization temperatures are relatively high in (iv) ruthenium.), and the use of polycrystalline germanium diodes which are conventionally formed to be incompatible with certain metals having relatively low melting points are reproduced. For example, when exposed to about 475. (At the above temperatures, the aluminum wire begins to soften and be extruded. For this reason, in many embodiments, 47, 549, and H9762.doc 1345783, the use of tungsten is preferred in the conductor because Tungsten wiring can withstand relatively long temperatures. However, if a tantalum or niobium alloy is used, the lower deposition temperature and crystallization temperature can be allowed to be used in conductors (for example, in conductors 200 and 400 of Figure 10) or even Steel. These metals have low sheet resistance and are therefore generally preferred (if heat balance permits their use), but can be used instead of cranes or some other conductive material. When low temperatures are favored, Herner et al. Any teaching, US Patent Application No. 11/125,606 "Density Nonv〇iatUe Mem〇ry Array l (4)

Temperature Comprising Semi〇〇nductor Diodes'^ ^ 的方式併入本文中且係關於低溫製造)可為適用的。 電導率及隔離:已描述’為在大型陣列中使程式化成為 可能,將二極體包括於每一記憶體單元中以提供鄰近單元 之間的電隔離。某些電阻率切換材料以高電阻率狀態沈 =,而其他電阻率切換材料以低電阻率狀態沈積。一般而 。’對於以南電阻率狀態沈積之電阻率切換材料而言,轉 換至低電阻率狀態為局部化現象。舉例而言,參看圖 lla’假定—記憶體單元(以截面圖展示) 部導體200,其在該頁上自 ^干狀底 R ^ 狎右,二極體3〇;以高 電阻率狀態形成之電阻率切換材料層…;及一延伸" 二了桿狀頂部導體_。在此情況下,電阻率切換材;; 曰已形成為毯覆層。只要電阻率切換材料層川之高電 :心足夠高’層118便將不提供將導體4〇。短接至鄰近 =或^極體地接至鄰近二極體之非所要導電 备電阻率切換材料層118被暴露至高電愿且被轉換至低電 } 19762.doc -20. /60 阻率狀態時,期往指成 ^待僅層118之直接鄰近於二極體之區域將 被轉換;舉例而+ ★』 • 向5,在程式化之後,層118之劃陰影區域 將^低電阻率’而未劃陰影區域將保持高電阻率。該等劃 陰影區域為安置於電阻率切換材料之連續層118内的電阻 率切換元件。 :、•視某~電阻率切換材料之讀农電壓、設定電壓及 重°又电壓而定,電阻率切換材料之高電阻率狀態對於可靠 隔離而言太具有導電性,且當形成於―連續層中(如圖⑴ 中)時將傾向於短接鄰近導體或二極體。對於不同電阻率 切換材料而言,則其可提供所要之物以:a)使電阻率切換 材料118未經圖案化,如在圖Ua之設備中;或…圖案化電 阻率切換材料118及頂部導體或底部導體,如在圖丨化之設 備中(以透視圖展示);或c)圖案化電阻率切換材料丨丨8及二 極體30,如在圖2及圖1〇之設備中。 當記憶體元件由以低電阻率狀態形成之電阻率切換材料 形成時’其必須自鄰近單元之電阻率切換記憶體元件隔離 以避免在其間形成非所要導電路徑。 如在'5 49申請案中及在Herner等人之美國專利申請案第 1 1/148,530 號"Nonvolatile Memory Cell Operating byThe manner in which Temperature Comprising Semi〇〇nductor Diodes'^^ is incorporated herein and is related to low temperature manufacturing may be applicable. Conductivity and Isolation: It has been described 'to make stylization possible in large arrays, including diodes in each memory cell to provide electrical isolation between adjacent cells. Some resistivity switching materials sink in a high resistivity state, while other resistivity switching materials are deposited in a low resistivity state. Generally. For the resistivity switching material deposited in the south resistivity state, the transition to the low resistivity state is localized. For example, referring to FIG. 11a' hypothesis - a memory cell (shown in cross-section) a portion conductor 200 on the page from the bottom of the R ^ 狎 right, the diode 3 〇; formed in a high resistivity state The resistivity switching material layer...; and an extension " two rod-shaped top conductors_. In this case, the resistivity switching material; 曰 has been formed as a blanket layer. As long as the resistivity switches the material layer to high voltage: the heart is high enough 'layer 118 will not provide the conductor 4〇. The non-desired conductive resistivity switching material layer 118, which is shorted to the adjacent or polar body to the adjacent diode, is exposed to a high power and is switched to a low voltage. 19762.doc -20. /60 Resistivity state In the meantime, the area directly adjacent to the diode of layer 118 will be converted; for example, + ★』 • to 5, after stylization, the shaded area of layer 118 will be low resistivity' Unshaded areas will maintain high resistivity. The shaded areas are resistivity switching elements disposed within the continuous layer 118 of resistivity switching material. :, • depending on the reading voltage, set voltage and weight of a certain resistivity switching material, the high resistivity state of the resistivity switching material is too conductive for reliable isolation, and when formed in “continuous In the layer (as in Figure (1)) it will tend to short the adjacent conductor or diode. For different resistivity switching materials, it can provide the desired: a) the resistivity switching material 118 is unpatterned, as in the device of Figure Ua; or... patterned resistivity switching material 118 and top Conductor or bottom conductor, as shown in the device (shown in perspective); or c) patterned resistivity switching material 丨丨8 and diode 30, as in the apparatus of Figures 2 and 1 . When the memory element is formed of a resistivity switching material formed in a low resistivity state, it must be switched from the resistivity of the adjacent cells to avoid forming an undesirable conductive path therebetween. For example, in the '5, 49 application, and in the U.S. Patent Application Serial No. 1 1/148, No. 530, "Nonvolatile Memory Cell Operating by

Increasing Order in Polycrystalline Semiconductor Material”(於 2005年6月8曰申請’下文中為’530申請案且以引用的方式 併入本文)中詳細描述,對於根據其中所詳述之方法而形 成的多晶半導體二極體而言,可期待在某些實施例中,該 二極體之多晶將以初始高電阻率狀態形成,且在施加充分 119762.doc -21 · 1345783 高之電麼之後便將被永久轉換至低電阻率狀態。因此,參 看圖2之單元,當最初形成此單元時,:極㈣之多0 及可逆阻抗物切換元件118兩者以高電阻率狀態而形成。 在首先施加-程式化電愿之後’二極體3〇之多晶石夕及電 阻率切換元件m兩者便將被轉換至其低電阻率狀態。一 般而言,二極體30之轉換係永久的,而電阻率切換元件 118之轉換係可逆的,需要在工廠條件中執行該等二 極體之多晶石夕自高電阻率至低電阻率之初始轉換,而有效 地"預處理"二極體。 或者,Η⑽er之美國專利申請案第1〇/954,5〗〇號 "Memory Cel] Comprising a Semiconductor Junction Diode ^rystalhzed Adjacent t。a Silicide”(於 2()()4年9 月 μ 日申 凊,下文中為·5 10申請案,其被讓渡給 以引用的方式併入本文中)描述一種用以形^之^人且 J ^ 裡用以形成一在形成時 ^於低電阻率狀態之多晶半導體二極體的方法十川申 請案之較㈣施财,二極體之半導體材料(通常為石 近於一石夕化物層(例如,TiSi2)而結晶。該石夕化物層在石夕妹 晶時為其提供_有序結晶模板,從而產生如所形成之 車父少結晶缺陷的高彡士 S —权μ 日日一極體。可將此技術用於本發明 中。若二極體為鍺,則鍺二極體鄰近於一鍺化物層⑷ 心2)而結晶,該鍺化物層將為鍺提供-類似結晶模板 此一極體之鍺將為如所形成之低電阻率,其無需一用 生通過其之低阻抗路徑的”程式化,,步驟。 一次可程式化記憶體單元··雙態 J19762.doc -22- 1345783 已在本發明之實施例(當用作可重寫記憶體單元時)中打 述:與阻抗物切換元件成對之二極體。亦可在替: 例中使用此等元件以形成—次可程式化記憶體單元。 對於可在較低電阻率狀態與較高電阻率狀態之間切換的 =錄或以定電阻率切換二元金屬氧化物或氮化物中之 者而言,自較低電阻率至較高電阻率狀態之重設切換 可證明為更困難之切換。(將理解,在此論述中,"氧化^ I=:T*Ni0或非化學計量化合物)。儘管實際切換 幾制不 >月楚,但似乎必須跨過電阻率切換層施加某一電屡 r導致其切換。若材料之設定狀態為非常低之電阻率,且 遠材枓=有高導電性,則可難以建置足夠電塵來致使發生 切換。藉由將本發明之記憶體單元用作一次可程式化單 兀’可避免更困難之切換。此通常簡化程式化電路。 …-種較佳電阻率切換材料(氧化鎳)為無方向性的,此意 5胃5亥材:藉由所施加之正電壓或負電壓而單獨切換。但是 在某些貫施例中’已發現’當與二極體成對時,氧化錄層 ^重設最不難藉由反向偏塵下之二極體達成。在基板中可 的要額外電晶體來提供負電壓以反向偏壓二極體。此等 電晶體耗費基板空間從而使設備更昂貴,且形成此等電晶 一可添加過私複雜性。因此在需要反向偏I來用於重設的 實施例中’將單元用作一次寫入單元且避免重設可避免產 生負電壓之困難。 „在將根據本發明之包含二極體及電阻率切換層的記憶體 单元用作一^ 私式化δ己憶體早元的最簡單方式中,該單 Π 9762.doc •23 - 1345783 元具有兩個值(未程式化及程式化),其對應於穿過該單元 之兩個不同讀取電流。 設定電壓將視用於阻抗物切換元件之材料、層厚度、材 :特徵及其他因素而變化。增加脈衝時間可降低將:料自 高阻抗設定至低阻抗所需的電壓。設定電壓可自(例如”伏 特變化至10伏特。Increasing Order in Polycrystalline Semiconductor Material, as described in detail in the ' s Application ' 530 application, the disclosure of In the case of a semiconductor diode, it is expected that in some embodiments, the polycrystal of the diode will be formed in an initial high resistivity state and will be applied after a sufficient voltage of 119762.doc -21 · 1345783 is applied. It is permanently switched to the low resistivity state. Therefore, referring to the unit of Fig. 2, when the unit is initially formed, both the pole (4) and the reversible impedance switching element 118 are formed in a high resistivity state. - After the stylized electricity, the 'diode 3' polycrystalline stone and the resistivity switching element m will be switched to their low resistivity state. In general, the conversion of the diode 30 is permanent, The conversion of the resistivity switching element 118 is reversible, and it is necessary to perform the initial conversion of the polycrystals of the diodes from high resistivity to low resistivity in factory conditions, and effectively "pretreatment" Or, Η(10)er, US Patent Application No. 1/954,5, nickname "Memory Cel] Comprising a Semiconductor Junction Diode ^rystalhzed Adjacent t.a Silicide" (on 2()() 4 September μ日申凊, hereinafter, the application of 5, 10, which was assigned to the article by reference.) Method for polycrystalline semiconductor diodes in a low resistivity state. (iv) The semiconductor material of a diode (usually a stone near a lithium layer (for example, TiSi2) crystallizes. The layer provides an _ ordered crystal template during the Shi Ximei crystal, thereby producing a high gentleman S-weight μ day and a pole body as the formed car father has less crystal defects. This technique can be used in the present invention. If the diode is germanium, the germanium diode is crystallized adjacent to the germanium layer (4) core 2), and the germanide layer will be provided with germanium - a crystallographic template similar to the one formed. Low resistivity, which does not require the "stylization of a low impedance path through which it passes," Step. One Programmable Memory Unit · Two-State J19762.doc -22- 1345783 has been described in the embodiment of the present invention (when used as a rewritable memory unit): paired with the impedance switching element The two poles can also be used in the example: to form a sub-programmable memory unit. For a record that can be switched between a lower resistivity state and a higher resistivity state For resistivity switching binary metal oxides or nitrides, resetting from a lower resistivity to a higher resistivity state may prove to be a more difficult switching. (It will be understood that in this discussion, "oxidation ^ I =: T * Ni0 or non-stoichiometric compounds). Although the actual switching is not a good one, it seems that it is necessary to apply a certain voltage across the resistivity switching layer to cause it to switch. If the material is set to a very low resistivity and the remote material is highly conductive, it may be difficult to build enough dust to cause switching. More difficult switching can be avoided by using the memory unit of the present invention as a one-time programmable single 兀'. This usually simplifies the stylized circuit. ... a preferred resistivity switching material (nickel oxide) is non-directional, which means that it is switched by a positive or negative voltage applied. However, in some embodiments, 'discovered' when paired with a diode, the resetting of the oxide layer ^ is most difficult to achieve by a diode under reverse bias. An additional transistor may be provided in the substrate to provide a negative voltage to reverse bias the diode. These transistors consume board space to make the device more expensive, and the formation of such a crystal can add extraneous complexity. Therefore, in embodiments where reverse bias I is required for resetting, the use of a cell as a write-once unit and avoiding resetting can avoid the difficulty of generating a negative voltage. „ In the simplest way of using the memory unit including the diode and the resistivity switching layer according to the present invention as a private δ hexamed body early, the single Π 9762.doc • 23 - 1345783 yuan Has two values (unprogrammed and stylized) that correspond to two different read currents through the cell. The set voltage will depend on the material, layer thickness, material: characteristics, and other factors used for the impedance switching component. The change. Increasing the pulse time reduces the voltage required to set the material from high impedance to low impedance. The set voltage can vary from (eg, volts to 10 volts).

如較:所描述’若二極體由多晶矽形成,則結晶鄰近於 一在一定向上具有晶格結構之矽化物(其提供一用於矽之 良好結晶模板)的多晶矽將產生較低缺陷、較低電阻率多 晶石夕;而僅鄰近於具有拙劣晶格匹配之材料(諸如氣化鈦) 的結晶將士生較高缺陷、較高電阻率多晶矽。若二極體由 更夕具有局阻抗性之多晶碎形成,則需要跨過二極體施加 一合適之可程式化電麈以將多晶石夕轉換至低電阻率狀態, 從而留下具有良好整流性能之二極體。For comparison: if the diode is formed of polycrystalline germanium, the polycrystalline germanium crystallized adjacent to a germanide having a lattice structure in a certain direction (which provides a good crystal template for germanium) will produce lower defects and Low resistivity polyliths; and only crystals adjacent to materials with poor lattice matching, such as titanium carbide, will result in higher defect, higher resistivity polysilicon. If the diode is formed by a polycrystalline fragment having a local impedance, it is necessary to apply a suitable programmable electrode across the diode to convert the polycrystalline stone to a low resistivity state, thereby leaving A diode with good rectifying properties.

此外,已發現,在某些實施例中,對於以初始高電阻率 狀態形成之某些電阻率切換金屬氧化物或氮化物而言,可 能需要一成形脈衝來達成自高電阻率至低電阻率之首次切 換。此成形脈衝可能需要比隨後之低高或I低電阻率切 換高的電壓。舉例而古,A — μ ^ 。 在一έ式驗中,成形脈衝為約8 5 9 伏特,而隨後之設定脈衝為約6.5-7伏特。 如在如―等人之美國專利申請案第11/287 452號 ;ReVerSib,; Metal 〇xide 〇r (於娜年叫23日申請,下文中 為452申吻案且以弓|用的方式併入本文中)中所描述,將一 JI9762.doc •24- 1345783 ^屬添加至_ το金屬氧化物或氮化物可降低設定電愿及重 电i: J·可降低成形脈衝之振幅或消除對整個成形脈衝 之需求。一般而言, 合物層中之金屬原子 金屬添加物在金屬氧化物或氮化物化 的約0.01%與約5%之間。用於金屬添 加物之較佳金屬選自由 錳、鎳、鈮、鍅、鈦、 鑭。 以下組成之群:録、銘、鎵、銦、 給、组、鎂、鉻、叙、蝴、紀及Furthermore, it has been found that in certain embodiments, for certain resistivity switching metal oxides or nitrides formed in an initial high resistivity state, a shaping pulse may be required to achieve self-resistivity to low resistivity. The first switch. This shaped pulse may require a higher voltage than the subsequent low or I low resistivity switching. For example, ancient, A — μ ^ . In a one-shot test, the shaping pulse was about 8 5 9 volts, and the subsequent set pulse was about 6.5-7 volts. For example, in U.S. Patent Application Serial No. 11/287,452, et al., ReVerSib,; Metal 〇xide 〇r (Yu Nian called for application on the 23rd, 452 for the following case and in the form of bow | As described in this article, adding a JI9762.doc •24-1345783^ genus to _το metal oxide or nitride can reduce the setting power and re-power i: J· can reduce the amplitude of the shaping pulse or eliminate the pair The need for the entire forming pulse. Generally, the metal atomic metal additive in the layer is between about 0.01% and about 5% of the metal oxide or nitride. Preferred metals for the metal additive are selected from the group consisting of manganese, nickel, ruthenium, osmium, titanium, and ruthenium. The following groups: Record, Ming, Gallium, Indium, Giving, Group, Magnesium, Chromium, Syria, Butterfly, and

因此,許多選項可能用於 物阻抗物切換元件及二極體 應考慮使阻抗物切換元件與 二極體成對之效應。 一包括二元金屬氧化物或氮化 的一次可程式化記憶體單元。 向電阻率或低電阻率多晶矽之 若以高電阻率狀態形成二元金屬氧化物或氮化物且二極 體由低缺陷、低電阻率多晶料成,則可藉由將二元金屬 氧化物或氮化物轉換至設定狀態來達成記憶體單元至一程 式化狀態(其中高電流在讀取電壓下流動)之轉換。然而, 若二極體由高缺陷、高電阻率多晶石夕形成,則二極體之多 晶矽必須亦經歷記憶體單元之程式化電壓以表現得仿佛被 式化,從而允許所施加之讀取電壓下的高電流。 視產生多晶矽之無序-有序轉換及二元金屬氧化物或氮 化物之高-低電阻率轉換所需的相對電壓而定,使用低缺 多晶石夕二極體(鄰近於適當石夕化物而結晶之多晶石夕)可為 較佳的。 若需要一較大成形脈衝來用於以高電阻率狀態形成之一 元金屬氧化物或氮化物,則另一替代例為在工廠中在一預 119762.doc -25 - ^45783 乂驟中轭加該成形脈衝。 晶粒外邱极庙 y脈衝所品之高電壓可自 外。P供應’且因此無需可在 偏壓來用於重执,則女 祖上獲仔。右需要反向 衝,因I: 則亦可在另-預處理步驟中施加重設脈 此备記憶體陣列準備用於最 重哼貼4 、1史用者時,早元處於 重-狀態,且可藉由較低、 此方式,s+ 疋电Μ來轾式化。以 日日粒上之電路無需提供高電壓成形晰& + 壓,從而簡化電路需求。 …脈衝或負電Therefore, many options may be used for the impedance switching element and the diode should consider the effect of pairing the impedance switching element with the diode. A primary programmable memory cell comprising a binary metal oxide or nitride. If a binary metal oxide or nitride is formed in a high resistivity state to a resistivity or a low resistivity polysilicon, and the diode is formed of a low defect, low resistivity polycrystalline material, the binary metal oxide can be formed by Or the nitride is switched to a set state to achieve a conversion of the memory cell to a stylized state in which a high current flows at the read voltage. However, if the diode is formed of a high-defect, high-resistivity polycrystal, the polysilicon of the diode must also undergo a stylized voltage of the memory cell to behave as if it were formatted, allowing the applied read. High current at voltage. Depending on the disorder-order conversion of the polycrystalline germanium and the relative voltage required for the high-low resistivity conversion of the binary metal oxide or nitride, a low-deficient polycrystalline litura is used (near the appropriate Shi Xi The crystallized polycrystalline spine may be preferred. If a larger shaped pulse is required for forming a single-element metal oxide or nitride in a high resistivity state, another alternative is to yoke in a pre-119762.doc -25 - ^45783 step in the factory. The shaping pulse. The high voltage of the γ pulse can be self-external. The P supply 'and therefore does not need to be available for re-execution at the bias, then the female ancestors are picked up. The right side needs to be reversed, because I: can also apply a reset pulse in the other-pre-processing step. When the memory array is ready for the most heavy-duty stickers, the first element is in the heavy-state. And it can be simplified by the lower, this way, s+ 疋 。. The circuit on the day and the day does not need to provide high voltage forming and & + voltage, which simplifies the circuit requirements. ...pulse or negative

成若在工座中施加預處理成形脈衝及重設脈衝,則 成形脈衝所需之較大電壓 白一# 疋以將—極體之高缺陷多晶矽 自同電阻率轉換至低電阻率。 ^ _ 牡此〖月况下,不存在使用非 7化、尚缺陷二極體之劣勢,且摆 泌努且棱供矽化物模板層之額外 過私複雜性可得以避免。 藉由一種方法來程式化fp檢辦陆^丨+ 叭化忑隐體陣列中之此記憶體單元 。、中該記憶體單元包含金屬氧化物或氮化物化合物之電 阻率切換層,該金屬氧化物或氮化物化合物包含恰好一種 金屬),肖方法包含:藉由將電阻率切換層自第一電阻率 狀態改變至第二程式化電阻率狀態來程式化記憶體單元, 其中該第二程式化電阻率狀態儲存記憶體單元之資料狀 態。該記憶體陣列包含用以程式化及讀取記憶體單元之電 路,且該電路經調適以程式化該記憶體單元僅一次。該記 憶體陣列為一次可程式化陣列。 —次可程式化,多個狀態 在另-實施例中’可實際上較佳使二元金屬氧化物或氮 化物與一由高缺陷多晶矽形成之二極體成對。可使用構成 119762.doc •26- 1345783 二極體之多晶矽之兩個狀態(初始 化之低電阻率狀態)來儲存資料, 密度。If a pre-forming forming pulse and a reset pulse are applied to the workpiece, the larger voltage required for forming the pulse is converted to the low resistivity of the high-defect polycrystalline germanium. ^ _ 牡 This month, there is no disadvantage of using non-chemical, defective diodes, and the extra-private complexity of arranging the stencil layer can be avoided. This method is used to program the memory unit in the fp-checked 丨 丨 忑 忑 忑 忑 忑 忑 忑 忑 忑 。 。 。 The memory cell comprises a resistivity switching layer of a metal oxide or a nitride compound, the metal oxide or nitride compound comprising exactly one metal, and the method comprises: switching the resistivity layer from the first resistivity The state changes to a second stylized resistivity state to program the memory cell, wherein the second stylized resistivity state stores the data state of the memory cell. The memory array includes circuitry for programming and reading the memory cells, and the circuitry is adapted to program the memory cells only once. The memory array is a one-time programmable array. - Sub-programmable, multiple states In another embodiment, it may be practical to have a binary metal oxide or nitride paired with a diode formed of a high defect polysilicon. The two states (initialized low resistivity state) of the polysilicon constituting the 119762.doc •26- 1345783 diode can be used to store data, density.

舉例而言,假定使一由高缺陷多晶石夕(未鄰近於適當石夕 化物而結晶)形成之二極體與氧化鎳層成對,肖兩者電性 串聯配置於頂部導體與底部導體之間。以高電阻率狀態形 成氧化鎳,從而需要一成形脈衝來實現自高電阻率至低電 阻率之首次轉換。假定二極體需要8伏特之程式化電塵來 產生’530申請案中所描述之無序_有序轉換,從而將多晶矽 轉換至較高電阻率狀態。進—步假定由氧化錄用於成:脈 f所需之電壓為10伏特。(將理解’此處給定之電壓僅為 實例。電壓將隨著設備特徵及其他因素變化而改變卜For example, suppose that a diode formed by a high-defect polycrystalline polycrystalline stone (not crystallized adjacent to a suitable alexandry) is paired with a nickel oxide layer, and the two are electrically connected in series to the top conductor and the bottom conductor. between. Nickel oxide is formed in a high resistivity state, requiring a shaping pulse to achieve the first conversion from high resistivity to low resistivity. It is assumed that the diode requires 8 volts of stylized electric dust to produce the disordered-ordered transition described in the '530 application, thereby converting the polysilicon to a higher resistivity state. The step-by-step assumption assumes that the voltage required for the oxidation of the pulse is 10 volts. (It will be understood that the voltage given here is only an example. The voltage will change as the characteristics of the device and other factors change.

資料狀態 ~00 ' 10 多晶妙狀態 高電阻率 切換層狀態 重設 程式化 無程式化 +2 V下之讀取雷洁 1 X 10'ισ^ΪΓ 低電阻率 重設 +8 V 1 X 104安培 1 X 10'5安培 11 低電阻率 設定 +11 V 表1Data status ~00 ' 10 polycrystalline state high resistivity switching layer state reset stylized unprogrammed +2 V reading Lei Jie 1 X 10'ισ^ΪΓ low resistivity reset +8 V 1 X 104 Ampere 1 X 10'5 Ampere 11 Low Resistivity Setting +11 V Table 1

南電阻率狀態及經程式 從而增加記憶體單元之 如所形成之記憶體單元具有高電阻率氧化鎳及—具有高 電阻率多晶矽之二極體。下表i概述了可藉由此記憶體單 2達成之三個資料狀態。對於此實例而言’其亦包括達到 每一狀態所需之程式化及期待在所施加之+ 2伏特之讀取電 壓下用於每一資料狀態的實例性讀取電流: 在無施加之程式化電壓的情況下,如所形成之記憶體單 儿處於第一資料狀態,為方便起見,將該第一資料狀態稱 為〇 〇狀態。+ 8伏特之施加足以將二極體之多晶石夕自高電 119762.doc -27· 阻率轉換至低電阻率,但其低於成形脈衝所需之電壓,從 而使氧化鎳處於其初始、高電阻率狀態;此資料狀態將被 稱為_10’。將+11伏特施加至處於初始,〇〇,狀態之單元足以 貫現多晶矽之無序-有序轉換及將氧化鎳設定至低電阻率 狀態兩者。此資料狀態將被稱為,丨丨,狀態。 在另一實施例中,可不需要成形脈衝或僅需要一較小成 =脈衝,且設定電壓可小於切換多晶矽所需之電壓。在此 情況下,將可達成之資料狀態概述於表2中:The south resistivity state and the program thereby increasing the memory cell, such as the formed memory cell, have a high resistivity nickel oxide and a diode having a high resistivity polysilicon. Table i below summarizes the three data states that can be achieved by this memory. For this example, 'it also includes the stylization required to achieve each state and an example read current expected to be used for each data state at the applied + 2 volt read voltage: no applied program In the case of the voltage, if the formed memory is in the first data state, the first data state is referred to as the chirp state for convenience. The application of +8 volts is sufficient to convert the polycrystal of the diode to the low resistivity from the high voltage 119762.doc -27. However, it is lower than the voltage required for the shaping pulse, so that the nickel oxide is at its initial High resistivity state; this data state will be referred to as _10'. Applying +11 volts to the unit in the initial, 〇〇 state is sufficient to achieve both the disordered-ordered conversion of the polysilicon and the setting of the nickel oxide to a low resistivity state. The status of this profile will be referred to as, 丨丨, status. In another embodiment, a shaped pulse or only a small = pulse may be required and the set voltage may be less than the voltage required to switch the polysilicon. In this case, the achievable data status is summarized in Table 2:

如所形成,記憶體單元處於.〇〇•狀態,其中多晶石夕及氧 化錄兩者為高電阻率的。施加+6伏特來設絲化錄,但其 不足以切換多晶矽,從而使單元處於,or狀態。施加8伏特 :換夕s日⑪及氧化錄兩者,從而使該兩者處於對應於.11, 資料狀態之低電阻率狀態。 ,:等實施例中之任_者中,一旦單元處於,“,狀態, ,:藉由重没氧化鎳來達成第四資料狀態,其中二極體之 多晶咬處於低電阻率狀態且氧化錄處於重設狀態。此狀態 將被%為’10,狀態,且在需要反向偏壓來用於重設之實施 例中’此狀態藉由將—負重設脈衝(比如-4伏特)施加至處 於’U'狀態之單元而達成。 概言之 可藉由種方法來程式化剛才所描述之記憶體 ί ] 9762.doc -28- 單元,6亥方法包含: — 單元,其中該第_程_ ~程式化脈衝施加至記憶體 換層之第一電:.丄衝:a)可價測地改變電阻率切 料之第二電阻率j…或)可制地改變多晶半導體材 弟—電阻率狀態且可偵 千刀換層之 阻率狀雄1..、 地改變多晶半導體材料之第二電 ‘…咖取記憶體單元,其 -電阻率狀態用於平刀換層之弟 率狀態用於健存資料=多晶半導體材料之第二電阻 個資料狀態中之一者。單元經調適以儲存三個或四 多個阻抗位準 達所提及之電阻率切換二元氧化物或氮化物僅能約 =上之穩定電阻率狀態。在某些實施例中,根據 物。戈ϋ而形成之陣列之記憶體單元則能夠藉由將金屬氧化 狀:t化物置於三個、四個或四個以上可伯測不同電阻率 中之一者中來健存兩個以上之資料狀態,例如,三 = '四個或四個以上之資料狀態。可藉由感應並解碼陣列 之電路來可靠地須測可偵測之不同資料狀態。此等實施 例為可重寫的或一次可程式化的。 舉例而言,假定電阻率切換金屬氧化物或氮化物為氧化 錦(將理解’可使用其他指定材料中之任一者),其已以高 電阻率狀態而形成。轉至圓12 ’如所形成,氧化錄處於最 低電阻率狀態,其展示於標記為00之曲線上。 可將氧化鎳置於兩個以上之可偵測不同電阻率狀態。舉 例而言’ -記憶體單元(如圖2中所示之記憶體單元)可具有 Ϊ J9762.doc -29- 1345783 四個不同狀態,每—狀雄茲士 +, ^ 在一所施加之讀取電壓(例 〇,約2伏特)下之-電流範圍來區別。 在此實财,在最高電阻率狀態中,當跨過記憶 2加2伏特時,小於㈣毫微安培之電流流動;As formed, the memory cell is in a state in which both polycrystalline and oxidized are high resistivity. Applying +6 volts to set up the silk recording, but it is not enough to switch the polysilicon, so that the unit is in the or state. Apply 8 volts: eve s day 11 and oxidize both, so that the two are in a low resistivity state corresponding to the .11, data state. , in any of the embodiments, once the unit is in, ", state, , : by re-freeing nickel oxide to achieve the fourth data state, in which the polymorph of the diode is in a low resistivity state and oxidized The recording is in a reset state. This state will be %'s '10, state, and in embodiments where reverse bias is required for resetting', this state is applied by a - negative reset pulse (such as -4 volts) This is achieved by the unit in the 'U' state. In summary, the memory just described can be programmed by the method ] 9762.doc -28- unit, 6 hai method contains: — unit, where the _ Cheng _ ~ Stylized pulse applied to the first layer of the memory layer: 丄 :: a) Valuable change of the resistivity of the second resistivity of the material cut j ... or) can be changed to change the polycrystalline semiconductor material - Resistivity state and can detect the resistance of the thousand-knife layer. 1., change the second electric of the polycrystalline semiconductor material.... The memory unit is used, and the resistivity state is used for the brother of the flat knife. The rate state is used for one of the second resistance data states of the health data = polycrystalline semiconductor material. The cell is adapted to store three or more impedance levels up to the resistivity referred to to switch the binary oxide or nitride only to a stable resistivity state of about =. In some embodiments, depending on the species. The memory cell of the array formed by Gome can be stored in two or more of three, four or more different testable resistivities by oxidizing the metal: Data status, for example, three = 'four or more data states. The circuit can be sensed and decoded to reliably detect different data states that can be detected. These embodiments are rewritable or For example, it is assumed that the resistivity switch metal oxide or nitride is a oxidized bromine (it will be understood that 'any of the other specified materials can be used'), which has been formed in a high resistivity state. To the circle 12' as formed, the oxidation record is in the lowest resistivity state, which is shown on the curve labeled 00. Nickel oxide can be placed in more than two states that can detect different resistivity. For example, '-memory Body unit (as shown in Figure 2) The memory unit) can have four different states, Ϊ J9762.doc -29- 1345783, each of the 雄 兹 +, ^ in a applied reading voltage (for example, about 2 volts) - the current range comes In this real wealth, in the highest resistivity state, when crossing 2 + 2 volts of memory, less than (four) nanoamperes of current flow;

任01狀態中,在2伏特下,電流將在約100毫 2培與_毫微安培之間。在,1G,狀態中,在2伏特下, 抓將在約1微安培與3微安培之間。在最低電阻率狀態 :狀態)中,2伏特下之電流將大於9微安培。將理解,僅 ^月晰起見而供應此等電流範圍及讀取電屡·視所使用之 貫際材:及設備特徵而定,其他值可為適當的。 在此實例中’ &定脈衝具有—在約8伏特與約賊特之 間的電Μ ’而重設係在約3伏特與約6伏特之間。在包 括與P + n二極體成對之氧化錄的實施例中,在反向偏屢中 施加重叹電遷。但是視所使用之材料及記憶體單元之組態 "、特徵而疋,可不需要反向偏壓來重設該單元。 參看圖12 ’以,〇〇,狀態形成單元。為將單元程式化至01 狀f ’可施加(例如)8伏特之設定電I。對於所有設定脈衝 而言’較佳將一限流器包括於電路中。在施加設定脈衝之 後’在2伏特下讀取單元。若2伏特下之電流在,01,狀態之 :待範,中(在約100毫微安培與約300毫微安培之間),則 為4單元被程式化。若電流過低(例如,毫微安培), 、J施加額外设疋脈衝(視情況在較高設定電壓下),且再 二在2伏特下讀取該單元。重複該過程直至穿過記憶體單 7L之電流在2伏特下之正確範圍内。 H9762.doc -30- 1345783 在施加程式化脈衝之後,I流可替代地在,〇i,狀態之 :接文靶圍之上;舉例而言,其可為彻毫微安培。在此 情況下存在兩個選項;可施加以將氧化錄返回至,〇〇, 狀姑之重設脈衝’接著施加另一可能較小之設定脈衝,·或 可鉍加一重设脈衝以稍微增加氧化鎳層之電阻率,而將其 遞曰地私至〇 1範圍中。重複該過程直至穿過記憶體單元 之電流係在2伏特下之正確範圍内。In any of the 01 states, at 2 volts, the current will be between about 100 millimeters and _ nanoamperes. In the 1G, state, at 2 volts, the grip will be between about 1 microamperes and 3 microamperes. In the lowest resistivity state: state, the current at 2 volts will be greater than 9 microamperes. It will be understood that other values may be appropriate depending on the supply of such current ranges and the reading of the electrical components and the characteristics of the device. In this example, the &'s pulse has an electrical enthalpy between about 8 volts and about volts and the reset is between about 3 volts and about 6 volts. In an embodiment comprising an oxidation record paired with a P+n diode, a reciprocal electromigration is applied in the reverse bias. However, depending on the material used and the configuration of the memory unit, the reverse bias can be used to reset the unit. Referring to Figure 12, the state is formed by the unit. To program the unit to 01-shaped f', a set power of 8 volts can be applied, for example. For all set pulses, a current limiter is preferably included in the circuit. The unit was read at 2 volts after the set pulse was applied. If the current at 2 volts is at 01, the state: in the range, between (about 100 nanoamperes and about 300 nanoamperes), then 4 units are programmed. If the current is too low (for example, nanoamperes), J applies an additional set pulse (as appropriate at a higher set voltage) and reads the unit at 2 volts. This process is repeated until the current through the memory bank 7L is within the correct range of 2 volts. H9762.doc -30- 1345783 After the stylized pulse is applied, the I stream can alternatively be, 〇i, state: above the target perimeter; for example, it can be a full nanoamperes. In this case there are two options; it can be applied to return the oxidation record to, 〇〇, the shape reset pulse 'then then another set pulse can be applied, or a reset pulse can be added to increase slightly The resistivity of the nickel oxide layer, which is privately transferred to the range of 〇1. This process is repeated until the current through the memory cell is within the correct range of 2 volts.

採用一類似方法來將記憶體單元置於,1〇,狀態或,,狀 L舉例而s ’ 9.5伏特之設定電壓可足以將記憶體單元 置於.10’狀態,而1G伏特之設定㈣可將記憶體單元程式 化至Ί Γ資料狀態。 較佳將記憶體單元用作可重寫記憶體單元。然而,可較 佳為節省基板中之空間而省略能夠施加反向偏壓之電晶 體,且僅在正向偏壓下程式化該單元。若不需要反向偏壓 來重設單元,則此記憶體陣列可為可重寫的。然而若需 要反向偏壓來用於重設,則可將此記憶體陣列用作一次可 私式化陣列。在此情況下,必須注意決不將該單元設定至 —具有比預期資料狀態之所要電流高的電流(氧化鎳層之 較低電阻率)之狀態。可施加故意低之設定電壓以逐漸降 低氧化鎳層之電阻率並將電流升高至可接受範圍中,從而 避免超過所要範圍,因為在此情況中,在不具有反向偏壓 之情況下’無法校正此突增。 如在先前實施例中’應考慮藉由結晶鄰近於一適當石夕化 物之多晶矽來形成低缺陷多晶矽之二極體的優勢或劣勢。 119762.doc •31 · 1345783 兩振巾田成形脈衝,則該成形脈衝之電壓可足以將古 缺陷阿電阻率多晶㈣換至較低電阻n & _ n胃 況下,使用低缺陷 '石夕化多晶石夕可不提供優勢。若不需要 脈衝或需要—較小成形脈衝,則由低缺陷、低電阻率 多晶矽(鄰近於—適當矽化物而結晶)而形成之二 較佳的❶ 馬 若必須應用一預處理步驟(諸如一成形脈衝),則可有利 地在工廠中執行此步驟。在此情況下’高電麼無 晶粒上。 ' 第一製造實例 ’提供根據本發明之—較佳實施例而形成的整體三維 憶體陣列之製造的詳細實例。為清晰起見’將包括許多:田 即’該等細節包括步驟、材料及過程條件。將理解, 例為非限制性實例,且可修改、省略或增補此等細節,同 時結果在本發明之範疇内。 :般而言’⑽中請案、’5辦請案、,824中請案及仍 申味案教不包含記憶體單元之記憶體陣列,其中每 :單元為一次可程式化單元。該單元係以高阻抗狀態而;' 在施加一程式化電麼之後’該單元便被永久轉換至 低阻抗狀態。具體言之,咖、,549、,824、,577及其他併 入,申6月案及專利的教示可與根據本發明之記憶體之形成 ?二為,起見’將並不包括併入之申請案及專利之所 而是將理解’此等中請案或專利之教示 具有排他性。 119762.doc •32· 1345783 轉至圖13a ’記憶體之形成以基板1〇〇開始。此基板 可為如此項技術中已知之任何半導電基板,諸如單晶矽' ιν-ιν化合物(如矽_鍺或矽_鍺碳)、m v化合物、化 口物在此等基板上之蟲晶層或任何其他半導電材料。該 基板可包括製造於其中之積體電路。 絕緣層102形成於基板1〇〇上。絕緣層1〇2可為氧化矽、 氮化石夕、冑介電膜、Si_C_〇_H膜或任何其他合適之絕 料。 第一導體200形成於基板1〇〇及絕緣體1〇2上。可在絕緣 f 102與導電層106之間包括黏著層HM以幫助導電層106黏 者。用於黏著層1〇4之較佳材料為氮化鈦,但可使用其他 材料,或可省略此層。可藉由任何習知方法(例如,藉由 濺鍍)來沈積黏著層104。 黏著層104之厚度可自約2〇埃變化至約5〇〇埃,且較佳在 :勺100埃與約4〇〇埃之間,最佳為約2〇〇埃。注意,在此論 述中’厚度"將指示在一垂直於基板1〇〇之方向上量測而 得之垂直厚度。 -待沈積之下一層為導電層1〇6。導電層ι〇6可包含此項技 術中已知之任何導電材料,諸如摻雜半導體、諸如鶴之金 屬或導電金屬石夕化物;在一較佳實施例中,導電層為 鋁導電層106之厚度可部分地視所要薄層電阻而定且因 此可為提供所要薄層電阻之任何厚度。在一實施例中,導 電層106之厚度可自約5〇〇埃變化至約则埃,較佳自約 1000埃變化至約2_埃,最佳為約i2GGb n9762.doc -33- 1345783 將另-層uo(較佳為氮化欽)沈積於導電層ι〇6上。盆可 具有比得上層ΠΜ之厚度的厚度。將執行—光微影步辑以 圖案化紹層1〇6及氣化欽層10[铭之高反射率使得難以直 接在Μ上成功執行光微影。氮化鈦層㈣用作—抗反射 -—已沈積將形成導電軌之所有層,便將使用任何合適 之遮罩及姓刻過程來圖案化及餘刻該等層以形成大體上平 行、大體上共面之導體200(圖13a中以截面圖展示卜在一 實施例中,沈積光阻' 藉由光微影圖案化光阻並钮刻該等 層,且接著使用標準過程技術(諸如含氧電毁中之"灰化.,), 來移除光阻’且在-f知液體溶劑中(諸如由EKC調配而 成之彼等溶劑)剝離在_期間所形成之剩餘聚合物。 接著,將介電材料108沈積於導電軌上及導電軌2〇〇 之間)丨t材料108可為任何已知之電絕緣材料,諸如氧 化夕氮化矽或氮氧化矽。在一較佳實施例中,將氧化矽 用作介電材料1〇8。可使用諸如化學氣相沈積(cvd)或(例 如)高密度電漿CVD(HDPCVD)之任何已知過程來沈積氧化 石夕。 最後,移除在導電軌200頂部之過多介電材料1〇8,從而 ^露由介電材料108分離之導電執2〇〇的頂部,且留下一大 體^平坦表面1G9°圖13a中展示了所得結構。可藉由此項 "Γ已头之任何過程(諸如回蝕或化學機械研磨(CMP)) 來執仃用以形成平坦表面1〇9的介電過度填充物之此移 ' 而。可有利地使用在Raghuram等人之美國申請 JJ9762.doc •34· 3兄中發現之電導率增強摻雜劑或污染物的存在 在較佳實施例中,半導體柱包貪—接面二_ 二極體包含第-電導率類型之底部重摻雜區域二接面 率類型之頂部重摻雜區域。在頂部 -電導 中間區域為第-或第二導電率類型之本質=域之間的 ._ 土心不貝或輕摻雜區域。 在此:r例中,底部重摻雜區域112為重移—型録 最佳實施例中,沈積重接雜區域ιΐ2且藉由任何習- :佳藉由就地摻雜)使用。型摻雜劑(諸如嶙)來摻雜該重二 ”區域112。此層較佳在約2〇〇埃與約8〇〇埃之間。 / 接著,沈積將%成二極體之剩餘部分的錯。在Μ 例中,隨後之平坦化步驟將移除一肚 e 厘疮从+ —题U此沈積一額外 予度。右使用習知CMP方法執行該平坦化步驟,則可丟失 、勺800埃之厚度(此為平均值;該量隨晶圓而變。視在 ,間所使用之毁料及方法而定,錯損失可更多或更少)。 若藉由回钮方法來執行平坦化步驟,則僅可移除約_埃 :更士之鍺。視待使用之平坦化方法及所要之最終厚度而 定,藉由任何習知方法沈積約800埃與約4000埃之間的未 摻雜鍺;較佳在約15〇〇埃與約25〇〇埃之間;最佳在約18〇〇 灼2200埃之間。若需要,則可輕度掺雜鍺。頂部重摻 雜區域116將在稍後之植入步驟中形成,但此時其尚未存 在’且因此未展示於圖13b中。 將剛才所沈積之鍺圖案化及蝕刻以形成柱3〇〇。柱3〇〇應 具有與下面之導體200大約相同之間距及大約相同之寬 度,使和·每一柱3〇〇形成於導體2〇〇之頂部。可容忍某未對 H9762.doc -36- 1345783 面。可藉由此項技術中已知之任何過程(諸如CMp或回蝕) 來執行介電過度填充物之此移除及平坦化。舉例而言’可 使用在Ragh贿η等人之·4Π申請案中所描述之回#技術。 圖Ub中展示了所得結構。 轉至圖13c,在較佳實施例中,在此時藉由離子植入使 用p型摻雜劑(例如,硼或BF_2)形成重摻雜頂部區域ιΐ6。本 文t所描述之二極體具有一底部„型區域及一頂部p型區 域。若較佳,則可將電導率類型反向。若需要,則可在一 記憶體層中使用在底部上具有一n區域之p_in二極體,而 可在另-記憶體層中使用在底部上具有一 p型區域 二極體。 八藉由-種方法形成常駐於柱3〇〇中之二極體,該方法包 含·在第-導體及介電填充物上沈積一個半導體層堆疊’· 及圖案化並敍刻該半導體層堆疊以形成第一二極體。 接著,沈積導電障壁材料(例如,氮化 其他適當之材料)層121。声12 萄飞杲 a 121之厚度可在約1〇〇埃與約 =埃之間’較佳約2。。埃。在某些實施例中,可省略層 在障壁層121上沈積金屬氧化物或氮化物阻抗物切換 材料層11 8。此層較佳A & 权佳在約50埃與約400埃之間,例如,在 約100埃與約2〇〇埃之間。 層可為較早所描述之任何材 氮化物:古金屬氧化物或氮化物形成,該金屬氧化物或 =自;包括恰好—種展現阻抗物切換性能的金屬;較 佳為選自由以下組成之 rrf n A1 〇 材科·仏為、Nbx〇y、TixOy、 邱〇》,、AIx〇y、Mgx〇 x〇y、CrX〇y、Vx〇y、ZnxOy ' I19762.doc -38- 2rx0y、BxNy& AlxNy。為簡單起目 在見’此論述將指述氧化钽 在層””之使用。然而, 孔化錄 其他材料》氧㈣展現無方向性切換^用所W之任何 “二極體成對,但是可使 H’且因此已與P- ^ 極體(若電路配置指示 扭 ,„ 、擇方向性阻抗物切換封 枓,則齊納二極體將為較佳的 納二極體不且有本質£域二且較佳實施例中’此齊 U本貝£域,或具有-不厚於約350埃之本 質區域。 來(本 最後,在較佳實施例中,在氧化錄層118上沈積障壁層 123。層123較佳為氮化鈦,但可替代使用某—其他適告之 導電障壁材料。障壁層123之目的為允許在障壁層心而 :在氧化鎳118上執行一即將發生之平坦化步驟。在某些 貫施例中,可省略層12 3。 圖案化及融刻層123、118及121以形成短柱,該等短柱 理想地直接位於以先前圖案及在蝕刻步驟中形成之柱3〇〇 的頂部。如圖13c中所示,可發生某未對準,且可容忍該 未對準。在此圖案化步驟中可重新使用用於圖案化柱3〇〇 之光罩。 在此實例中,在一不同於鍺層112及114(及在隨後之離 子植入步驟中形成之116)之圖案化步驟中來圖案化層 1 2 3、11 8及1 2 1。需要此來降低钮刻高度且藉由使氧化鎮 及金屬I5早壁層暴露至專用於半導體姓刻之腔室中而避免可 能之污染。然而,在其他實施例中,可較佳在單一圖案化 步驟中圖案化層123、118 ' 121、116、114及121。在此情 119762.doc -39- 1345783 況下,在沈積障壁層121之前發生重摻雜鍺層ιΐ6之離子植 入。或者,可就地摻雜重摻雜層116。 在某些實施例中,障壁層121 '氧化鎳層ιΐ8及障壁層 123可在二極體層112、114及U6之前(且因此在下面)形 成,且可在相同或一獨立圖案化步驟中經圖案化。 接著,沈積一導電材料或堆疊以形成頂部導體4〇〇。在 一較佳實施例中,接著沈積氮化鈦障壁層12〇,隨後沈積 鋁層122及頂部氮化鈦障壁層124。可如較早所描述來圖案 化及蝕刻頂部導體400。在此實例中,在每—單元中,(層 112、114及116之)二極體及一阻抗物切換元件(氧化鎳層 118之一部分)已串聯形成於頂部導體400與底部導體2〇〇之 間。上覆之第二導體400將較佳在一不同於第一導體2〇〇之 方向上延伸,較佳大體上垂直於該等第一導體2〇(^圖i3c 中所示之所得結構為記憶體單元之底部或第一層。 在一替代性實施例中,頂部導體可包含銅,且可藉由一 種金屬鑲嵌方法而形成。在整體三維記憶體陣列中製造頂 部銅導體之詳細描述詳細提供於Herner等人之美國專利申 請案第 11/125,606 號"High-Density Nonvolatile MemoryUsing a similar method to place the memory cell in a state, or state, for example, the set voltage of s '9.5 volts may be sufficient to place the memory cell in the .10' state, and the 1G volt setting (4) may be Program the memory unit to the status of the data. The memory unit is preferably used as a rewritable memory unit. However, it may be preferable to omit the dielectric crystal capable of applying a reverse bias to save space in the substrate, and to program the unit only under forward bias. This memory array can be rewritable if a reverse bias is not required to reset the unit. However, if a reverse bias is required for resetting, this memory array can be used as a disposable array. In this case, care must be taken to never set the cell to a state in which it has a current higher than the desired current of the expected data state (lower resistivity of the nickel oxide layer). An intentionally low set voltage can be applied to gradually reduce the resistivity of the nickel oxide layer and raise the current to an acceptable range, thereby avoiding exceeding the desired range, since in this case, without reverse biasing' This spike cannot be corrected. As in the previous embodiment, the advantages or disadvantages of forming a low-defect polycrystalline germanium diode by crystallizing polycrystalline germanium adjacent to a suitable litony compound should be considered. 119762.doc •31 · 1345783 Two vibrating field forming pulse, the voltage of the forming pulse can be enough to change the ancient defect A resistivity polycrystal (4) to a lower resistance n & _ n stomach condition, using low defect 'stone Xihua polycrystalline stone can not provide advantages. If a pulse or a small forming pulse is not required, then the second preferred humus formed by the low defect, low resistivity polysilicon (adjacent to the appropriate hydrazine) must apply a pretreatment step (such as a The shaping pulse) can advantageously be carried out in the factory. In this case, 'high power is not on the die. 'First Manufacturing Example' provides a detailed example of the manufacture of an overall three-dimensional memory array formed in accordance with the preferred embodiment of the present invention. For the sake of clarity, 'will include a lot: the field'. These details include steps, materials, and process conditions. It will be understood that the examples are non-limiting examples and that such details may be modified, omitted, or supplemented, while the results are within the scope of the invention. In general, the (10) request, the '5 office request, the 824 request, and the still-speaking case teach the memory array that does not contain the memory unit, where each unit is a programmable unit. The unit is in a high impedance state; 'after applying a stylized power', the unit is permanently switched to a low impedance state. In particular, coffee, 549, 824, 577, and other incorporations, the teachings of the June case and patents may be related to the formation of the memory according to the present invention, and secondly, 'will not include incorporation The application and the patent office will understand that the teachings of such claims or patents are exclusive. 119762.doc •32· 1345783 Go to Figure 13a. The formation of the memory begins with the substrate 1〇〇. The substrate may be any semiconducting substrate known in the art, such as a single crystal 矽' ιν-ιν compound (such as 矽 锗 or 矽 锗 锗 carbon), an mv compound, and a worm crystal on the substrate. Layer or any other semi-conductive material. The substrate may include an integrated circuit fabricated therein. The insulating layer 102 is formed on the substrate 1A. The insulating layer 1〇2 may be a hafnium oxide, a tantalum nitride, a hafnium dielectric film, a Si_C_〇_H film or any other suitable material. The first conductor 200 is formed on the substrate 1A and the insulator 1〇2. An adhesion layer HM may be included between the insulating layer f 102 and the conductive layer 106 to help the conductive layer 106 adhere. A preferred material for the adhesive layer 1 4 is titanium nitride, but other materials may be used or may be omitted. The adhesive layer 104 can be deposited by any conventional method (e.g., by sputtering). The thickness of the adhesive layer 104 can vary from about 2 angstroms to about 5 angstroms, and preferably between about 100 angstroms and about 4 angstroms, preferably about 2 angstroms. Note that the 'thickness' in this description will indicate the vertical thickness measured in a direction perpendicular to the substrate 1〇〇. The layer to be deposited is a conductive layer 1〇6. The conductive layer ι 6 may comprise any conductive material known in the art, such as a doped semiconductor, such as a metal of a crane or a conductive metal lithium; in a preferred embodiment, the conductive layer is the thickness of the aluminum conductive layer 106. It may depend in part on the desired sheet resistance and thus may be any thickness that provides the desired sheet resistance. In one embodiment, the thickness of the conductive layer 106 can vary from about 5 angstroms to about angstroms, preferably from about 1000 angstroms to about 2 angstroms, and most preferably about i2 GGb n9762.doc -33 - 1345783 An additional layer uo (preferably nitride) is deposited on the conductive layer ι6. The basin may have a thickness that is comparable to the thickness of the upper layer. The photo-lithography step will be executed to pattern the layer 1〇6 and the gasification layer 10 [Ming's high reflectivity makes it difficult to directly perform photolithography on the crucible. The titanium nitride layer (4) is used as an anti-reflection--all layers that have been deposited to form a conductive track, and any suitable masking and surname process will be used to pattern and engrave the layers to form a substantially parallel, generally large layer. The coplanar conductor 200 (shown in cross-section in Figure 13a, in one embodiment, depositing photoresist) is patterned by photolithography and the layers are patterned, and then using standard process techniques (such as "ashing.," to remove the photoresist' and to strip the remaining polymer formed during the period in the liquid solvent (such as those formulated by EKC). Next, the dielectric material 108 is deposited on the conductive track and between the conductive tracks 2). The material 108 can be any known electrically insulating material, such as yttrium niobium oxide or hafnium oxynitride. In a preferred embodiment, yttrium oxide is used as the dielectric material 1 〇 8. Any known process such as chemical vapor deposition (cvd) or (e.g., high density plasma CVD (HDPCVD)) can be used to deposit the oxidized stone. Finally, the excess dielectric material 1〇8 on top of the conductive track 200 is removed, thereby exposing the top of the conductive strip separated by the dielectric material 108, leaving a large body flat surface 1G9° as shown in Figure 13a. The resulting structure. This shift of the dielectric overfill used to form the flat surface 1〇9 can be performed by any of the processes (such as etch back or chemical mechanical polishing (CMP)). The use of conductivity-enhancing dopants or contaminants found in the U.S. application JJ9762.doc • 34·3 of Raghuram et al. can be advantageously used. In a preferred embodiment, the semiconductor pillar package is spliced to the surface. The polar body comprises a top heavily doped region of the bottom-heavy-doped region of the first conductivity type of the first conductivity type. The top-conducting intermediate region is the essence of the first or second conductivity type = ._ between the domains or the lightly doped regions. Here, in the r example, the bottom heavily doped region 112 is a re-shifting type. In the preferred embodiment, the re-doping region ιΐ2 is deposited and used by any conventional in-situ doping. A dopant such as germanium is doped to the heavy binary region 112. This layer is preferably between about 2 Å and about 8 Å. / Next, the deposition is made into the remainder of the diode. In the case of the sputum, the subsequent flattening step will remove an additional degree of susceptibility from + to U. This can be lost by using the conventional CMP method to perform the planarization step. Thickness of 800 angstroms (this is the average; this amount varies with the wafer. Depending on the material used and the method used, the error can be more or less.) If the flattening method is used to perform flattening For the crystallization step, only about _ angstrom: the gentile can be removed. Depending on the planarization method to be used and the desired final thickness, any conventional method is used to deposit between about 800 angstroms and about 4,000 angstroms. Doped germanium; preferably between about 15 Å and about 25 Å; optimally between about 18 Å and 2200 Å. If desired, it can be lightly doped 锗. Top heavily doped regions 116 will be formed in a later implantation step, but at this time it is not yet present 'and therefore not shown in Figure 13b. Patterning the 锗 just deposited Etching to form the pillars 3. The pillars 3〇〇 should have approximately the same distance and approximately the same width as the underlying conductors 200, so that each pillar 3〇〇 is formed on top of the conductor 2〇〇. H9762.doc -36-1345783 is not available. This removal and planarization of the dielectric overfill can be performed by any process known in the art, such as CMp or etch back. For example, 'can be used The technique described in the application of Ragh et al., 4 pp. The resulting structure is shown in Figure Ub. Turning to Figure 13c, in the preferred embodiment, p-type is used by ion implantation at this time. A dopant (eg, boron or BF 2 ) forms a heavily doped top region ι 6 . The diode described herein has a bottom „type region and a top p-type region. If preferred, the conductivity type can be reversed. If desired, a p-in diode having an n-region on the bottom can be used in a memory layer, and a p-type region diode can be used in the other-memory layer on the bottom. 8. Forming a diode resident in the column 3 by a method comprising: depositing a semiconductor layer stack on the first conductor and the dielectric filler and patterning and patterning the semiconductor layer stack To form a first diode. Next, a layer 121 of conductive barrier material (e.g., nitrided other suitable material) is deposited. The thickness of the sound 12 萄 a 121 may be between about 1 angstrom and about = angstroms, preferably about 2. . Ai. In some embodiments, the layer may be omitted to deposit a metal oxide or nitride resistive switching material layer 11 on the barrier layer 121. Preferably, the layer has an A & between about 50 angstroms and about 400 angstroms, for example between about 100 angstroms and about 2 angstroms. The layer may be any of the material nitrides described earlier: an ancient metal oxide or nitride, the metal oxide or the like; including exactly the metal exhibiting impedance switching properties; preferably selected from the group consisting of Rrf n A1 〇科·仏, Nbx〇y, TixOy, 邱〇, AIx〇y, Mgx〇x〇y, CrX〇y, Vx〇y, ZnxOy ' I19762.doc -38- 2rx0y, BxNy&amp AlxNy. For the sake of simplicity, see 'This discussion will refer to the use of yttrium oxide in the layer". However, the other materials of Konghua recorded that oxygen (4) exhibits a non-directional switching. Any "diode paired with W, but can be H' and thus has a P-^ polar body (if the circuit configuration indicates twisting, „ If the directional impedance switching device is selected, the Zener diode will be a preferred nano-diode and has no nature. In the preferred embodiment, the singularity of the singularity is in the preferred embodiment. It is not thicker than the essential region of about 350 angstroms. Finally, in the preferred embodiment, the barrier layer 123 is deposited on the oxide recording layer 118. The layer 123 is preferably titanium nitride, but may be used instead. Conductive barrier material. The purpose of the barrier layer 123 is to allow for an imminent planarization step on the nickel oxide layer 118. In some embodiments, the layer 12 3 may be omitted. The layers 123, 118 and 121 are fused to form stubs which are ideally located directly on top of the pillars 3 以 formed in the previous pattern and in the etching step. As shown in Figure 13c, some may occur The misalignment can be tolerated and can be reused in the patterning step for patterning the column 3 a mask of enamel. In this example, the layers 1 2 3, 11 8 are patterned in a patterning step different from the ruthenium layers 112 and 114 (and 116 formed in the subsequent ion implantation step). 1 2 1. This is needed to reduce the button height and avoid possible contamination by exposing the oxidized town and the metal I5 early wall layer to a chamber dedicated to the semiconductor surname. However, in other embodiments, Preferably, the layers 123, 118' 121, 116, 114, and 121 are patterned in a single patterning step. In the case of 119762.doc -39-1345783, the ions of the heavily doped layer ΐ6 are formed before the barrier layer 121 is deposited. Alternatively, the heavily doped layer 116 may be doped in situ. In some embodiments, the barrier layer 121 'the nickel oxide layer ι 8 and the barrier layer 123 may precede the diode layers 112, 114 and U6 (and thus Formed below, and may be patterned in the same or a separate patterning step. Next, a conductive material or stack is deposited to form the top conductor 4A. In a preferred embodiment, a titanium nitride barrier layer is subsequently deposited. 12〇, subsequently depositing an aluminum layer 122 and a top titanium nitride barrier layer 124. The top conductor 400 is patterned and etched as described earlier. In this example, in each cell, a diode (of layers 112, 114, and 116) and an impedance switching component (a portion of the nickel oxide layer 118) Between the top conductor 400 and the bottom conductor 2〇〇, the overlying second conductor 400 preferably extends in a direction different from the first conductor 2〇〇, preferably substantially perpendicular to the A conductor 2 〇 (the resulting structure shown in Figure i3c is the bottom or first layer of the memory cell. In an alternative embodiment, the top conductor may comprise copper and may be formed by a damascene process. A detailed description of the fabrication of the top copper conductors in the overall three-dimensional memory array is provided in detail in U.S. Patent Application Serial No. 11/125,606, the entire disclosure of which is incorporated herein to

Array Fabricated at Low Temperature Comprising Semiconductor Diodes"中。 在較佳實施例中,記憶體單元之此第一層為複數個非揮 發性記憶體單元,其包含:在第一方向上延伸之第一複數 個大胜上平行、大體上共面之導體;第一複數個二極體; 第一複數個可逆阻抗物切換元件;及在一不同於第一方向 119762.doc -40 - 1345783 之第二方向上延伸之第二複數個大體上平行'大體 之導體,其中在每一記憶體單元中,第—二極體中二 及第一可逆阻抗物切換元件中之—者經串聯配置而安= 第一導體中之一者與第二導體中之一者之間,且; -複數個可逆阻抗物切換元件包含選自由以下組成之:: 材料:Nlx〇y、Nbx〇y、们為、財為、ai^ 、 C〇:〇;^〇y'Vx〇-Z^ 一南度處形成第-導體且在第二高度在第 第二高度在該第-高度之上。 或第-導體,該 可在此第一記憶體層上形成額外記 例中’可在記憶體層之間共用導體;亦即,頂在:導體貫二 將用作下一記憶體層之底部導體。在其他實 …之第一記憶體層上形成層間介電質,對其表面進= 旦:,且在此經平坦化之層間介電質上開始第二記憶體芦 Ϊ體:。不具有共用導體)。若在記憶體層之間不共用頂‘ 下,_要則無需對此等導體執行⑽步驟。在此情況 右而要,則可以DARC層來替代氮化鈦障壁層以卜 摻I:二,當所沈積之鍺未穆雜或使用η型摻雜劑進行 目對較低之溫度下進行沈積時,其將通常為非 低-声6建構所有記憶體層之後,可執行最後之相對較 Γ退火(例如’在約35〇°c與約4耽之間的溫度下執 订)以結晶鍺二極體. 實“列中’所得二極體將由多 曰 可—次退火大批晶圓(例如,100或100個 之晶圓)而保持充分之製造生產量。 上 D9762.docArray Fabricated at Low Temperature Comprising Semiconductor Diodes" In a preferred embodiment, the first layer of the memory cell is a plurality of non-volatile memory cells including: a first plurality of substantially parallel, substantially coplanar conductors extending in a first direction a first plurality of diodes; a first plurality of reversible impedance switching elements; and a second plurality of substantially parallel 'generally extending in a second direction different from the first direction 119762.doc -40 - 1345783 a conductor, wherein in each of the memory cells, the second of the first diode and the first reversible impedance switching element are arranged in series; one of the first conductor and the second conductor Between the two, and - a plurality of reversible impedance switching elements comprising: selected from the group consisting of: Material: Nlx〇y, Nbx〇y, I, Cai, ai^, C〇:〇; ^〇y 'Vx〇-Z^ forms a first conductor at a south degree and above the first height at a second height at a second height. Or a first conductor, which may form an additional pattern on the first memory layer' to share the conductor between the memory layers; that is, the top: the conductor will serve as the bottom conductor of the next memory layer. An interlayer dielectric is formed on the other first memory layer, the surface of which is: and the second memory reed body is started on the planarized interlayer dielectric. Does not have a common conductor). If the top 'down' is not shared between the memory layers, then the step (10) is not required for these conductors. In this case, the DARC layer can be used instead of the titanium nitride barrier layer to dope I: 2. When the deposited germanium is not well-doped or deposited with a lower temperature using an n-type dopant When it is normally non-low-voice 6 to construct all of the memory layers, the final relatively fine-annealing can be performed (eg, 'binding at a temperature between about 35 ° C and about 4 )) to crystallize Polar body. The actual "column in the column" will be sufficient to maintain a sufficient manufacturing throughput from multiple anneal-quantitative wafers (eg, 100 or 100 wafers). D9762.doc

丄J 在記憶體層之間及在基板巾之電路之間㈣直互連件可 較佳形成為鎢插塞,其可藉由任何習知方法而形成。直J between the memory layers and between the circuits of the substrate towel (iv) the direct interconnection may preferably be formed as a tungsten plug, which may be formed by any conventional method.

=光微影期間使用光罩來圖案化每―層。在每—記憶體 =重複某些層’且可重新使用用於形成其之光罩。舉例 而5,可針對每一記憶體層而重新使用一界定圖13c之柱 300的光罩。每一光罩包括用於適當對準其之參考標記。 f重新使用以時,在第二次或隨後之使用中形成之參考 11己可干擾在同—光罩之先前使用期間所形成之相同參考 ^屺Chen等人之美國專利申請案第…⑽7,衫6號 Masking 〇f Repeated Overlay and Alignment Marks to Allow Reuse of Photomasks in a Vertical Structure'^ 2005 月日申°月,且以引用的方式併入本文中)描述了一種 、在形成整體二維記憶體陣列(如本發明之整體三維記 憶體陣列)期間避免此干擾的方法。 、^= Photomask is used to pattern each layer during photolithography. In each memory - repeat some layers' and the reticle used to form it can be reused. For example, 5, a reticle defining the post 300 of Figure 13c can be reused for each memory layer. Each reticle includes reference marks for proper alignment thereof. When re-used, the reference 11 formed in the second or subsequent use may interfere with the same reference that was formed during the previous use of the same-mask, US Patent Application No. (10)7, Masking f Repeated Overlay and Alignment Marks to Allow Reuse of Photomasks in a Vertical Structure'^ 2005, which is incorporated herein by reference, describes a method for forming an overall two-dimensional memory. A method of avoiding such interference during an array, such as the overall three-dimensional memory array of the present invention. , ^

可想像且可能需要此處所描述之步驟及結構的許多變 化。為更充分地說明本發明,將描述一些變化;將理解, 對於沾習此項技術者而言,無需充分詳述在本發明之範嘴 内的每一變化以理解如何製造並使用一仍更寬廣範圍之可 能變化。 第二製造實例:稀有金屬接點,在二極體之上 圖1〇展示了一實施例,其中阻抗物切換材料118被夾於 稀有金屬層117與119之間。較佳之稀有金屬為pt ' pd、k 及Au。層117及119可由相同稀有金屬或不同金屬形成。 當阻抗物切換材料被失於稀有金屬層之間時必須圖案 119762.doc -42- 1345783 化及钱刻該等稀有金屬層以確保其並不提供鄰近二極體或 導體之間的非所要導電路徑。 圖14中以截面圖展示了一包含單元(如圖1〇之彼等單元) 之記憶體層。在一種用以形成此結構之較佳方法中,如較 早所描述而幵》成底部導體2〇〇。如較早所描述而沈積重摻 雜鍺層112及未摻雜鍺層114。在一較佳實施例中,可在圖 案化及蝕刻柱之前在毯覆鍺層上執行頂部重摻雜層ιΐ6之 離子植入。接著沈積稀有金屬層117,接著沈積阻抗物切 換材料118及稀有金屬層119。稀有金屬層117及119可為約 2〇〇埃至約500埃,較佳為約2〇〇埃。 在此時圖案化及蝕刻柱,使得層丨〗7、〗1 8及9被包括 於柱中,且因此彼此電隔離。視所選擇之蝕刻劑而定,可 杈佳執行第一蝕刻步驟來僅蝕刻層119、ιι8及η?,接著 將此等層用作一硬式光罩來蝕刻柱之剩餘部分。 或者’可首先圖案化及姓刻層1丨2、114及116、填充其 間之間隙及經由平坦化而暴露該等柱之頂部。可接著進行 層u<7、118及119之沈積連同彼等層之獨立圖案化及蝕 刻。 如較早所描述填充該等間隙且執行一CMp或回蝕步驟以 產生一大體上平坦表面。接著,如較早所描述,在此平坦 化表面上形成頂部導體400,頂部導體4〇〇包含氮化鈦層 12〇、叙層m及氮化鈦層124。或者,頂部稀有金屬層ιΐ9 可與頂部導體4〇〇—起沈積、圖案化及蝕刻。 在另帛代例巾,可藉由就地推雜而非藉由離子植入來 119762.doc -43 - 1345783 換雜重摻雜層116。 弟二製造貫例.稀有金屬接點,在二極體之下 在圖1 5中所示之替代性貫施例中,阻抗物切換元件 1 在此情況下被夾於稀有金屬層117與119之間)形成於二 極體之下而非其之上。Many variations of the steps and structures described herein are conceivable and may be required. In order to more fully illustrate the invention, some variations will be described; it will be understood that it is not necessary for those skilled in the art to fully detail every change in the scope of the invention to understand how to make and use one still more A wide range of possible changes. Second Manufacturing Example: Rare Metal Contact Above the Dipole Figure 1A shows an embodiment in which the impedance switching material 118 is sandwiched between the rare metal layers 117 and 119. Preferred rare metals are pt ' pd, k and Au. Layers 117 and 119 can be formed from the same rare metal or different metals. When the impedance switching material is lost between the rare metal layers, the pattern 119762.doc -42 - 1345783 must be patterned and the rare metal layers must be engraved to ensure that it does not provide undesirable conduction between adjacent diodes or conductors. path. A memory layer comprising cells (such as their cells) is shown in cross-section in FIG. In a preferred method for forming such a structure, as described earlier, the bottom conductor 2 is formed. The heavily doped germanium layer 112 and the undoped germanium layer 114 are deposited as described earlier. In a preferred embodiment, ion implantation of the top heavily doped layer ι 6 can be performed on the blanket layer prior to patterning and etching the pillar. A rare metal layer 117 is then deposited, followed by deposition of an impedance switching material 118 and a rare metal layer 119. The rare metal layers 117 and 119 may be from about 2 angstroms to about 500 angstroms, preferably about 2 angstroms. The pillars are patterned and etched at this point such that layers 7, 7, 8 and 9 are included in the pillars and are therefore electrically isolated from each other. Depending on the etchant selected, a first etch step can be performed to etch only layers 119, ι8 and η?, and then these layers are used as a hard mask to etch the remainder of the column. Alternatively, the layers can be first patterned and surnamed 1, 2, 114, and 116, filled with gaps therebetween, and exposed to the top of the columns via planarization. The deposition of layers u < 7, 118 and 119 can be followed by independent patterning and etching of the layers. The gaps are filled as described earlier and a CMp or etch back step is performed to create a substantially planar surface. Next, as described earlier, a top conductor 400 is formed on the planarized surface, and the top conductor 4A includes a titanium nitride layer 12, a layer m, and a titanium nitride layer 124. Alternatively, the top rare metal layer ι 9 can be deposited, patterned, and etched with the top conductor 4 . In another example, the heavily doped layer 116 can be replaced by a local push instead of ion implantation by 119762.doc -43 - 1345783. In the alternative embodiment shown in FIG. 15 under the diode, the impedance switching element 1 is sandwiched between the rare metal layers 117 and 119 in this case. Between the two is formed below the diode.

為形成此結構,如較早所描述而形成底部導體2〇〇。在 藉由間隙填充而分離之導體2〇〇的平坦化表面1〇9上沈積層 117、118及119。沈積包括重摻雜層112及未摻雜層114之 錯隹2如較早所福述而圖案化及姓刻層114、112、 、11 8及(視情況)117以形成柱3〇〇。在間隙填充及平坦 化之後,#由離子植入而形成頂冑㈣雜區域i 16。如在 先别實細例中,藉由沈積導電層(例如,氮化欽層、銘 層122及氮化鈦層124)而形成頂部導體4〇〇, 及蝕刻以形成導體4〇〇。 且進行圖案化 °八霄施例中,若需要,則可獨立於層11〇、ι12、To form this structure, the bottom conductor 2〇〇 is formed as described earlier. Layers 117, 118 and 119 are deposited on the planarized surface 1〇9 of the conductor 2〇〇 separated by gap filling. The deposition of the heavily doped layer 112 and the undoped layer 114 is patterned as described earlier and the surnames 114, 112, 117 and (as appropriate) 117 are formed to form the pillars 3'. After the gap filling and planarization, the top (four) impurity region i 16 is formed by ion implantation. As in the prior art, the top conductor 4 is formed by depositing a conductive layer (e.g., a nitride layer, a layer 122, and a titanium nitride layer 124), and etching to form a conductor. And patterning. In the case of the gossip, if necessary, it can be independent of the layers 11〇, ι12,

114及116來圖荦介;5益亡丨a 茱化及蝕刻層117、118及119而非在單—圖 案化步驟中皆對其進行蝕刻。 在剛才所描述之較佳音 &例中,所形成之物為整體三维 記憶體陣列,宜句令.、…^ 八3 . a)一形成於基板上之第一記憶體 層,該第一記憶體層包含. 匕3 .第一複數個記憶體單元,1 該第一記憶體中之每一 '、 ,._ °己隐體早70包含一可逆阻抗物切換 兀件’该7L件包含選自 、 下,,且成之群的材料·· Nix0y'114 and 116 are used to etch and etch layers 117, 118 and 119 instead of etching them in the single-patterning step. In the preferred sound & example described above, the formed object is an overall three-dimensional memory array, preferably sentenced., .... 八.3) a first memory layer formed on the substrate, the first memory The body layer comprises: 匕3. The first plurality of memory cells, 1 each of the first memory, '._° has a hidden body 70 containing a reversible impedance switching element' , 下,, and into the group of materials·· Nix0y'

NbxOy ' Tix〇 % A n 7 x y、AIx〇y、M叫 ' c0x0y、Crx0y、NbxOy ' Tix〇 % A n 7 x y, AIx〇y, M is called ' c0x0y, Crx0y,

VxOy ' Znx〇 ' 7r 〇 r> vt y X y、 X y&A】xNy;&b)整體形成於該第VxOy ' Znx〇 ' 7r 〇 r> vt y X y, X y&A]xNy;&b) is integrally formed in the first

Jl9762.doc -44 - 1345783 —記憶體層上之至少一第二記憶體層。 可想像許多其他替代性實施例。舉例而言,在某些實施 例中’可省略稀有金屬層117及119。在此情況下,阻抗物 切換材料118可與底部導體2〇〇、柱3〇〇一起被圖案化,或 作為一連續層而留在二極體之上或二極體之下。 —剛才所描述之實施例之—優勢為在:極體中使用錯允許 藉由以下步騾而形成非揮發性記憶體單元:形成第一導Jl9762.doc -44 - 1345783 - at least one second memory layer on the memory layer. Many other alternative embodiments are envisioned. For example, the rare metal layers 117 and 119 may be omitted in certain embodiments. In this case, the impedance switching material 118 may be patterned with the bottom conductor 2, column 3, or as a continuous layer above the diode or under the diode. - the advantage of the embodiment just described - the advantage is that the use of the fault in the polar body allows the formation of a non-volatile memory cell by the following steps: forming a first guide

體,形成第二導體;形成可逆阻抗物切換元件;及形成二 極體,其中該二極體及該可逆阻抗物切換元件電性串聯安 置於第一導體與第二導體之間,且其中在第一導體及第二 導體、二極體及切換元件之形成以及二極體之結晶期間, 脈度不超過約500°C。視所使用之沈積及結晶條件(可在較 低溫度下執行較長之結晶退火)而定,溫度可不超過約 350°C。在替代性實施例中,可配置半導體材料之沈積及a second conductor; forming a reversible impedance switching element; and forming a diode, wherein the diode and the reversible impedance switching element are electrically connected in series between the first conductor and the second conductor, and wherein During the formation of the first conductor and the second conductor, the diode and the switching element, and the crystallization of the diode, the pulse does not exceed about 500 °C. Depending on the deposition and crystallization conditions used (longer crystallization annealing can be performed at lower temperatures), the temperature may not exceed about 350 °C. In an alternative embodiment, the deposition of the semiconductor material can be configured and

結晶溫度,使得最大溫度不超過475t、425它、4〇〇它或 375。(: 〇 第四製造實例:石夕化二極體 可較佳形成(具體言之,鄰近於一可提供有利結晶模板 之諸如矽化鈦或矽化鈷之矽化物而結晶的多晶矽)矽之二 極體,從而形成相對較低缺陷、低電阻率多晶矽。 參看圖16a,可如較早所描述而形成底部導體2〇〇。多晶 矽通常需要與銅及鋁不相容之結晶溫度,因此能夠容忍高 溫之材料(諸如鎢)可為用於底部導體2〇〇之較佳導電材料 106°The crystallization temperature is such that the maximum temperature does not exceed 475t, 425 it, 4 〇〇 or 375. (: 〇 Fourth manufacturing example: Shi Xihua diode can be preferably formed (specifically, adjacent to a polycrystalline germanium crystallized by a telluride such as titanium telluride or cobalt telluride which can provide a favorable crystal template) Body, thereby forming a relatively low defect, low resistivity polysilicon. Referring to Figure 16a, the bottom conductor 2 can be formed as described earlier. Polycrystalline germanium generally requires a crystallization temperature that is incompatible with copper and aluminum, and thus can withstand high temperatures The material (such as tungsten) can be a preferred conductive material for the bottom conductor 2〇〇 106°

Il9762.doc -45- 1345783 申清案苐 11/179,423 號"Method 〇f piasma Etching Transition Metals and Their Compounds"(於 2005 年 6 月 11 日申請且以引用 的方式併入本文中)中所描述。圖16a中展示了此時之結 構° 轉至圖16b ’在經蝕刻之層121、Π8及123於蝕刻鈦層 125期間用作硬式光罩之情況下,繼續蝕刻重摻雜p型區域 116、本質區域114、重摻雜n型區域112及障壁層11(),從 而形成柱300。在柱300之上及柱300之間沈積介電材料ι〇8 而填充其間之間隙。一平坦化步驟(例如藉由CMp)移除介 電質108之過度填充物且暴露在藉由填充物1〇8而分離之柱 3〇〇之頂部的可選障壁層123(或若障壁層ι23被省略,則暴 露氧化鎳層118)。圖16b展示了此時之結構。 參看圖1 6c,較佳如在先前實施例中形成頂部導體4〇〇, s亥等頂部導體4〇〇為(例如)氮化鈦之黏著層12〇及鎢之導電 層 130。 一退火步驟導致鈦層125與矽區域116反應而形成矽化 鈦。一隨後較高溫度之退火可結晶矽區域116、114及U2 之矽而形成相對較低缺陷、低電阻率多晶矽之二極體。 在形成此記憶體單元中許多變化係可能的。舉例而言, 若較佳,則可在獨立步驟中而非在形成二極體之同一圖案 化步驟中圖案化及姓刻氧化錄層118及任何相關聯之障壁 層0 第五製造實例:非矽化二極體 注意,在使用二極體之多晶石夕之電阻率狀態來儲存資料 119762.doc -47· 1345783 狀態的一次可程式化實施例中,可較佳形成未鄰近於一促 進形成低缺陷多晶矽之矽化物而結晶的多晶矽二極體。 在此情況下,如上文所描述而形成底部導體2〇〇。如在 先4之矽化實施例中所描述而形成柱3〇〇(除鈦層125被省 - 略之外,其在彼實施例中與二極體之矽反應而形成矽化 - 鈦)。較佳首先圖案化及蝕刻氧化鎳層118及任何相關聯之 障壁層’接著將其用作一硬式光罩來蝕刻矽區域116、U4 φ 及U2以及障壁層110。或者,可首先圖案化及蝕刻二極體 層11 6、114及112、使用介電質填充其間之間隙且在—平 坦化步驟中暴露二極體之頂部、接著沈積氧化鎳層118及 其相關聯之障壁層、接著在一獨立步驟中進行圖案化及蝕 刻。 如在所有實施例中,已形成記憶體單元之第一層。可將 額外記憶體層堆疊於此第一記憶體層上以形成一較佳形成 於半導體基板上之整體三維記憶體陣列。 • 在以下專利及專利申請案中描述了 一次可程式化整體三 維記憶體陣列:Johnson等人之美國專利第6,〇34,882號 "Vertically Stacked Field Programmable Nonvolatile Memory and Method of Fabrication" ; Knall 等人之美國專 . 利第 6,420,215 號"Three Dimensional Memory Array andIl9762.doc -45- 1345783, as described in the application of Methodf piasma Etching Transition Metals and Their Compounds" ("Applied on June 11, 2005 and incorporated herein by reference") . The structure at this time is shown in Fig. 16a. Turning to Fig. 16b', in the case where the etched layers 121, Π8 and 123 are used as a hard mask during the etching of the titanium layer 125, the heavily doped p-type region 116 is continuously etched, The intrinsic region 114, the heavily doped n-type region 112, and the barrier layer 11(), thereby forming the pillars 300. A dielectric material ι 8 is deposited over the pillars 300 and between the pillars 300 to fill the gap therebetween. A planarization step (eg, by CMp) removes overfill of dielectric 108 and exposes optional barrier layer 123 (or barrier layer) on top of post 3〇〇 separated by filler 1〇8 If ι 23 is omitted, the nickel oxide layer 118 is exposed. Figure 16b shows the structure at this time. Referring to Fig. 16c, preferably, the top conductor 4 is formed as in the previous embodiment, and the top conductor 4 is a bonding layer 12 of, for example, titanium nitride and a conductive layer 130 of tungsten. An annealing step causes the titanium layer 125 to react with the tantalum region 116 to form titanium telluride. A subsequent higher temperature anneal crystallizes the germanium regions 116, 114 and U2 to form a relatively low defect, low resistivity polysilicon diode. Many variations in the formation of this memory unit are possible. For example, if preferred, the oxide layer 118 and any associated barrier layer 0 can be patterned and replicated in a separate step rather than in the same patterning step of forming the diode. The deuterated diode is noted. In a programmable embodiment in which the resistivity state of the polycrystal of the dipole is used to store the data 119762.doc -47· 1345783 state, it is preferable to form a non-adjacent formation. A polycrystalline germanium diode crystallized by a low-defect polycrystalline germanium. In this case, the bottom conductor 2〇〇 is formed as described above. The column 3 is formed as described in the first embodiment (except that the titanium layer 125 is omitted - in the other embodiment, it reacts with the enthalpy of the diode to form deuterated - titanium). Preferably, the nickel oxide layer 118 and any associated barrier layers are first patterned and etched and then used as a hard mask to etch the germanium regions 116, U4 φ and U2 and the barrier layer 110. Alternatively, the diode layers 116, 114, and 112 may be first patterned and etched, the gap between them filled with a dielectric, and the top of the diode exposed during the planarization step, followed by deposition of the nickel oxide layer 118 and its associated The barrier layer is then patterned and etched in a separate step. As in all embodiments, the first layer of memory cells has been formed. An additional memory layer can be stacked on the first memory layer to form an overall three-dimensional memory array that is preferably formed on the semiconductor substrate. • A single programmable three-dimensional memory array is described in the following patents and patent applications: US Patent No. 6, 〇34,882 "Vertically Stacked Field Programmable Nonvolatile Memory and Method of Fabrication"; Knall et al. American No. 6,420,215 "Three Dimensional Memory Array and

Method of Fabrication” ;及Vyvoda等人之美國專利申請案 第 10/185,507 號"Electrically Isolated Pillars in ActiveMethod of Fabrication"; and Vyvoda et al., U.S. Patent Application Serial No. 10/185,507 "Electrically Isolated Pillars in Active

Devices”(於2002年6月27曰申請),該等專利及專利申請案 皆被讓渡給本發明之受讓人且以引用的方式併入本文中。 I19762.doc -48- 1345783 整體三維記憶體陣列為其中多個記憶體層形成於諸如晶 圓之單-基板上而不具有介入基板的記憶體陣列。直接在 現有之-或多個層級之層上沈積或生長形成一個記憶體層 之層。相反,已藉由在獨立基板上形成記憶體層且將該等 ' 記憶體層黏著於彼此之頂部來建構堆疊之記憶體,如在 • Leedy 之美國專利第 5,915,167 號&quot;Three dimensi㈣i struct獄中。可在結合以 • 言己憶體層移除’但當最初在獨立基板上形成記憶體層時, 此等記憶體並非為真正之整體三維記憶體陣列。 形成於基板之上的整體三維記憶體陣列包含形成於基板 上之第一高度處的至少一第一記憶體層及一形成於一不同 於边第冋度之第二咼度處的第二記憶體層。可在基板上 形成此夕層陣列中之三個、四個、八個或實際上任何數目 之記憶體層。 已在本文中描述了詳細之製造方法,但可使用形成相同 • 結構之任何其他方法,同時結杲在本發明之範疇内。 上述實施方式僅描述本發明可採用之許多形式中之一些 形式。為此原因,此實施方式係以說明之方式而非以限制 之方式來意指的。僅以下申請專利範圍(包括所有等效物) 意欲界定本發明之範疇。 【圖式簡單說明】 圖1係一可能記憶體單元之透視圖,該記憶體單元具有 一安置於導體之間的阻抗物切換材料。 圖2係根據本發明而形成之可重寫非揮發性記憶體單元 119762.doc -49· 1345783 的透視圖。 圖3係-包含如圖2中所示之彼等單元之單元的記憶體層 之透視圖》 s 圖4係l_V曲線圖,其展示了無方向性阻抗物切換材料之 低-高及高-低.阻抗轉換。 圖5a係I-V曲線圖,其展示了方向性阻抗物切換材料之 低-高阻抗轉換。圖SbSj-V曲線圖,其展示了方向性阻抗 物切換材料之高-低阻抗轉換。 圖6係在本發明之某些實施例中較佳之垂直定向二 極體的透視圖。 圖7係在本發明之其他實施例中較佳之垂直定向齊納二 極體的透視圖。 圖8係如圖6之二極體之ρ·ί·η:極體的j_v曲線圖。 圖9係如圖7之二極體之齊納二極體的ρν曲線圖。 圖10係本發明之一實施例之透視圖,其中阻抗物切換材 料被夾於稀有金屬層之間。 圖11 a係一說明本發明之一實施例之截面圖,其中阻抗 物切換材料未經圖案化及蝕刻。圖llb係本發明之一較佳 實施例之透視圖,其中阻抗物切換材料及頂部導體經圖案 化及敍刻。 圖12係一圖表,其描繪了在本發明之一實施例中記憶體 單元之四個不同資料狀態的電流對電壓。 圖13a-13c係截面圖’其說明了根據本發明之一較佳實 施例而形成的整體三維記憶體陣列之記憶體層之形成中的 M9762.doc -50- 1345783 階段。 圖14係截面圖,其說明了根據本發明 承+ I啊之一較佳實施例而 形成的整體三維記憶體陣列之一部分。 圖15係截面圖,其說明了根據本發明之一不同較佳實施 例而形成的整體三維記憶體陣列之一部分。 圖16a-16c係截面圖’其說明了根據本發明之又一較佳 實施例而形成的整體三維記憶體陣列之記憶體層之形成中 的階段。</ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The memory array is a memory array in which a plurality of memory layers are formed on a single-substrate such as a wafer without an interposer substrate. A layer of a memory layer is deposited or grown directly on a layer of the existing one or more layers. Conversely, a stacked memory has been constructed by forming a memory layer on a separate substrate and attaching the 'memory layers to the top of each other, as in US Patent No. 5,915,167 &quot;Three dimensi (4) i struct prison Can be removed in combination with the layer of memory. But when the memory layer is initially formed on a separate substrate, the memory is not a true overall three-dimensional memory array. The overall three-dimensional memory array is formed on the substrate. And comprising at least a first memory layer formed at a first height on the substrate and a second memory layer formed at a second temperature different from the side of the edge. Forming three, four, eight or virtually any number of memory layers in the array on the substrate. Detailed fabrication methods have been described herein, but any other method of forming the same structure can be used, The present invention is intended to be limited only by the scope of the present invention. The following claims (including all equivalents) are intended to define the scope of the invention. [FIG. 1 is a perspective view of a possible memory unit having an impedance disposed between conductors. Switching the material. Figure 2 is a perspective view of a rewritable non-volatile memory cell 119762.doc -49· 1345783 formed in accordance with the present invention. Figure 3 is a block containing cells of such cells as shown in Figure 2. Perspective of the memory layer s Figure 4 is a l_V graph showing the low-high and high-low impedance transitions of the non-directional impedance switching material. Figure 5a is an IV graph, The low-to-high impedance conversion of the directional impedance switching material is shown. Figure SbSj-V plot showing the high-low impedance conversion of the directional impedance switching material. Figure 6 is in some embodiments of the invention Fig. 7 is a perspective view of a preferred vertically oriented Zener diode in another embodiment of the present invention. Fig. 8 is a ρ·ί· of the diode of Fig. 6. η: j_v graph of the polar body. Fig. 9 is a ρν graph of the Zener diode of the diode of Fig. 7. Fig. 10 is a perspective view of an embodiment of the present invention, in which the impedance switching material is clamped Between the rare metal layers. Figure 11a is a cross-sectional view illustrating an embodiment of the present invention in which the impedance switching material is unpatterned and etched. Figure 11b is a perspective view of a preferred embodiment of the present invention in which the impedance switching material and the top conductor are patterned and stenciled. Figure 12 is a diagram depicting current versus voltage for four different data states of a memory cell in one embodiment of the invention. Figures 13a-13c are cross-sectional views showing the M9762.doc -50-1345783 stage in the formation of a memory layer of an overall three-dimensional memory array formed in accordance with a preferred embodiment of the present invention. Figure 14 is a cross-sectional view illustrating a portion of an overall three-dimensional memory array formed in accordance with one preferred embodiment of the present invention. Figure 15 is a cross-sectional view illustrating a portion of an overall three-dimensional memory array formed in accordance with various preferred embodiments of the present invention. Figures 16a-16c are cross-sectional views' illustrating stages in the formation of a memory layer of an overall three-dimensional memory array formed in accordance with yet another preferred embodiment of the present invention.

【主要元件符號說明】 2 阻抗物切換記憶體元件 4 頂部導體 6 底部導體 12 底部重摻雜區域 14 中間本質區域 16 頂部重摻雜區域[Main component symbol description] 2 Impedance switching memory component 4 Top conductor 6 Bottom conductor 12 Bottom heavily doped region 14 Intermediate nature region 16 Top heavily doped region

30 二極體 100 基板 102 絕緣層 104 黏著層/氮化鈦層 106 導電材料/鎢層/導電層/鋁層 108 介電材料/介電填充物/介電質 109 平坦表面 110 障壁層/氮化鈦層 112 鍺層/底部重摻雜區域/二極體層/重摻雜n型區域 119762.doc 1345783 114 錯層/二極體層/本質區域 116 頂部重摻雜區域/二極體層/重摻雜p型區域 117 稀有金屬層 118 電阻率切換元件/阻抗物切換元件/氧化鎳層 119 稀有金屬層 120 氮化鈦黏著層/氮化鈦障壁層 121 可選障壁層/導電障壁材料層30 Diode 100 Substrate 102 Insulation layer 104 Adhesive layer / Titanium nitride layer 106 Conductive material / Tungsten layer / Conductive layer / Aluminum layer 108 Dielectric material / Dielectric filler / Dielectric 109 Flat surface 110 Barrier layer / Nitrogen Titanium layer 112 锗 layer / bottom heavily doped region / diode layer / heavily doped n-type region 119762.doc 1345783 114 split layer / diode layer / intrinsic region 116 top heavily doped region / diode layer / heavy doping Hetero-p-type region 117 Rare metal layer 118 Resistivity switching element/impedance switching element/nickel oxide layer 119 Rare metal layer 120 Titanium nitride adhesion layer/titanium nitride barrier layer 121 Optional barrier layer/conductive barrier material layer

122 鋁層 123 可選頂部障壁層 124 頂部氮化鈦障壁層 125 鈦層 130 鎢導電層 200 導電軌/底部導體 300 柱 400 頂部導體122 aluminum layer 123 optional top barrier layer 124 top titanium nitride barrier layer 125 titanium layer 130 tungsten conductive layer 200 conductive rail / bottom conductor 300 column 400 top conductor

A 區域 B 區域 D 區域 V, 第一電壓 v2 電壓 v3 電壓 v4 電壓 119762.doc •52-A area B area D area V, first voltage v2 voltage v3 voltage v4 voltage 119762.doc • 52-

Claims (1)

I34578J 〇96111498號專利申請案I34578J 〇96111498 Patent Application - 中文申請專利範圍替換本(99年11月) v '十、申請專利範圍: 1 · 一種整體三維記憶體陣列,其包含: a) —形成於一基板上之第一記憶體層,該第一記憶體層 包含: 第一複數個記憶體單元,其中該第一記憶體層中之每 一記憶體單元包含一阻抗物切換元件,該阻抗物切換 元件包含一電阻率切換金屬氧化物或氮化物化合物之 一層,該金屬氧化物或氮化物化合物僅具有一種金屬; 及 b)整體形成於該第一記憶體層上之至少一第二記憶體 層, /、中。亥等第一圮憶體單元能夠儲存複數個可偵測資料 狀態中之一者’其中該複數個可偵測資料狀態包括至少 三個資料狀態。 2.如凊求項i之整體二維記憶體陣列,其中該複數個可偵 測資料狀態包括至少四個資料狀離。 如清求項1之整體二维ip ,(¾ Μ Λ 本。己隱體陣列,其中該金屬氧化物 或氮化物選自由以下組成 _ ^ 取&lt;群:NixOy、NbxOy、Tix〇y、 x〇y、CrxOy、VxOy、ZnxOy、 3. Hfx〇y ' AlxOy &gt; Mgx〇y . c〇 〇 4. Zrx〇y、BxNy及 AlxNy。 如請求項1之整體三維記憶體陣 曰曰 矽 列,其中該基板包含單 5. 如請求項1之整體三維記 層進一步包含第一複數個 憶體陣列,其中該第一記憶體 二極體,其中該第一記憶體層 119762-991125.doc 1345783 中之每一記憶體單元包含該等第一二極體中之一者。 6. 如請求項5之整體三維記憶體陣列,其中,在該第一記 憶體層中之每一記憶體單亓φ,蟑-技躺^ ,,, 平7〇甲,—極體及該阻抗物切 換元件串聯配置。 7. 如請求項6之整體三維記憶體陣列,其中該第—記憶體 層進一步包含: 上共面之導體;及 在-不同於該第-方向之第二方向上延伸之第二複數 個大體上平行、大體上共 該等第-導體之上, &quot;第二導體位於 其中在該第一記憶體層中之每一記憶體單元中, 一::體及該阻抗物切換元件安置於該等第一導體二 -者與該等第二導體中之一者之間。 導體中之 8.如凊求項7之整體三維記憶體陣列,其中該 層進-步包含第一複數個柱 &lt; °憶體 於該等第-導體中之一者盘,楚 f一柱垂直安置 导體中之者與该等第二導體中之-者之 其中δ玄等第—導體 其中5亥專苐一導體 9. 如請求項7之整體三維記憶體陣列, 或該等第二導體包含鎢。 10. 如請求項7之整體三維記憶體_, 或該等第二導體包含鋁。 11.如 體二記憶體陣列’其-等第-二極 119762-991125.doc -2- 如明求項11之整體三維記憶體陣列,其中該等第一二極 體包含鍺、矽或者鍺及/或矽之一合金。 13·如請求項12之整體三維記憶體陣列,其中該等第一二極 體基本上由鍺或-半導體合金組成’該半導體合金為至 少80原子百分比之鍺。 14 種用於程式化及感測一記憶體陣列中之 的方法™憶體單元包含:一金屬氧化 =化合物之—電阻率切換層,該金屬氧化物或氮化物化 合物包括恰好一種金屬;及一個二極體,其包含多晶半 導體材料’該電阻率切換層及該二極體電性串聯配:, 該方法包含: 〇將第一程式化脈衝施加至該記憶體單元,其争該第 一程式化脈衝: a) 可偵測地改變該電阻率切換層之一第一電阻率狀 態;或 b) 可偵測地改變該多日日日半導體材料之—第二電阻率狀 態,或 〇可偵測地改變該電阻率切換層之該第一電阻率狀態 且可偵測地改變該多晶半導體材料之該第二電阻率狀 態;及 電阻率切換層之該第一電 多晶半導體材料之該第二 且該記憶體單元經調適以 〇 ⑴讀取該記憶體單元,其中該 阻率狀態用於儲存資料且該 電阻率狀態用於儲存資料, 儲存三個或更多個資料狀態 119762-991125.doc 1345783 .15.如請求項14之方法’其中該記憶體單元經調適以儲存四 個資料狀態。 、 16.如請求項14之方法’其中該多晶半導體材料為多晶矽。 17·如請求項14之方法,其中該二極體為一接面二極體。 1 8.如清求項14之方法’其中該金屬氧化物或氮化物化合物 選自由以下組成之群:NixOy、NbxOy、Tix〇y、HfxOy、 Alx〇y、Mgx〇y、C°x〇y、CrxOy、VxOy、Znx〇y、ZrxOy、 BxNy及 AlxNy。 19.如請求項18之方法,其中該金屬氧化物或氮化物化合物 選自由以下組成之群:NiO、Nb205、Ti02、Hf02、 Al2〇3、MgO、c〇〇、Cr02、VO、ZnO、ZrO、BN 及 AIN。 119762-991125.doc -4-- Chinese patent application scope replacement (November 1999) v '10. Patent application scope: 1 · An overall three-dimensional memory array comprising: a) a first memory layer formed on a substrate, the first The memory layer includes: a first plurality of memory cells, wherein each of the first memory layers includes an impedance switching element, and the impedance switching element includes a resistivity switching metal oxide or a nitride compound a layer, the metal oxide or nitride compound having only one metal; and b) at least one second memory layer, /, formed integrally on the first memory layer. The first memory unit such as Hai can store one of a plurality of detectable data states, wherein the plurality of detectable data states includes at least three data states. 2. The overall two-dimensional memory array of claim i, wherein the plurality of detectable data states comprises at least four data profiles. For example, the overall two-dimensional ip of the item 1 is (3⁄4 Λ Λ. The hidden body array, wherein the metal oxide or nitride is selected from the group consisting of _ ^ &lt; group: NixOy, NbxOy, Tix〇y, x 〇y, CrxOy, VxOy, ZnxOy, 3. Hfx〇y 'AlxOy &gt; Mgx〇y . c〇〇4. Zrx〇y, BxNy and AlxNy. The overall three-dimensional memory array of claim 1 Wherein the substrate comprises a single 5. The overall three-dimensional layer of claim 1 further comprises a first plurality of memory arrays, wherein the first memory diode, wherein the first memory layer is 119762-991125.doc 1345783 Each of the memory cells includes one of the first diodes. 6. The overall three-dimensional memory array of claim 5, wherein each memory in the first memory layer is 亓φ, 蟑-Technical lying ^ , ,, 平 7甲甲, - The polar body and the impedance switching element are arranged in series. 7. The overall three-dimensional memory array of claim 6, wherein the first memory layer further comprises: a coplanar a conductor; and a second extending in a second direction different from the first direction a plurality of substantially parallel, substantially total of the first conductors, &quot; a second conductor located in each of the memory cells in the first memory layer, a :: body and the impedance switching component placement Between the first conductors and one of the second conductors. 8. The overall three-dimensional memory array of claim 7, wherein the layer further comprises a first plurality of a column &lt; ° memory in one of the first-conductors, a member of the vertical placement conductor and a second of the second conductors Dedicated to a conductor 9. The overall three-dimensional memory array of claim 7, or the second conductor comprises tungsten. 10. The overall three-dimensional memory _ of claim 7 or the second conductor comprises aluminum. An integral three-dimensional memory array, such as the first two diodes, wherein the first two polar bodies comprise 锗, 矽 or 锗 and / Or one of the alloys. 13. The overall three-dimensional memory array of claim 12, wherein the The diode consists essentially of a tantalum or a semiconductor alloy. The semiconductor alloy is at least 80 atomic percent. 14 methods for stylizing and sensing a memory array. The TM memory unit comprises: a metal oxide. = compound-resistivity switching layer, the metal oxide or nitride compound comprises exactly one metal; and a diode comprising a polycrystalline semiconductor material 'the resistivity switching layer and the diode are electrically connected in series: The method includes: applying a first stylized pulse to the memory unit that competes for the first stylized pulse: a) detectably changing a first resistivity state of the resistivity switching layer; or b Detectably changing a second resistivity state of the multi-day solar semiconductor material, or detectably changing the first resistivity state of the resistivity switching layer and detectably changing the polycrystalline semiconductor The second resistivity state of the material; and the second of the first electrically polycrystalline semiconductor material of the resistivity switching layer and the memory cell is adapted to read the memory bank by 〇(1) Wherein the resistivity state is used to store data and the resistivity state is used to store data, and three or more data states are stored 119762-991125.doc 1345783.15. The method of claim 14 wherein the memory unit Adapted to store four data states. 16. The method of claim 14 wherein the polycrystalline semiconductor material is polycrystalline germanium. 17. The method of claim 14, wherein the diode is a junction diode. 1 8. The method of claim 14, wherein the metal oxide or nitride compound is selected from the group consisting of NixOy, NbxOy, Tix〇y, HfxOy, Alx〇y, Mgx〇y, C°x〇y , CrxOy, VxOy, Znx〇y, ZrxOy, BxNy, and AlxNy. 19. The method of claim 18, wherein the metal oxide or nitride compound is selected from the group consisting of NiO, Nb205, Ti02, Hf02, Al2〇3, MgO, c〇〇, Cr02, VO, ZnO, ZrO , BN and AIN. 119762-991125.doc -4-
TW96111498A 2006-03-31 2007-03-30 Nonvolatile memory cells, monolithic three dimensional memory arrays and methods for programming such memory arrays TWI345783B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/395,995 US7812404B2 (en) 2005-05-09 2006-03-31 Nonvolatile memory cell comprising a diode and a resistance-switching material

Publications (2)

Publication Number Publication Date
TW200805376A TW200805376A (en) 2008-01-16
TWI345783B true TWI345783B (en) 2011-07-21

Family

ID=44786190

Family Applications (2)

Application Number Title Priority Date Filing Date
TW099141295A TWI462099B (en) 2006-03-31 2007-03-30 Nonvolatile memory cells, monolithic three dimensional memory arrays and methods for programming such memory arrays
TW96111498A TWI345783B (en) 2006-03-31 2007-03-30 Nonvolatile memory cells, monolithic three dimensional memory arrays and methods for programming such memory arrays

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW099141295A TWI462099B (en) 2006-03-31 2007-03-30 Nonvolatile memory cells, monolithic three dimensional memory arrays and methods for programming such memory arrays

Country Status (1)

Country Link
TW (2) TWI462099B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8437174B2 (en) 2010-02-15 2013-05-07 Micron Technology, Inc. Memcapacitor devices, field effect transistor devices, non-volatile memory arrays, and methods of programming
US8416609B2 (en) 2010-02-15 2013-04-09 Micron Technology, Inc. Cross-point memory cells, non-volatile memory arrays, methods of reading a memory cell, methods of programming a memory cell, methods of writing to and reading from a memory cell, and computer systems
US8634224B2 (en) 2010-08-12 2014-01-21 Micron Technology, Inc. Memory cells, non-volatile memory arrays, methods of operating memory cells, methods of writing to and reading from a memory cell, and methods of programming a memory cell
US11862215B2 (en) 2021-08-27 2024-01-02 Micron Technology, Inc. Access line having a resistive layer for memory cell access

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6549447B1 (en) * 2001-10-31 2003-04-15 Peter Fricke Memory cell structure
US20030189851A1 (en) * 2002-04-09 2003-10-09 Brandenberger Sarah M. Non-volatile, multi-level memory device
KR100773537B1 (en) * 2003-06-03 2007-11-07 삼성전자주식회사 Nonvolatile memory device composing one switching device and one resistant material and method of manufacturing the same
CN100407440C (en) * 2003-07-18 2008-07-30 日本电气株式会社 Switching element, switching element driving method, rewritable logic integrated circuit and memory element
JPWO2005041303A1 (en) * 2003-10-23 2007-04-26 松下電器産業株式会社 RESISTANCE CHANGE ELEMENT, ITS MANUFACTURING METHOD, MEMORY INCLUDING THE ELEMENT, AND DRIVE METHOD FOR THE MEMORY

Also Published As

Publication number Publication date
TW200805376A (en) 2008-01-16
TW201142844A (en) 2011-12-01
TWI462099B (en) 2014-11-21

Similar Documents

Publication Publication Date Title
US8687410B2 (en) Nonvolatile memory cell comprising a diode and a resistance-switching material
TWI309081B (en) Method for using a memory cell comprising switchable semiconductor memory element with trimmable resistance
JP5735271B2 (en) Large array of upward PIN diodes with large and uniform current and method of forming the same
TWI323463B (en) Reversible resistivity-switching metal oxide or nitride layer with added metal
US7808810B2 (en) Multilevel nonvolatile memory cell comprising a resistivity-switching oxide or nitride and an antifuse
TWI380434B (en) Heterojunction device comprising a semiconductor and a resistivity-switching oxide or nitride
TWI331769B (en) Deposited semiconductor structure to minimize n-type dopant diffusion and method of making
US20060250836A1 (en) Rewriteable memory cell comprising a diode and a resistance-switching material
US20070007579A1 (en) Memory cell comprising a thin film three-terminal switching device having a metal source and /or drain region
TW200907960A (en) Programming methods to increase window for reverse write 3D cell
TW201138088A (en) Punch-through diode steering element
JP2010541253A (en) Vertical diode type memory cell with low programming voltage and method of forming the same
TWI345783B (en) Nonvolatile memory cells, monolithic three dimensional memory arrays and methods for programming such memory arrays
KR20090089320A (en) P-i-n diode crystallized adjacent to a silicide in series with a dielectric antifuse and methods of forming the same
TW200917255A (en) High forward current diodes for reverse write 3D cell and method of making thereof
TW200908205A (en) 3D R/W cell with reduced reverse leakage and method of making thereof
TWI424535B (en) P-i-n diode crystallized adjacent to a silicide in series with a dielectric antifuse and methods of forming the same
TW200915580A (en) Nonvolatile memory device containing carbon or nitrogen doped diode and method of making thereof
TW200908296A (en) Polycrystalline thin film bipolar transistors and methods of making the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees