TWI345461B - Q-space sampling method and diffusion spectrum imaging method employing the same - Google Patents

Q-space sampling method and diffusion spectrum imaging method employing the same Download PDF

Info

Publication number
TWI345461B
TWI345461B TW96141682A TW96141682A TWI345461B TW I345461 B TWI345461 B TW I345461B TW 96141682 A TW96141682 A TW 96141682A TW 96141682 A TW96141682 A TW 96141682A TW I345461 B TWI345461 B TW I345461B
Authority
TW
Taiwan
Prior art keywords
sampling
space
lattice
spherical
rectangular
Prior art date
Application number
TW96141682A
Other languages
Chinese (zh)
Other versions
TW200820943A (en
Inventor
Wen Yang Chiang
Wen Yih Isaac Tseng
Ming Hwei Perng
Original Assignee
Wen Yang Chiang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wen Yang Chiang filed Critical Wen Yang Chiang
Priority to TW96141682A priority Critical patent/TWI345461B/en
Publication of TW200820943A publication Critical patent/TW200820943A/en
Application granted granted Critical
Publication of TWI345461B publication Critical patent/TWI345461B/en

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

1345461 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種磁振技術,特別是指一種Q空間 取樣方法及使用該取樣方法的擴散頻譜造影方法。 【先前技術】 擴散頻譜造影(diffusion spectrum imaging,以下簡稱 DSI)是一種磁振(magnetic resonance,MR)技術的延伸 應用,其可非侵入性地取得組織纖維的資訊。1345461 IX. Description of the Invention: [Technical Field] The present invention relates to a magnetic vibration technique, and more particularly to a Q-space sampling method and a diffusion spectrum contrast method using the same. [Prior Art] Diffusion spectrum imaging (DSI) is an extended application of magnetic resonance (MR) technology, which can non-invasively obtain information on tissue fibers.

習知的DSI技術主要包含以下步驟: (a) 第一階段取樣:使用一連_射頻(RF)脈衝和磁場梯 度,組織的空間資訊可透過空間編碼程序被區分,此第一 階段取樣是視為結構影像(structural image )取樣。 (b) 第二階段取樣:除了空間編碼外,也施加擴散加權 磁場梯度(以下簡稱擴散梯度)。因為此階段可加入水分子移 動的資訊到成像出的組織中,被施加的擴散梯度被視為擴 散編碼。在這兩階段編碼下,結構影像可被擴散加權對比 增強,且此類影像被稱為擴散加權影像(diffusion weighted image,以下簡稱DWI)。在不同擴散梯度下,DWIs的對比 會不同。此第二階段取樣也被稱為Q空間取樣。 (c) 進行信號處理:因為不同方向和強度的擴散梯度代 表三維Q空間中的不同座標,有相對應空間位置的不同 DWIs被排列於一 Q空間中(對應於原始設計的Q空間位置) 。在排列所有DWIs於Q空間後,對這些Q空間的取樣資 料進行反傅立葉轉換,以重建出水分子運動的機率密度函 5 Ι34546Ϊ 數(probability density function,PDF ),且進一步對此機率 密度函數做逕向積分(radial integration )得到方向分布函 數(orientation distribution function),而組織纖維的資訊能 夠透過分析這些方向分布函數而獲得。 而DSI技術的-大缺點在於取樣速度太慢。依據文獻 Yixxo 專尺於 Proceeding of the 13th Annual Meeting of Miami Beach,Florida, USA, 2005 中所提出的“UsingThe conventional DSI technology mainly includes the following steps: (a) First stage sampling: using a series of radio frequency (RF) pulses and magnetic field gradients, the spatial information of the organization can be distinguished by a spatial coding procedure. This first stage sampling is considered Sampling of the structural image. (b) Second stage sampling: In addition to spatial coding, a diffusion-weighted magnetic field gradient (hereinafter referred to as a diffusion gradient) is also applied. Since information on the movement of water molecules can be added to the imaged tissue at this stage, the applied diffusion gradient is considered to be a diffusion code. Under these two stages of coding, structural images can be enhanced by diffusion-weighted contrast, and such images are called diffusion weighted images (DWI). The contrast of DWIs will be different under different diffusion gradients. This second stage sampling is also referred to as Q space sampling. (c) Signal processing: Since the diffusion gradients of different directions and intensities represent different coordinates in the three-dimensional Q space, different DWIs with corresponding spatial positions are arranged in a Q space (corresponding to the Q-space position of the original design). After arranging all the DWIs in the Q space, the inverse Fourier transform is performed on the sampling data of these Q spaces to reconstruct the probability density function (PDF) of the water molecule motion, and further the probability density function is performed. The orientation distribution function is obtained for the radial integration, and the information of the tissue fibers can be obtained by analyzing these direction distribution functions. The big drawback of DSI technology is that the sampling speed is too slow. According to the literature Yixxo specializes in "Proseding of the 13th Annual Meeting of Miami Beach, Florida, USA, 2005"

Track Similarity to Determine Optimum Sequence Parameters for Diffusion Spectrum Imaging”,其中指出 DSI 技術於臨床 上的最佳參數是設定515個擴散編碼梯度,且設定Q空間 的取樣範圍之半徑b最大為bmax=6000 s/mm2。但在此最佳 參數設定下,需要花上1小時的時間來獲得Q空間中的取 樣資料。而需要花這麼長的時間對於臨床應用是非常不利 的。Track Similarity to Determine Optimum Sequence Parameters for Diffusion Spectrum Imaging", which indicates that the best clinical parameter for DSI technology is to set 515 diffusion coding gradients, and set the radius b of the sampling range of Q space to be maximum bmax=6000 s/mm2 However, under this optimal parameter setting, it takes 1 hour to obtain the sampling data in the Q space, and it takes a long time to be very disadvantageous for clinical application.

習知改善DSI取樣速度的方法一般分為兩種:一種是 改善第一階段的取樣速度,即:在影像空間下執行。而另 一種是改善第二階段的取樣速度,即:在Q空間下執行。 習知在影像空間下改良第一階段取樣速度的方法可參 考 K. Arfanakis 專九於 Magnetic Resonance in Medicine, vol.53, (3),pp.675-83,March, 2005 中提出的 “k-space undersamping in PROPELLER imaging”,此方法主要是在螺 旋槳磁振影像(PROPELLER MRI)中使用k空間(k-space)低 取樣(undersampling),故因此在取樣DWIs時,能減少百分 之五十的取樣時間。然而此習知方法卻必須進行額外的互 6 1345461 相定位(co-registration ) 〇 習知另一在影像空間下改良第一階段取樣速度的方法 可參考 D.A. Feinberg 等人於 Magweii'cConventional methods for improving the sampling speed of DSI are generally divided into two types: one is to improve the sampling speed of the first stage, that is, to perform in the image space. The other is to improve the sampling speed of the second stage, that is, to execute in the Q space. The method for improving the sampling speed of the first stage in the image space can be referred to K. Arfanakis, pp. 675, (3), pp. 675-83, March, 2005. Space undersamping in PROPELLER imaging", this method is mainly used in the propeller magnetic image (PROPELLER MRI) using k-space undersampling, so it can reduce the 50% when sampling DWIs Sampling time. However, this conventional method requires an additional mutual cross-linking (co-registration). 习 Another method for improving the sampling speed of the first stage in the image space can be referred to D.A. Feinberg et al. at Magweii'c

vol.48, (1),ρρ.1-5,2002 中提出的“Simultaneous echo refocusing in EPI”及 T. G. Reese 等人於 /Vocee山’wg 〇/ the 14th Annual Meeting of ISMRM, Seattle, Washington, 2006 提出的 “Halving imaging time of whole brain diffusion spectrum imaging (DSI) using simultaneous echo refocusing (SER) ΕΡΓ,此方法使用同時迴聲聚焦法(simultaneous echo refocusing,SER ),因此能夠在一次的回波序列(echo train)中取得兩張以上的DWIs,使得資料擷取時間得以減少 。然而此方法會降低所取得之DWIs的影像品質。 習知另一在影像空間下改良第一階段取樣速度的方法 可參考 T. Theussl 於尸rocee山.wg <?/ ί/zeVol.48, (1), ρρ.1-5, 2002, "Simultaneous echo refocusing in EPI" and TG Reese et al. /Vocee Hill 'wg 〇/ the 14th Annual Meeting of ISMRM, Seattle, Washington, 2006 The proposed "Halving imaging time of whole brain diffusion spectrum imaging (DSI) using simultaneous echo refocusing (SER) ΕΡΓ, this method uses simultaneous echo refocusing (SER), so it can be in one echo sequence (echo train) In the case of obtaining more than two DWIs, the data acquisition time is reduced. However, this method can reduce the image quality of the obtained DWIs. Another method for improving the sampling speed of the first stage in the image space can be referred to T. Theussl on the corpse rocee hill.wg <?/ ί/ze

San Diego, CA,USA,ρρ.91-98,2001.中提出“ Optimal Regular Volume Sampling” ,此文獻中指出在影像 空間下,以體心堆積(body-center cubic)取樣晶格或面心堆 積(face-center cubic)取樣晶格來對電腦斷層掃描(Computed Tomography,CT)或磁振影像(magnetic resonance image > MRI )進行取樣,可較矩形取樣晶格(又稱笛卡兒取樣晶格 (Cartesian sampling lattice))更能避免結構影像的覆疊 (aliasing),故可在較少的取樣數目下,得到近似的影像品 質,因而增加了取樣效率。而矩形取樣晶格、體心堆積取 樣晶格和面心堆積取樣晶格及各自的生成矩陣(generating 7 1345461 matrix)可參考圖1。 但以上所提的習知此三種方法純择在結構影像空間下 執行改良’因此只能改4 DSI技術的第,階段取樣速度, 而並沒有對Q空間下執行的第二階段取樣速度進仃改良。 且值付注意的是,在現有快速取像技術下第L 4又的’·» 構影像取樣只佔了 DSI取樣過程中的,小部分時間,因此 加快DSI之取樣速度是取決於第二階段的取樣速度,故習 知此三種方法仍無法有效改善DSI的取樣速度。 然而藉由擴散梯度磁場製造DWI的對比度所需要的時 間受限於物理上水分子的擴散速度,造成第二階段Q空間 取樣速度不易提昇。習知在Q空間下改良第二階段取樣速 度的方法有:在固定的Q空間取樣範圍内減少Q空間的取 樣數目(L-W. Kuo 専尺於 Proceeding 〇f the 13th AnnualSan Diego, CA, USA, ρρ.91-98, 2001. proposed "Optimal Regular Volume Sampling", which states that in the image space, the body-center cubic is sampled by the body-center cubic. (face-center cubic) sampling lattice to sample Computed Tomography (CT) or magnetic resonance image (MRI), which can be compared with rectangular sampling lattice (also known as Cartesian sampling lattice) (Cartesian sampling lattice)) can avoid the aliasing of structural images, so that the approximate image quality can be obtained with a small number of samples, thus increasing the sampling efficiency. The rectangular sampling lattice, the body-centered stacked lattice and the centroid stacked sampling lattice and the respective generation matrix (generating 7 1345461 matrix) can be referred to FIG. However, the above-mentioned three methods are purely selected to perform the improvement in the structural image space. Therefore, only the first stage sampling speed of the 4 DSI technique can be changed, and the second stage sampling speed performed under the Q space is not entered. Improvement. It is worth noting that the image sampling of the L4 in the existing fast imaging technology only accounts for a small part of the DSI sampling process, so the speed of sampling the DSI is accelerated depending on the second stage. The sampling speed, it is known that these three methods still can not effectively improve the sampling speed of DSI. However, the time required to create the contrast of the DWI by the diffusion gradient magnetic field is limited by the diffusion rate of the physical water molecules, which makes the second-stage Q-space sampling speed difficult to increase. It is conventional to improve the sampling speed of the second stage in the Q space by reducing the number of samples of the Q space in a fixed Q-space sampling range (L-W. Kuo 専 feet in Proceeding 〇f the 13th Annual

Miami Beach, Florida, USA, 2005 中所提 出的“Using Track Similarity to Determine Optimum Sequence Parameters for Diffusion Spectrum Imaging”)。但習知方法 在Q空間下進行取樣都是以矩形取樣晶格為基準,並沒有 最佳化取樣晶格,因此容易因為覆疊(aliasing)而產生信號 辨識錯誤的情形,故在提昇取樣速度上提昇有限。 【發明内容】 因此,本發明之一目的,是提供一種提高取樣效率的 擴散頻譜造影方法。 於是,本發明擴散頻譜造影方法是包含以下步驟: (A)在Q空間下’以規則-非矩形取樣晶格得到q空間 8 1345461 中複數個取樣資料之位置,並據以得到一系列擴散加權磁 振影像;及 (B)將步驟(A)的該系列擴散加權磁振影像依照規則_非 矩形取樣晶格排列於Q空間中,並進行處理以得到機率密 度函數; 其中’步驟(A)包括以下子步驟: (A-1)接收使用者在Q空間中設定的一所需取樣數目及 一取樣區域之範圍; (A-2)在規則-非矩形取樣晶格下,以疊代方式求得當一 實際取樣數目收斂至該所需取樣數目時的取樣間距;及 (A-3)基於該取樣間距及該規則_非矩形取樣晶格得到 Q空間中該等取樣資料之位置。"Using Track Similarity to Determine Optimum Sequence Parameters for Diffusion Spectrum Imaging" as proposed in Miami Beach, Florida, USA, 2005. However, the conventional method of sampling in the Q space is based on the rectangular sampling lattice, and there is no optimized sampling lattice, so it is easy to cause signal identification error due to aliasing, so the sampling speed is increased. Limited promotion. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a diffusion spectrum contrast method that improves sampling efficiency. Thus, the diffusion spectrum imaging method of the present invention comprises the following steps: (A) obtaining a position of a plurality of sampling data in the q-space 8 1345461 by a regular-non-rectangular sampling lattice in the Q space, and obtaining a series of diffusion weights accordingly Magnetic resonance image; and (B) arranging the series of diffusion-weighted magnetic resonance images of step (A) in a Q space according to a regular_non-rectangular sampling lattice, and processing to obtain a probability density function; wherein 'step (A) The following sub-steps are included: (A-1) receiving a required number of samples set by the user in the Q space and a range of the sampling area; (A-2) in a regular-non-rectangular sampling lattice, in an iterative manner Finding a sampling interval when an actual number of samples converges to the required number of samples; and (A-3) obtaining a position of the sampled data in the Q space based on the sampling interval and the regular_non-rectangular sampling lattice.

而本發明之另一目的,是提供一種提高取樣效率的Q 空間取樣方法。 而本發明的Q空間取樣方法是包含以下步驟: (a) 接收使用者在Q空間中設定的一所需取樣數目及一 取樣區域之範圍; (b) 在規則-非矩形取樣晶格下,以疊代方式求得當一實 際取樣數目收斂至該所需取樣數目時的取樣間距;及 (c) 基於該取樣間距及該規則_非矩形取樣晶格得到卩 空間中該等取樣資料之位置。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之二個較佳實施例的詳細說明中,將可 9 1345461 清楚的呈現。 在本發明被詳細描述之前,要注意的是’在以下的說 明内容中,類似的流程是以相同的編號來表示。 第一較佳實施例 參閱圖2,本發明擴散頻譜造影方法之第一較佳實施例 包含以下步驟: 步驟1是在Q空間下,以規則-非矩形(regular non-rectangular)取樣晶格得到Q空間中的取樣資料之位置,並 據以得到一系列DWIs^而「規則」-非矩形取樣晶格的「規 則」意指晶格上之取樣點的位置可以用整數週期的生成矩 陣來表示。此生成矩陣為一方陣,其行向量(c〇lUmn vector) 表示取樣點在三維空間中的重複方向和距離’而此向量的 長度稱為基本單位取樣間距(unit sanipHng jntervai)e「非 矩形」意指非笛卡兒取樣晶格。本實施例的規則_非矩形取 樣晶格包含體心堆積取樣晶格及面心堆積取樣晶格,但不 以這些為限。 攸…、現則-非矩形取樣日日> 排列於Q空間中,並進行反傅立葉轉換以得到水分子』 動的機率密度函數。 步雜3是對步驟2得到的機率密度函數作徑 (radial integration),以得到方向分布函數。 參閱圖3,其中,值得注音的β 值侍立忍的疋,步驟丨 叫4的取樣方法,且步驟!包括的子 括子^ 子步驟:接收使用者在 . Q工間中設定的-所需取樣 10 1345461 數目和一取樣區域之範圍。而在本實施例中,該取 樣區域是一球形取樣區域,故在此步驟中是接收使用者設 定的該球形取樣區域的半徑。Yet another object of the present invention is to provide a Q-space sampling method that improves sampling efficiency. The Q spatial sampling method of the present invention comprises the following steps: (a) receiving a required number of samples set by the user in the Q space and a range of the sampling area; (b) under the regular-non-rectangular sampling lattice, And determining, in an iterative manner, a sampling interval when an actual number of samples converges to the required number of samples; and (c) obtaining a position of the sampled data in the 卩 space based on the sampling interval and the regular _ non-rectangular sampling lattice. [Embodiment] The foregoing and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments of the accompanying drawings. Before the present invention is described in detail, it is to be noted that in the following description, similar processes are denoted by the same reference numerals. The first preferred embodiment of the present invention comprises the following steps: Step 1 is to obtain a regular non-rectangular sampling lattice in the Q space. The position of the sampled data in the Q space, and according to the series of DWIs^ and the "rule" of the "rule"-non-rectangular sampling lattice means that the position of the sampling point on the crystal lattice can be represented by the generator matrix of the integer period . The generator matrix is a matrix, and its row vector (c〇lUmn vector) represents the repeating direction and distance of the sample point in three-dimensional space. The length of this vector is called the unit unit sampling interval (unit sanipHng jntervai) e "non-rectangular" Means non-Cartesian sampling of the crystal lattice. The rule_non-rectangular sampling lattice of this embodiment includes a body-centered stacked sampling lattice and a centroid stacked sampling lattice, but is not limited thereto.攸..., now-non-rectangular sampling day &day; arranged in the Q space and performing inverse Fourier transform to obtain the probability density function of the water molecule. Step 3 is a radial integration of the probability density function obtained in step 2 to obtain a direction distribution function. Referring to Figure 3, the β value worthy of the phonetic note is 忍, 丨, the sampling method of 4, and the steps! Included Sub-Steps Sub-step: Receives the number of required samples 10 1345461 and a range of sampling areas set by the user in the . In the present embodiment, the sampling area is a spherical sampling area, so in this step, the radius of the spherical sampling area set by the user is received.

子步顆12·在規則-非矩形取樣晶格下,基本單位取樣 間距和球形取樣區域内之取樣數目的三次方根約略成反比 ,故根據下式,重複疊代以求得當實際取樣數目收斂 至所需取樣數目/附近時的一粗略(coase)取樣間距, 且該粗略取樣間距為該規則-非矩形取樣晶格的1基本單位 取樣間距: d(n + l) = d(n) x ⑷ l ^desired ) 其中’ +厂分別是第n、n+1次疊代時的取樣間距 ’而心(η)是第η次疊代時的實際取樣數目。Substep 12· Under the regular-non-rectangular sampling lattice, the basic unit sampling interval is approximately inversely proportional to the cubic root of the number of samples in the spherical sampling region, so the iteration is repeated according to the following equation to find that the actual sampling number converges. a coarse sampling interval to the desired number of samples/near, and the coarse sampling interval is 1 basic unit sampling spacing of the regular-non-rectangular sampling lattice: d(n + l) = d(n) x (4) l ^desired ) where ' + factory is the sampling interval for the nth, n+1th iterations respectively, and the heart (η) is the actual number of samples for the nth iteration.

子步驟13 :漸進地增加該粗略取樣間距之值,直到位 於球形取樣區域中最外面的取樣資料與球形取樣區域的中 心點之間的距離和步驟i i所設定的半徑相同時,則決定此 時的取樣間距為精確(fine)取樣間距。 子步驟14 :根據此精細取樣間距及規則_非矩形取樣晶 格,计算球形取樣區域中的每一取樣資料在Q空間中的精 確座標。 子步驟15:將這些精確座標輸入一磁振掃描機(MR scanner),該磁振掃描機會根據這些精確座標設定每一精確 座‘所對應的擴散編碼梯度,以得到此一系列的DWIs。而 因為此步驟為習知技術,並非本發明的改良重點,故在此 11 1345461 不再贅述。 ϋ二較佳营施例 本發明擴散頻譜造影方法之第二較佳實施例與第一較 佳實施例類似,不同的地方在於第一實施例的子步驟13和 子步驟14變成: 子步驟13’ :根據子步驟12的粗略取樣間距及規則_# 矩形取樣晶格’計算球形取樣區域巾的每—取樣資料在^ 空間中的粗略座標。 子步驟14’:將子步驟13,得到的粗略座標都乘上一比φ 例(=a/〇,以得到精確座標。而a是子步驟13,中,位於球形 取樣區域中最外面的取樣資料位置與球形取樣區域的中心 點之間的距離,而!*是子步驟u所設定的半徑。 實驗結果Sub-step 13: progressively increasing the value of the coarse sampling interval until the distance between the outermost sampling data in the spherical sampling region and the center point of the spherical sampling region is the same as the radius set in step ii, The sampling interval is the fine sampling pitch. Sub-step 14: Calculate the exact coordinates of each sampled material in the Q-slot in the Q-slot based on this fine-sampling spacing and regular-non-rectangular sampling lattice. Sub-step 15: These precise coordinates are input to a MR scanner, which is based on these precise coordinates to set the corresponding diffusion code gradient for each precise block to obtain the series of DWIs. Since this step is a conventional technique and is not an improvement focus of the present invention, it will not be repeated here. The second preferred embodiment of the diffusion spectrum imaging method of the present invention is similar to the first preferred embodiment, except that sub-step 13 and sub-step 14 of the first embodiment become: sub-step 13' : Calculate the coarse coordinates of each sample data of the spherical sampling area in the ^ space according to the rough sampling interval of the sub-step 12 and the rule_# rectangular sampling lattice'. Sub-step 14': Sub-step 13, the obtained coarse coordinates are multiplied by a ratio φ (=a/〇 to obtain a precise coordinate. And a is sub-step 13, in the outermost sampling in the spherical sampling area The distance between the data position and the center point of the spherical sampling area, and !* is the radius set by substep u.

运裡為了驗證本發明之實施例在Q空間下所使用的規 則-非矩形取樣晶格的確較矩形取樣晶格的取樣效率高,因 此比較實驗組(即:第一實施例下使用體心堆積取樣晶格)與 控制組(即:使用矩形取樣晶格)的取樣效率。 H 為了正確判斷出取樣效率,使用3 Tesla的磁振掃描機 (德國西門子# Tri〇機型)並用雙聚焦迴波平衡型的擴散 加權 k 波平面脈衝序列(twice ref〇cused baiance(j ech〇 diffusion EPI)採集515個DWIs當作標準組。且設定的參 數如下.515個均向(isotropic )的擴散編碼梯度、球形取 樣區域的半徑為6〇〇〇 s/mm2、ΤΚ/ΊΈ為29〇〇/15〇 ms且採用 矩形的取樣晶格。而影像單位體積(爾el)使用均向結構 12 1345461 ’且影像解析度為2.7mm,並在腦部包含中間的部分採集 40層影像。 然後實驗組和控制組較標準組在Q空間中減少約34% 的取樣數目,且使實驗組和控制組的取樣數目盡可能接近 ,以分別比較兩組與標準組之間的誤差。 故使控制組的取樣數目為341,並在得到控制組的取樣 座標後’透過對標準組DWIs内差以得到控制組的DWIs。 且使實驗組的球形取樣區域的半徑為6〇〇〇 s/mm2且所 需取樣數目接近341,故可設定為341、340、342等 等。然後在第一實施例的流程下可得到况以心為339,較控 制組少了 2個取樣。且同樣,在依據第一實施例的流程得 到取樣座標後,透過對標準組DWIs内差以得到實驗組的 DWIs。 在得到控制組和實驗組的DWIs之後,分別對此兩組的 DWIs執行翰明濾波器(Hammingfilte〇及球形視窗函數( spherical windowing functi〇n)以減少覆疊造成信號折疊( folding )進入觀測區域(fieid 〇f view,FOV )。 然後再分別對處理後的信號進行反傅立葉轉換,以得 到水分子運動的機率密度函數,並再進一步處理以得到= 向分布函數。 之後,藉由分別得到控制組與標準組、實驗組與標準 組之間方位的平均角度誤差,以判斷控制組與標準組、實 驗組與標準組之方向分布函數的誤差。 參閲圖4,由圖中可發現當只考慮擴散不等向性 13 1345461 diffusion anisotropy,DA) 0 035以上的腦部位置時,控制 組與標準組、實驗組與標準組的平均角度誤差分別為8厂 和5.4。。且參閱圖5,當考慮角度誤差在2〇。以内的腦部位 置時,控制組和實驗組分別A 92.〇6%和99〇7%的單位體積 。而平均角度誤ϋ越小或角度誤差在2G。以内具有越大單位 體積的,代表該組與標準組的方向分布函數越接近即代 表取樣品質越好,也就表示取樣效率高,而這也意味著實 際所需的取樣數目T以減少、,而進一步縮短了取樣時間。 此外,參閱圖6,若實驗組和控制組不先對DWIs執行 球形視窗函數,則此情形下實驗組的機率密度函數由於覆 疊而產生的重複圖案(repeated patterns)是位於觀測區域的角 落,故不會影響到圖案的識別’而控制組則因為重複圖案 不全位於角落,故會影響圖案的識別。實驗組若先使用球 形視窗函數事先濾波’則可完全移除角落的重複圖案。但 即使控制組亦使用球形視窗函數仍無法移除重複圖案。 綜合上述,本發明之實施例直接先得到Q空間中的最 佳取樣資料之位置,然後再根據這些位置得到一系列所需 的DWIs。且實施例是在Q空間下,基於規則非矩形取樣 晶格的取樣方法而得到這些最佳取樣資料,故在相同的取 樣數目下,會具有較佳的取樣品質,換言之,本發明可使 用較大的取樣間距,且因為取樣間距可以較大故較習知需 要的取樣數目少,而達到縮短取樣時間的目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 14 1345461 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一示意圖,說明矩形取樣晶格、體心堆積取樣 晶格和面心堆積取樣晶格及各自的生成矩陣; 圖2是本發明擴散頻譜造影方法之第一較佳實施例的 流程圖; 圖3是一流程圖,說明第一較佳實施例的步驟】所包 含的子步驟; 圖4是一示意圖,說明在不同擴散不等向性下,控制 組與標準組、實驗組與標準組的平均角度誤差; 。圖5是一示意、圖,說明在不同擴散不等向性下角度 誤差在20。以内的控制組和實驗組的單位體積;及 圖6是一示意圖 率密度函數。 說明钻準組、實驗組和控制組的機In order to verify that the regular-non-rectangular sampling lattice used in the Q space of the embodiment of the present invention is indeed more efficient than the rectangular sampling lattice, the experimental group is compared (ie, the body core is stacked under the first embodiment). The sampling efficiency of the sampling lattice and the control group (ie: using a rectangular sampling lattice). H In order to correctly determine the sampling efficiency, a 3 Tesla magnetic vibration scanner (Siemens # Tri〇, Germany) and a double-focus echo-balanced diffusion-weighted k-wave plane pulse sequence (twice ref〇cused baiance(j ech) 〇diffusion EPI) 515 DWIs were collected as the standard group, and the parameters were set as follows. 515 isotropic diffusion coding gradients, the radius of the spherical sampling area was 6〇〇〇s/mm2, and ΤΚ/ΊΈ was 29 〇〇/15〇ms and a rectangular sampling lattice is used. The image unit volume (el) uses the uniform structure 12 1345461 'and the image resolution is 2.7 mm, and 40 layers of images are collected in the middle portion of the brain. Then the experimental group and the control group reduced the number of samples in the Q space by about 34% compared with the standard group, and the number of samples in the experimental group and the control group were as close as possible to compare the errors between the two groups and the standard group. The number of samples in the control group is 341, and after obtaining the sampling coordinates of the control group, 'the DWIs of the control group are obtained by the difference between the DWIs of the standard group. And the radius of the spherical sampling area of the experimental group is 6 〇〇〇s/mm2. And The number of samples to be sampled is close to 341, so it can be set to 341, 340, 342, etc. Then, under the flow of the first embodiment, the heart rate is 339, which is 2 samples less than the control group. After the sampling coordinates of the embodiment are obtained, the DWIs of the experimental group are obtained by the difference between the DWIs of the standard group. After obtaining the DWIs of the control group and the experimental group, the Hamming filter (Hammingfilte〇) is performed on the DWIs of the two groups respectively. And spherical windowing functi〇n to reduce the overlap caused by signal folding into the observation area (fieid 〇f view, FOV). Then, the processed signal is inversely Fourier transformed to obtain water molecules. The probability density function of the motion is further processed to obtain the = distribution function. After that, the control group and the standard group are judged by respectively obtaining the average angular error of the orientation between the control group and the standard group, the experimental group and the standard group. The error of the direction distribution function between the experimental group and the standard group. Referring to Figure 4, it can be found from the figure that only diffusion anisotropy is considered. 13 1345461 diffusion aniso Troppy,DA) When the brain position is above 0 035, the average angular error between the control group and the standard group, the experimental group and the standard group is 8 plants and 5.4 respectively. And referring to Fig. 5, when the angle error is considered to be within 2 〇. When the brain position, the control group and the experimental group were A 92. 〇 6% and 99 〇 7% of the unit volume, respectively, while the average angle error was smaller or the angle error was 2 G. The larger the unit volume is, the closer the direction distribution function of the group to the standard group is, the better the sampling quality is, which means that the sampling efficiency is high, and this means that the actual number of samples T required is reduced. The sampling time is further shortened. In addition, referring to FIG. 6, if the experimental group and the control group do not perform the spherical window function on the DWIs first, then the probability density function of the experimental group's probability density function due to the overlay is located at the corner of the observation area. Therefore, the recognition of the pattern is not affected, and the control group affects the recognition of the pattern because the repeated patterns are not all located in the corner. If the experimental group first filters it using the spherical window function, the repeating pattern of the corners can be completely removed. However, even if the control group uses the spherical window function, the repeating pattern cannot be removed. In summary, the embodiment of the present invention directly obtains the location of the best sampled data in the Q space, and then obtains a series of desired DWIs based on these locations. And the embodiment is to obtain the best sampling data based on the sampling method of the regular non-rectangular sampling lattice in the Q space, so that the sampling quality is better under the same sampling number, in other words, the invention can be used. The large sampling interval, and because the sampling interval can be larger, the number of samples required is less than the conventional one, and the sampling time is shortened. However, the above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent change between the scope of the invention and the description of the invention is Modifications are still within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a rectangular sampling lattice, a body-centered stacked sampling lattice, and a face-centered stacked sampling lattice and respective generation matrices; FIG. 2 is a first comparison of the diffusion spectrum contrast method of the present invention. Figure 3 is a flow chart illustrating the steps involved in the steps of the first preferred embodiment; Figure 4 is a schematic diagram showing the control group and standard under different diffusion anisotropy Average angular error of the group, experimental group and standard group; Figure 5 is a schematic diagram showing the angular error at 20 for different diffusion anisotropies. The unit volume of the control group and the experimental group; and Fig. 6 is a schematic rate density function. Explain the machine of the drill group, the experimental group and the control group

15 1345461 【主要元件符號說明】 1〜3步驟 11~15步驟15 1345461 [Description of main component symbols] 1~3 steps 11~15 steps

Claims (1)

1345461 十、申請專利範圍· 1_ 一種擴散頻謹造影方法,包含以下步驟: (A) 在Q空間下’以規則-非矩形取樣晶格得到Q空 間中複數個取樣資料之位置’並據以得到一系列擴散加 權磁振影像;及 (B) 將步驟(A)的該系列擴散加權磁振影像依照規則_ 非矩形取樣晶格排列於Q空間中,並進行處理以得到機 率密度函數; 其中,步驟(A)包括以下子步驟: (A-1)接收使用者在q空間中設定的一所需取樣數目 及·取樣區域之範圍; (A-2)在規則-非矩形取樣晶格下,以疊代方式求得 當一實際取樣數目收斂至該所需取樣數目時的取樣間距 :及 (A-3)基於該取樣間距及該規則_非矩形取樣晶格, 得到Q空間中該等取樣資料之位置。 2.依據申請專利範圍第丨項所述之擴散頻譜造影方法,其 中,該規則-非矩形取樣晶格包含體心堆積取樣晶格。 3 ·依據申請專利範圍第1項所述之擴散頻譜造影方法, 中’該規則-非矩形取樣晶格包含面心堆積取樣晶格。 4·依據申請專利範圍第1項所述之擴散頻譜造影方法,更 包含步驟(C)’步驟(c)是對步驟(B)得到的機率密度函數 進行處理’以得到方向分布函數。 5·依據申請專利範圍第1項所述之擴散頻譜造影方法,其 17 6. 與德在Γ驟(B)中是對步驟⑷的該系列擴散加權磁振 〜進仃反傅立葉轉換,以得到機率密度函數。 申W專利範圍第1項所述之擴散頻譜造影方法,其 & ’在步驟(B)中,先對步驟⑷的該系列擴散加權磁振 衫像進行球形視窗函數濾波,然後再進行反傅立葉轉換 ’以得到機率密度函數。 依據申。月專利範圍第Μ所述之擴散頻譜造影方法其 中,該取樣區域是一球形取樣區域,而於步驟(Α-1)中, 更接收使用者設定的該球形取樣區域的半徑。 依據申明專利範圍第7項所述之擴散頻譜造影方法,其 中,步驟(Α-3)更基於步驟(Α_2)的該取樣間距及該規則_ 非矩形取樣晶格,計算每一取樣資料在q空間中的座標 ,且將每一座標都乘上一比例,以得到更精確的座標, 而該比例是在步驟(Α_2)的取樣間距下,位於該球形取樣 區域中最外面的取樣資料與該球形取樣區域的中心點之 間的距離除上該球形取樣區域的半徑。 9·依據申請專利範圍第7項所述之擴散頻譜造影方法,其 中,在步驟(Α-2)和(Α-3)之間更包含一步驟:漸進地增加 步驟(Α-2)所得到之取樣間距之值,直到位於該球形取樣 區域中最外面的取樣資料與該球形取樣區域的中心點之 間的距離和該球形取樣區域的半徑相同時,則以此時的 取樣間距作為更新後的取樣間距》 10.依據申請專利範圍第9項所述之擴散頻譜造影方法,其 中’在步驟(Α-3)中,更根據該更新後的取樣間距及該規 18 1345461 貝1 卜非矩形取樣晶格,計算每一取樣資料在Q空間中的座 標。 11.依據申請專利範圍第1項所述之擴散頻譜造影方法,其 中’在步驟(A-2)是根據下式來重複疊代: ά(η-\Λ) = d{n)x r j,j /、V/3 N insideO1、 iy desired J 其中’ #/1)、+"分別是第η、n+1次疊代時的取樣間 距’而是第n次疊代時的實際取樣數目,且規則 -非矩形取樣晶格的基本單位取樣間距和取樣數目的三次 方根約略成反比。 12. —種Q空間取樣方法,適用於擴散頻譜造影方法中該 取樣方法包含以下步驟: (a) 接收使用者在Q空間中設定的一所需取樣數目及 一取樣區域之範圍; (b) 在規則-非矩形取樣晶格下,以疊代方式求得當 一實際取樣數目收斂至該所需取樣數目時的取樣間距; 及 (c) 基於該取樣間距及該規則-非矩形取樣晶格,得 到Q空間中該等取樣資料之位置。 13. 依據申清專利範圍第12項所述之q空間取樣方法,其 中,該取樣區域是一球形取樣區域,而於步驟(a)中更 接收使用者設定的該球形取樣區域的半徑。 14. 依據申凊專利範圍第丨3項所述之q空間取樣方法,其 中’步驟⑷更基於步驟⑻的該取樣間距及該規則非矩 19 1345461 形取樣晶格,計算每一取樣資料在Q空間中的座標,且 將每-座標都乘上-比例’以得到更精確的座標而該 比例是在步驟⑻的取樣間距下,位於該球形取樣區域中 最外面的取樣資料與該球形取樣區域的中心點之間的距 離除上該球形取樣區域的半徑。 15_依據申請專利範圍第13項所述之Q空間取樣方法其 中,在步驟⑻和⑷之間更包含-步驟:$進地增加步驟 (b)所得到之取樣間距之值,直到位於該球形取樣區域中 最外面的取樣資料與該球形取樣區域的中心點之間的距 離和該球形取樣區域的半徑相同時,則以此時的取樣間 距作為更新後的取樣間距。 16·依據申請專利範圍第15項所述之Q空間取樣方法,其 中,在步驟(c)中,更根據該更新後的取樣間距及該規則_ 非矩形取樣晶格,計算每一取樣資料在Q空間中的座標 17·依據申請專利範圍第12項所述之q空間取樣方法,其 中,在步驟(b)是根據下式來重複疊代: 1/3 d(n + l) = d(n)x u) Λ/ V desired J 其中’ + i)分別是第n、n+1次疊代時的取樣間 距’而M",,.心(n)是第n次疊代時的實際取樣數目,且規則 •非矩形取樣晶格的基本單位取樣間距和取樣數目的三次 方根約略成反比。 18.依據申請專利範圍第12項所述之q空間取樣方法,其 20 1345461 中,該規則-非矩形取樣晶格包含體心堆積取樣晶格。 19.依據申請專利範圍第12項所述之Q空間取樣方法,其 中,該規則-非矩形取樣晶格包含面心堆積取樣晶格。1345461 X. Patent Application Scope 1_ A diffusion frequency spectroscopy method consists of the following steps: (A) In the Q space, 'the position of the multiple sampling data in the Q space is obtained by the regular-non-rectangular sampling lattice' and is obtained accordingly a series of diffusion-weighted magnetic resonance images; and (B) arranging the series of diffusion-weighted magnetic resonance images of step (A) in a Q space according to a regular _ non-rectangular sampling lattice, and processing to obtain a probability density function; Step (A) includes the following sub-steps: (A-1) receiving a required number of samples set by the user in the q space and a range of the sampling area; (A-2) under the regular-non-rectangular sampling lattice, Calculating the sampling interval when an actual sampling number converges to the required number of samples in an iterative manner: and (A-3) obtaining the sampling data in the Q space based on the sampling spacing and the regular _ non-rectangular sampling lattice The location. 2. A method of diffusion spectroscopy according to the scope of the patent application, wherein the regular-non-rectangular sampling lattice comprises a body-centered stacked sampling lattice. 3. According to the diffusion spectrum contrast method described in claim 1, the rule-non-rectangular sampling lattice comprises a face-centered stacked sampling lattice. 4. The diffusion spectrum contrast method according to claim 1 of the patent application, further comprising the step (C) wherein the step (c) is to process the probability density function obtained in the step (B) to obtain a direction distribution function. 5. According to the diffusion spectrum contrast method described in claim 1 of the patent application, 17 6. and in the step (B), the series of diffusion-weighted magnetic vibrations of step (4) are inverse-Fourier transforms to obtain Probability density function. The diffusion spectrum contrast method described in claim 1 of the patent application, in the step (B), the spherical window function filtering is performed on the series of diffusion-weighted magnetic vibrating shirt images in the step (4), and then the inverse Fourier is performed. Convert 'to get the probability density function. According to Shen. In the diffusion spectrum contrast method described in the patent scope of the present invention, the sampling area is a spherical sampling area, and in the step (Α-1), the radius of the spherical sampling area set by the user is further received. According to the diffusion spectrum contrast method of claim 7, wherein the step (Α-3) is based on the sampling interval of the step (Α_2) and the rule_non-rectangular sampling lattice, and each sampling data is calculated in q. Coordinates in space, and each coordinate is multiplied by a ratio to obtain a more accurate coordinate, and the ratio is the outermost sampling data in the spherical sampling area under the sampling interval of step (Α_2) The distance between the center points of the spherical sampling area is divided by the radius of the spherical sampling area. 9. The method according to claim 7, wherein the step (Α-2) and (Α-3) further comprise a step of gradually increasing the step (Α-2). The value of the sampling interval until the distance between the outermost sampling data in the spherical sampling region and the center point of the spherical sampling region is the same as the radius of the spherical sampling region, and the sampling interval at this time is used as the updated Sampling spacing according to claim 9. According to the diffusion spectrum imaging method described in claim 9, wherein in step (Α-3), according to the updated sampling spacing and the gauge 18 1345461 1 1 non-rectangular The crystal lattice is sampled and the coordinates of each sampled data in the Q space are calculated. 11. The method according to claim 1, wherein the step (A-2) repeats the iteration according to the following formula: ά(η-\Λ) = d{n)xrj,j /, V/3 N insideO1, iy desired J where ' #/1), +" respectively is the sampling interval when the nth, n+1th iterations are 'the actual number of samples in the nth iteration, And the basic unit sampling pitch of the regular-non-rectangular sampling lattice is approximately inversely proportional to the cubic root of the number of samples. 12. A Q-space sampling method suitable for use in a diffusion spectrum imaging method. The sampling method comprises the following steps: (a) receiving a required number of samples set by the user in the Q space and a range of the sampling area; (b) Under a regular-non-rectangular sampling lattice, the sampling spacing when an actual number of samples converges to the required number of samples is found in an iterative manner; and (c) based on the sampling spacing and the regular-non-rectangular sampling lattice, The location of the sampled data in the Q space is obtained. 13. The q-space sampling method according to claim 12, wherein the sampling area is a spherical sampling area, and in step (a), the radius of the spherical sampling area set by a user is further received. 14. The q-space sampling method according to item 3 of the claim patent, wherein 'step (4) is based on the sampling interval of step (8) and the regular non-moment 19 1345461 shaped sampling lattice, and each sampled data is calculated in Q. Coordinates in space, and multiplying each-coordinate by -ratio' to obtain a more accurate coordinate, which is the outermost sampling data in the spherical sampling area and the spherical sampling area at the sampling interval of step (8) The distance between the center points is divided by the radius of the spherical sampling area. 15_ According to the Q-space sampling method described in claim 13 wherein, between steps (8) and (4), a step-by-step: adding the value of the sampling interval obtained in step (b) to the ground until the spherical shape is located When the distance between the outermost sampling data in the sampling area and the center point of the spherical sampling area is the same as the radius of the spherical sampling area, the sampling interval at this time is used as the updated sampling interval. 16. The Q-space sampling method according to claim 15, wherein in step (c), each sampled data is calculated based on the updated sampling interval and the rule_non-rectangular sampling lattice. The coordinate in the Q space 17 according to the q-space sampling method described in claim 12, wherein in step (b), the iteration is repeated according to the following formula: 1/3 d(n + l) = d( n)xu) Λ/ V desired J where ' + i) is the sampling interval of the nth, n+1th iterations respectively, and M",,. heart (n) is the actual sampling at the nth iteration The number, and the basic unit sampling spacing of the rule • non-rectangular sampling lattice is approximately inversely proportional to the cubic root of the number of samples. 18. The q-space sampling method of claim 12, wherein the regular-non-rectangular sampling lattice comprises a body-centered stacked sampling lattice in 20 1345461. 19. The Q-space sampling method of claim 12, wherein the regular-non-rectangular sampling lattice comprises a centroid stacked sampling lattice. 21 1345461 七、指定代表圖: (一) 本案指定代表圖為:第(3 )圖。 (二) 本代表圖之元件符號簡單說明: 11-15 步驟 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:21 1345461 VII. Designated representative map: (1) The representative representative of the case is: (3). (2) A brief description of the symbol of the representative figure: 11-15 Step 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW96141682A 2006-11-07 2007-11-05 Q-space sampling method and diffusion spectrum imaging method employing the same TWI345461B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96141682A TWI345461B (en) 2006-11-07 2007-11-05 Q-space sampling method and diffusion spectrum imaging method employing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW95141177 2006-11-07
TW96141682A TWI345461B (en) 2006-11-07 2007-11-05 Q-space sampling method and diffusion spectrum imaging method employing the same

Publications (2)

Publication Number Publication Date
TW200820943A TW200820943A (en) 2008-05-16
TWI345461B true TWI345461B (en) 2011-07-21

Family

ID=44770336

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96141682A TWI345461B (en) 2006-11-07 2007-11-05 Q-space sampling method and diffusion spectrum imaging method employing the same

Country Status (1)

Country Link
TW (1) TWI345461B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI478103B (en) * 2012-08-10 2015-03-21 Univ Nat Taiwan Diffusion spectrum image transforming method of using large deformation diffeomorphic metric mapping

Also Published As

Publication number Publication date
TW200820943A (en) 2008-05-16

Similar Documents

Publication Publication Date Title
US7649354B2 (en) Method and apparatus for acquiring magnetic resonance imaging data
JP5719968B2 (en) Method and apparatus for collecting MR data
US9684979B2 (en) MRI 3D cine imaging based on intersecting source and anchor slice data
WO2020019412A1 (en) Magnetic resonance imaging method and apparatus, and device and storage medium
JP5815722B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
CN106981051B (en) System and method for motion resolved MRI
US7495440B2 (en) Q-space sampling method and diffusion spectrum imaging method employing the same
US8022700B2 (en) Method and apparatus for view ordering of magnetic resonance imaging data for dynamic studies
US8473028B2 (en) K-space sample density compensation for magnetic resonance image reconstruction
US11131738B2 (en) Multiband, multishot magnetic resonance elastography
CN113313778B (en) Magnetic resonance image reconstruction method, computer device, and storage medium
US20100256478A1 (en) Systems and methods for phase encode placement
US10132898B2 (en) MRI double inversion recovery method and system, with different magnetization recovery states providing the MRI image contrast(s)
US10746831B2 (en) System and method for convolution operations for data estimation from covariance in magnetic resonance imaging
US9880247B2 (en) System and method for magnetic resonance imaging using highly accelerated projection imaging
CN114913255A (en) System and method for using high resolution phase reconstruction in magnetic resonance images
CN111127586B (en) Artery input function curve generation method and device
US7821265B2 (en) Method and apparatus for acquiring MRI data for pulse sequences with multiple phase encode directions and periodic signal modulation
TWI345461B (en) Q-space sampling method and diffusion spectrum imaging method employing the same
WO2011026923A1 (en) Super-resolution magnetic resonance imaging
CN114035133A (en) Quantitative flow velocity magnetic resonance imaging method and equipment for whole cerebral cerebrospinal fluid of small animal
JP2023541775A (en) Method and apparatus for acquiring and reconstructing a sequence of diffusion-weighted magnetic resonance images covering a volume
US9953397B2 (en) System and method for medical image correction
JP5064208B2 (en) Imaging method for detecting spin lattice relaxation time and nuclear spin tomography apparatus
JP2004154401A (en) Reconstruction method of mr phase image, reconstruction method of mr intensity image and magnetic resonance imaging unit using the same