TWI344739B - Non-contact transmission device - Google Patents
Non-contact transmission device Download PDFInfo
- Publication number
- TWI344739B TWI344739B TW096145533A TW96145533A TWI344739B TW I344739 B TWI344739 B TW I344739B TW 096145533 A TW096145533 A TW 096145533A TW 96145533 A TW96145533 A TW 96145533A TW I344739 B TWI344739 B TW I344739B
- Authority
- TW
- Taiwan
- Prior art keywords
- clock
- circuit
- system clock
- signal
- oscillator
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims description 41
- 238000001514 detection method Methods 0.000 claims description 26
- 238000012544 monitoring process Methods 0.000 claims description 21
- 230000009351 contact transmission Effects 0.000 claims 1
- 239000003990 capacitor Substances 0.000 description 10
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 206010011469 Crying Diseases 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 241000282376 Panthera tigris Species 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/0008—General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/04—Generating or distributing clock signals or signals derived directly therefrom
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/90—Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Near-Field Transmission Systems (AREA)
- Electric Clocks (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Description
1344739 九、發明說明: 【發明所屬之技術領域】 本發明係有關-種利用透過線圈的電磁轉合而將電力 與資料信號中之至少-方傳送至被傳送裝置之無接 裝置。 【先前技術】 作為對電器内建的充電電池進行充電的盆中一種方 耦“亦稱為感應耦合)而自充電器傳送電力。此外於 此種方式的充電器,已知有在確切 、 B 〇丄 過電态(換言之,即負栽) ;否存在於充電器上、是否有被適當地配置、是否為正規 者等條件後㈣始進行電力料之構成。 ,’、、 專利文獻1:曰本特開2006_230032號公報 專利文獻2··日本㈣2嶋糊Q9m 專利文獻3:曰本專利第2689927 【發明内容】 曰 C發明所欲解決之課題) 充電器在未有電器配置的待機 至商用電源的狀態的情形 I仍曰有保持連接 充電器持續在消耗電力。對此,一口’待機期間中仍有 充電器連接至商用電源的令 要在進行充電時才將 η用I源的話,便能夠抑制 有在每次要開始充電時,必須進 。一而, 而造成不便的情形。還有,以、 接至商用電源的動作 情形,但在利用線圈的電磁:二了,:電力傳送時的 足發运貢料信號時亦會遇 3J9745 5 ^44739 .. 到相同的情形。 ^明的目的係提供—種利用透過線圈之電磁搞合來 點傳=科信號中之至少一方傳送至被傳送裳置之無接 要連用:能夠抑制待機電力,並且能角消除每次都 遷接至商用電源的不便之無接點傳送裝置。 (解決課題的手段) 人而ίΓΓ無接點傳送裝置,係利用透過線圈的電磁耦 •益接點值…壯^ 方傳送至被傳送裝置之 二傳Μ、置’具傷:驅動器,係驅動前述線圈;系統 Β:脈振盪器,係輸出系統時脈,·監視用時脈振盪器,係輸 出頻率比前述系統時脈低的監視用時脈;以及控制電路, 係利用則述系統時脈及前述監視用時脈而動作,且 .述驅動器用的控制信號及前述系統時脈振盪器用的控制: 號;、前述控制電路係在開始前述電力與前述資料信號中^ 方的傳达之前的待機中,根據前述監視用時脈輸出 前述系統時脈振盈器用控制信號而使前述系統時脈振蓋器 同步於前述系統時脈振盪器用控制信號而間歇性地輪出前 述系統時脈,且在前述系統時脈的輸出期間中,藉由前戒 驅動器用控制信號驅動前述線圈而進行是否配置有前述^ 傳运^置之檢測。此外,前述系統時脈的輸出期間較宜設 定為前述檢測的所需時間。 (發明的效果) 依據上述構成,傳送裝置於待機中係間歇性地動 進行被傳送裝置的檢測。因此,在保持連接至商用電源的 319745 6 丄 至商用i源:機電力,亦能消除每次皆要連接 用嗎至不便。此外,由於間歇動作的時序控制俜利 系統時脈低的監視用時脈,且系統時脈本身於 :動作時係限定性地利用,此點亦能_待機二 【實施方式】 於第1圖顯示用以說明實施形態的傳 例之方塊圖。傳送裝置〗。。為將電力與資料信 :方傳送至被傳送裝置之無接點傳送裝置, 係為了說明而-併圖示被傳送裝置200的一例。電力 :傳送係^在傳送裝置丨⑼與被傳職置2⑼為電磁輕合 、狀態下藉由電磁感應而進行的無接點傳送方式來實行。 此處係例示被傳送裝置綱例如為各種電器,而傳送裝置 :〇係該各種電器的充電器時的情形,但_1〇〇、· 並非以此等為限。 • 傳送裝置1〇0係構成為包含:線圈102、電容哭104, 驅動器Η)6、控制電路1〇8、系統時脈振 ;; 時嶋器η2、記憶體114、重置電路116、電容器:用 電阻态120、及齊納二極體(Zenerdi〇de)l22。 線圈102係藉由與被傳送裝置2〇〇的線圈2〇2電磁麵 合而可實現透過線圈102、202的電力等的傳送者’例如能 夠以平面狀空芯線圈來構成,但並非以此為限。線圈1〇2 的—端係連接至驅動器106,該線圈1〇2的另一端係經由 電容器104連接至驅動器1〇6。藉由線目⑽及電容器 319745 7 1344739 104,將自驅動器106供給至線圈102的電廢予以交流化及 • 升壓。 • 驅動器106為供給電壓至線圈1 〇2之電路,換言之, 即驅動該線圈102之電路。於第2圖顯示驅動器1〇6的構 成的一例。還有,為了進行說明’於第2圖亦圖示有線圈 102及電容器104。在此例中,驅動器1 〇6係構成為包含: CMOS(Complementary Metal Oxide Semiconductor;互補金 氧半導體)電路132、CMOS電路134、及反相器136。1344739 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a connectionless device for transmitting at least the power and data signals to a device to be transported by electromagnetic coupling of a transmission coil. [Prior Art] As a square coupling (also referred to as inductive coupling) in a basin for charging a built-in rechargeable battery, power is transmitted from the charger. In addition, the charger in this manner is known to be in the exact, B. 〇丄Over the electrical state (in other words, the load); whether it exists on the charger, whether it is properly configured, whether it is normal, etc. Japanese Patent Publication No. 2006_230032 Patent Document 2: Japanese (4) 2 嶋 Q Q9m Patent Document 3: 曰 专利 Patent No. 2689927 [Disclosed] 曰C invention to solve the problem) Charger in standby without commercial configuration to commercial use In the case of the state of the power supply, I still have to keep the connected charger continuously consuming power. In this case, there is still a charger connected to the commercial power supply during the standby period, so that when the charging is performed, the η is used as the I source. It is possible to suppress the situation that it is necessary to enter each time the charging is to be started. In addition, the situation is caused by the connection to the commercial power supply, but the electromagnetic of the coil is used: However, the signal of the tributary of the power transmission will also encounter 3J9745 5 ^44739 .. to the same situation. The purpose of Ming is to provide a kind of use of the electromagnetic coupling through the coil to transmit the signal. At least one of the two is transmitted to the connected device to be used in combination: the standby power can be suppressed, and the invisible transfer device that can be removed to the commercial power source every time can be eliminated. (Means for solving the problem) The contactless transmission device uses the electromagnetic coupling and the contact point value of the transmission coil to transmit to the second transmission device of the transmission device, and the device is driven to drive the aforementioned coil; the system Β: pulse oscillator The output system clock, the monitoring clock oscillator, the monitoring clock whose output frequency is lower than the system clock, and the control circuit operate by using the system clock and the monitoring clock. And a control signal for the driver and a control for the system clock oscillator: the control circuit is in standby before the start of the transmission of the power and the data signal, according to the foregoing The monitoring clock outputs the system clock oscillator control signal to synchronize the system clock pulsator to the system clock oscillator control signal intermittently to rotate the system clock, and in the foregoing system In the output period of the pulse, the front and rear drive drives the coil to control whether or not the detection is disposed. Further, the output period of the system clock is preferably set to the time required for the detection. (Effect of the Invention) According to the above configuration, the transmission device intermittently moves the detection of the transmission device during standby. Therefore, while maintaining the connection to the commercial power source, the 319745 6 丄 to the commercial i source: the machine power can also eliminate each In addition, it is inconvenient to connect with each other. In addition, since the timing of the intermittent operation controls the monitoring clock with a low clock of the system, and the system clock itself is used in a limited manner during operation, this point can also be used. [Embodiment] FIG. 1 is a block diagram showing a transmission example for explaining an embodiment. Conveyor. . For the purpose of explanation, a non-contact transfer device for transmitting power and data to the device to be transferred is shown and an example of the device 200 to be transferred is illustrated. Electric power: The transmission system is implemented by a contactless transmission method in which the transmitting device 9 (9) and the transmitted position 2 (9) are electromagnetically coupled and electromagnetically induced. Here, the example of the device to be transported is, for example, various electric appliances, and the transmission device is a case where the chargers of the various electric appliances are used, but it is not limited thereto. • The transmission device 1〇0 is configured to include: a coil 102, a capacitor crying 104, a driver Η6, a control circuit 1〇8, a system clock oscillating; a timer η2, a memory 114, a reset circuit 116, and a capacitor : Use resistive state 120, and Zener diode (Zenerdi〇de) l22. The coil 102 is configured to be electrically connected to the coil 2 2 of the to-be-conveyed device 2 so that the transmitter of the electric power transmitted through the coils 102 and 202 can be configured, for example, by a planar hollow core coil. Limited. The end of the coil 1〇2 is connected to the driver 106, and the other end of the coil 1〇2 is connected to the driver 1〇6 via the capacitor 104. The electric waste supplied from the driver 106 to the coil 102 is exchanged and boosted by the line (10) and the capacitor 319745 7 1344739 104. • The driver 106 is a circuit that supplies a voltage to the coil 1 , 2, in other words, a circuit that drives the coil 102. An example of the configuration of the driver 1〇6 is shown in Fig. 2 . Further, for the sake of explanation, the coil 102 and the capacitor 104 are also shown in Fig. 2 . In this example, the driver 1 〇 6 is configured to include a CMOS (Complementary Metal Oxide Semiconductor) circuit 132, a CMOS circuit 134, and an inverter 136.
• COMS電路132係構成為於電源電壓V與接地電位之 間串聯 P 通道 MOSFET(Metal Oxide Semiconductor field Effect Transistor ;金屬氧化物半導體場效電晶體)132p與 N 通道 MOSFET 132n,MOSFET 132ρ、132η 的汲極(彼此 連接著)係連接至線圈102的上述一端。於MOSFET132p、 132η的閘·極係共同地輸入有自控制電路1Θ8輸出的驅動器 控制信號SD。還有,電源電壓V係例如藉由未圖示的AC 鲁轉接器(AC-DC轉換器)將商用交流電源直流化而產生,該 AC轉接器可為設於傳送裝置100内者,亦可為外接在傳 送裝置100者。 CMOS電路134係構成為於電源電壓V與接地電位之 間串聯P通道MOSFET 134p與N通道MOSFET 134η, MOSFET 134ρ ' 134η的汲極(彼此連接著)係經由電容器 1〇4連接至線圈102的上述另一端。驅動器控制信號SD 係經由反相器136而共同地輸入至MOSFET 134ρ、134η 的閘極。 8 319745 1344739 藉由此構成’當驅動器控制信號SD為H(High)位準 時。。MOSFET 132η、134p會變為導通狀態。相反地,當驅 動了控制仏5虎SD為l(Low)位準時,M0SFET 132p、134n 會义為。當要自傳送裝置丨⑻傳送電力至被傳送 裝置200 ,例如藉由在驅動器控制信號交替反覆η• The COMS circuit 132 is configured to connect a P-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor) 132p and an N-channel MOSFET 132n, and MOSFETs 132p and 132n in series between the power supply voltage V and the ground potential. The poles (connected to each other) are connected to the one end of the coil 102. The driver control signal SD output from the control circuit 1A8 is commonly input to the gates and the gates of the MOSFETs 132p and 132n. Further, the power supply voltage V is generated by, for example, converting a commercial alternating current power source by an AC Lu adapter (AC-DC converter) (not shown), and the AC adapter may be provided in the transmission device 100. It may also be external to the transmitting device 100. The CMOS circuit 134 is configured such that a P-channel MOSFET 134p and an N-channel MOSFET 134n are connected in series between the power supply voltage V and the ground potential, and the drains (connected to each other) of the MOSFET 134p '134n are connected to the coil 102 via the capacitor 1〇4. another side. The driver control signals SD are commonly input to the gates of the MOSFETs 134p, 134n via the inverter 136. 8 319745 1344739 by this constitutes when the driver control signal SD is at the H (High) level. . The MOSFETs 132n, 134p become conductive. Conversely, when the control 仏5 tiger SD is driven to the l (Low) level, the MOSFETs 132p, 134n will be defined as . When power is to be transmitted from the transmitting device (8) to the transmitted device 200, for example by alternately overriding the driver control signal
位準” L位準而施加交流電壓至線圈⑽。當要自傳送裝 置1〇0傳运各種資料信號至被傳送裝置200時,例如藉甴 在驅動ϋ制信號SD中調變Η位準與[位準的脈波寬度 或週期而施加相應於傳送資料的電壓至線m2。 控制電路108係構成為自系統時脈振盪器110供給有 系統時脈(亦稱為主時脈)⑽’並自監視用時脈㈣器ιΐ2 供給有監視科脈LFG,並含有利用該些時脈⑽、LF〇 :動作的邏輯電路。控制電路⑽係例如產生驅動器控制 信號SDJi?讀出至驅動器1()6。待後詳細說明 108 〇 春純時脈振盪11 11G係例如構成為含有晶體振盪器 ll〇a、與連接至該振盪器u〇a的振盪電路。還有, 亦可取代晶體振盪器而使用陶竟振盪器等。振蓋電路聽 係使晶體振4器ll〇a穩定地動作,並且將晶體振盈器施 的輸出轉換為例如矩形脈波而作為系統時脈⑽予以輸 口出。系統時脈⑽的頻率係例如32MHz。系統時脈振盖 态110係設置為能夠供給系統時脈CK0至控制電路⑺8。 如後述,系統時脈CK0的供給係構成為能夠藉由來自控制 電路108的時脈供給控制信號S60來控制。 319745 9 1344739The level L is applied to the coil (10). When various data signals are to be transmitted from the transmitting device 1〇0 to the device 200 to be transferred, for example, by adjusting the level of the ϋ in the driving signal SD. [The pulse width or period of the level is applied to the voltage corresponding to the transmitted data to the line m2. The control circuit 108 is configured to supply the system clock (also referred to as the main clock) (10) from the system clock oscillator 110. The monitoring clock (4) ιΐ2 is supplied with the monitoring branch LFG, and includes a logic circuit that operates using the clocks (10) and LF〇. The control circuit (10) generates, for example, a driver control signal SDJi, and reads to the driver 1 (). 6. Details will be described later. 108 Hunchun pure clock oscillation 11 11G is configured, for example, to include a crystal oscillator 11a, and an oscillation circuit connected to the oscillator u〇a. Also, it can replace the crystal oscillator. A ceramic oscillator or the like is used. The galvanic circuit listener operates the crystal oscillator ll 〇 a stably, and converts the output of the crystal oscillating device into, for example, a rectangular pulse wave and outputs it as a system clock (10). The frequency of the system clock (10) is, for example, 32 MHz. The system clock cover state 110 is provided to be able to supply the system clock CK0 to the control circuit (7) 8. As will be described later, the supply of the system clock CK0 is configured to be controllable by the clock supply control signal S60 from the control circuit 108. 319745 9 1344739
&視科脈振盪^㈣產生頻率比系統時脈⑽低 250kHz白勺時脈LF〇並予以輸出。監視用時脈_ Z 係例如構成為含有由電阻器與電容器組成的RC振 =路H2a、與連接至該RC振盈電路ma的振蓋電路 b。振盛電路lm係使…振盡電路ιΐ2&穩定地動作, ^且將該電路112a的輸出轉換為例如矩形脈波並作為監 =用時脈LFO予以輸出。監視料脈振盪器ιΐ2係設置: 月匕夠供給監視用時脈LFO至控制電路j 〇8。 此憶體U4係設置為能夠由控制電路1〇8進行存取, 例如構成為依據來自控制電路1〇8的讀取命令rd,將所 儲存的預定資訊D發送至控制電路1〇8。記憶體ιΐ4係例 如 乂 Mask R〇M(Mask Read Only Memory ;遮罩唯讀記惟 EEPROMCBiectHcan, BrasaMe and Programm;M: ead〇nlyMem〇ry;電子可抹除可程式化唯讀記憶體)來構 成。作為儲存於記憶體114内的資訊D的一例,可舉出例 如驅動II控制信號犯的H位準與[位準的頻率,換言之, 即線圈102的驅動頻率。 重置電路116係進行整體控制電路1〇8的重置之電 路’控制電路⑽係藉由自重置電路116接收重置信號RE 而再起動。重置電路116係經由電容器118而接地。 關於電阻器120,其一端係連接線圈j 〇2的上述另一 端’另-端料接至控制電路⑽,同時也經由齊納二極 體122而接地。藉此,線圈1〇2的上述另一端的電壓(或電 流)會經由電阻器120而作為錢vc輸入至控制電路 319745 30 丄344739 108 °還有’藉由電阻器12〇及齊納二極體122,保護控制 電路108免於過大的輸入電壓。如後述’電壓VC係用於 檢測傳送裝置1〇〇與被傳送裝置2〇〇是否配置成電磁耦合 的狀態。 σ 被傳送裝置200係構成為含有:例如以平面狀空芯線 圈等所構成的線圈202、整流平流電路204、控制電路2〇6、 與負載208。其中’負載2〇8係例如充電電池。整流平流 魯=路204為將自線圈1〇2傳送至線圈202的電力等進行整 :與平流化之電路,例如構成為含有:連接於線圈2们兩 端的一極體橋式電路、與並聯於該二極體橋式電路的輸出 的電容器。還有,負冑208係'例如連接二極體橋式電路的 輸出。此處,為了說明上的方便,將進行被傳送裝置 中的各種控制的電路總稱為控制電路2〇6。控制電路 係例如構成為能夠控制對線谓2〇2的電壓供給,且藉由 變該電麗而能夠經由線圈跡1〇2將資料信號 Μ = • 2:0。傳送至傳送裝置丨。。的資料信號例 = 騎予給被傳送裝置200的m資料等。 於苐3圖顯示控制電路1〇8的構成的一例 』 :沉明’於第3圖亦圖示有系統時脈振盪器u _顧器112。此外,於第4_示說料料= 的動作的一例的時序圖。 、 。。在第3圖的例t,控制電路⑽係構成為 二52、驅動器控制信號產生電路154、負载檢例 •器(Wr)158、與時脈供給控制電路⑽、- 遇有,該邊 319745 11 1J44/39 要素152 154、156、158、160能夠以邏輯電路摄 $夠將控制電路1G8構成為邏輯IC(Integrated Circuit)零 ⑽t = Γ:係被供給有系統時脈CK〇 ’且將系統時脈 刀頻而產生例如數百此的時脈CK卜例如 於分頻值的資訊D儲存於記憶體114(參照第丨圖),此^ 形下,可構成為分頻器152在傳送裝£ 1〇〇起動 : 心訊D且利用於時脈CK1的產生。此處,時脈㈤: 出至驅動器控制信號產生電路154及負載檢測器156。 驅動器控制信號產生電路154係利用時脈㈤而動 二=動,控制信⑽。例如,可將關於驅動器控制 心唬SD的-貝訊㈣存於記憶體114,此情形下, 為驅動器控制信號產生電路154在傳送裝置刚起動時等 資訊D且利用於.控制信號犯的產生。此處,驅動 盗二!Μέ號SD係輸出至驅動器1〇6(參照第圖)。 I負載檢測1 156係檢測傳送裝置1〇〇與被傳送裝置 算透過線圈102、2〇2而配置成適當電磁麵合狀態 寺’且產生檢測結果信號S56。 上述檢測係例如能夠藉由利用下述情形來進行··時脈 ^K1的相位與電墨VC的相位的關係在被傳送裝置200適 =磁轉合於傳送裝置1〇〇的狀態(正規的負載狀態)下、 Γ :以外的狀態下係不同。例如,當比較電壓VC的相位 古、時脈⑵的相位時,在正規的負載狀態下會相同,在未 有被傳送農置200電磁輪合的狀態(無負载狀態)下會延 319745 12 1344739 遲因此’負戴檢測器156能夠藉由比較時脈CKi與電屍 VC的相位來檢測是否處於正規的負載狀態。此外 檢測亦能夠例如藉由利用電壓VC的振幅來進行。例如A 在正規的負載狀態下係透過線圈102、202而產生共振,雪 壓的振幅係比在無負載狀態下A,因此,能夠藉由與 預定的基準電壓的振幅比較來檢測是否處於正規的負㈣ 態。此處’例如在非被傳送裝置200的導電物接近至線 (異物負载狀態)下,由於電壓vc的相位及振幅 奋、、貞載及無負载的狀態不同,因此,亦能夠檢測異物 負載狀態。此外,亦可構成為利用賦予給被傳送裝置2〇〇 的ID資料來判斷正規的負載狀態。& depending on the pulse oscillation ^ (4) The frequency is lower than the system clock (10) 250kHz clock LF〇 and output. The monitoring clock_Z is configured to include, for example, an RC vibration path H2a composed of a resistor and a capacitor, and a vibrating circuit b connected to the RC oscillation circuit ma. The oscillating circuit lm causes the oscillating circuit ιΐ2& to operate stably, and converts the output of the circuit 112a into, for example, a rectangular pulse wave and outputs it as a supervisory clock LFO. Monitoring the material pulse oscillator ιΐ2 system setting: It is sufficient to supply the monitoring clock LFO to the control circuit j 〇8. The memory U4 is set to be accessible by the control circuit 1 to 8, for example, to transmit the stored predetermined information D to the control circuit 1 to 8 in accordance with the read command rd from the control circuit 1-8. The memory ιΐ4 is composed, for example, by Mask R 〇M (Mask Read Only Memory; EEPROM EEPROMCBiectHcan, BrasaMe and Programm; M: ead〇nlyMem〇ry; electronic erasable programmable read only memory) . As an example of the information D stored in the memory 114, for example, the H level and the [level of frequency], in other words, the driving frequency of the coil 102, which is driven by the control signal II, are exemplified. The reset circuit 116 is a circuit's control circuit (10) that performs resetting of the overall control circuit 1 to 8 and is restarted by receiving the reset signal RE from the reset circuit 116. The reset circuit 116 is grounded via the capacitor 118. Regarding the resistor 120, one end of the other end of the coil j 〇2 is connected to the control circuit (10), and is also grounded via the Zener diode 122. Thereby, the voltage (or current) of the other end of the coil 1〇2 is input as a money vc to the control circuit 319745 30 丄 344739 108 ° via the resistor 120 and 'by the resistor 12 齐 and the Zener diode Body 122 protects control circuit 108 from excessive input voltage. The voltage VC is used to detect whether or not the transmission device 1A and the to-be-transmitted device 2 are electromagnetically coupled. The σ to be transported device 200 is configured to include, for example, a coil 202 composed of a planar hollow core coil, a rectifying and advancing circuit 204, a control circuit 2〇6, and a load 208. Wherein the load 2 〇 8 is, for example, a rechargeable battery. The rectifying and smoothing current=the circuit 204 is a circuit that integrates electric power and the like that is transmitted from the coil 1〇2 to the coil 202, and is configured to include, for example, a one-pole bridge circuit connected to both ends of the coil 2, and a parallel connection. A capacitor for the output of the diode bridge circuit. Also, the negative 208 series is for example connected to the output of a diode bridge circuit. Here, for convenience of explanation, circuits that perform various controls in the transmission device are collectively referred to as control circuits 2〇6. The control circuit is configured, for example, to be capable of controlling the voltage supply to the line 2〇2, and by changing the voltage, the data signal can be Μ = • 2:0 via the stitch track 1〇2. Transfer to the transfer device丨. . Example of data signal = m data to be given to the device 200 to be transported, and the like. An example of the configuration of the control circuit 1A is shown in Fig. 3: "Shen Ming" is also shown in Fig. 3 with a system clock oscillator u_processor 112. In addition, the fourth diagram shows a timing chart of an example of the operation of the material =. , . . In the example t of Fig. 3, the control circuit (10) is configured as two 52, a driver control signal generating circuit 154, a load checker (Wr) 158, and a clock supply control circuit (10), - encountered, the side 319745 11 1J44/39 Element 152 154, 156, 158, 160 can be configured with logic circuit to form control circuit 1G8 as logic IC (Integrated Circuit) zero (10) t = Γ: system clock CK 〇 ' is supplied and system time The clock CK, for example, hundreds of clocks CK, for example, the information D of the frequency division value, is stored in the memory 114 (refer to the figure), and in this case, the frequency divider 152 can be configured to be transported. 1 〇〇 Start: Heart D and utilized for the generation of clock CK1. Here, the clock (five): goes to the driver control signal generating circuit 154 and the load detector 156. The driver control signal generating circuit 154 uses the clock (five) to move the second signal to control the signal (10). For example, the -Bell (4) of the driver control card SD can be stored in the memory 114. In this case, the driver control signal generating circuit 154 is used when the transmitting device is just started, and the control signal is generated. . Here, drive the Pirates II! The nickname SD is output to the drive 1〇6 (refer to the figure). The I load detection 1 156 is a detection transmission device 1 and a transmission device. The transmission coils 102 and 2 are placed in an appropriate electromagnetic surface state to generate a detection result signal S56. For example, the above-described detection system can perform a state in which the phase of the clock K1 and the phase of the electric ink VC are in the state of being properly/magnetically transferred to the transport device 1 by the transfer device 200 (regular) In the load state), the other states are different. For example, when comparing the phase of the voltage VC and the phase of the clock (2), it will be the same under the normal load state, and will be extended in the state of no electromagnetic rotation of the farm 200 (no load state). 319745 12 1344739 The 'negative wear detector 156' can detect whether it is in a normal load state by comparing the phase of the clock CKi with the electroacupuncture VC. Furthermore, the detection can also be carried out, for example, by using the amplitude of the voltage VC. For example, A generates resonance through the coils 102 and 202 in a normal load state, and the amplitude of the snow pressure is higher than that in the no-load state. Therefore, it is possible to detect whether or not it is normal by comparing with the amplitude of a predetermined reference voltage. Negative (four) state. Here, for example, when the conductive material of the non-transmitted device 200 approaches the line (foreign matter load state), since the phase and amplitude of the voltage vc are different, the load and the state of no load are different, and therefore, the foreign matter load state can be detected. . Further, it is also possible to determine the normal load state by using the ID data given to the device 2 to be transferred.
第3圖係例示負载檢測器156由用以進行上述的相也 =的純檢測器156a與用以進行上述的振幅比較的插 幅才欢測盗156b所構成時的情形。此情形下,由於負载檢測 器156能夠根據兩個檢測$ 156&、15分㈣測結果產生檢 測結果信號S56,因此,檢測精度變高。此處,係例示(參 照第4圖)當判斷為處於正規負載狀態時,檢測結果信號 S56變為Η位準,當判斷處於非正規負載狀態時,檢測結 #U S56變為L位準之波形的情形。此處,檢測結果信 號S56係輸出至時脈供給控制電路⑽。還有,亦能夠僅 以相位,測器156a與振幅檢測器⑽其中—方來構成負 载檢測器156。此外,例如亦可將檢測器15^、⑽所利 用的比較用基準值所相關的資訊D儲存於記憶體114,此 情形下,可構成為負載檢測器156在傳送裝1 ι〇〇起動時 319745 13 丄J44/jy 等取得該資訊D且利用於檢測動作。 叶時器158係被供給有監视用時脈lf〇,且利用該 脈LFO產生計時器作|卢lfi . 〜寺 時哭此處係例示(參照第4圖)計 口LF1為間歇性變化(遷移)為h位準,且 持續預定時間寬产之、、古布& $ / μ Η位準 情形,在料11㈣⑶中, 如=的週期係例如250ms(毫秒),H位準的脈波寬度係例 ㈣微秒)。例如亦可將有關上述週期或脈波寬度的 負訊D儲存於記情辦1〗4出 在傳情形下’可構成為計時器⑸ 號LFIMs =料取得”訊°且利用於計時器信 此處,計時^信號―至時脈供給 及叶:二 制電路160係被供給有檢測結果信號S56 二Gi l1’且根據該些信號S56 :_奮S60。時脈供給控制信號s 果S56與計時器信鲈 …伸巧別仏測結 除此之外的情形之二,μ。一方變為H位準的情形與 ^ S56^LFi 4 、隹+ ^ 方為H位準時,信號S60變為η位 形時:=广號856,,為上述例示的波 LF1作為浐::工制電路160係例如能夠由以信號S56、 ⑽電路的^ 抓電路(邏輯「或」電路)來構成,該 s二1C為時脈供給控制信號s6°。該信號 電路154。 振盪器11G及驅㈣㈣信號產生 時脈供給控制信號⑽係相當於系統時脈録器ιι〇 319745 14 號產生電路154的致能(enable)信號,此處 守脈供給控制信號S60 咖控制信號產生電路 S60而能二:^: 1:係構成為藉由時脈供給控制信號 例如於通 MO卿τ/ UG的電源供給路徑上設置 於該門關:Γ關^件’且藉由將時脈供給控制信號⑽用 外二可:曰:導通關斷(〇Ν·⑽)而能夠進行控制。此 _ET等二^:器广與振盪^電路'⑽之間設置 路徑上設置」::元:可於系統時脈一的輸出 依據上述構成,當檢測0士果ρ骑ς α炎τ 第4圖中-.,時間t之1 ^ ^ °果^琥S 5 6為L位準時(參照 時,傳送裳置]〇〇 /i ,當非處於正規的負載狀態 f置1〇〇_ 成為存機狀態。在此待機期間中,傳送 ^ :係間歇進行被傳送裝置2〇。的檢測。在第4圖的Fig. 3 exemplifies a case where the load detector 156 is constituted by a pure detector 156a for performing the above phase and a frame for comparing the amplitudes described above. In this case, since the load detector 156 can generate the detection result signal S56 based on the two detections of $156& and 15 minutes (four), the detection accuracy becomes high. Here, it is exemplified (refer to FIG. 4) that when it is judged that it is in the normal load state, the detection result signal S56 becomes the Η level, and when it is judged that it is in the abnormal load state, the detection knot #U S56 becomes the L level. The case of a waveform. Here, the detection result signal S56 is output to the clock supply control circuit (10). Further, it is also possible to constitute the load detector 156 only by the phase detector 156a and the amplitude detector (10). Further, for example, the information D related to the comparison reference value used by the detectors 15^, (10) may be stored in the memory 114. In this case, the load detector 156 may be configured to be activated when the transport device 1 is started. 319745 13 丄J44/jy et al. obtained this information D and used it for detection. The leaf timer 158 is supplied with the monitoring clock lf〇, and the pulse LFO is used to generate the timer for the Lulu. The temple is crying here (see Fig. 4). The metering LF1 is intermittently changed. (migration) is the h-level, and continues for a predetermined period of time, the Gubu & $ / μ Η level situation, in the material 11 (four) (3), such as the period of = for example, 250ms (milliseconds), H-level pulse wave Width system (four) microseconds). For example, the negative D of the above-mentioned period or pulse width may be stored in the case of the commemorative office 1 and 4 in the case of the transmission, which may be configured as the timer (5) LFIMs = material acquisition" and used in the timer. At the same time, the timing signal - to the clock supply and the leaf: the two-system circuit 160 is supplied with the detection result signal S56 two Gi l1' and according to the signals S56: _ ent S60. The clock supply control signal s S56 and timing The signal is not good enough to measure the junction. In addition to the other situation, μ. When one side becomes H level, and ^ S56^LFi 4 , 隹 + ^ is H level, signal S60 becomes η. In the case of a bit shape: = wide number 856, the wave LF1 exemplified above is used as the 浐:: the working circuit 160 can be constituted, for example, by a circuit (logical OR circuit) of the circuit of the signals S56 and (10), the s Two 1C is the clock supply control signal s6°. The signal circuit 154. The oscillator 11G and the drive (4) (4) signal generation clock supply control signal (10) is equivalent to an enable signal of the system clock recorder ι 314745 14 generation circuit 154, where the pulse supply control signal S60 is generated by the control signal The circuit S60 can be two: ^: 1: is configured by the clock supply control signal, for example, on the power supply path of the MO τ τ / UG, which is set in the gate: The supply control signal (10) can be controlled by the external two: 曰: conduction OFF (〇Ν·(10)). This _ET equals two: the device is wide and the oscillation ^ circuit '(10) is set between the path setting":: element: the output of the system clock can be based on the above composition, when detecting 0 士果ρ骑ς α炎τ 4 in the picture -., time t 1 ^ ^ ° fruit ^ ab S 5 6 is the L-bit punctuality (when referring to, the transmission is set] 〇〇 / i, when not in the normal load state f set 1 〇〇 _ become Storage status. During this standby period, the transmission ^: intermittently performs the detection of the transported device 2〇. In Figure 4
時器信機期間中’時脈供給控制電路⑽係同步於計 ' 、1而間歇性地將時脈供給控制信號S60設為H 統時脈㈣器110係同步於往該H位準的遷移 統時脈⑽。在供給有系統時脈⑽ 制㉟動盗控制信號產生電路154係輸出驅動器控 〜至驅動态106,據此而供給電壓至線圈102。此 —卜^系統時脈⑽的供給期財,負載檢測器156係進 丁 以進订上述的負載檢測。負載檢測係例如i秒間 329745 15 丄 進行4次’此情形下的計時哭 例如250ms。 。。。號LFWH位準的周期係 / 為了進行上述的相4立檢測及振幅檢測,必須取 得電壓VC的變介r、泳形料&、 , ^ 線…由於電*vc的變化係受到 脈CKO祕山t 延遲的影響,因此在系統時 脈CK0的輸出期間(在此處為計時器信號二 脈波if系設定為負載檢測所需要的時間,例如128二 傳、、’^ trT難的貞载檢騎測到正規的貞餘態時, =且:會開始電力等的傳送(參照第4圖令的時間t )、、體而言’檢測結果信號咖會變為Η位準,時 脈七、給控制電路信號S60會不管% 拉 十$益#唬£F1,繼續維一 2位準。據此’自系統時脈振盪器m _,且驅動器控制信號產生電“4等:= 作而進行電力等的傳送。 寻符、,地動 依據上述間歇動作,即使在保持連接至商 抑制待機期間中的消耗電力。此外,藉由: 至商用電源的使用方式,亦可消除了每 至商用電源的不便。 受迓摆 關於待機電力的抑制,例如在以3· COMS邏輯構成抻制兩,Λ。 i乐、、充的 C K 0夕^ ,且使用3 2 M H z的系統時脈 CKO之例中’控制電路1〇8的待機中的消耗電 :動時約為2。„,相對於此,藉由間歇驅動,能夠= 圈⑽的大小而昱,^心⑽的消耗電力係依線 八換s之’係依傳送電力而異。 319745 16 1344739 古,ΐί痒電力等的傳送效率的提升,系統時脈為具 广疋;b又’且頻率愈高愈好。此係例如藉由依照線圈的 電感值調整t頻器的分頻值而能夠微調線_驅動_< 故。此外,藉由穩定且高頻率的系統時脈,能夠提 ,測、來自被傳送裝置的ID之接收、該ID的辨識等的= :°另一方面’由於積體電路等半導體裝置的消耗電力係 '糸統時脈的頻率成正比,因此,系統時脈的頻率愈高, ,裝置的消耗電力愈增加。因此,高效率的傳 =精度的提升㈣與消耗電力的削減成取捨㈣eof= 二:情形下,關於怪常使系統時脈動作之構成的傳送 魏白、’耗:f ’在電力等的傳送中,驅動器的消耗電力 等成H例較高’而在待機巾,係與貞荷檢測精度的提升 荨成取捨關係。 達到在實施形態的修送裝置100中,即使是在 作央ί κο的高頻率化時,仍能夠藉由上述間歇動 又^廉制f耗電力的增加。因此,能夠既抑制消耗電力, 月"•只現向效率的傳送、負載檢測精度的提升等。 電力H ’ 一般而言,振堡頻率愈高,振里器本身的消耗 由;^ A。相對於此,在實施形s的傳送裝置100中, 此藉由=時脈CK0本身於間歇動作時係限定性地利用,因 常^動^歇驅動系統時脈振蓋器110本身,相較於使之疽 作的時序=形,能夠減少消耗電力。此外,由於間歇動 脈⑽/所利用的監視用時脈LF0的頻率係比系統時 低,因此即使使監視用時脈振盪器112恆常地動 319745 17 1344739 .作,消耗電力仍比使系統時脈振盪器110恆常地動作的情 形低。 此外,由於監視用時脈LF〇不需要同步於系統時脈 C严0’因此系統整體的整合性所帶來的限制較少。因此, 瓜視用夺脈振靈S 112與計時器158的振逢精度等動作精 度:比系統時脈振蓋器110及分頻器152低,而能約簡易 也只見士述間歇動作。此外,相較於將系統時脈分頻 而產生k號LF1之構成,電路規模能夠較小。 此處,上述說明及第4圖所示之波形並非為上述的例 ::斤限定者。例如,亦可將傳送裝置1〇〇構成為使用將h ' 位準舆上述者倒換之波形或矩形波以外的波形。 列如亦可將傳送裳置1〇〇構成為監視用時脈lf〇及 ^ 1、S60的脈波寬度不同。此外,在第4圖中係例 ^時器信號㈤同步於監視用時脈LF〇的上升而上升 1形’但亦可構成為計時器錢lf 脈LF〇的下降而上升,其他的波形亦可如此動作:視料 开》,,在上述中係例示了記憶體114為外接時的情 【圖式簡單說明】 儲存控制電路108内。 第1圖係顯示用以說明本發明的實施形 的一例之方塊圖。 〃丨苛k戒置 第2圖係顯示用以說明本發 的驅動器的一例之電㈣。月的灵㈣'㈣傳送農置 第3圖係顯示用以說明本發明的實施形態的傳送裝置 319745 18 的控,電路的一例之方塊圖。 的動係顯示用以說明本發明的實施形態的傳送震置 妁動作的一例之時序圖。 盱、衮置 【主要元件符號說明】 100 傳送裝置 102、 2〇2線圈 104、 118電容器 106 驅動器 108 控制電路 110 系統時脈振盪器 110a 晶體振盪器 110b 振盪器電路 112 監視用時脈振盪 器 112a RC振盈電路 112b 振盪電路 114 記憶體 116 重置電路 120 電阻器 122 齊納二極體 132、 134 CMOS 電路 132η 、134η N 通道 MO! 132p 、134p P 通道 MOSFET 136 反相器 152 分頻器 154 驅動器控制信號產生電路 156 負載檢測器 156a 相位檢測器 156b 振幅檢測器 158 計時器 160 時脈供給控制電路 200 被傳送裝置 204 整流平流電路 206 控制電路 208 負載 CKO 糸統時脈 CK1 時脈 D 資訊 LFO 監視用時脈 LF1 計時器信號 SD 驅動器用信號 19 319745 1344739 ’ S56 檢測結果信號 S60During the timer period, the clock supply control circuit (10) synchronizes the clock supply control signal S60 to the H-cycle clock (four) 110 in synchronization with the shift to the H level. System clock (10). The supply system clock (10) system 35 pirate control signal generating circuit 154 outputs the driver control to the drive state 106, thereby supplying a voltage to the coil 102. This is the supply period of the system clock (10), and the load detector 156 is operative to subscribe to the load detection described above. The load detection system is, for example, i seconds 329745 15 进行 4 times. The timing of crying in this case is, for example, 250 ms. . . . No. LFWH level cycle system / In order to perform the above-mentioned phase detection and amplitude detection, it is necessary to obtain the voltage VC's variation r, the swimming material &, , ^ line... Because the electric *vc change is affected by the pulse CKO secret The effect of the delay of the mountain t, so during the output period of the system clock CK0 (here, the timer signal two pulse if system is set to the time required for load detection, for example, 128 second pass, '^ trT difficult load When the normal riding state is detected by the check-in, = and: the transmission of power or the like is started (refer to the time t of the fourth figure), and the body of the test result signal is changed to the level of the test, and the clock is seven. , the control circuit signal S60 will be regardless of the % pull ten $ benefits # 唬 £ F1, continue to maintain a 2 level. According to this 'self system clock oscillator m _, and the driver control signal produces electricity "4, etc. = The transmission of electric power, etc. is performed. According to the above-mentioned intermittent operation, the power consumption is maintained even during the period of staying connected to the commercial suppression standby period. Further, by using the commercial power source, the commercial power supply can be eliminated. Inconvenience. Due to the suppression of standby power, For example, in the case of 3·COMS logic, the operation of the control circuit 1〇8 in the case of the system clock CKO of 3 2 MH z is used. Electricity: The movement time is about 2. In contrast, by intermittent driving, it is possible to = the size of the circle (10), and the power consumption of the core (10) varies depending on the transmission power. 16 1344739 Ancient, ΐ 痒 itch power and other transmission efficiency, the system clock is wide; b and 'and the higher the frequency, the better. This is for example, by adjusting the frequency value of the t-frequency according to the inductance value of the coil. Moreover, it is possible to fine-tune the line_drive_<and, in addition, by means of a stable and high-frequency system clock, it is possible to mention, measure, receive from the transmitted device, identify the ID, etc. = :° 'Because the power consumption of semiconductor devices such as integrated circuits is proportional to the frequency of the system clock, the higher the frequency of the system clock, the more power consumption of the device increases. Therefore, the high efficiency transmission accuracy is improved. (4) With the reduction of power consumption into a trade-off (four) eof = two: in the case of The transmission of the pulse operation is Wei Bai, and the 'consumption: f' is such that the power consumption of the driver is higher than H in the transmission of electric power, etc., and the standby towel is in a trade-off relationship with the improvement of the detection accuracy of the load. In the splicing apparatus 100 of the embodiment, even when the frequency is increased, the power consumption can be increased by the above-described intermittent operation. Therefore, it is possible to suppress power consumption. "• Only the transmission to the efficiency, the improvement of the load detection accuracy, etc. Power H ' In general, the higher the vibration frequency, the consumption of the vibrator itself; ^ A. In contrast, in the implementation of the shape s In the transmission device 100, this is limitedly utilized by the =clock CK0 itself during intermittent operation, because the timing of the pulse oscillating device 110 itself is relatively constant. Can reduce power consumption. Further, since the frequency of the monitoring clock LF0 used by the intermittent artery (10)/ is lower than that of the system, even if the monitoring clock oscillator 112 is constantly operated 319745 17 1344739, the power consumption is still higher than that of the system clock. The case where the oscillator 110 operates constantly is low. In addition, since the monitoring clock LF 〇 does not need to be synchronized with the system clock C 0 0', the integration of the system as a whole is less restricted. Therefore, it is considered that the operational accuracy such as the vibrating accuracy of the pulse-pulsing S112 and the timer 158 is lower than that of the system clock-resonator 110 and the frequency divider 152, and it is also easy to see the intermittent operation. In addition, the circuit scale can be made smaller than the configuration in which the system clock is divided to generate the k number LF1. Here, the waveforms shown in the above description and FIG. 4 are not the above-described examples. For example, the transmission device 1A may be configured to use a waveform other than the waveform or a rectangular wave in which the h' position is reversed. For example, if the transmission is set to 1, the pulse widths of the monitoring clocks lf〇 and ^1 and S60 may be different. In addition, in Fig. 4, the timing signal (5) is increased in the first shape in synchronization with the rise of the monitoring clock LF〇, but it may be configured to increase as the timer money LF 〇 decreases, and other waveforms are also increased. The operation can be as follows: in the above, the memory 114 is externally exemplified [simple description of the drawing] in the storage control circuit 108. Fig. 1 is a block diagram showing an example of an embodiment of the present invention. 〃丨 k k 戒 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图(4) '(4) Transmission of agricultural equipment Fig. 3 is a block diagram showing an example of a control circuit for explaining the transmission device 319745 18 of the embodiment of the present invention. The illuminating system shows a timing chart for explaining an example of the transmission shock 妁 operation of the embodiment of the present invention.主要, 衮 [Main component symbol description] 100 transmitting device 102, 2〇2 coil 104, 118 capacitor 106 driver 108 control circuit 110 system clock oscillator 110a crystal oscillator 110b oscillator circuit 112 monitoring clock oscillator 112a RC oscillating circuit 112b oscillating circuit 114 memory 116 reset circuit 120 resistor 122 Zener diode 132, 134 CMOS circuit 132n, 134η N channel MO! 132p, 134p P channel MOSFET 136 inverter 152 frequency divider 154 Driver control signal generation circuit 156 Load detector 156a Phase detector 156b Amplitude detector 158 Timer 160 Clock supply control circuit 200 Transmitter 204 Rectified advancing circuit 206 Control circuit 208 Load CKO System clock CK1 Clock D Information LFO Monitoring clock LF1 timer signal SD driver signal 19 319745 1344739 ' S56 detection result signal S60
• RD 讀取命令 RE *; VC 電壓 時脈供給控制信號 重置信號• RD read command RE *; VC voltage clock supply control signal reset signal
20 31974520 319745
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006323347A JP5122796B2 (en) | 2006-11-30 | 2006-11-30 | Contactless transmission device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200835112A TW200835112A (en) | 2008-08-16 |
TWI344739B true TWI344739B (en) | 2011-07-01 |
Family
ID=39467899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096145533A TWI344739B (en) | 2006-11-30 | 2007-11-30 | Non-contact transmission device |
Country Status (7)
Country | Link |
---|---|
US (1) | US8179088B2 (en) |
EP (1) | EP2091126A1 (en) |
JP (1) | JP5122796B2 (en) |
KR (1) | KR20090100335A (en) |
CN (1) | CN101558543B (en) |
TW (1) | TWI344739B (en) |
WO (1) | WO2008066110A1 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100971705B1 (en) | 2009-09-03 | 2010-07-22 | 주식회사 한림포스텍 | Non-contact charging system |
EP2426809B1 (en) * | 2008-12-12 | 2018-08-08 | Intel Corporation | Contactless power transmission device |
JP4835697B2 (en) * | 2009-01-08 | 2011-12-14 | パナソニック電工株式会社 | Non-contact power transmission circuit |
US9136914B2 (en) * | 2009-01-22 | 2015-09-15 | Qualcomm Incorporated | Impedance change detection in wireless power transmission |
KR101035334B1 (en) | 2009-11-11 | 2011-05-20 | 주식회사 한림포스텍 | Method for charging voltage control of non-contact charging system |
KR101195876B1 (en) | 2010-04-15 | 2012-10-30 | 티엔씨 퍼스트 주식회사 | Non-contact power supply system and control method thereof |
KR101235208B1 (en) * | 2011-03-10 | 2013-02-20 | 강원대학교산학협력단 | Non-contact power supply system, method and recording medium thereof |
JP5794056B2 (en) * | 2011-09-12 | 2015-10-14 | ソニー株式会社 | Power supply device and power supply system |
JP2013162707A (en) * | 2012-02-08 | 2013-08-19 | Toyota Industries Corp | Charging stand and relative position control method |
JP6185291B2 (en) * | 2013-06-03 | 2017-08-23 | ローム株式会社 | Wireless power transmission apparatus, control circuit and control method thereof |
US9362756B2 (en) * | 2013-12-16 | 2016-06-07 | Texas Instruments Incorporated | Circuit and architecture for a demodulator for a wireless power transfer system and method therefor |
JP6216084B2 (en) * | 2014-06-19 | 2017-10-18 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Wireless inductive power transmission |
US9838084B2 (en) | 2014-09-30 | 2017-12-05 | Texas Instruments Incorporated | Control of a tank circuit in a wireless power transmission system providing FSK communication |
CN107534319B (en) * | 2015-04-06 | 2021-09-21 | 松下知识产权经营株式会社 | Power transmission device for non-contact power supply device |
CN107852033B (en) * | 2015-07-10 | 2022-01-28 | 株式会社村田制作所 | Power transmission device and wireless power supply system |
KR101637411B1 (en) | 2015-07-31 | 2016-07-08 | (주)파워리퍼블릭얼라이언스 | Transmitter for Magnetic Resonance Wireless Power Trasnfer System in Metalic Environment |
US10164600B2 (en) * | 2015-10-12 | 2018-12-25 | Nxp B.V. | NFC or RFID device RF detuning detection and driver output power regulation |
US10199881B2 (en) | 2015-10-23 | 2019-02-05 | Mediatek Inc. | Robust foreign objects detection |
US10128783B2 (en) * | 2016-05-31 | 2018-11-13 | Infineon Technologies Ag | Synchronization of internal oscillators of components sharing a communications bus |
WO2020015749A1 (en) | 2018-07-19 | 2020-01-23 | Mediatek Singapore Pte., Ltd. | Detecting foreign objects in wireless power transfer systems |
WO2020015746A1 (en) | 2018-07-19 | 2020-01-23 | Mediatek Singapore Pte. Ltd. | Detecting foreign objects in wireless power transfer systems |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2689927B2 (en) | 1994-12-09 | 1997-12-10 | 日本電気株式会社 | Spread spectrum receiver |
JP3247328B2 (en) * | 1997-12-09 | 2002-01-15 | 浩 坂本 | Non-contact power transmission device |
JP3589029B2 (en) | 1998-05-27 | 2004-11-17 | 松下電器産業株式会社 | Reader / writer, non-contact IC card and card system using them |
JP2000166129A (en) * | 1998-11-26 | 2000-06-16 | Sanyo Electric Co Ltd | Method and apparatus for reducing stand-by power of noncontact charger |
JP2003018757A (en) | 2001-06-29 | 2003-01-17 | Toko Inc | Contactless battery charge device |
JP2006060909A (en) | 2004-08-19 | 2006-03-02 | Seiko Epson Corp | Noncontact power transmitter |
JP2006174261A (en) * | 2004-12-17 | 2006-06-29 | Sharp Corp | Wireless communication apparatus |
JP4774217B2 (en) | 2005-02-15 | 2011-09-14 | 高石 好 | Power transmission device and power transmission method |
US7310245B2 (en) * | 2005-04-22 | 2007-12-18 | Noboru Ohbo | Electric power transmission device and electric power transmission method |
JP4649430B2 (en) * | 2007-03-20 | 2011-03-09 | セイコーエプソン株式会社 | Non-contact power transmission device |
-
2006
- 2006-11-30 JP JP2006323347A patent/JP5122796B2/en active Active
-
2007
- 2007-11-29 WO PCT/JP2007/073050 patent/WO2008066110A1/en active Application Filing
- 2007-11-29 KR KR1020097011032A patent/KR20090100335A/en not_active Application Discontinuation
- 2007-11-29 CN CN2007800434795A patent/CN101558543B/en not_active Expired - Fee Related
- 2007-11-29 EP EP07832765A patent/EP2091126A1/en not_active Withdrawn
- 2007-11-29 US US12/516,809 patent/US8179088B2/en active Active
- 2007-11-30 TW TW096145533A patent/TWI344739B/en active
Also Published As
Publication number | Publication date |
---|---|
KR20090100335A (en) | 2009-09-23 |
CN101558543A (en) | 2009-10-14 |
US20100001847A1 (en) | 2010-01-07 |
US8179088B2 (en) | 2012-05-15 |
WO2008066110A1 (en) | 2008-06-05 |
JP2008141816A (en) | 2008-06-19 |
TW200835112A (en) | 2008-08-16 |
JP5122796B2 (en) | 2013-01-16 |
EP2091126A1 (en) | 2009-08-19 |
CN101558543B (en) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI344739B (en) | Non-contact transmission device | |
TW200836447A (en) | Non-contact transmission apparatus | |
US7804197B2 (en) | Power transmission control device, power transmission device, electronic instrument, and non-contact power transmission system | |
US8004118B2 (en) | Power transmission control device, power transmitting device, electronic instrument, and non-contact power transmission system | |
JP4314258B2 (en) | Rectifier circuit and wireless communication device using the same | |
US8198754B2 (en) | Power transmission control device, power transmitting device, electronic instrument, and non-contact power transmission system | |
US8064825B2 (en) | Power reception control device, power transmission control device, non-contact power transmission system, power reception device, power transmission device, and electronic instrument | |
EP1840789A1 (en) | Detection signal generator circuit for an RFID reader | |
CA2793377C (en) | Monitoring device and a method for wireless data and power transmission in a monitoring device | |
JP2011155793A (en) | Power supply system | |
TW201044740A (en) | Non-contact power supply system | |
CN109792164B (en) | Resonant rectifier circuit with capacitor sensing | |
TW201351836A (en) | Wireless power supply device | |
JP2000134830A (en) | Electromagnetic induction type power supply unit | |
US6665804B1 (en) | Non-contact type transmission system for transferring data electromagnetically | |
US8330578B2 (en) | Transponder device and method for providing a supply voltage | |
TW200419455A (en) | Contactless data storage medium | |
CN111727549B (en) | Powering a microcontroller | |
JPH0628531A (en) | Signal generation device | |
JPH07273696A (en) | Data transmitter |