TWI344056B - System and method for detecting parameters of color wheel - Google Patents

System and method for detecting parameters of color wheel Download PDF

Info

Publication number
TWI344056B
TWI344056B TW96130542A TW96130542A TWI344056B TW I344056 B TWI344056 B TW I344056B TW 96130542 A TW96130542 A TW 96130542A TW 96130542 A TW96130542 A TW 96130542A TW I344056 B TWI344056 B TW I344056B
Authority
TW
Taiwan
Prior art keywords
color
filter
pulse
reflected
color wheel
Prior art date
Application number
TW96130542A
Other languages
Chinese (zh)
Other versions
TW200909977A (en
Inventor
Hsin Li Lin
I Pen Chien
Kuang Wei Lin
Po Yuan Lai
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96130542A priority Critical patent/TWI344056B/en
Publication of TW200909977A publication Critical patent/TW200909977A/en
Application granted granted Critical
Publication of TWI344056B publication Critical patent/TWI344056B/en

Links

Landscapes

  • Projection Apparatus (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

-ί344056 __ 100年(Η月15日核正替換頁 六、發明說明: 【發明所屬之技術頜诚】 _]本發明涉及/種參數檢射統和方法,尤其涉及一種對 投影儀中色輪參數的檢測系統和方法。 【先前技術】 [0002] 目前,投影儀主要分為LCD式和DLP式(DiSital Light Processing)兩種,其中DLP投影儀採用DMD(Digital Micromirror Device)微鏡片反射技術’並採用色輪(-ί344056 __ 100年(Η月15日核正换页页, invention description: [Technology of the invention belongs to the jaw] _] The present invention relates to a parameter detection system and method, and more particularly to a color wheel in a projector Parameter detection system and method [Prior Art] [0002] At present, projectors are mainly divided into LCD type and DLP type (DiSital Light Processing), wherein DLP projector adopts DMD (Digital Micromirror Device) micro lens reflection technology' And using a color wheel (

Color Wheel)來完成對色彩的分離和處理。 [0003] 在DMD投影系統中,光源發出的白光通過聚焦透鏡聚焦在 色輪上,色輪主要是由紅、綠、籃等餐色渡光片的組合 ,藉由高速馬達使彩色濾光片轉動,以將白光進行分色 ,然後將特定顏色的光束發射到DMD表面上。DMD表面由 與畫素數量對應的小反射鏡組成,這些小反射鏡根據視 頻訊號的控制而轉動,當小反射鏡轉動到其反射光束經 過投影儀的透鏡時,表示該畫素點打開,當小反射鏡轉 動到其反射光束偏離投影儀的透鏡時,表示該畫素點關 閉,打開和關閉的時間比表示該畫素的亮度。當紅光射 到DMD表面上時’ DMD上的鏡片按照紅色視頻訊號將這些 小鏡子旋轉到開或關,使得需要顯示的反射光束經過投 影儀的透鏡投影到大螢幕上,綠色和藍色光及視頻訊號 亦是如此工作’人體視覺系統集中投影出來的紅、綠、 藍晝面便看到了一個全彩色圖像。 [0004] 請參閱圖1和圖2,其為RGB三色色輪1〇的俯視圖和立體圖 。色輪10包括三色濾光片1〇〇、固定部2〇〇、馬達300以 096130542 表單編號A0101 第4頁/共22頁 1003128710-0 1344056 100年04月15日修正替換頁 及粘貼於固定部200側壁的時間標籤(Timing Mark) 400。三色濾光片100包括有红色濾光片1〇2、綠色濾光 片104和藍色濾光片106,三者都為扇形並構成一個圓盤 ,其中,因為人眼對紅綠藍三種顏色的反應程度有所差 異,如人眼對紅色反應較遲鈍,所以這三種顏色濾光片 的角度通常不是均勻的120度,而是紅色波先片角度較大 。三色濾光片100藉由挾持或粘膠方式固定在固定部2〇〇 上’馬達300藉由帶動固定部20 0的轉動,從而驅動三色 濾光片100轉動。時間標籤400用於幫助投影儀系統識別 當前三色濾光片100中紅色濾光片102、綠色濾光片1〇4 和藍色濾光片1 0 6的位置,即此刻投影出來的視頻圖像為 何種顏色。由於使用色輪10進行色钐處理的原理就是藉 由色輪10的高速旋轉來達到人眼對於顏色產生視覺暫留 效果。可見’在高速旋轉的色輪10中,不同顏色濾光片 的角度以及投影儀器對色輪I 〇當前顏色的識別都直接影 響著成像的色彩品質。若色輪10參數不符合要求,如三 色濾光100的中紅色濾光片102、綠色濾光片104和藍色 濾光片1 0 6的角度以及時間標籤4 0 0與三色濾光片1 〇 〇的 相對位置相對於標準值存在較大偏差,將直接影響投影 儀的顏色處理,導致成像色彩混亂a 【發明内容】 [0005] 鑒於此’有必要提供一種能夠檢測色輪中時間標籤與不 同顏色濾光片之間的邊界的角度值的色輪參數檢測系統 〇 [0006] 還有必要提供一種能夠檢測色輪中時間標籤與不同顏色 096130542 表單編號A010】 第5頁/共22頁 丨003128710-0 K44056 100年04月15日修正替換頁 濾光片之間的邊界的角度值的色輪參數檢測方法。 [0007] —種色輪參數檢測系統,該色輪包括多色濾光片 '馬達 '固定部和粘貼於固定部側壁的時間標籤,該多色濾光 片包括複數不同顏色的扇形濾光月且該多色濾光片固定 在該固定部上,該馬達藉由帶動固定部旋轉來驅動多色 濾光片旋轉。該色輪參數檢測系統包括第一感測器、第 二感測器和處理器,該第一感測器用於發射第一光束到 該多色濾光片上,並接收自多色濾光片反射的第一反射 光束’根據第一反射光束的強度變化產生邊界脈衝,該 第二感測器用於發射第二光束到固定部的側壁上,並接 枚自固定部的側壁和時間標讖反射的第二灰射光束,根 據第二反射光束的強度變化產生時間脈衝,該處理器根 據該時間脈衝與邊界脈衝之間的關係,求得該時間標籤 與不同顏色濾光片之間的邊界的角度值。 [0008] 一種色輪參數檢測系統,該色輪包括多色濾光片、馬達 '固定部和粘貼於固定部側壁的時間標籤,該多色濾光 片包括複數不同顏色的扇形濾光片且該多色濾光片固定 在該固定部上,該馬達藉由帶動固定部旋轉來驅動多色 濾光片旋轉。該色輪參數檢測系統包括感測器、反光鏡 和處理器,該感測器用於發射光束到該多色濾光片上, 並接收自濾光片反射的第一反射光束,根據反射光束的 強度變化產生邊界脈衝,該反光鏡用於將該感測器發出 且透射過多色濾光片的第一光束反射到固定部的側壁上 ,並將自固定部的側壁和時間標籤反射的第二反射光束 反射到感測器上,該感測器還用於接收第二反射光束, 096130542 表單編珑A0101 第6頁/共22頁 1003128710-0 1344056 __ 100年04月15日俊正替換頁 並根攄該第二反射光束的強度變化產生時間脈衝,該處 理器根據該時間脈衝與邊界脈衝,求得該時間標籤與不 同顏色遽光片之間的邊界的角度值。 ’ [〇〇〇9] 一種色輪參數檢測方法,該色輪包括多色渡光片 '馬達 、固定部和帖貼於固定部側壁的時間標籤,該多色渡光 片包括複數不同顏色的扇形遽光片且該多色遽光片固定 在該固定部上,該馬達藉由帶動固定部旋轉來驅動多色 渡光片3疋轉’ ό亥色輪參數檢 >則方法包括如下步驟: [0010] 控制馬達帶動該多色渡光片轉動; [0011] 發射光束到該多色渡光片上,並接收反射回來的光束, 根據反射光束的強度變化產生邊界脈衝; [0012] 發射光束到粘貼有時間標藏的固定部的側壁上,並接收 反射回來的光束,根據反射光束強度變化產生時間脈衝 * [0013] 根據時間脈衝與邊界脈衝,求得時間標籤與不同顏色濾 光片之間的邊界的角度值。 剛-種色輪參數檢測方法,該色輪包括多色滤光片、馬達 、固定部和粘貼於固定部側壁的時間標籤,該多色濾光 片包括複數不同顏色的扇形遽光片且該多色渡光片固定 在該固定部上’該馬達藉由帶動固定部旋轉來驅動多色 濾光片旋轉,該色輪參數檢測方法包括如下步驟: [0015] 控制馬達帶動該多色濾光片轉動: [0016] 發射光束到該多色濾光片上; 096130542 表單編號Α0101 第7頁/共22頁 1003128710-0 于 344056 100年04月15日梭正替換頁 [0017] 將透過該多色濾光片的光束反射到粘貼有時間標籤的固 定部的側壁上; [0018] 接收該多色濾光片上以及固定部的側壁上返回的光束, 並根據返回光束強度的變化產生脈衝訊號; [0019] 根據該脈衝訊號求得該時間標籤與不同顏色濾光片之間 的邊界的角度值。 [0020] 上述該色輪參數檢測系統或方法在色輪轉動的情況下, 發射光束到色輪上,並根據色輪中不同顏色濾光片以及 時間標籤反射率的不同,產生與返回光束強度變化對應 的脈衝訊號,再根據各脈衝之·.·瑪舞冊係_泰得r·時間標藏與 不同顏色濾光片之間的邊界的角度'值,後績即可根據計 算得出的角度值與標準的角度值比較,判斷該色輪是否 符合要求= 【實施方式】 [0021] 請參閱圖3,其為一較佳實施方式的色輪參數檢測系統15 的架構圖,用於檢測色輪中各種顏色濾波片的角度以及 時間標籤與淚波片的相對位置。由於色輪的種類較多, 如:三色色輪RGB ;四色色輪RGB+W,其中W表示白色; 六色色輪RGBRGB等,上述RGB等顏色都表示扇形結構的 彩色濾光片,也有些扇形濾光片只有外圈部分為彩色, 該複數扇形彩色濾光片一起構成一個圓盤,以下以檢測 三色色輪1 0為例來進行說明。 [0022] 色輪10包括三色濾光片100、固定部200、馬達300以及 粘貼於固定部200側壁的時間標籤400。三色濾光片100 096130542 表單編號A0101 第8頁/共22頁 1003128710-0 1344056 _ 100年04月15日核1 正替換頁 包括有紅色濾光片1 02 '綠色濾光片1 04和藍色濾光片 106。紅色瀘光片102、綠色濾光片104和藍色濾光片106 相鄰處由於色差的原因,形成有邊界120、122、124。 • [〇〇23] 色輪參數檢測系統1 5包括:第一感測器20、第二感測器 30和處理器35。第一感測器20和第二感測器30用於發射 光束到色輪10上並接收自色輪10反射回來的光束,並根 據其所接收到的光束的強度變化產生脈衝訊號。 [0024] 第一感測器20正對三色濾光片100所在平面設置,用於垂 直地發射光束到三色濾光片100上,並接收反射回來的光 束,根據反射光束強度的變化產生脈衝訊號。由於紅色 濾光片102 '綠色濾光片104和藍色濾光片106都只能讓 與自身顏色對應的光束通過,所以他們反射回來的光束 也就不同,因此,當發射光束經過不同顏色濾光片之間 的邊界120、122、124時,反射回來的光束強度就會發 生變化’從而產生一個脈衝《參數檢測過程中,馬達300 帶動三色濾光片100連續勻速旋轉,第一感測器20產生與 紅色濾波片102、綠色濾光片104和藍色濾光片106角度 對應的第一脈衝訊號。如圖4所示,第一脈衝訊號40由週 期性的三個邊界脈衝402組成,該三個脈衝402即表示紅 色濾波片102、綠色濾光片1〇4和藍色濾光片106之間的 三個邊界120、122、124。 [0025] 第二感測器30正對粘貼有時間標籤400的固定部200的側 壁設置’用於垂直地發射光束到粘貼有時間標蕺400的固 定部2 0 0的側壁上,並接收反射回來的光束,根據反射光 束強度的變化產生脈衝訊號β因為在參數檢測過程中, 096130542 表單編號Α0101 第9頁/共22頁 1003128710-0 «44056 100年04月15日修正替換頁 馬達3〇〇τ動固定部2〇〇持續旋轉第二感測器川發射的 光束有時會照射到固定部2〇〇的側壁上,有時候會照射到 時間標籤4GG上,而兩者反射回來的光束強度不同,第二 感測益3D即是根據該反射光束強度的變化產生第二脈衝 Λ號如圖4所示’第二脈衝訊號由週期性出現的時間 脈衝5 02組成。 [0026] 處理器35用於根據所述第—脈衝訊號4()和第二脈衝訊號 50之間的時間關係,計算出紅色濾波片1〇2、綠色濾光片 104和藍色濾光片1〇6的角度值,以及時間標籤4〇〇與邊 界120、122、124所成的角度值。其中時間標籤4〇〇與邊 界120、122、124所成的角:¾是嚴時籤身〇〇沿三色濾 光片100的徑向方向所指向錶方命與i個邊界12〇、122 ' 124構成的角度,或者說是時間標籤4〇〇上反射光束與 各個邊界120、122、124構成的角度,如圖3所示的a方 向即表示時間標籤400所指的方向。 [0027] 請再參閱圖4,因為馬達300是勻速旋轉的,所以第一脈 衝讯號4 0中的任意連續的四個脈衝之間的時間間隔就是 轉動週期,即轉動360度。如指示框450所框區域間表示 一個轉動週期,其中四個脈衝之間的三個間隔的時間比 例關係就表示紅色濾波片102、綠色濾光片ι〇4和藍色濾 光片106的角度比例,根據總共360度就可以得出紅色濾 波片1 0 2、綠色濾光片1 0 4和藍色濾光片1 〇 6的角度值。 同理,根據第一脈衝Λ號5 0中的時間脈衝5 〇 2與其同週期 内的邊界脈衝4 0 2的時間差,就可以計算出時間標籤4 〇 〇 與邊界120、122、124的角度值。 096130542 表單編號Α0101 第10頁/共22頁 1003128710-0 1344056 _ 100年04月15日核正替换頁 [0028]上述色輪參數檢測系統15在色輪1〇轉動的情況下,藉由 第一感測器20和第二感測器30發射光束到色輪1〇上並接 收反射回來的光束’產生與色輪1〇的參數對應的第一脈 衝訊號40和第二脈衝訊號5〇,並根據兩個脈衝訊號中各 個脈衝的時間間隔關係求得紅色濾波片1 〇 2、綠色濾光片 104和藍色濾光片1〇6的角度值以及時間標籤4〇〇與各邊 界120、122、124的角度值,後續即可根據計算得出的 角度值與標準的角度值比較,判斷該色輪1 〇是否符合要 求。 [0〇29]請參閱圖5,其為另一較佳實施方式的色輪參數檢測系統 25的架構圖*包括第三感測器60、反光鏡7〇和處理器65 。第二感測器6 0正對二色滤光片1 〇 〇所在平面設置,用於 垂直地發射光束到三色濾光片100上,並接收返回光束, 根據返回光束強度的變化產生第三脈衝訊號。反光鏡7〇 設置於三色滤光片1 0 0面向時間標籤4 〇 〇的一側,並與三 色濾光片100呈45度角。該反光鏡70用於將第三感測器 60發射且透過三色濾光片1〇〇的光束反射到粘貼有時間標 籤400的固定部200的側壁上。其中,該反光鏡7〇的擺設 位置隨著入射光線角度的變化而變化,只需要將光束反 射到需要的位置即可。參數檢測過程中,馬達3 〇 〇帶動固 定部200持續旋轉,當發射光束經過三個邊界12〇、122 、124時,返回的光束的強度顯然不同,第三感測器6〇據 此產生邊界脈衝,當反光鏡70反射的光束經過時間標籤 400時,由於固定部200的側壁與時間標籤4〇〇的反射率 不同’使得返回的光東強度不同’即第三感測器接收 096130542 表單編號A0101 第11頁/共22頁 1003128710-0 »44056 100年04月15日後正替換頁 [0030] [0031] [0032] [0033] 的返回光束強度發生了變化,第三感測器6〇據此產生時 間脈衝。 請參閱圖6,其為第三感測器60產生的第三脈衝訊號8〇, 第二脈衝訊號80中的任意連續的五個脈衝區間即表示一 個轉動週期,也即轉動360度。如指示框8〇6所框區域間 表示一個轉動週期’因為經過邊界12〇、122、124時返 回光的強度變化量與經過時問標籤4〇〇時返回光束強度的 變化量有所差異,而且時間標蕺4〇〇與三色濾光片1〇〇的 位置關係是固定的,使得每次經過時間標籤4 〇 〇時返回光 束強度的變化量都相同,所以經過簡單的試驗即可區分 第三脈衝訊號80中的邊界脈^和嘹靼稱备8〇4。處理 I, - 器65用於根據所述第三脈衝灰號料中各邊界:脈衝8〇2以及 時間脈衝8 0 4之間的時間關係,計算出红色遽波片1 〇 2、 綠色濾光片10 4和藍色濾光片1 〇 6的角度值,以及時間標 籤400與紅色濾波片1〇2、綠色濾光片1〇4和藍色濾光片 106之間的三個邊界所角度值,計算原理與前一實施方式 相同,不再贅述。 色輪參數檢測系統25只採用了一個第三感測器6〇,基於 了二色遽光片10 0的透射性和反射性,本實施方式藉由一 個第二感測器6 0和一個反射鏡7 〇的組合代替了兩個感測 器,從而降低了色輪參數檢測系統的成本。 請參閱圖7,其為一較佳實施方式的色輪參數檢測方法流 程圖,包括如下步驟: 步驟S701 ’控制色輪1〇勻速轉動。 096130542 表單編珑A0101 第12頁/共22頁 1003128710-0 1344056 100年04月15日修正替换頁 [0034] [0035] [0036] [0037] [0038] [0039] [0040] [0041] [0042] 步驟S703,發射光束到色輪1〇的三色濾光片1〇〇上,並 接收反射回來的光束,根據反射光束的強度變化產生邊 界脈衝。 步驟S705,發射光束到色輪1〇上粘貼有時間標籤4〇〇的 固定部300的側壁上,並接收反射回來的光束,根據反射 光束強度變化產生時間脈衝。 步驟S707,根據各個邊界脈衝之間的時間間隔計算出不 同顏色濾光片的角度值。 步驟S709,根據時間脈衝與各個邊界脈衝之間的時間差 ’求得時間標籤與各個邊界120、122、124的角度值。 上述色輪參數檢測方法在色輪1〇轉動的情況下,藉由發 射光束到色輪10上並接收反射回來的光束,產生對應脈 衝訊號,並根據脈衝訊號中各個脈衝的時間關係求不同 顏色濾光片的角度值以及時間標籤4〇〇與邊界120、122 、1 2 4的角度值,後續即可根據計算得出的角度值與標準 的角度值比較’判斷該色輪10是否符合要求。 請參閱圖8,其為另一較佳實施方式的色輪參數檢測方法 流程圖,包括如下步驟: 步驟S801 ’控制色輪1〇勻速轉動。 步驟S803 ’發射光束到色輪1〇的三色濾光片1〇〇上。 步驟S805 ’將透過三色濾光片1〇〇的光束垂直的反射到色 輪1 0上粘貼有時間標籤4 〇 〇的固定部3 〇 〇的側壁上,並將 固定部300的側壁上反射回來的光束再次反射到三色濾光 096130542 表單编號A0101 第13頁/共22頁 1003128710-0 K44056 100年〇4月15日修正替換頁 片100上。 [0043] 步驟S807,接收從三色濾光片100上返回的光束,並根據 返回光束強度的變化產生脈衝訊號。此時的返回光束包 括從三色濾光片100上反射的光束以及透射過後又藉由反 射鏡7 0和固定部3 0 0的側壁反射回來的光束,藉由檢測這 個混合光束的強度變化,產生脈衝訊號。其中,經過邊 界120、122、124時產生的定義為邊界脈衝,經過時間 標籤40 0時產生的脈衝定義為時間脈衝。 [0044] 步驟S809,根據該脈衝訊號中各個脈衝之間的時間關係 ,求得不同顏色濾光片的角度值以及時間標籤與不同顏 色濾光片之間的邊界的角度值。:即拫拉各個^邊界脈衝之 間的時間間隔計算出紅色波波片.1免2、綠色濾光片104和 藍色濾光片106的角度值,根據所述時間脈衝與其同週期 内的各個邊界脈衝的時間差,求得時間標籤400與邊界 120、122、124的角度值。 [0045] 上述色輪參數檢測方法利用反射原理代替了又一次的光 束發射,為此,該方法藉由一個光束和一個光檢測器即 可完成色輪參數檢測工作,降低了檢測成本。 [0046] 本技術領域的普通技術人員應當認識到,以上的實施方 式僅是用來說明本發明,而並非用作為對本發明的限定 ,只要在本發明的實質精神範圍之内,對以上實施例所 作的適當改變和變化都落在本發明要求保護的範圍之内 〇 【圖式簡單說明】 096130542 表單編號A0101 第14頁/共22頁 1003128710-0 1344056 100年04月15日修正替换頁 [0047] 圖1為RGB三色色輪的立體圖。 [0048] 圖2為圖1所示的RGB三色色輪的俯視圖。 [0049] 圖3為一較佳實施方式的色輪參數檢測系統架構圖。 [0050] 圖4為圖3中的色輪參數檢測系統產生的波形示意圖。 [0051] 圖5為另一較佳實施方式色輪參數檢測系統架構圖。 [0052] 圖6為圖5中的色輪參數檢測系統產生的波形示意圖。 [0053] 圖7為一較佳實施方式的色輪參數檢測方法流程圖。 [0054] 圖8為另一較佳實施方式色輪參數檢測方法流程圖。 【主要元件符號說明】 [0055] 色輪:10 [0056] 邊界:120、122、124 [0057] 色輪參數檢測系統:15、25 [0058] 綠色濾光片:104 [0059] 第一感測器:20 [0060] 紅色濾光片:102 [0061] 第二感測器:30 [0062] 藍色濾光片:106 [0063] 處理器:3 5、6 5 [0064] 固定部:2 0 0 [0065] 第一脈衝訊號:40 096130542 表單編號A0101 第15頁/共22頁 1003128710-0Color Wheel) to complete the separation and processing of colors. [0003] In the DMD projection system, the white light emitted by the light source is focused on the color wheel through a focusing lens, and the color wheel is mainly composed of a combination of red, green, and basket color light-emitting sheets, and the color filter is made by a high-speed motor. Rotate to separate the white light and then emit a specific color of light onto the DMD surface. The DMD surface consists of small mirrors corresponding to the number of pixels. These small mirrors rotate according to the control of the video signal. When the small mirror rotates until its reflected beam passes through the lens of the projector, it indicates that the pixel point is open. When the small mirror is rotated until its reflected beam is off the lens of the projector, it indicates that the pixel point is off, and the time of opening and closing is greater than the brightness of the pixel. When the red light hits the surface of the DMD, the lens on the DMD rotates the small mirrors on or off according to the red video signal, so that the reflected beam that needs to be displayed is projected onto the large screen through the lens of the projector, green and blue light and video. The signal is also working like this: The red, green and blue faces of the human vision system are collectively projected to see a full-color image. [0004] Please refer to FIG. 1 and FIG. 2, which are top and perspective views of an RGB tricolor color wheel 1〇. The color wheel 10 includes a three-color filter 1〇〇, a fixed portion 2〇〇, a motor 300 with 096130542, a form number A0101, a 4th page, a total of 22 pages, 1003128710-0, 1344056, a correction, a replacement page, and a paste on the fixed line. Timing Mark 400 of the side wall of the part 200. The trichromatic filter 100 includes a red filter 1〇2, a green filter 104, and a blue filter 106, all of which are fan-shaped and constitute a disc, wherein the human eye is red, green, and blue. The degree of color reaction is different. For example, the human eye is slow to respond to red, so the angles of the three color filters are usually not uniform 120 degrees, but the red wave first is larger. The three-color filter 100 is fixed to the fixed portion 2 by clamping or adhesive. The motor 300 drives the three-color filter 100 to rotate by driving the fixed portion 20 to rotate. The time stamp 400 is used to help the projector system recognize the position of the red filter 102, the green filter 1〇4, and the blue filter 106 in the current tri-color filter 100, that is, the video image projected at the moment. Like what color. The principle of color registration using the color wheel 10 is to achieve a visual persistence effect on the color by the human eye by the high speed rotation of the color wheel 10. It can be seen that in the color wheel 10 rotating at a high speed, the angles of the different color filters and the recognition of the current color of the color wheel I 投影 by the projection instrument directly affect the color quality of the image. If the color wheel 10 parameters do not meet the requirements, such as the angle of the red filter 102, the green filter 104, and the blue filter 106 of the three-color filter 100, and the time label 400 and the three-color filter. The relative position of the film 1 〇〇 is greatly deviated from the standard value, which will directly affect the color processing of the projector, resulting in image color confusion. [Invention] [0005] In view of this, it is necessary to provide a time to detect the color wheel. Color wheel parameter detection system for labeling angle values of labels with different color filters 〇 [0006] It is also necessary to provide a time stamp with different colors 096130542 in the color wheel. Form number A010] Page 5 of 22 Page 丨 003128710-0 K44056 April 15, 100 Correction of the color wheel parameter detection method for correcting the angular value of the boundary between the replacement page filters. [0007] A color wheel parameter detecting system, the color wheel comprising a multi-color filter 'motor' fixing portion and a time stamp attached to a side wall of the fixing portion, the multi-color filter comprising a plurality of fan-shaped filtering moons of different colors And the multi-color filter is fixed on the fixing portion, and the motor drives the multi-color filter to rotate by driving the fixing portion to rotate. The color wheel parameter detecting system includes a first sensor, a second sensor and a processor, the first sensor is configured to emit a first light beam onto the multi-color filter, and receive the multi-color filter The reflected first reflected beam 'generates a boundary pulse according to a change in intensity of the first reflected beam, and the second sensor is configured to emit the second beam onto the sidewall of the fixed portion, and is connected to the sidewall of the fixed portion and the time mark reflection a second gray light beam, generating a time pulse according to a change in intensity of the second reflected light beam, and the processor determines a boundary between the time stamp and the different color filter according to the relationship between the time pulse and the boundary pulse Angle value. [0008] A color wheel parameter detecting system, the color wheel comprising a multi-color filter, a motor 'fixing portion, and a time stamp attached to a sidewall of the fixing portion, the multi-color filter comprising a plurality of fan filters of different colors and The multicolor filter is fixed to the fixing portion, and the motor drives the multicolor filter to rotate by driving the fixing portion to rotate. The color wheel parameter detecting system comprises a sensor, a mirror and a processor, the sensor is configured to emit a light beam onto the multicolor filter, and receive the first reflected beam reflected from the filter according to the reflected beam The change in intensity produces a boundary pulse for reflecting the first light beam emitted by the sensor and transmitting the multi-color filter onto the sidewall of the fixed portion, and the second side of the self-fixing portion and the time stamp are reflected The reflected beam is reflected onto the sensor, and the sensor is also used to receive the second reflected beam. 096130542 Form Compilation A0101 Page 6 of 22 Page 313128710-0 1344056 __ 100 years April 15th, the replacement page is rooted The intensity variation of the second reflected beam produces a time pulse, and the processor determines an angle value of the boundary between the time stamp and the different color pupil according to the time pulse and the boundary pulse. '[〇〇〇9] A color wheel parameter detecting method, the color wheel comprising a multicolor light-passing sheet 'motor, a fixing portion and a time stamp attached to the side wall of the fixing portion, the multi-color light-emitting sheet comprising a plurality of different colors a fan-shaped phosphor sheet and the multi-color calender sheet is fixed on the fixing portion, and the motor drives the multi-color light-passing sheet 3 by rotating the fixing portion to rotate the 'color wheel parameter detection>, and the method comprises the following steps [0010] controlling the motor to drive the multicolor light-emitting sheet to rotate; [0011] emitting a light beam onto the multi-color light-receiving sheet, and receiving the reflected light beam, and generating a boundary pulse according to the intensity change of the reflected light beam; [0012] emitting light beam To the side wall of the fixed portion to which the time mark is attached, and receive the reflected light beam, and generate a time pulse according to the change of the reflected beam intensity. [0013] According to the time pulse and the boundary pulse, the time label and the different color filter are obtained. The angle value of the boundary between the two. a color wheel parameter detecting method, the color wheel comprises a multicolor filter, a motor, a fixing portion and a time stamp attached to a side wall of the fixing portion, the multicolor filter comprising a plurality of fan-shaped calender sheets of different colors and the The multicolor light-passing sheet is fixed on the fixing portion. The motor drives the multi-color filter to rotate by driving the fixing portion to rotate. The color wheel parameter detecting method comprises the following steps: [0015] controlling the motor to drive the multi-color filter Piece rotation: [0016] emits a light beam onto the multicolor filter; 096130542 Form number Α0101 Page 7 of 22 page 1003128710-0 on 344056 100 April 2014 Shuttle replacement page [0017] will pass through this The light beam of the color filter is reflected on the side wall of the fixing portion to which the time stamp is attached; [0018] receiving the light beam returned on the multicolor filter and the side wall of the fixing portion, and generating a pulse signal according to the change of the return beam intensity [0019] determining an angle value of a boundary between the time stamp and the different color filter according to the pulse signal. [0020] The color wheel parameter detecting system or method described above emits a light beam onto a color wheel in the case of a color wheel rotation, and generates and returns a beam intensity according to different color filters and time label reflectances in the color wheel. The pulse signal corresponding to the change is calculated according to the angle 'value of the boundary between the different color filters according to the pulse of each pulse. The angle value is compared with the standard angle value to determine whether the color wheel meets the requirements. [Embodiment] [0021] Please refer to FIG. 3, which is a structural diagram of a color wheel parameter detecting system 15 of a preferred embodiment for detecting The angle of the various color filters in the color wheel and the relative position of the time stamp to the tear wave plate. Due to the variety of color wheels, such as: three-color color wheel RGB; four-color color wheel RGB+W, where W is white; six-color color wheel RGBRGB, etc., the above-mentioned RGB and other colors all represent fan-shaped color filters, and some sectors The filter only has the outer ring portion as a color, and the plurality of fan-shaped color filters together constitute a disk. The following description will be made by taking the detection of the three-color color wheel 10 as an example. [0022] The color wheel 10 includes a three-color filter 100, a fixing portion 200, a motor 300, and a time stamp 400 attached to the side wall of the fixing portion 200. Tricolor Filter 100 096130542 Form No. A0101 Page 8 of 22 1003128710-0 1344056 _ 100 April 15 Nuclear 1 Positive Replacement Page Includes Red Filter 1 02 'Green Filter 1 04 and Blue Color filter 106. The borders 120, 122, and 124 are formed adjacent to the red calender sheet 102, the green filter 104, and the blue filter 106 due to chromatic aberration. • [〇〇23] The color wheel parameter detecting system 15 includes a first sensor 20, a second sensor 30, and a processor 35. The first sensor 20 and the second sensor 30 are for emitting a light beam onto the color wheel 10 and receiving the light beam reflected from the color wheel 10, and generating a pulse signal according to the intensity change of the received light beam. [0024] The first sensor 20 is disposed opposite to the plane of the three color filter 100 for vertically transmitting the light beam onto the three color filter 100, and receiving the reflected light beam, according to the change of the reflected beam intensity. Pulse signal. Since the red filter 102' green filter 104 and blue filter 106 can only pass the light beams corresponding to their own colors, the reflected light beams are different. Therefore, when the emitted light beams pass through different color filters. When the boundaries between the light sheets are 120, 122, and 124, the intensity of the reflected beam changes. Thus, a pulse is generated. During the parameter detection process, the motor 300 drives the three-color filter 100 to rotate continuously and continuously, the first sensing. The device 20 generates a first pulse signal corresponding to the angles of the red filter 102, the green filter 104, and the blue filter 106. As shown in FIG. 4, the first pulse signal 40 is composed of three periodic boundary pulses 402, which represent between the red filter 102, the green filter 1〇4, and the blue filter 106. The three boundaries 120, 122, 124. [0025] The second sensor 30 is disposed on the side wall of the fixing portion 200 to which the time stamp 400 is attached, for vertically emitting a light beam to the side wall of the fixing portion 200 to which the time stamp 400 is pasted, and receives the reflection. The returning beam produces a pulse signal β according to the change of the reflected beam intensity. Because during the parameter detection process, 096130542 Form No. 1010101 Page 9/Total 22 Page 1003128710-0 «44056 100 April, 2014 Correction Replacement Page Motor 3〇〇 The τ moving fixed portion 2 〇〇 continuously rotates the second sensor. The beam emitted by the illuminator sometimes illuminates the side wall of the fixed portion 2 ,, sometimes illuminates the time stamp 4GG, and the reflected light intensity of the two is reflected. Differently, the second sensing benefit 3D is to generate a second pulse nickname according to the change of the reflected beam intensity. As shown in FIG. 4, the second pulse signal is composed of a periodically occurring time pulse 502. The processor 35 is configured to calculate a red filter 1〇2, a green filter 104, and a blue filter according to a time relationship between the first pulse signal 4() and the second pulse signal 50. An angle value of 1〇6, and an angle value formed by the time stamp 4〇〇 and the boundaries 120, 122, and 124. The angle formed by the time stamp 4〇〇 and the borders 120, 122, and 124: 3⁄4 is the sign of the sign in the radial direction of the trichromatic filter 100 and the i-boundary 12〇, 122 The angle formed by the '124' is the angle formed by the reflected beam on the time stamp 4 and the respective boundaries 120, 122, 124, and the a direction shown in FIG. 3 indicates the direction indicated by the time stamp 400. [0027] Referring again to FIG. 4, since the motor 300 is rotated at a constant speed, the time interval between any four consecutive pulses in the first pulse signal 40 is the rotation period, that is, 360 degrees. If the area indicated by the frame 450 indicates a rotation period, the time proportional relationship of the three intervals between the four pulses indicates the angles of the red filter 102, the green filter ι 4 and the blue filter 106. The ratio, based on a total of 360 degrees, can be obtained as the angle value of the red filter 1 0 2, the green filter 1 0 4 and the blue filter 1 〇6. Similarly, according to the time difference between the time pulse 5 〇2 in the first pulse nickname 50 and the boundary pulse 4 0 2 in the same period, the angle value of the time label 4 〇〇 and the boundaries 120, 122, 124 can be calculated. . 096130542 Form No. 1010101 Page 10/Total 22 Page 1003128710-0 1344056 _ 100 April 15th Nuclear Replacement Page [0028] The above color wheel parameter detection system 15 is rotated by the color wheel 1〇 by the first The sensor 20 and the second sensor 30 emit a light beam onto the color wheel 1 并 and receive the reflected light beam 'to generate a first pulse signal 40 and a second pulse signal 5 对应 corresponding to the parameters of the color wheel 1 〇, and The angle values of the red filter 1 〇 2, the green filter 104, and the blue filter 1 〇 6 and the time label 4 〇〇 and the boundaries 120 and 122 are obtained according to the time interval relationship of each pulse in the two pulse signals. The angle value of 124 can be compared with the standard angle value according to the calculated angle value to determine whether the color wheel 1 符合 meets the requirements. Referring to FIG. 5, an architectural diagram of a color wheel parameter detecting system 25 of another preferred embodiment includes a third sensor 60, a mirror 7A, and a processor 65. The second sensor 60 is disposed opposite to the plane of the dichroic filter 1 , for vertically emitting the light beam onto the tri-color filter 100, and receiving the return beam, and generating a third according to the change of the return beam intensity. Pulse signal. The mirror 7 is disposed on the side of the three-color filter 100 facing the time stamp 4 〇 , and at an angle of 45 degrees to the three-color filter 100. The mirror 70 is for reflecting the light beam emitted from the third sensor 60 and passing through the three-color filter 1A onto the side wall of the fixing portion 200 to which the time stamp 400 is attached. Wherein, the position of the mirror 7〇 varies with the angle of the incident light, and only the beam needs to be reflected to the desired position. During the parameter detection process, the motor 3 〇〇 drives the fixed portion 200 to continuously rotate. When the emitted light beam passes through the three boundaries 12〇, 122, and 124, the intensity of the returned light beam is obviously different, and the third sensor 6 generates a boundary accordingly. Pulse, when the light beam reflected by the mirror 70 passes the time stamp 400, since the side wall of the fixing portion 200 is different from the time stamp of the time stamp 4', the returned light intensity is different, that is, the third sensor receives 096130542 form number. A0101 Page 11 of 22 1003128710-0 »44056 After the 15th of April, 2015, the replacement page [0030] [0031] [0033] The return beam intensity has changed, and the third sensor 6 This produces a time pulse. Please refer to FIG. 6 , which is a third pulse signal 8 产生 generated by the third sensor 60. Any five consecutive pulse intervals in the second pulse signal 80 represent a rotation period, that is, 360 degrees. For example, a rotation period is indicated between the frame areas of the indication frame 8〇6 because the amount of change in the intensity of the return light when passing through the boundaries 12〇, 122, and 124 is different from the amount of change in the return beam intensity when passing the time label 4〇〇. Moreover, the positional relationship between the time stamp 4〇〇 and the three-color filter 1〇〇 is fixed, so that the amount of change in the return beam intensity is the same every time the time label 4 经过 passes, so a simple test can be distinguished. The boundary pulse and the nickname in the third pulse signal 80 are 8〇4. Processing I, the controller 65 is configured to calculate a red chopping sheet 1 〇 2, a green filter according to a time relationship between each boundary of the third pulse ash material: a pulse 8 〇 2 and a time pulse 804 The angle value of the sheet 10 4 and the blue filter 1 〇6, and the angles of the three boundaries between the time stamp 400 and the red filter 1〇2, the green filter 1〇4, and the blue filter 106 The value and calculation principle are the same as those of the previous embodiment, and will not be described again. The color wheel parameter detecting system 25 uses only one third sensor 6〇, based on the transmittance and reflectivity of the two-color calender sheet 100, and the present embodiment is provided by a second sensor 60 and a reflection. The combination of mirrors 7 代替 replaces the two sensors, reducing the cost of the color wheel parameter detection system. Referring to FIG. 7, which is a flow chart of a color wheel parameter detecting method according to a preferred embodiment, the method includes the following steps: Step S701 ’ controls the color wheel 1 to rotate at a constant speed. 096130542 Form Compilation A0101 Page 12 of 22 1003128710-0 1344056 Correction Replacement Page [0434] [0036] [0040] [0040] [0040] 0042] Step S703, transmitting a light beam to the three-color filter 1 of the color wheel 1〇, and receiving the reflected light beam, and generating a boundary pulse according to the intensity change of the reflected light beam. In step S705, the light beam is emitted onto the side wall of the fixing portion 300 to which the time stamp 4 粘贴 is pasted on the color wheel 1 ,, and the reflected light beam is received, and a time pulse is generated according to the change of the reflected beam intensity. In step S707, the angle values of the different color filters are calculated based on the time interval between the respective boundary pulses. In step S709, the angle value of the time stamp and each of the boundaries 120, 122, 124 is obtained based on the time difference between the time pulse and each boundary pulse. The color wheel parameter detecting method generates a corresponding pulse signal by transmitting a light beam onto the color wheel 10 and receiving the reflected light beam when the color wheel 1 turns, and different colors are obtained according to the time relationship of each pulse in the pulse signal. The angle value of the filter and the angle value of the time label 4〇〇 and the boundary 120, 122, 1 2 4 can be subsequently compared with the standard angle value according to the calculated angle value to determine whether the color wheel 10 meets the requirements. . Referring to FIG. 8, which is a flow chart of a color wheel parameter detecting method according to another preferred embodiment, the method includes the following steps: Step S801 'Control the color wheel 1 〇 to rotate at a constant speed. Step S803' emits a light beam onto the three-color filter 1 of the color wheel 1〇. Step S805', the light beam transmitted through the three-color filter 1〇〇 is vertically reflected onto the side wall of the fixing portion 3 粘贴 on which the time stamp 4 粘贴 is pasted on the color wheel 10, and the side wall of the fixing portion 300 is reflected. The returned beam is again reflected to the three-color filter 096130542 Form No. A0101 Page 13 of 22 Page 313128710-0 K44056 100 years old April 15th revised replacement page 100. [0043] Step S807, receiving the light beam returned from the three color filter 100, and generating a pulse signal according to the change of the return beam intensity. The return beam at this time includes a light beam reflected from the three color filter 100 and a light beam transmitted through the side wall of the mirror 70 and the fixed portion 300, and by detecting the intensity variation of the mixed beam, Generate a pulse signal. Among them, the boundary generated by the boundary 120, 122, and 124 is defined as a boundary pulse, and the pulse generated when the time stamp 40 is passed is defined as a time pulse. [0044] Step S809, determining an angle value of the color filter and an angle value of a boundary between the time label and the different color filter according to the time relationship between the pulses in the pulse signal. : that is, the time interval between each of the boundary pulses is calculated to calculate the angle value of the red wave plate. 1 free 2, the green filter 104 and the blue filter 106, according to the time pulse and the same period The time difference between the respective boundary pulses is obtained by determining the angular values of the time stamp 400 and the boundaries 120, 122, and 124. [0045] The above color wheel parameter detecting method replaces the beam light emission by the reflection principle. For this reason, the method can complete the color wheel parameter detecting work by one beam and one photo detector, thereby reducing the detection cost. The above embodiments are only intended to be illustrative of the present invention and are not to be construed as limiting the scope of the present invention. Appropriate changes and changes made are within the scope of the claimed invention 〇 [Simple Description] 096130542 Form No. A0101 Page 14 of 22 1003128710-0 1344056 Correction Replacement Page [0447] Figure 1 is a perspective view of an RGB tricolor wheel. 2 is a plan view of the RGB three-color color wheel shown in FIG. 1. 3 is a structural diagram of a color wheel parameter detecting system according to a preferred embodiment. 4 is a waveform diagram generated by the color wheel parameter detecting system of FIG. 3. 5 is a structural diagram of another color wheel parameter detecting system according to another preferred embodiment. 6 is a waveform diagram generated by the color wheel parameter detecting system of FIG. 5. 7 is a flow chart of a color wheel parameter detecting method according to a preferred embodiment. 8 is a flow chart of another preferred embodiment color wheel parameter detecting method. [Main component symbol description] [0055] Color wheel: 10 [0056] Boundary: 120, 122, 124 [0057] Color wheel parameter detection system: 15, 25 [0058] Green filter: 104 [0059] First sense Detector: 20 [0060] Red filter: 102 [0061] Second sensor: 30 [0062] Blue filter: 106 [0063] Processor: 3 5, 6 5 [0064] Fixed part: 2 0 0 [0065] First pulse signal: 40 096130542 Form number A0101 Page 15 / Total 22 pages 1003128710-0

Claims (1)

1344056 ,___ 100年04月15日後正替换頁 七、申請專利範圍: 1 . 一種色輪參數檢測系統,該色輪包括多色濾光片、馬達、 固定部和粘貼於固定部側壁的時間標籤,該多色濾光片包 , 括複數不同顏色的扇形濾光片且該多色濾光片固定在該固 定部上,該馬達藉由帶動固定部旋轉來驅動多色濾光片旋 轉,其改良在於:該色輪參數檢測系統包括感測器、反光 鏡和處理器’該反光鏡與多色濾光片成45度角設置,該感 測器用於發射第一光束垂直地照射到該多色濾光片表面, 並接收自濾光片反射的第一反射光束,根據反射光束的強 度變化產生邊界脈衝,該反光鏡用於將該感測器發出且透 射過多色濾光片的第一光束反射到固定部的側壁上,並將 自固定部的側壁和時間標籤反射的第二反射光束反射到感 測器上,該感測器還用於接收第二反射光束,並根據該第 二反射光束的強度變化產生時間脈衝,該處理器根據該時 間脈衝與邊界脈衝的時間差,求得該時間標籤與不同顏色 濾光片之間的邊界的角度值。 2 · —種色輪參數檢測方法’該色輪包括多色濾光片、馬達、 固定部和粘貼於固定部側壁的時間標籤,該多色遽光片包 括複數不同顏色的扇形遽光片且該多色濾、光片固定在該固 定部上,該馬達藉由帶動固定部旋轉來驅動多色滅光片旋 轉,該色輪參數檢測方法包括如下步驟: 控制馬達帶動該多色遽光片勻速轉動; 發射光束到該多色濾光片上; 將透過該多色濾光片的光束反射到粘貼有時間標藏的固定 部的側壁上; 096130542 表單編號A0101 第17頁/共22頁 1003128710-0 —1344056 100年04月15日修正替換頁 接收該多色濾光片上以及固定部的側壁上返回的光束,並 根據返回光束強度的變化產生脈衝訊號,該脈衝訊號包括 光束經過不同顏色濾光片之間的邊界時產生的邊界脈衝和 光束經過時間標籤時產生的時間脈衝; 根據該時間脈衝與邊界脈衝的時間差求得求得該時間標籤 與不同顏色濾光片之間的邊界的角度值。 096130542 表單編號A0101 第18頁/共22頁 1003128710-01344056 , ___ Replacement page after April 15th, 100th, the patent application scope: 1. A color wheel parameter detection system, the color wheel includes a multi-color filter, a motor, a fixing portion and a time label attached to the side wall of the fixing portion The multi-color filter package includes a plurality of fan filters of different colors and the multi-color filter is fixed on the fixing portion, and the motor drives the multi-color filter to rotate by driving the fixing portion to rotate. The improvement is that the color wheel parameter detecting system comprises a sensor, a mirror and a processor. The mirror is arranged at a 45 degree angle with the multicolor filter, and the sensor is configured to emit the first beam and illuminate the plurality of beams vertically. Coloring the surface of the filter, and receiving the first reflected beam reflected from the filter, generating a boundary pulse according to the intensity change of the reflected beam, the mirror being used to emit the first light transmitting and transmitting the multi-color filter The light beam is reflected onto the sidewall of the fixed portion, and the second reflected beam reflected from the sidewall of the fixed portion and the time stamp is reflected to the sensor, the sensor is further configured to receive the second reflected beam, and according to the first Change in intensity of the reflected light beam pulse generation time, according to the processor time between the pulse and the pulse difference boundary, the boundary between the angle value obtained by the time stamp and the different color filters. 2 - a color wheel parameter detecting method 'The color wheel comprises a multi-color filter, a motor, a fixing portion and a time stamp attached to the side wall of the fixing portion, the multi-color calender sheet comprising a plurality of fan-shaped calenders of different colors and The multi-color filter and the light sheet are fixed on the fixing portion, and the motor drives the multi-color extinction piece to rotate by driving the fixing portion to rotate. The color wheel parameter detecting method comprises the following steps: controlling the motor to drive the multi-color polishing sheet Rotating at a constant speed; emitting a light beam onto the multi-color filter; reflecting the light beam transmitted through the multi-color filter onto the side wall of the fixed portion to which the time mark is attached; 096130542 Form No. A0101 Page 17 of 22 1003128710 -0 —1344056 The correction replacement page receives the light beam returned on the multicolor filter and the side wall of the fixed portion, and generates a pulse signal according to the change of the return beam intensity, the pulse signal including the light beam passing through different colors. The boundary pulse generated when the boundary between the filters and the time pulse generated when the beam passes the time stamp; according to the time difference between the time pulse and the boundary pulse Determined angle value of the boundary between the time stamp and the different color filters. 096130542 Form No. A0101 Page 18 of 22 1003128710-0
TW96130542A 2007-08-17 2007-08-17 System and method for detecting parameters of color wheel TWI344056B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96130542A TWI344056B (en) 2007-08-17 2007-08-17 System and method for detecting parameters of color wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96130542A TWI344056B (en) 2007-08-17 2007-08-17 System and method for detecting parameters of color wheel

Publications (2)

Publication Number Publication Date
TW200909977A TW200909977A (en) 2009-03-01
TWI344056B true TWI344056B (en) 2011-06-21

Family

ID=44724216

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96130542A TWI344056B (en) 2007-08-17 2007-08-17 System and method for detecting parameters of color wheel

Country Status (1)

Country Link
TW (1) TWI344056B (en)

Also Published As

Publication number Publication date
TW200909977A (en) 2009-03-01

Similar Documents

Publication Publication Date Title
US9400416B2 (en) Illumination light source device including a reflecting-transmitting element, projection device including the illumination light source device and method to control the projection device
CN101358841B (en) Color wheel parameter detecting system and method
CN101369090B (en) method and system for controlling synchronous imaging of imaging device and color block
EP2519013B1 (en) Projection apparatus, projection method, and storage medium having program stored thereon
US7311404B2 (en) Optical projection apparatus and projection-type image displaying apparatus
US20030010888A1 (en) Image projector and image correction method
TWI446095B (en) Projecting device, projecting method and program
CN101689341A (en) Servo feedback control based on invisible scanning servo beam in scanning beam display systems with light-emitting screens
CN101358840B (en) Color wheel parameter detecting system and method
JP2012003213A (en) Projection type display
EP2328019A1 (en) Image projector
JP2012018214A (en) Projection type video display device
JP2008160441A (en) Projector
TWI344056B (en) System and method for detecting parameters of color wheel
JP7494635B2 (en) Image Projection Device
TWI338122B (en) System and method for detecting parameters of color wheel
JP2006323035A (en) Display device and method
TWI339311B (en) Color wheel
JP4603250B2 (en) Color display device
JP3906672B2 (en) Projector, projector illumination and pixel driving method
JP2009109962A (en) Rear projector device and multi-display system
JPH04180385A (en) Time-division object measurement system
JP7354779B2 (en) image projection device
JP7363415B2 (en) Color wheel unit and image projection device
TW200914980A (en) Color wheel

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees