TWI343869B - - Google Patents

Download PDF

Info

Publication number
TWI343869B
TWI343869B TW93127755A TW93127755A TWI343869B TW I343869 B TWI343869 B TW I343869B TW 93127755 A TW93127755 A TW 93127755A TW 93127755 A TW93127755 A TW 93127755A TW I343869 B TWI343869 B TW I343869B
Authority
TW
Taiwan
Prior art keywords
resin
heat
heat treatment
temperature
glass transition
Prior art date
Application number
TW93127755A
Other languages
Chinese (zh)
Other versions
TW200514685A (en
Inventor
Hitoshi Uchida
Hideaki Tanaka
Hiroaki Kikuchi
Akiko Koga
Hideyuki Tokumitsu
Original Assignee
Nippon Mektron Kk
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron Kk, Nok Corp filed Critical Nippon Mektron Kk
Publication of TW200514685A publication Critical patent/TW200514685A/en
Application granted granted Critical
Publication of TWI343869B publication Critical patent/TWI343869B/zh

Links

Landscapes

  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

1343869 (1) 九、發明說明 【發明所屬之技術領域】 本發明係有關可性金屬范層合物。更詳細者係有關 藉由熱收縮減少尺寸變化率及其不均度,適於做爲形成精 細間距電路基板材料使用之可撓性金壩箱層合物者。 【先前技術】 近年來’電子機器之高性變化、高機能化小型化之 急速進展’使得電子機器所使用之電子零件小型化、輕量 化之要求更高。伴隨此’針對電子零件之基材亦更被要求 提昇其耐熱性、機械性強度、電氣特性等各物性,對於其 半導體元件包裝方法,實裝此等之配線板上均被要求更高 密度、高機能且高性能者。 特別是裝置於手機、數位相機等小型電子機器之液晶 顯示器變得更局度精細、高速驅動,因此,其驅動用丨C被 要求其熱細之碰撞間距,於實裝其之可撓性印刷基板上亦 要求爲精細間距者。爲確保精細間距之驅動用丨c與可撓性 印刷基板相互連接之信賴性,更被要求於可撓性印刷基板 之高度尺寸安定性者。 通常,可撓性印刷基板係使金屬箔與樹脂層相互層合 物所成之可撓性金屬箔層合物藉由光蝕刻後形成配線,以 v專0吴狀或液狀覆蓋物進行配線之被覆保護,必要時使端子 4以也、錫、焊錫等進行鍍敷等被作成之。可撓性印刷基 板之尺寸安定性其可撓性金屬箔層合物主要起因於絕緣棊 -5- (2) 1343869 底之樹脂層收縮率爲公知者。 層合於可撓性金屬箔層合物之樹脂層主要係由聚醯亞 胺樹脂、聚酯樹脂、玻璃環氧基樹脂、聚苯硫化物樹脂、 液晶聚合物等所形成者、工業上若未被要求耐熱性時,可 使用廉價之聚酯樹脂,若被要求耐熱性時則以聚醯亞胺樹 脂爲最理想使用者。 使 聚醯亞 造代表 應此等 於金屬 反應之 聚醯亞 法者。 由熱熔 工業化 芳香族 胺樹脂 貼銅板 各原料 箔後, 方法, 胺樹脂 或使熱 合形成 者。 四羧酸二 可做爲極 之金屬箔 物質取得 加熱之後 或,聚醯 有機溶劑 塑性聚醯 雙面金屬 町w方含族二胺進 佳耐熱性之 樹脂層合物 之 ρ ο 1 y a ni i c 蒸發溶劑之 亞胺樹脂爲 溶液塗侑於 亞胺樹脂薄 箔聚醯亞胺 聚合物 步驟中 a c i d 有 同時, 有機溶 金屬箔 膜與金 樹脂層 者爲公知 公知者有 機溶劑溶 結束聚醯 劑可溶性 後蒸發溶 屬箔接觸 合物之方 収得之 者。製 ,將反 液塗佈 亞胺化 時,使 劑之方 後,藉 法亦被 m ’此寺方法均務必使樹脂部曝露於玻璃轉移點丁 、 上之溫度,經過冷卻之步驟。此時,急冷後必〜§ ' 由未緩和 之體積’實裝步驟中加熱步驟之熱履歷出現紐法 π…、达避免之收 縮。特別是’最近藉由可撓性印刷基板之精細刑 本板化,被 期待爲藉由熱收縮小之金屬箔樹脂層合物者,Μ 」它 Ρ時,溫度 變化後尺寸變化亦少者被期待之。 m $ 做爲爲減少因熱收縮之代表方法者如.$ 巧―刊文獻1 ~ 7 所載之熱鍛燒方法爲較多被採用者。此等$ # + 、〕&之共通點係 (3) 1343869 其熱處理溫度與熱處理時間所成熱處理條件廣’且’不同 樹脂層之種類其最適熱處理條件亦不同’因此,相關特定 樹脂之處理條件被各自限定之。更且’被認爲熱處理條件 係依樹脂之分子結構取得試差調適之方法者,而’理論上 ’減少熱收縮量之明確熱處理條件並未被明示。1343869 (1) Description of the Invention [Technical Field of the Invention] The present invention relates to a pharmaceutically acceptable metal layer laminate. More specifically, it is suitable for reducing the dimensional change rate and its unevenness by heat shrinkage, and is suitable as a flexible gold dam box laminate for forming a fine pitch circuit substrate material. [Prior Art] In recent years, the rapid development of high-performance and high-performance electronic devices has made it possible to reduce the size and weight of electronic components used in electronic devices. Along with this, the substrate for electronic parts is also required to improve various properties such as heat resistance, mechanical strength, and electrical characteristics. For the semiconductor component packaging method, the wiring board on which these are mounted is required to have higher density. High performance and high performance. In particular, liquid crystal displays installed in small electronic devices such as mobile phones and digital cameras have become more sophisticated and high-speed. Therefore, the drive 丨C is required to have a hot and fine collision pitch for flexible printing. A fine pitch is also required on the substrate. In order to ensure the reliability of the fine pitch driving 丨c and the flexible printed circuit board, it is required to have a high dimensional stability of the flexible printed circuit board. In general, in a flexible printed circuit board, a flexible metal foil laminate formed by laminating a metal foil and a resin layer is formed by wiring after photolithography, and is wired in a v-shaped or liquid-like covering. The coating is protected, and if necessary, the terminal 4 is formed by plating, tin, solder, or the like. The dimensional stability of the flexible printed substrate is such that the flexible metal foil laminate is mainly caused by the shrinkage of the resin layer at the bottom of the insulating layer -5-(2) 1343869. The resin layer laminated on the flexible metal foil laminate is mainly formed of a polyimide resin, a polyester resin, a glass epoxy resin, a polyphenyl sulfide resin, a liquid crystal polymer, or the like. When heat resistance is not required, an inexpensive polyester resin can be used, and when heat resistance is required, a polyimide resin is preferable. Conjugate the representative of the group to the metal reaction. Industrialization of Aromatic Amine Resin by Hot Melting A copper plate after each raw material foil, method, amine resin or heat-forming. The tetracarboxylic acid can be used as a metal foil material for heating or after the polyfluorene organic solvent plastic polyfluorene double-sided metal town w-containing diamine into a heat-resistant resin laminate ρ ο 1 ya ni ic The imide resin for evaporating the solvent is a solution of the imide resin in the thin foil polyimine polymer step. The acid is simultaneously, and the organic molten metal foil film and the gold resin layer are well known to the public. After the evaporation of the foil contact compound is obtained. When the liquid-repellent coating is imidized, the side of the agent is applied, and the method of m' is also used to expose the resin portion to the temperature at the glass transfer point and the cooling step. At this time, after the quenching, the heat history of the heating step in the mounting step of the unsuppressed volume must be π..., to avoid shrinkage. In particular, 'recently the slab of a flexible printed circuit board is expected to be a small metal foil resin laminate by heat shrinking, Μ Ρ Ρ , , , , , , , , , , 温度 温度 温度 温度 温度 温度 温度 温度 温度 温度 温度Looking forward to it. m $ is used as a method for reducing the heat shrinkage. For example, the hot calcination method contained in the magazines 1 to 7 is more adopted. The common point system of these # # + ,〕& (3) 1343869 The heat treatment temperature and the heat treatment time are the conditions for the heat treatment, and the optimum heat treatment conditions are different for the type of the resin layer. Therefore, the treatment of the specific resin is concerned. The conditions are each defined. Further, it is considered that the heat treatment conditions are based on the molecular structure of the resin, and the precise heat treatment conditions for 'theoretically reducing the amount of heat shrinkage' are not explicitly shown.

[專利文獻1 ]特開昭5 4 — 1 〇 8 2 7 2號公報 [專利文獻2] 特公平07 — 040636號公報 [專利文獻3 ] 特開平0 9 - 0 5 5 5 6 7號公報 [專利文獻4 ] 特開2 0 0 0 — 0 7 2 8 9 3號公報 [專利文獻5 ] 特開2 0 0 0 — 2 0 2 9 6 6號公報 [專利文獻6 ] 特開2 0 0 1 - 1 7 7 2 0 0號公報 [專利文獻7 ] 特開2 0 0 1 - 2 7 0 0 3 5號公報[Patent Document 1] Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. [Patent Document 4] Japanese Patent Publication No. 2000-A. Patent Publication No. JP-A No. 2 0 0 0 - 2 0 2 9 6 6 [Patent Document 6] Special Opening 2 0 0 1 - 1 7 7 2 0 0 [Patent Document 7] Special Opening 2 0 0 1 - 2 7 0 0 3 5

做爲此等先行技術之共通點者,如:以減少樹脂部因 熱產生尺寸變化者爲其目的之例者,而,熱收縮量以外, 亦有做爲設計上重要特性値者如:因熱產生收縮量之不均 例者。針對熱收縮,其收縮量之平均値爲一定時,藉由設 疋値之修正後可取得所設定之尺寸,惟,收縮量之不均若 爲可容許公差以上時’將無法取得所要求之尺寸精密度, 因此’爲確保丨C與可撓性印刷基板相互之連接信賴性,該 熱收縮率之均勻度爲熱重要之評定項目者。惟,針對熱收 縮qp之均勻度事實上於先行技術上並未被重視之。 【發明內容】 本發明之目的係爲提供一種藉由熱收縮後,尺寸變化 (4) 〜之不均減少’可取得形成具有適於實裝高密度間距之】c 的精細間距電路之可撓性印刷基板之可撓性金屬箔層合物 者。 該本發明之目的係金屬箔與樹脂層相互之層合物,以 昇溫速度1 0 °C /分鐘’惰性氣體下實施示差熱分析(D S C > ^ ’於玻璃轉移領域下所觀測之吸熱波峰熱量藉由代表 每樹脂單位重量爲〇 5_j/g以上之値之可撓性金屬箔層合物 違成之。此可撓性金屬箔層合物可於低於樹脂玻璃轉移點 T 8 3〜5 〇 °C之溫度下藉由熱處理後取得。 本發明中發現於可撓性印刷基板之製造步驟,實裝步 驟中爲取得所要求之尺寸安定化,使玻璃狀態之埠安定狀 怒樹脂以低於玻璃轉移點T g之溫度下進行熱處理後,體積 飽和’亦即物理性儲存者可取得最佳效果者。 本發明中發現爲確保尺寸安定性之熱處理條件係於聚 酿亞胺樹脂之骨架結構依存其玻璃轉移點Tg,惟,於低於 此玻璃轉移點τ g之溫度下施予熱處理之效果係於D S C測定 時之玻璃轉移點Tg溫度領域所觀測之吸熱波峰大小做爲尺 寸安定性(尺寸變化率之均勻度)之指標者。 又’爲發現此吸熱波峰’可以低於玻璃轉移點T g 5〜5 0 °C之溫度下至少進行8小時以上之熱處理後達成之。依聚 酿亞胺樹脂之種類’爲取得充份之效果亦有務必進行1 〇 〇 小時以上之熱處理者。處理時間愈長其DSC之Tg附近波峰 強度將愈強之傾向,惟,緩和充份進行後波峰強度對於處 理時間呈飽和者。 -8 - (5) (5)1343869 通常,處理時間愈長,愈可提昇尺寸安定性’惟’極 端物理性儲存時,雖減少體積之熱收縮,其反面破壞能( S S曲線之積分値)之降低卻極微。偶有務必考量用途不同 其機械物性與不均度亦不同,惟,可撓性印刷基板若於此 技術之適用範圍下,則因物理儲存之稍有降低機械物性者 並不致造成問題點。 有關藉由工程塑料之物理儲存之結構安定化’ 一般爲 公知者,而,本發明中發現藉由此玻璃轉移點T g以下之長 時間熱處理後,其熱收縮率之絕對値不僅變小’熱收縮率 之不均,亦即,3 σ ( σ :標準偏差)亦變小。精細型板 於所要求可撓性印刷基板之電路設計階段中,其不均度遠 比熱收縮率自體更爲重要’而’本發明解決了該重要.問題 點。 [非專利文獻 1] Physics and Mechanics of AmorphousAs a common point of such advance technology, for example, to reduce the size change of the resin part due to heat, and in addition to the amount of heat shrinkage, there are also important design features such as: The heat is not uniform in the amount of shrinkage. For the heat shrinkage, when the average value of the shrinkage amount is constant, the set size can be obtained by setting the correction. However, if the unevenness of the shrinkage amount is more than the allowable tolerance, the required one will not be obtained. The dimensional precision is such that, in order to ensure the reliability of the connection between the crucible C and the flexible printed circuit board, the uniformity of the thermal shrinkage rate is an important factor for evaluating the heat. However, the uniformity of the heat shrinkage qp is in fact not taken seriously in the prior art. SUMMARY OF THE INVENTION An object of the present invention is to provide a fine pitch circuit capable of forming a high-density pitch capable of mounting a high-density pitch after heat shrinkage, and the thickness variation (4) is reduced. A flexible metal foil laminate of a printed substrate. The object of the present invention is to form a laminate of a metal foil and a resin layer, and perform differential thermal analysis (DSC > ^ 'the endothermic peak observed in the field of glass transfer at a temperature increase rate of 10 ° C /min ' under inert gas The heat is violated by a flexible metal foil laminate which represents 値5_j/g or more per unit weight of the resin. The flexible metal foil laminate can be lower than the resin glass transfer point T 8 3~ 5 is obtained by heat treatment at a temperature of 〇 ° C. In the present invention, in the manufacturing step of the flexible printed circuit board, in the mounting step, the desired size is stabilized, and the glass state is stabilized. After heat treatment at a temperature lower than the glass transition point T g , the volume is saturated, that is, the physical storage can obtain the best effect. The heat treatment conditions found in the present invention to ensure dimensional stability are based on the polyaniline resin. The skeleton structure depends on the glass transition point Tg, but the effect of heat treatment at a temperature lower than the glass transition point τ g is the magnitude of the endothermic peak observed in the Tg temperature range of the glass transition point in the DSC measurement. As an indicator of dimensional stability (uniformity of dimensional change rate), it can be used to heat the glass at a temperature lower than the glass transition point T g 5 to 50 ° C for at least 8 hours. In order to achieve sufficient results, it is necessary to heat the heat for more than 1 hour. The longer the treatment time, the stronger the peak intensity near the Tg of the DSC, but After the tempering is sufficient, the peak intensity is saturated with the processing time. -8 - (5) (5) 1343869 Generally, the longer the treatment time, the more the dimensional stability can be improved 'only' when the physical storage is reduced, although the volume is reduced. The heat shrinkage, the reduction of the reverse surface energy (the integral curve of the SS curve) is minimal. Occasionally, the mechanical properties and the unevenness are different depending on the application, but the flexible printed circuit board is applicable to the scope of this technology. , because the physical storage slightly reduces the mechanical properties of the person does not cause problems. The structural stability of the physical storage of engineering plastics 'is generally known, but the present invention found Therefore, after the long-term heat treatment of the glass transition point T g or less, the absolute enthalpy of the heat shrinkage rate is not small, and the heat shrinkage rate is uneven, that is, 3 σ ( σ : standard deviation) is also small. Fine plate In the circuit design stage of the required flexible printed circuit board, the unevenness is far more important than the heat shrinkage rate itself, and the present invention solves this important problem. [Non-Patent Document 1] Physics and Mechanics of Amorphous

Polymers 第 206 頁以後(1998)。 適度之藉由物理儲存之結構安定化係藉由昇溫下進行 D S C測定時出現於玻璃轉移點附近之吸熱波峰量後可定量 之。該波峰愈大熱收縮率愈小’其不均度亦愈小。藉由物 理儲存後,玻璃轉移點Tg附近之D S C波峰與尺寸安定性及 其不均度降低效果相互之關係未依聚醯亞胺樹脂之結構所 發現之。若使用不同2種以上玻璃轉移點Tg之樹脂時,則 藉由低於玻璃轉移點Tg 5〜3 0°C之溫度下長時間熱處理後, 雖可達成尺寸安定化’依其處理時間、處理溫度卻影響其 效果。 -9 - (6) (6)1343869 藉由此熱處理後,出現於玻璃轉移點Tg附近之波峰熱 量愈大則尺寸安定化效果愈大,反之,亦有低於玻璃轉移 點T g之溫度下再長時間之處理仍未被觀測出此波峰之情況 。此樹脂中’藉由熱處理並無法期待尺寸安定化之效果。 熱處理結果,出現於玻璃轉移點T g附近之吸熱波峰中 該熱量ΔΗ爲每樹脂單位重量〇.5J/g以上,較佳爲2.0J /g 以上之値時,其尺寸安定性及其不均度之降低效果充份被 確定之。特別被記載中,熱收縮量最少之樹脂材料被觀測 爲0.5 J/g之波峰時,若施予熱處理,即使於熱處理前設計 目標値稍有脫離範圍,藉由此熱處理之進行後,實際上亦 可做成結論。亦即,可採用與其他尺寸安定化方法並行者 〇 做爲熱處理法以外之尺寸安定化方法者,如:以聚醯 亞胺樹脂絕緣層進行複層塗層之方法等工業化者,針對此 多層樹脂仍針對其收縮之最大樹脂成份於本發明所規定之 條件下進行熱處理後,可減少熱收縮性。 [專利文獻8 ]特開平0 8 - 2 5 0 8 6 0號公報 [專利文獻9 ]特開平〇 9 - 〇 5 5 5 6 7號公報 於可撓性印刷基板必要進行微細之配線間距時,使用 本發明具尺寸安定性之聚醯亞胺樹脂後,可確保連接部份 之信賴性者。特別是於異構性導電性樹脂(A C F等)之連 接步驟中因加熱步驟而使用引起熱收縮之聚醯亞胺樹脂後 ,其連接部於端部出現位移。本發明無此顧忌,可適用於 精細間距之可撓性印刷基板。 -10 - (7) (7)1343869 本發明效果係可降低非晶質樹脂製品熱收縮性之連本 方法者’不僅可廣泛應用,更可藉由熱分析因熱處理之熱 收縮特性後’以坡璃轉移點Tg部份之波峰強度做爲指標。 亦即’各樹脂材料進行試差後務必決定之熱處理條件不管 任何材料均可統一設定之。此外,製品設計參數中更具極 大意義者係可降低最重要之尺寸安定性的不均度者。 又’觀測玻璃轉移點Tg附近之吸熱波峰條件若於較狹 窄’低於玻璃轉移點Tg5(TC之溫度,處理時間丨0小時下, 偶有未被觀測出吸熱波峰者。由此顯示,本發明可藉由熱 處理而出現意圖尺寸安定化條件之特異點者。 如此’本發明係藉由樹脂材料之坡璃點Tg直接熱處 理後利用未緩和體積之緩和現象,其中出現尺寸安定性之 理由係因熱產生之熱收縮爲起因於樹脂非晶質相之未緩和 體積之收縮者’此於玻璃狀態下藉由局部分子之緩和後去 除之後,消失易收縮部份者。 【實施方式】 [實施實施之最佳形態] 做爲金屬箔者如:電解銅箔 '壓延銅箔 '鋁箔、不錢 鋼箔等例,一般使用電解銅箔或壓延銅箔者。做爲高密度 可撓性印刷基板者通常使用電解調箱者藉由銅触刻形成良 好精細型板爲較佳者。此等金阉箔爲可撓性印刷基板用者 ,因此’一般以約3〜3 5 μ 1Ϊ1者使用之,惟,爲形成微細間 距之配線’以厚至約1 S μ m之厚度爲較佳者。 ' 11 - (8) (8)1343869 將此等金屬箔於單面或雙面進行層合之樹脂層主要由 聚醯亞胺樹脂、聚酯樹脂等所形&,較佳者以使用聚醯亞 胺樹脂者。此等樹脂層以約5〜5〇μηι,較佳者約7〜^,之 厚度所形成者。當樹脂層之厚度低於此時,則對於電路絕 緣之信賴性將不足’且’彎曲等機械性變低。反之,高於 此厚度之樹脂層被形成後’則易產生加熱時之發泡,損及 其可撓性。 針對聚醒亞胺樹脂進行敘述後,該聚醯亞胺樹脂之結 構未特別受限下可取得效果,而前提是,可撓性印刷基板 所要求無铅一焊耐熱溫度爲2 7 Ο ΐ之溫度,異構性導電結 合劑(A C F )之使用者時’聚醯亞胺樹脂之玻璃轉移點τ g 爲2 9 0 °以上者宜。無需焊錫耐熱性時,其玻璃轉移點T g 只要爲2 4 0 °C以上即可。另外,熱熔合、溶劑乾燥步驟、 樹脂熱分解等考量下,該玻璃轉移點T g以3 5 0 °C以下者宜 。於此溫度範圍下進行長時間熱處理時,出現氧存在之問 題’因此’基本上於惰性氣體中等無氧狀態下進行熱處理 者。 使玻璃轉移點Tg做成2 9 0〜350 °C之範圍時,存在構成 聚醯亞胺樹脂之單體共聚組成問題點,考量耐熱性時以使 用芳香族四羧酸二酐做爲酸酐者。做爲該芳香族四羧酸二 酐者如:均苯四甲酸二酐、2,3,6,7 -萘四羧酸二酐、 3,3 1,4,41 一二苯基四羧酸二酐、異亞丙基雙(4 一苯氧 基一 4 —呔酸)二酐、2,21 _雙(3,4 —二羧苯基)丙烷 二無水物、雙(3,4 -二羧苯基)磺二無水物、3,4,9 -12 - (9) (9)1343869 ,1 Ο —紫蘇烯四羧酸二無水物、雙(3,4 -羧苯基)醚二 醚酐、萘—〗,2,4,5 —四羧酸二酐、萘一 1,4,5,8 -四羧酐二酐、癸氫萘一 1,4,5,8 -四羧酸二酐、4,8 -二甲基一1,2,3,5,6’ 7_ 六氫萘一 1,2,5,6 —四羧 酸二酐、2,6 -二氯萘—1,4,5,8 -四羧酸二酐、2,7 —二氯萘—1,4,5,8-四羧酸二酐、2,3,6’ 7 —四氯 萘一1,4,5,8 —四羧酸二酉f、菲一1,8,9,10 —四羧 酸二酐、2,2 -雙(2,3 —二羧苯基)乙烷二酐'1,1_ 雙(3,4 一二羧苯基)乙烷二酐、雙(2,3 —二羧苯基) 甲烷二酐、雙(3,4_二羧苯基)甲烷二酐、雙(3,4 — 二羧苯基)磺二酐、苯—1,2,3,4 -四羧酸二酐' 3,4 ,3 ’,4 二苯甲酮四羧酸二酐等例,可單獨或2種以上做 成混合物使用均可。 又,做爲與此等芳香族四羧酸二酐相互反應之芳香族 二胺者如:4,4'_二胺基二苯酸、m_苯二胺、p -苯二 胺、4,4' 一二胺基二苯基丙烷、4,4'-二胺基二苯基甲 烷、聯苯胺、4,4 二胺基二苯基硫化物、4,4 ’ 一二胺 基二苯砸、3,3 ’ —二胺基二苯碾、2,6 -二胺基吡啶、 雙(4 一胺基苯基)二乙基矽烷、雙(4 一胺基苯基)二苯 基矽烷、3,3 '-二氯聯苯胺、雙(4 -胺基苯基)乙基膦 氧化物、雙(4 一胺基苯基)苯基膦氧化物、雙一 (4 -胺 基苯基)—苯胺、雙(4 一胺基苯基)—N —甲胺、1 5 —: 二胺基萘、3, Λ 1 J — 二甲基一4 ,4 ' -二胺 基聯茶基、 4 ,- -二甲基一 3’ ,4 —: 二胺基聯萍 〔基、3,3' 一二甲氧基 -13- (10) (10)1343869 聯苯胺、2,4 一雙(/3 —胺基一第三丁基)甲苯、雙(p —β —胺基一第三丁基苯基)醚、P -雙(2 —甲基—4 — 胺基苄基)苯、ρ-雙(1,1 一二甲基一 5 —胺基爷基)苯 、m —二甲苯二胺' ρ —二甲苯二胺、1,3 —二胺基金剛 烷、3,3 ’ 一二胺基—1,1 ' 一二金剛烷、3,3 ’ —二胺基_ 1,1 '…二金剛烷 '雙(P —胺基環己基)甲烷、六亞甲基 二胺、庚亞甲基二胺、辛亞甲基二胺、壬亞甲基二胺、癸 亞甲基二胺、3 —甲基庚亞甲基二胺、4,4 一二甲基庚亞 甲基二胺、2,1 1 一二胺基十二烷、1,2 —雙(3 —胺基丙 氧基)乙烷、2,2 -二甲基丙烯二胺、3 —甲氧基-六亞 甲基二胺、2,5 -二甲基六亞甲基二胺、5 -甲基壬亞甲 基二胺' 5 —甲基壬亞甲基二胺、1,4 —二胺基環己烷、】 ,12 —二胺基辛癸烷、2,5 —二胺基—1,3,4 —噁二唑 、2,2 -雙(4 一胺基苯基)六氟丙烷一 N— (3_胺基苯 基)一 4 一胺基苯甲醯胺、4 —胺基苯基—3 --胺基苯甲酸 酯、6 -胺基一 2 - ( ρ -胺基苯基)苯並咪唑等例,可單 獨或2種以上混合物使用之,較理想者以4,4 二胺基二 苯醚之單獨使用者。 以1 : 1莫耳比,進行此等兩者間之縮聚反應中,未必 需要聚合觸,而,爲控制反應性,可使用第3級胺類者。 做爲第3級胺類例者如:三甲胺、三乙胺、吡啶、異喹啉 、2 -乙基吡啶、2 —甲基吡啶、N —乙基嗎啉、N —甲基 嗎啉' N,N —二乙基環己胺、N,N —二甲基環己胺、4 一 苯醯咄啶、2,4 —二甲基吡啶、2,6 -二甲基吡啶、2,4 -14 - (11) (11)1343869 ,6 —三甲基D比啶、3,4 —二甲基吼啶、3,5 —二甲基吡 啶、4 一甲基吡啶、3 -甲基吡啶、4 一異丙基吡啶、N,N -二甲基苄胺、4 一爷基吡啶、N,N -二甲基十二胺等例 縮聚反應係使用有機溶劑,如:N,N _二甲基甲醯 胺、N,N—二甲基乙醯胺、N,N -二乙基甲醯胺、N,N —二乙基乙醯胺' N —二甲基甲氧基乙醯胺、N -甲基己 內醯胺、二甲亞硪' N _甲基—2 —吡咯烷酮、四甲基脲 、吡啶、二甲碾、六甲基磷醯胺、四亞甲砸、甲醯胺、N -甲基甲醯胺、丁內酯、等例,可單獨或2種以上混合物 使用之。此等有機溶劑亦可與於苯、甲苯、二甲苯、環己 烷、苯甲腈、二氰陸圜等溶劑性不良之溶劑合倂使用之。 縮聚反應之一次生成物係聚醯亞胺樹脂前驅物之 ρ ο I y a m i c a c i d者,將此a m i c a c i d 溶液(此者亦可爲其反 應生成物溶液者)利用塗工裝置於金屬箔上進行塗佈之。 做爲塗工裝置者,可使用影縮版塗層、逆輥塗層、棒逆輥 塗層、棒塗層、塗膠刀塗層、簾流塗層、塑模塗層、多層 塑模塗層,等者,亦可將以提昇特性等爲目的之複數種 polvamic acid 溶液呈多層進行塗佈之。或亦可由 polyamic acid製作聚醯亞胺樹脂薄膜後,將此利用黏合劑 貼於金屬箔之方法者。 於精細間距用途中,未使用黏合劑,使聚醯亞胺樹脂 直接黏合於金屬箔之方法被採用之。對於該銅箔等金屬箔 之黏合性良好聚醯亞胺樹脂例者如:由(A )異亞丙基雙 -15 - (12) (12)1343869 (4 —苯氧基—4—呔酸)二酐及(B) 3,3',4,4’ 一二 苯甲酮四羧二酐所成之2種芳香族四羧酸二酐與(C ) 6 -胺基一 2 - (p -胺基苯基)苯並咪唑相互共聚物之聚醯亞 胺樹脂等例。 [專利文獻 1 〇] W0 0 1 /29 1 3 6 A 1 又,未使用黏合劑,使用經由ρ 〇 1 y a m i c a c i d後所合成 之聚醯亞胺樹脂後,亦可直接黏合於金屬箔者,做爲該聚 醯亞胺樹脂例者如以下所示例者。 .由(A)均苯四甲酸二酐及(B) 3,3',4,4'一二 苯甲酮四羧酸二酐所成之2種四羧酸二酐與(C ) 6 -胺基 -2- (ρ —胺苯基)苯並咪唑之相互共聚物 •由(A)異丙丙基雙(4 一苯氧基一 4 一呔酸)二酐 及(B ) 3,3 ’,4,4 1 —聯苯四羧酸二酐所成之2種四羧酸 二酐與(C ) 6 —胺基一 2 - ( ρ _胺基苯基)苯並咪唑相互 之共聚物 •由(A )異亞丙基雙(4 一苯氧基一 4 —呔酸)二酐 及(B ) 3,3 ’,4,41 一聯苯四羧酸二酐所成之2種四羧酸 二酐與(C ) 6 -胺基—2 - ( ρ -胺基苯基)苯並咪唑及( D)雙(4 -胺基苯基)醚(Di)及苯二胺(D2)之至少1 種至2種或3種二胺之相互共聚物。 於此金屬箔具良好黏合性之聚醯亞胺樹脂層上更可塗 佈低吸濕性或低熱膨脹性之聚醯亞胺樹脂或其前驅物之 ρ ο 1 y a m i c a c i d者。做爲經由ρ ο 1 y a m i c a c i d所合成之聚醯亞 胺樹脂者如上述例者。 -16- (13) (13)1343869 又,將熱塑性聚醯亞胺樹脂與金屬箔進行接觸後,p 由熱熔合後形成雙面金屬箔聚醯亞胺樹脂層合物之$ & # 被工業化,此法亦適用之。除此以外之方法,只要可取胃 金屬箔與聚醯亞胺樹脂相互之層合物方法者即可適用0 $ 發明。 此時,以線膨脹係數之調節、機械特性之調整,^胃 黏合性等做爲目的下,亦可使用不同聚醯亞胺樹脂之ί#胃 物或摻混不同樹脂者。又,以改良各種特性爲其目的,# 可使用混合無機質、有機質或金屬質之粉、纖維等者,Η 可添加抗氧化劑爲防止金屬箔導體之氧化,或爲提昇f占·^ 性爲目的下,亦可添加矽烷偶合劑。 爲提昇導熱效率,藉由導入補助電熱器於支撐滾輥之 支柱後,可縮短整體製品到達設定溫度之時間。熱處理時 間若太長時,則將降低切斷延伸,而’藉由熱處理後示差 熱分析(D S C )測定,以1 0 °C /分鐘之昇溫速度進行昇溫 至於玻璃轉移點Tg溫度範圍下產生吸熱波峰爲止。於接近 玻璃轉移點Tg之溫度下進行處理後’偶有未能取得安定結 構之情況。熱處理之結果,藉由D S C測定’昇溫下,於坡 璃轉移點Tg溫度範園所產生之吸熱波峰熱量被測定爲每樹 脂單位重量爲0.5J(/g以上時,可確定具尺寸安定化之效果 者。 熱處理條件所需之熱處理溫度及熱處理時間依其樹脂 種類而異,惟,針對熱處理時間通常約爲8小時以上,較 佳者約爲24〜120小時之範圍最能取得最大效果者。若超出 -17- (14) 1343869 此is m β熱處埋時間則將提高成本於工業上 且樹脂之熱分解亦不可忽視。惟,幾乎未出 解情況下,處理時間則愈長愈佳。 樹脂由多數成份所構成時,如相當於樹 者,爲多層結構體時,所構成樹脂之主成份 儲存’即可取得效果之情況亦有。又,樹脂 Tg幾乎相同時,則尺寸安定化效果亦高。更 脂之玻璃轉移點Tg進行熱處理後,隨後以低 Tg之溫度進行熱處理之多段熱處理亦有其效 結束熱處理後’測定層合物之尺寸做爲 方法係使2 Ο Ο X 2 5 0 m m大小之層合物薄片於 之恆溫恆濕槽中保持2 4小時後’以5 0 m m間 片進行穿孔成2 〇個直徑丨m m之孔’測定孔距 之方法者3往塗佈方向測定尺寸者做成M D 方向呈垂直方向進行測定做成TD方向進行定 隨後,利周蝕刻等表面處理裝置進行銅 ,65%RH之恆溫恆濕槽中保持24小時’同法 。再於2〇〇°C下進行加熱30分鐘後’於20°C 溫恆濕槽中保持2 4小時後同法進行尺寸測 時,加熱後尺寸不均度之問題極爲重要者 40μΙΤ1以下時’做爲標準偏差σ時其3 σ値套 爲理想者。 本發明亦可倂用其他尺寸安定化方法者 他方法取得之尺寸安定性(熱收縮·率及其不 極不實際者, 現樹脂之熱分 脂層爲摻混物 即使僅被物理 之玻璃轉移點 合倂高構成樹 於玻璃轉移點 果者。 基準値。測定 2 0 °C ,6 5 % R Η 隔於層合物薄 離中心點距離 方向,與塗佈 義之。 蝕刻,於2 0 °C 進行尺寸測定 ,6 5 % R Η之恆 定。設計製品 ,端子間距爲 ,0.05%以下者 。亦即,依其 均度)其細節 -18 - (15) 1343869 稍不足時等,可藉由物理儲存之結構安定化後,輕易取得 目的之尺寸安定性。 特別是,購入市販品之貼銅板後,以藉由低於D S C所 測定之玻璃轉移點Tg約1 0°C之溫度下進行熱處理後,DSC 昇溫測定時於玻璃轉移點Tg附近產生吸熱波峰時,進行熱 處理之後,其尺寸安定性之不均度被控制之。Polymers, page 206 (1998). Moderate structural stabilization by physical storage can be quantified by the amount of endothermic peaks appearing near the glass transition point during D S C measurement at elevated temperatures. The larger the peak, the smaller the heat shrinkage rate, and the smaller the unevenness. After physical storage, the relationship between the D S C peak near the glass transition point Tg and the dimensional stability and its unevenness reduction effect was not found by the structure of the polyimide resin. When two or more kinds of resins having different glass transition points Tg are used, after a long time heat treatment at a temperature lower than the glass transition point Tg 5 to 30 ° C, the dimensional stability can be achieved, depending on the treatment time and treatment. Temperature affects its effect. -9 - (6) (6) 1343869 After the heat treatment, the higher the peak heat near the glass transition point Tg, the larger the dimensional stability effect, and conversely, the temperature lower than the glass transition point T g The peak has not been observed for a long time. In this resin, the effect of dimensional stability cannot be expected by heat treatment. As a result of the heat treatment, the heat ΔΗ occurring in the endothermic peak near the glass transition point T g is 5.5 J/g or more per unit weight of the resin, preferably 2.0 J /g or more, and dimensional stability and unevenness thereof The effect of reducing the degree is fully determined. In particular, when the resin material with the least amount of heat shrinkage is observed as a peak of 0.5 J/g, if heat treatment is applied, even if the design target is slightly separated from the range before the heat treatment, after the heat treatment is performed, actually Can also make a conclusion. In other words, those who are parallel to other dimensional stabilization methods can be used as a dimensional stabilization method other than the heat treatment method, such as a method of performing a multilayer coating with a polyimide resin insulating layer, and the like. The resin is still subjected to heat treatment under the conditions specified in the present invention for the maximum resin component of the shrinkage thereof, thereby reducing heat shrinkage. [Patent Document 8] Japanese Laid-Open Patent Publication No. Hei 9- No. 5-5 5-6 No. 5 - 5 5 5 6 7 When the flexible printed circuit board is required to have a fine wiring pitch, By using the dimensionally stable polyimine resin of the present invention, the reliability of the joint portion can be ensured. In particular, in the connection step of the isomerized conductive resin (A C F or the like), the polyimine resin which causes heat shrinkage is used in the heating step, and the joint portion is displaced at the end portion. The present invention is not suitable for this and can be applied to a fine pitch flexible printed circuit board. -10 - (7) (7) 1343869 The effect of the present invention is that the method for reducing the heat shrinkage of an amorphous resin product is not only widely applicable, but also by thermal analysis due to heat shrinkage characteristics of heat treatment. The peak intensity of the Tg portion of the transfer point of the glass is used as an index. That is, the heat treatment conditions that must be determined after the trial of each resin material can be uniformly set regardless of any material. In addition, the more significant of the design parameters of the product can reduce the unevenness of the most important dimensional stability. In addition, the observation of the endothermic peak condition near the Tg of the glass transition point is lower than the glass transition point Tg5 (the temperature of TC, the treatment time is 小时0 hours, and occasionally the endothermic peak is not observed. This shows that In the invention, the singularity of the intended dimensional stability condition may occur by heat treatment. Thus, the present invention utilizes the relaxation of the unmitigated volume by direct heat treatment of the slope point Tg of the resin material, wherein the reason for the dimensional stability is The heat shrinkage due to heat is caused by the shrinkage of the unreacted volume of the amorphous phase of the resin. This is removed by the relaxation of the local molecules in the glass state, and then disappears easily after shrinking. [Embodiment] [Implementation] The best form for implementation] As a metal foil, such as electrolytic copper foil 'rolled copper foil' aluminum foil, stainless steel foil, etc., generally used electrolytic copper foil or rolled copper foil. As a high-density flexible printed circuit board It is generally preferred to use an electric demodulation box to form a good fine pattern by copper contact. These gold foils are used for flexible printed substrates, so 'generally about 3 to 3 5 μ 1 Ϊ 1 It is preferred to use a thickness of about 1 S μm for the wiring of fine pitch. ' 11 - (8) (8) 1343869 Layers of these metal foils on one or both sides The resin layer is mainly formed of a polyimide resin, a polyester resin, etc., preferably a polyimine resin. These resin layers are about 5 to 5 μm, preferably about 7 When the thickness of the resin layer is lower than this, the reliability of the circuit insulation will be insufficient and the mechanical properties such as bending will be low. Otherwise, the resin layer higher than this thickness is formed. 'It is easy to cause foaming during heating, damage and flexibility. After describing the polyamidene resin, the structure of the polyimide resin can be achieved without special restrictions, provided that it is flexible The printed circuit board requires a lead-free solder heat resistance temperature of 2 7 Ο ΐ, and the user of the isomerized conductive bond (ACF) has a glass transition point τ g of 920 ° above. It is advisable that when the solder heat resistance is not required, the glass transfer point T g may be 240 ° C or more. The thermal transfer, the solvent drying step, the thermal decomposition of the resin, etc., the glass transfer point T g is preferably below 350 ° C. When the heat treatment is performed for a long time in this temperature range, the problem of oxygen is present. The heat treatment is carried out substantially in an oxygen-free state, such as an inert gas. When the glass transition point Tg is in the range of 290 to 350 ° C, there is a problem of the copolymerization composition of the monomer constituting the polyimide resin, and the heat resistance is considered. When an aromatic tetracarboxylic dianhydride is used as the acid anhydride, the aromatic tetracarboxylic dianhydride such as pyromellitic dianhydride and 2,3,6,7-naphthalenetetracarboxylic dianhydride are used. 3,3 1,4,41 diphenyltetracarboxylic dianhydride, isopropylidene bis(4-phenoxy-4-oxanoic acid) dianhydride, 2,21 bis(3,4-dicarboxylate Phenyl)propane di-anhydrous, bis(3,4-dicarboxyphenyl)sulfonate, 3,4,9 -12 - (9) (9) 1343869, 1 Ο-Pursene tetracarboxylic acid , bis(3,4-carboxyphenyl)ether diether anhydride, naphthalene-, 2,4,5-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetracarboxylic anhydride dianhydride, hydrazine Hydrogen naphthalene-1,4,5 , 8-tetracarboxylic dianhydride, 4,8-dimethyl- 1,2,3,5,6' 7-hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, 2,6- Dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,3,6' 7-tetrachloride Naphthalene-1,4,5,8-tetracarboxylic acid diindole f, phenanthrene-1,8,9,10-tetracarboxylic dianhydride, 2,2-bis(2,3-dicarboxyphenyl)ethane Diorhydride '1,1_bis(3,4-dicarboxyphenyl)ethane dianhydride, bis(2,3-dicarboxyphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)methane Anhydride, bis(3,4-dicarboxyphenyl)sulphonic anhydride, benzene-1,2,3,4-tetracarboxylic dianhydride '3,4,3 ',4 benzophenone tetracarboxylic dianhydride For the other examples, they may be used singly or in combination of two or more. Further, as an aromatic diamine which reacts with such an aromatic tetracarboxylic dianhydride, for example, 4,4'-diaminodiphenyl acid, m-phenylenediamine, p-phenylenediamine, 4, 4'-diaminodiphenylpropane, 4,4'-diaminodiphenylmethane, benzidine, 4,4 diaminodiphenyl sulfide, 4,4 'diaminodiphenyl hydrazine , 3,3 '-diaminodiphenyl milling, 2,6-diaminopyridine, bis(4-aminophenyl)diethyldecane, bis(4-aminophenyl)diphenylnonane, 3,3 '-dichlorobenzidine, bis(4-aminophenyl)ethylphosphine oxide, bis(4-aminophenyl)phenylphosphine oxide, di-(4-aminophenyl) - aniline, bis(4-aminophenyl)-N-methylamine, 1 5 -: diaminonaphthalene, 3, Λ 1 J - dimethyl- 4,4 '-diamino-based tea base, 4 ,--Dimethyl-3',4-: Diamino-based propyl (3,3'-dimethoxy-l-(10) (10) 1343869 benzidine, 2,4 pair (/ 3-amino-tert-butyl)toluene, bis(p-β-amino-t-butylphenyl)ether, P-bis(2-methyl-4-aminobenzyl) Benzene, ρ-bis(1,1-dimethyl-5-amino-yl)benzene, m-xylenediamine' ρ-xylylenediamine, 1,3-diamine fundane, 3, 3 'monodiamino-1,1 '-adamantane, 3,3 '-diamino _ 1,1 '... diamantane' bis (P-aminocyclohexyl)methane, hexamethylene di Amine, heptamethylenediamine, octylethylenediamine, decamethylenediamine, decamethylenediamine, 3-methylheptylmethylenediamine, 4,4-dimethylglycolmethylene Diamine, 2,1 1 -diaminododecane, 1,2-bis(3-aminopropoxy)ethane, 2,2-dimethylpropanediamine, 3-methoxy-hexa Methylene diamine, 2,5-dimethyl hexamethylene diamine, 5-methyl fluorene methylene diamine ' 5-methyl fluorene methylene diamine, 1,4-diamino ring Hexane,], 12-diaminooctylane, 2,5-diamino-1,3,4-oxadiazole, 2,2-bis(4-aminophenyl)hexafluoropropane-N —(3_Aminophenyl)-4-aminobenzamide, 4-aminophenyl-3-amine benzoate, 6-amino-2-(ρ-amino group Yl) benzimidazole-like embodiment, may be used alone or a mixture of two or more, it is desirable to separate those 4,4-diamino diphenyl ether of the user. In the polycondensation reaction between the two at a molar ratio of 1:1, it is not necessary to require a polymerization contact, and in order to control the reactivity, a third-order amine can be used. As a third-grade amine such as: trimethylamine, triethylamine, pyridine, isoquinoline, 2-ethylpyridine, 2-methylpyridine, N-ethylmorpholine, N-methylmorpholine 'N ,N-diethylcyclohexylamine, N,N-dimethylcyclohexylamine, 4-benzopyridinium, 2,4-lutidine, 2,6-lutidine, 2,4 - 14 - (11) (11) 1343869, 6-trimethyl D-bipyridine, 3,4-dimethyl acridine, 3,5-lutidine, 4-methylpyridine, 3-methylpyridine, 4 Polyisopropylpyridine, N,N-dimethylbenzylamine, 4-monophenylpyridine, N,N-dimethyldodecyl, etc. The polycondensation reaction uses an organic solvent such as N,N-dimethyl Mercaptoamine, N,N-dimethylacetamide, N,N-diethylformamide, N,N-diethylacetamide 'N-dimethylmethoxyacetamide, N-methyl caprolactam, dimethyl hydrazine 'N _methyl-2-pyrrolidone, tetramethyl urea, pyridine, dimethyl ruthenium, hexamethylphosphonium, tetramethylene guanidine, methotrexate, N-methylformamide, butyrolactone, and the like may be used singly or in combination of two or more kinds. These organic solvents may also be used in combination with solvents having poor solvent properties such as benzene, toluene, xylene, cyclohexane, benzonitrile or dicyanide. The primary product of the polycondensation reaction is ρ ο I yamicacid of the polyimide precursor resin precursor, and the amicacid solution (which may also be the reaction product solution thereof) is coated on the metal foil by a coating device. . As a coating device, you can use shadow reduction coating, reverse roll coating, bar reverse roll coating, bar coating, rubber knife coating, curtain coating, mold coating, multi-layer molding For the layer, etc., a plurality of polvamic acid solutions for the purpose of improving properties and the like may be applied in multiple layers. Alternatively, the polyimine resin film may be made of polyamic acid, and the adhesive is applied to the metal foil. In the fine pitch application, a method of directly bonding a polyimide resin to a metal foil without using a binder is employed. For the metal foil such as copper foil, the adhesion is good, for example, by (A) isopropylidene bis-15 - (12) (12) 1343869 (4-phenoxy-4-indanoic acid) And dianhydride and (B) 3,3',4,4' benzophenone tetracarboxylic dianhydride formed by two kinds of aromatic tetracarboxylic dianhydride and (C) 6 -amino group 2- 2 - (p Examples of polyimine resins such as -aminophenyl)benzimidazole copolymers. [Patent Document 1 〇] W0 0 1 /29 1 3 6 A 1 Further, after the binder is used, the polyimine resin synthesized by ρ 〇1 yamic acid can be used, and it can be directly bonded to the metal foil. Examples of the polyimine resin are as follows. Two kinds of tetracarboxylic dianhydrides and (C) 6 - formed from (A) pyromellitic dianhydride and (B) 3,3',4,4'-dibenzophenone tetracarboxylic dianhydride Co-copolymer of amino-2-(p-aminophenyl)benzimidazole • from (A) isopropylpropyl bis(4-phenoxy-tetra-decanoic acid) dianhydride and (B) 3,3 Copolymer of two kinds of tetracarboxylic dianhydrides of ',4,4 1 -biphenyltetracarboxylic dianhydride and (C ) 6 -amino-2 - ( ρ -aminophenyl) benzimidazole • Two kinds of four kinds of (A) isopropylidene bis(4-phenoxy-4-oxanoic acid) dianhydride and (B) 3,3 ',4,41-biphenyltetracarboxylic dianhydride Carboxylic dianhydride with (C) 6-amino-2((p-aminophenyl)benzimidazole and (D)bis(4-aminophenyl)ether (Di) and phenylenediamine (D2) A copolymer of at least 1 to 2 or 3 diamines. Further, the polyimide film having a good adhesion to the metal foil may be coated with a low moisture absorption or low thermal expansion polyimide resin or a precursor thereof ρ ο 1 y a m i c a c i d . The polyimine resin synthesized as ρ ο 1 y a m i c a c i d is as described above. -16- (13) (13) 1343869 Further, after the thermoplastic polyimide resin is brought into contact with the metal foil, p is thermally fused to form a double-sided metal foil polyimide resin laminate. Industrialization, this law also applies. In addition to the other methods, the method of applying the laminate of the stomach metal foil and the polyimide resin can be applied to the invention. At this time, in order to adjust the linear expansion coefficient, the adjustment of the mechanical properties, and the adhesion of the stomach, it is also possible to use a different polyamidene resin or a different resin. In addition, for the purpose of improving various characteristics, # may be mixed with inorganic, organic or metallic powders, fibers, etc. Η Antioxidant may be added to prevent oxidation of the metal foil conductor, or for the purpose of improving f occupation. Alternatively, a decane coupling agent may be added. In order to improve the heat transfer efficiency, by introducing the auxiliary electric heater to support the support roller, the time for the entire product to reach the set temperature can be shortened. If the heat treatment time is too long, the cut extension will be lowered, and the temperature will be raised at a temperature increase rate of 10 ° C /min to the end point of the glass transfer point Tg by the differential thermal analysis (DSC) after heat treatment. Until the peak. After the treatment was carried out at a temperature close to the glass transition point Tg, there was occasional failure to obtain a stable structure. As a result of the heat treatment, the heat of the endothermic wave generated at the Tg temperature of the slope transfer point was measured by DSC to be determined to have a dimensional stability of 0.5 J (/g or more per unit weight of the resin). The heat treatment temperature and the heat treatment time required for the heat treatment conditions vary depending on the type of the resin, but the heat treatment time is usually about 8 hours or longer, preferably about 24 to 120 hours, which is the most effective. If it exceeds -17-(14) 1343869, the is m β heat burial time will increase the cost to the industry and the thermal decomposition of the resin can not be ignored. However, in the case of almost no solution, the processing time is longer and better. When the resin is composed of a plurality of components, if the resin is a multilayer structure, the main component of the resin is stored, and the effect can be obtained. Further, when the resin Tg is almost the same, the dimensional stability effect is obtained. It is also high. The heat-transfer glass transfer point Tg is heat-treated, and then the heat treatment at a low Tg temperature is also effective. After the heat treatment, the size of the laminate is determined. For the method, the laminate sheet of 2 Ο Ο X 2 50 mm size was kept in the constant temperature and humidity chamber for 24 hours, and then the hole was perforated into 50 pores of 丨 mm by 50 mm. The method of measuring the pitch of the hole 3 is to measure the dimension in the coating direction, and the direction of the MD is measured in the vertical direction to be determined in the TD direction, and then the surface treatment device such as the etching is performed in a constant temperature and humidity chamber of 65% RH. 24 hours 'the same method. After heating at 2 ° ° C for 30 minutes, 'after 20 ° C in a constant temperature and humidity tank for 24 hours, the same method for the size measurement, the problem of size unevenness after heating is extremely When the value is 40μΙΤ1 or less, the 3 σ値 set is ideal when used as the standard deviation σ. The invention can also use other dimensional stability methods to achieve dimensional stability (heat shrinkage rate and its non-existence). In fact, the heat-dissipating layer of the resin is a blend, even if only the physical glass transfer point is high, and the tree is transferred to the glass. The benchmark is measured at 20 ° C, 6 5 % R Η The laminate is thin from the center point in the distance direction and coated. Engraved, measured at 20 °C, 6 5 % R Η constant. Design products, terminal spacing is less than 0.05%. That is, according to its uniformity) its details -18 - (15) 1343869 When the structure of the physical storage is stabilized, the dimensional stability of the object can be easily obtained. In particular, after purchasing the copper plate of the commercial product, the Tg of the glass transition point measured by the DSC is about 10°. After the heat treatment at the temperature of C, when the endothermic peak is generated near the glass transition point Tg during the DSC temperature measurement, the dimensional stability is controlled after the heat treatment.

熱處理後結果,出現於玻璃轉移點T g附近之吸熱波峰 熱量其每樹脂單位重量爲〇.5j /g以上,較佳者爲2.0.I/g以 上之値顯示時,可確定具有尺寸安定性及降低其不均度之 效果者。惟,熱處理後,尺寸安定化之製品若曝露於玻璃 轉移點以上之溫度時,則尺寸安定化效果將消失。As a result of the heat treatment, the heat of the endothermic wave peak appearing near the Tg of the glass transition point is 〇.5j /g or more per unit weight of the resin, preferably 2.0.I/g or more, and the dimensional stability can be determined. And reduce the effect of its unevenness. However, if the dimensionally stabilized product is exposed to a temperature above the glass transition point after heat treatment, the dimensional stabilization effect will disappear.

此吸熱波峰之熱量(吸熱量)△ Η之測定係於惰性氣 體中,昇溫速度1 〇 °C /分鐘之條件下,進行示差熱分析( DSC ),爲算出此時玻璃轉移點Tg溫度範圍下所測得之吸 熱波峰之波峰面積的基準線係使高溫測之基準線於玻璃轉 移點Tg溫度範圍下進行延長後,與玻璃轉移點Tg中之DSC 曲線相互交叉點由源於所圍繞之體積緩和現象之波峰進行 算取之。又,D S C測定用樣品直接以附與金屬箔者進行測 定後,樹脂層部份之重量係利用由蝕刻前後之重量差進行 換算之方法者。 [實施例] 以下,針對實施例進行本發明之說明。 -19- (16) ^43869 [實施例1 ] 針對貼銅板(新日鐵化學製品e s p a n e X K E ),於 /分鐘之昇溫速度下,氮氣氣流中進行測定D S C之玻 移點τ g後’爲3 4 5 〇C者。此圓筒狀貼銅板於氮氣氣氛 C下進行熱處理7 2小時後’於該熱處理後之玻璃轉移 観測之吸熱熱函爲〇 . 5 5 j / g者。又’銅與樹脂之重量 由融别則後之重量比進行決定後,進行換算每樹脂單 量之値。 熱處理後’將取得貼銅板切成薄片狀,進行測定 轉移溫度之吸埶良Λ …、m △ Η、累積尺寸變化率(總收縮率 ’算出平均値岛 次分散値3 σ 。另外,樣品係以未去除 之狀態下供與淘丨〜" "疋概’又測定後進行蝕刻後去除銅後 鉍重量做爲樹和6 月曰之重量。 △ H :使用D . ,& _ n〜 arkin elumer公司製DSC:7 ’昇溫速度 A k下進行Ds 4-f -Γ rs 疋’爲算出此時玻璃轉移點Tg溫 域下所觀測之吸 宜淮m 心波峰之波峰面積之基準線係使高溫 基準;r泉於玻璃轉 扯植瞒於叫^ 丁§溫度範圍下進行延長後使用之 玻璃轉移點T g $ -in ^ SC:曲線相互交叉點由源於所圍繞之 祓和現象之波峰被算取之。 總加熱收输率.Ipc — IPC〜TM- 650 2.2.4 Revision M e t li 〇 d C )惟, 使曝露溫度做成變更呈2 0 0 °C時之變 [比較例1丨 1 0°C 璃轉 '3 30 點所 比係 位重 玻璃 )後 銅箔 之乾 1 o°c 度領 側之 〇 與 體積 C ( 化率 -20- (17) (17)1343869 實施例1中,進行測定熱處理前之貼銅板於2 Ο 0 °C下之 總加熱收縮率。 [實施例2 ] 針對貼銅之聚醯亞胺薄膜(鐘淵化學製品Apical NPI ),於1 〇 t /分鐘之昇溫速度,氮氣氣流中測定D S C之玻 璃轉移點T g後爲3 4 8 °C者。將此圓筒狀貼銅板於氮氣氣氛 下以3 3 0 °C進行熱處理7 2小時後,熱處理後之玻璃轉移點 所觀測之吸熱熱函爲0.6 1 _J/g者。又,銅與樹脂之重量比係 由蝕刻前後之重量比決定後,換算成每樹脂單位重量之値 ,測定此氮氣氣氛下之熱處理後2 00 °C下之總加熱收縮率 [比較例2 ] 實施例2中,測定熱處理前之貼銅板2 0 (TC下之總加熱 收縮率。以上各實施例及比較例取得之結果如以下表1所 示。 -21 - (18) (18)1343869 [表Π △ Η測定 總收縮率(%) 熱處理條件 (J/g ) 方向 平均 3 σ 實施例1 0.5 5 TD -0.02 -0.02 3 3 0 °C (T g -1 5 °C ) ' 72h M D -0.03 -0.0 2 比較例1 0.0 TD -0.05 -0.03 (未處理) M D -0.06 -0.04 實施例2 0.61 TD -0.00 -0.03 3 3 0 °C ( T g - 1 8 °C ) ' 72h M D -0.00 -0.03 比較例2 0.0 TD -0.04 -0.06 (未處理) M D -0.04 -0.06 [實施例3 ] 共聚異亞丙基雙(4 一苯氧基一 4 —呔酸)二酐(莫耳 比0.4 ) ,3,3',4,4'—二苯甲酮四羧酸二酐(莫耳比 0.6)及6—胺基一 2- (ρ—胺基苯基)苯並咪唑(莫耳比 1 . 〇 〇 )後取得之聚醯亞胺樹脂之Ν —甲基-2 -吡咯烷酮淸 漆溶液(聚合物固形濃度14重量% )利用輥塗佈機於1/2盎 司(1 8μηι )之銅箔上進行塗佈呈1/2,η£ ( 12.7μηι )之厚度 〇 於0.5 %以下氧濃度之環境下以最高溫度3 90 °C進行此 銅笵/聚醯亞胺樹脂(Tg 3 0 5 t )層合材之乾燥。乾燥後 之溶劑含量爲〇 . 4重量%。漸冷後,將卷取之輥投入氮烤箱 後,進行各種處理時間、溫度之變更後,進行熱處理。 -22 - (19) 1343869 熱處理後,將取得貼銅板切成薄片狀,與實施例】同 法進行測定玻璃轉移溫度下之吸熱量△ Η。 * 實施例3取得結果示於圖1之曲線圖者。由此曲線圖淸 * 楚顯示烷基轉移溫度下之吸熱量Δ Η其處理溫度愈接近T g 愈於短時間下增加,顯示爲於實際時間下進行熱處理以Tg _ 1 5 °C者宜。 【圖式簡單說明】 % [圖1 ] 代表實施例3中△ Η與熱處理溫度及時間相 互之關係曲線圖者。 [圖2] 代表1C實裝於FPC之狀態下之槪念截面圖 y 者。 【主要元件符號說明】 1 樹脂層(基礎薄膜)The heat of the endothermic peak (absorption heat) Δ Η is measured in an inert gas at a temperature rise rate of 1 〇 ° C / min, and differential thermal analysis (DSC) is performed to calculate the temperature at the Tg temperature range of the glass transition point. The reference line of the measured peak area of the endothermic peak is such that after the reference line of the high temperature measurement is extended at the Tg temperature range of the glass transition point, the intersection with the DSC curve in the glass transition point Tg is derived from the volume surrounded by The peak of the mitigation phenomenon is calculated. Further, the sample for measurement of D S C is directly measured by a metal foil, and the weight of the resin layer portion is converted by a weight difference before and after etching. [Examples] Hereinafter, the description of the present invention will be made with respect to examples. -19- (16) ^43869 [Example 1] For the copper clad plate (Nippon Steel Chemicals espane XKE), the glass shift point τ g of DSC was measured in a nitrogen gas flow at a heating rate of /min. 4 5 〇C. The cylindrical copper clad plate was subjected to heat treatment under a nitrogen atmosphere C for 72 hours, and the heat absorbing enthalpy of the glass transfer after the heat treatment was 〇 5 5 j / g. Further, the weight of the copper and the resin is determined by the weight ratio after the fusion, and then the amount of each resin is converted. After the heat treatment, the obtained copper plate was cut into a sheet shape, and the temperature at which the transfer temperature was measured was measured, m Δ Η, and the cumulative dimensional change rate (total shrinkage rate was calculated as the average 値 island dispersion 値 3 σ . In the unremoved state, it is measured and then etched to remove the copper and then weighed as the weight of the tree and the month of June. △ H: Use D. , & _ n ~ DSC of arkin elumer company: 7 'Ds 4-f -Γ rs 疋' at the heating rate A k is the baseline for calculating the peak area of the peak of the absorption peak of the glass transition point Tg at this time. The high temperature reference is used; the spring is transferred to the glass and the glass transfer point is extended after the extension of the temperature range T g $ -in ^ SC: the intersection of the curves is derived from the surrounding phenomenon The peak is calculated. The total heating rate is .Ipc — IPC ~TM- 650 2.2.4 Revision M et li 〇d C ) However, when the exposure temperature is changed to 2 0 0 °C, the change is made. Example 1丨1 0°C Glass turn '3 30 points compared to the system weight glass) After the copper foil is dry 1 o°c Then, the volume C (chemical rate -20-(17) (17) 1343869 In Example 1, the total heat shrinkage rate of the copper plate before heat treatment at 2 Ο 0 ° C was measured. [Example 2] A copper polyimine film (Apical NPI), which is a temperature of 1 〇t / min, and a glass transition point T g of DSC after nitrogen gas flow is 3 4 8 ° C. After the copper plate was heat-treated at 1300 ° C for 7 hours in a nitrogen atmosphere, the heat absorbing enthalpy observed at the glass transition point after heat treatment was 0.6 1 _J/g. Further, the weight ratio of copper to resin was After the weight ratio before and after the etching was determined, the total heat shrinkage rate at 200 ° C after the heat treatment in the nitrogen atmosphere was measured in terms of the weight per unit weight of the resin [Comparative Example 2] In Example 2, the paste before the heat treatment was measured. Copper plate 20 (total heating shrinkage ratio under TC. The results obtained in the above respective examples and comparative examples are shown in Table 1 below. -21 - (18) (18) 1343869 [Table Π △ Η Determination of total shrinkage rate (% Heat treatment conditions (J/g) Direction average 3 σ Example 1 0.5 5 TD -0.02 -0.02 3 3 0 °C (T g -1 5 °C ) ' 72h MD -0.03 -0.0 2 Comparative Example 1 0.0 TD -0.05 -0.03 (untreated) MD -0.06 -0.04 Example 2 0.61 TD -0.00 -0.03 3 3 0 °C ( T g - 1 8 °C ) ' 72h MD -0.00 -0.03 Comparative Example 2 0.0 TD -0.04 -0.06 (untreated) MD -0.04 -0.06 [Example 3] Copolyisopropylidene bis(4-phenoxy- 4 - Citric acid) dianhydride (mol ratio 0.4), 3,3',4,4'-benzophenone tetracarboxylic dianhydride (mol ratio 0.6) and 6-amino- 2-(ρ-amino group a fluorene-methyl-2-pyrrolidone oxime solution (polymer solid concentration: 14% by weight) of a polyimine resin obtained after phenyl)benzimidazole (mole ratio 1 〇〇) was applied by a roll coater 1/2 oz (1 8μηι) of copper foil is coated with a thickness of 1/2, η£ (12.7μηι) 〇 under an oxygen concentration of 0.5% or less at a maximum temperature of 3 90 °C. Drying of the polyimide resin (Tg 3 0 5 t ) laminate. The solvent content after drying was 〇. 4% by weight. After gradually cooling, the wound rolls were placed in a nitrogen oven, and after various treatment times and temperatures were changed, heat treatment was performed. -22 - (19) 1343869 After the heat treatment, the obtained copper plate was cut into a sheet shape, and the heat absorption amount Δ 下 at the glass transition temperature was measured in the same manner as in the example. * The results obtained in Example 3 are shown in the graph of Fig. 1. From this graph, 曲线 * shows that the heat absorption Δ at the transalkylation temperature is higher as the treatment temperature is closer to T g and increases in a shorter time, which is shown to be heat treatment at a practical time of Tg _ 15 °C. [Simple description of the drawing] % [Fig. 1] represents a graph showing the relationship between Δ Η and heat treatment temperature and time in Example 3. [Fig. 2] represents the commemorative sectional view of the 1C installed in the FPC state. [Main component symbol description] 1 Resin layer (base film)

2 FPC 3 端子 4 撞擊2 FPC 3 terminal 4 impact

5 1C -23 -5 1C -23 -

Claims (1)

1343869 ------------------------—----- ____ '|l----------—-------ί .〆 第〇93丨27755號專利申請案中文申請專利範圍修正本 民國100年2月25曰修正 十、申請專利範圍 1 . 一種可撓性金屬箔層合物,係爲銅箔與聚醯亞胺 樹脂層之層合物者’其特徵爲以較由芳香族四羧酸二酐與 芳香族二胺所取得之聚醯亞胺樹脂之玻璃轉移點Tg 290〜3 50°C爲低5〜50°C之溫度熱處理8小時以上,以昇溫 速度1 〇°C /分鐘’惰性氣體中進行示差熱分析時,於玻璃 轉移範圍下所觀測之吸熱波峰熱量以每樹脂單位重量爲顯 示出0.5J/g以上之値者。 2 .如申請專利範圍第1項之可撓性金屬箔層合物, 其中,銅箔與聚醯亞胺樹脂層係在惰性氣體氣氛下被進行 熱處理。 3.如申請專利範圍第1項或第2項之可撓性金屬箔 層合物,其中,可撓性金屬箔層合物之聚醯亞胺樹脂層爲 以厚度5〜50ym所形成。1343869 ------------------------------ ____ '|l--------------- --- ί .〆第〇93丨27755 Patent Application Chinese Patent Application Revision Amendment A laminate with a polyimine resin layer is characterized by a glass transition point Tg 290 to 3 50 ° C of a polyimide resin obtained from an aromatic tetracarboxylic dianhydride and an aromatic diamine. When heat-treated at a temperature of 5 to 50 ° C for more than 8 hours and at a temperature increase rate of 1 〇 ° C / min 'in the inert gas, the endothermic peak heat observed in the glass transition range is per unit weight of the resin. It shows that it is above 0.5J/g. 2. The flexible metal foil laminate according to claim 1, wherein the copper foil and the polyimide resin layer are heat-treated under an inert gas atmosphere. 3. The flexible metal foil laminate according to claim 1 or 2, wherein the flexible metal foil laminate has a polyimide resin layer formed to have a thickness of 5 to 50 μm.
TW093127755A 2003-10-17 2004-09-14 Flexible metal foil laminate TW200514685A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003357738A JP4731107B2 (en) 2003-10-17 2003-10-17 Flexible metal foil laminate

Publications (2)

Publication Number Publication Date
TW200514685A TW200514685A (en) 2005-05-01
TWI343869B true TWI343869B (en) 2011-06-21

Family

ID=34614543

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093127755A TW200514685A (en) 2003-10-17 2004-09-14 Flexible metal foil laminate

Country Status (3)

Country Link
JP (1) JP4731107B2 (en)
CN (1) CN1608835B (en)
TW (1) TW200514685A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209060A1 (en) 2016-06-03 2017-12-07 株式会社有沢製作所 Method for producing flexible metal-clad laminate
CN115353845B (en) * 2022-08-26 2024-02-02 江西省航宇电子材料有限公司 Stainless steel-based copper-clad plate silk-screen insulating adhesive and silk-screen printing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3805546B2 (en) * 1998-11-09 2006-08-02 株式会社カネカ Manufacturing method of heat-resistant bonding sheet
JP4507137B2 (en) * 1999-12-17 2010-07-21 東洋紡績株式会社 Flexible printed wiring board and manufacturing method thereof
JP3494098B2 (en) * 1999-12-20 2004-02-03 ソニーケミカル株式会社 Flexible printed circuit board
TW584596B (en) * 2001-12-10 2004-04-21 Mitsui Chemicals Inc Method for manufacturing a polyimide and metal compound sheet

Also Published As

Publication number Publication date
JP4731107B2 (en) 2011-07-20
CN1608835A (en) 2005-04-27
JP2005119178A (en) 2005-05-12
TW200514685A (en) 2005-05-01
CN1608835B (en) 2010-04-28

Similar Documents

Publication Publication Date Title
US10946617B2 (en) Graphite laminated body
JP5880658B2 (en) Polyimide film, and these polyimide laminates and polyimide metal laminates
US6379784B1 (en) Aromatic polyimide laminate
KR100979618B1 (en) Adhesive sheet, metal-laminated sheet and printed wiring board
TW201840648A (en) Polyimide film
TW200810649A (en) Copper clad laminate for chip on film
JP4474152B2 (en) Polyimide film, manufacturing method thereof, and base substrate using the same
JP4457542B2 (en) Multi-layer polyimide film with thermocompression bonding, heat-resistant copper-clad board
TWI659830B (en) Polyimide film for metal laminate, and polyimide metal laminate using the same
JP5609891B2 (en) Method for producing polyimide film and polyimide film
JPWO2002034509A1 (en) Laminate
JP2004355882A (en) Polyamide heater
JP4260530B2 (en) Method for producing polyimide film
KR20140050715A (en) Method for manufaturing polyimide metal laminate
JP2009117192A (en) Insulated heating element
EP1145845A1 (en) Composite film
KR101027203B1 (en) Continuous production method for both-sided conductor polyimide laminate
JP2007169494A (en) Aromatic polyimide film, cover-lay film and flexible laminated plate
TWI343869B (en)
JP4193461B2 (en) Heat-sealable polyimide and laminate using the polyimide
JP4257587B2 (en) Flexible metal foil laminate
JP2006117791A (en) Method for producing polyimide film
JP5830896B2 (en) Method for producing polyimide film and polyimide film
JP5499555B2 (en) Polyimide film and method for producing polyimide film
JP4360025B2 (en) Polyimide piece area layer with reinforcing material and method for producing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees