九、發明說明: 【發明所屬之技術領域】 本發明係關於-樣式化-導電層的方法、一製備偏光 兀件之方法及一利用前述方法製備之偏 本專利中請係主張於應年M 13日 月10日向韓國智慧財產局所提出韓國專利申請號碼 10-2005-0050416及韓國專利申請號石馬1〇福養之 申請日優先權,其所揭露之事項已依照錢聯性,完整地 併入本文中。 【先前技術】 -偏光元件係,光學元素,該元素可以從非偏振光, 如自然先’得到具—特定振動方向之線性偏減。該偏光 元件可以被應时敍的領域上,如太陽眼鏡、攝影器材 用慮光鏡、運動護目鏡、汽車用頭燈、及顯微鏡用偏光膜。 近年來,偏光it件被應用至液晶顯示裝置方面亦已日益增 加" 曰 液晶顯示 裝置中是不可能的 在第一圖中,作為一偏光元件範例之-奈米柵極偏光 元件可利用-導電奈米栅極來產生偏振現象。“,因為 複雜的製備方法、低效率及在製備大_之減元件上有 困難,故要應用-傳統的奈米栅極偏光元件至 詳細地說,該傳統的奈米栅極偏光元件係使用下列二 種方法而被特定地製備。 一種方法被描述在第三圖中。依照這個方法,在一如 玻璃或石英之無機基板上形成一導電金 光阻層。接著,利用-光 ,式化之光阻層,來雜置於光阻層下二= S以樣式化導電金屬層。接下來,移除該光JI且層。, 另外一個方法顯示在第四圖中。依照這個 導電金屬層,然後在該導電金屬層上: 先Ρ層。接考,利用一壓模板(stamp 阻層,以便被變形、曝光及顯影而樣式化。接下來製利二 來蝴該置於光阻層下之導電金屬 7 導電金屬層,然後移除該光阻層。 皆必::所^在製備奈米柵極偏光元件之傳統方法中, := 二===Μ先阻層之樣式 困難度’因此,其程序會較複雜且 層’古U其 ^傳統方法中所使用之光罩或繼係利二束 製:的,故無選擇地只能製備具小面積的偏光元 ::::無法使用傳統方法來製備具大面積之奈米栅極 【發明内容】 伟田^發月人所要建立的是,代替—傳統之㈣方法,當 一_成型方法’如熱成型或光固化方法(p—g 口描s)使私于月日被樣式化而形成凹槽及凸起,然後利用 凹曰及凸粒謂频,將—傳電填充材機佈在樹脂層 1342834 上以便形成一樣式時,是可以預防因蝕刻處理所引起的污 染和導電原物料的浪費,並且可以經由一簡單的方法及低 成本的情形下,來樣式化導電層。本發明人同樣要建立的 是,當壓模板(stamper ),該壓模板係由一光固化立體成 型(stereolithographic)方法所製備的,被用來形成樹脂上 的凹槽與凸起時,對於較大面積的導電層也可以有效率地 樣式化,因此它可以製備大面積的奈米栅極偏光元件。 因此,本發明之目的係提供一樣式化一導電層的方 法、一製備偏光元件之方法、一利用前述方法製備之偏光 元件、及一具該偏光元件之顯示裝置。 本發明之一具體實施例係提供一樣式化一導電層的方 法,包含(a)樣式化一樹脂層以形成凹槽及凸起,及(b)利用 樣式化樹脂層上凹槽及凸起的立體形狀,在該樹脂層上塗 佈一導電性填充材料以便形成一樣式。 本發明之另一具體實施例係提供一製備偏光元件之方 法,包含(a)樣式化一樹脂層層以形成凹槽及凸起,及(b) 利用在樣式化樹脂層上凹槽及凸起的立體形狀,在該樹脂 層上塗佈一導電性填充材料以便形成一樣式。 本發明之另一具體實施例係提供一包含一樹脂層之偏 光元件,該樹脂層係被樣式化以形成凹槽及凸起,及一導 電性填充材料,該材料係利用在樣式化樹脂層上凹槽及凸 起的立體形狀,而被塗佈在該樹脂層上以便形成一樣式。 本發明之另一具體實施例係提供具該偏光元件之顯示 裝置。 7 1342834 【實施方式】 於第五圖中所示的是一依照本發明之一具體實施例之 一樣式化一電層之方法。在這個具體實施例中,會使用一 樹脂層,該樹脂層可以作為一支架且在該支架上可形成一 凹槽及凸起的樣式。該樹脂層係被樣式化而形成凹槽及凸 起。在這個關聯中,凹槽及凸起之樣式是可以被執行的, 例如,以這樣一種方式,為利用一壓模板來壓製該樹脂層,IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a method for patterning a conductive layer, a method for preparing a polarizing element, and a method for preparing a polarized article by the above method. On the 10th of the 13th, the Korea Intellectual Property Office filed the Korean Patent Application No. 10-2005-0050416 and the Korean Patent Application No. 1 Shifu Fuyang's application date priority, and the disclosed matters have been fully incorporated in accordance with the money linkage. In this article. [Prior Art] - A polarizing element, an optical element, which can be linearly depolarized from a non-polarized light, such as a natural one. The polarizing element can be used in fields such as sunglasses, illuminators for photographic equipment, sports goggles, automotive headlights, and polarizing films for microscopes. In recent years, the application of a polarizing element to a liquid crystal display device has also been increasing. It is impossible in a liquid crystal display device. In the first figure, as an example of a polarizing element, a nano-gate polarizing element can be utilized - A conductive nanogate is used to create a polarization phenomenon. "Because of the complicated preparation method, low efficiency, and difficulty in preparing large-sized reduction components, it is necessary to apply - conventional nano-gate polarizing elements. In detail, the conventional nano-gate polarizing elements are used. The following two methods are specifically prepared. One method is described in the third figure. According to this method, a conductive gold photoresist layer is formed on an inorganic substrate such as glass or quartz. Then, using -light, formula The photoresist layer is mixed under the photoresist layer to form a conductive metal layer. Next, the light JI and the layer are removed. Another method is shown in the fourth figure. According to the conductive metal layer, Then on the conductive metal layer: first layer, take a test, using a stamping template (stamp resist layer, in order to be deformed, exposed and developed to be styled. Next, the second is to be placed under the photoresist layer Conductive metal 7 conductive metal layer, and then remove the photoresist layer. All must:: In the conventional method of preparing nano-gate polarizing elements, := two === 样式 first resistive layer pattern difficulty' , its program will be more complicated and the layer '古U its ^ The reticle or the relay used in the system method is not limited to the preparation of a polarizing element with a small area:::: The conventional method cannot be used to prepare a nano-gate with a large area [ SUMMARY OF THE INVENTION The Weitian ^Feiyue people want to establish, instead of the traditional (four) method, when a _ molding method such as thermoforming or photo-curing method (p-g port s) makes the private day of the month styling The grooves and the protrusions are formed, and then the concave and the convex particles are used to spread the electric charge filler on the resin layer 1342834 to form a pattern, which can prevent the contamination and the conductive original caused by the etching treatment. The material is wasted, and the conductive layer can be patterned by a simple method and at a low cost. The inventors have also established that when the stamper is pressed, the stamper is formed by a photocuring stereolithography. (stereolithographic) method, when used to form grooves and protrusions on the resin, can also be efficiently patterned for a large area of the conductive layer, so it can prepare a large area of the nano-gate polarizing element Because The object of the present invention is to provide a method for patterning a conductive layer, a method for preparing a polarizing element, a polarizing element prepared by the foregoing method, and a display device having the polarizing element. A method of styling a conductive layer comprising: (a) patterning a resin layer to form grooves and protrusions, and (b) utilizing a three-dimensional shape of grooves and protrusions on the patterned resin layer in the resin layer Coating a conductive filler material to form a pattern. Another embodiment of the present invention provides a method of preparing a polarizing element comprising: (a) patterning a resin layer to form grooves and bumps, and b) coating a conductive filler material on the resin layer to form a pattern by using a three-dimensional shape of the groove and the protrusion on the patterned resin layer. Another embodiment of the present invention provides a polarizing element comprising a resin layer which is patterned to form grooves and protrusions, and a conductive filling material which is utilized in the patterned resin layer. The three-dimensional shape of the upper groove and the projection is coated on the resin layer to form a pattern. Another embodiment of the present invention provides a display device having the polarizing element. 7 1342834 [Embodiment] Shown in the fifth figure is a method of patterning an electrical layer in accordance with an embodiment of the present invention. In this embodiment, a resin layer can be used which can serve as a support and can form a pattern of grooves and projections on the support. The resin layer is patterned to form grooves and projections. In this association, the pattern of grooves and protrusions can be performed, for example, in such a manner as to press the resin layer with a press template,
然後熱固化或光固化,然後將壓模板從樹脂層上分開。如 果係依照本發明之樣聽導電層的方法來製備〜奈米拇極 偏光元件’貞彳lx佳的是以—預定的間距之栅格形式來排列 凹槽。例如’在樹脂層上之凹槽及凸起可以具有如第八圖 至第十圖或第十-圖及第第十二圖的形狀。該形狀是無限 制的’只要是具相同的形狀且以相同的間距排列即可。再 者’以具有數十絲百奈米之寬度贿度之凹槽來形成奈 米柵極是較佳的。Then, it is thermally cured or photocured, and then the press stencil is separated from the resin layer. If the method of listening to the conductive layer in accordance with the present invention is to prepare the nano-polar polarizing element, it is preferable to arrange the grooves in a grid pattern of a predetermined pitch. For example, the grooves and projections on the resin layer may have shapes as in the eighth to tenth or tenth to twelfth and twelfth drawings. The shape is infinite as long as it has the same shape and is arranged at the same pitch. Further, it is preferable to form a nano gate by a groove having a bribe of a width of several hundred nanometers.
接下來,利用樹脂層上之凹槽及凸起之立體形狀,將 個關真純料塗佈线細旨紅以形成—樣式。在這 雷㈣☆’利麟脂層上凹槽及凸起之立體形狀,將一導 單的紐材料塗佈至該樹脂層上以形成—樣式並不是一簡 =塗佈方法,而是該導電性填充材料係被選擇性地塗佈 =脂層表面之特定部份,例如,只有樹脂層的凹槽、只 2脂層的凸起、或―部份的凹槽和—部份的凸起,利用 ==凸起的立體形狀以形成—由導電性填緑料 之樣式化層。 8 塗佈導電性填充材料之方法範例包括,但不限於,一 可選擇的濕式塗佈法,如刮刀塗佈(knife eGating)、滾筒 式塗佈(roll coating )、及狹縫模具式塗佈(sl〇t die coating)’或-可選擇的乾式塗佈法,如一沈積法包括物理 氣相沉積(PVD)及傾斜賴躲。該舰是—種方法, 方法中該賤錄氣體被注人_空室中,然後和一為形成一層 之目標物質碰撞在-起’以產生—㈣,然後目標物質被 塗佈在基板上。傾斜式濺鍍的進行係以該氣體以一傾斜面 的方式來塗佈的。 例如,如第十三圖所示,藉由利用傾斜式濺鍍法,是 可以有選擇性的將導電性填充材料塗佈在樹脂層之凹槽的 一部份壁上及凸起的一部份表面上,因此而樣式化該導電 層。 在本發明中,如上所述,導電性填充材料是直接塗佈 至樹脂層上,以便利用樹脂層上凹槽及凸起之立體形狀來 形成一樣式。因此,至於導電性填充材料,它不需要選擇 性地移除導電性填充材料以進行樣式化,因此方法可以被 簡化。 如果需要的話’在導電性填充材料塗佈至樹脂層上以 形成樣式後,可以在其上形成一保護膜。 依照本發明之另一具體實施例,一樣式化導電層之方 法被描述在第六圖中。在這個具體實施例中,在一作為支 架之基板上,藉由熱或光固化而形成一樹脂層。接下來, 固化的樹脂層被樣式化以形成凹槽及凸起。在這個具體實 施例中’凹槽及凸起之樣式化、導電性填充材料之塗佈及 一保護膜之形成皆已被描述於第五圖之具體實施例中。 在本發明中,樹脂層之一材料,該材料可以不需要分 離式支架而被使用的是有機物質,如塑膠類,例如,光學 透明的有機物質’及如聚醋、聚鍵规(P〇lyetherSUlf〇ne)、 1¼酸i旨、聚自旨%坑酸(p〇lyesternaphthenate)、聚丙烤酸。 因為上述之物質可以作為一支架及一成型樹脂,所以如果 使用上述物質所做成之樹脂層,則可以不使用分離式基板。 在本發明中’ 一光固化樹脂,在該樹脂上可以利用一 光固化方法以形成一微樣式(micropattern ),可以用來作 為一樹脂層之一材料,該樹脂層被形成在一基板上以作為 支架,且該物質可以透明液態樹脂為範例,如聚氨酯丙烯 酸酯(urethane acrylate )、環氧丙烯酸酯(ep0Xy acryiate )、 及聚酯丙烯酸酯(polyester acrylate)。因為上述之透明液 態樹脂的黏性低,所以該液態樹脂可輕易地填充一具奈米 大小的壓模板勝框(mold frame),並且可輕易地成形一奈 米大小的實體。再者,尚有許多優點,如對基板之附著力 良好,固化後從壓模板上分離也很容易。若上述樹脂層可 被形成在基板上,一如玻璃或石英之無機基板或一光學透 明的有機物質是可以被使用作為一基板。在樣式化導電層 之傳統方法中,因為使用如玻璃或石英之無機基板作為基 板’故在所製備之設備方面會有彈性較差的問題。然而, 在本發明中,有彈性的有機物質和無機物質皆可被使用作 為基板的材料。因此,傳統的方法較適合一批次式方法 10 (batch type process),但本發明係使用一有機基板,如一 塑膠膜,因此可以被應用至一連續性方法(c〇ndnu〇us process) ° 在本發明中,導電填充材料的功能係對一目標裝置提 供導電度。特別地,當本發明的方法被用來製備奈米栅極 偏光元件時’導電填充材料可對一奈米栅極部份提供導電 度以實現偏光元件的功能。在本發明中,導電填充材料可 以一或多個導電金屬作為範例’如銀、銅、路、紐、錄、 及鋁、伴隨有機材料之混合物、或一具導電性之有機物質, 如聚乙炔、聚本胺、聚乙撑二氧u塞吩 (polyethylenedioxythiophene )。因為使用金屬薄膜層來形 成導電層,其材料的彈性較差,故傳統的技術是有問題的。 然而,在本發明中,上述之所需材料可被用來改良裝置的 彈性。較佳的是可以利用奈米柵極形狀之凹槽及凸起之立 體形狀,以數個至數十個奈米大小之導電金屬的顆粒,來 選擇性地塗佈在樹脂層之特定部份。此外,有機材料的範 例,該材料可和導電金屬粉末混合在一起,但不限於淨氧 丙豨酸酯(epoxy acrylate )。 如果需要的話,在本發明中,在利用奈米柵極形狀之 凹槽及凸起之立體形狀,將導電金屬材料被擇性地塗佈在 樹脂層上之後’可以在導電金屬材料上形成一層保護膜 成。該保護層可以是如環氧丙烯酸酯(epoxy acrylate)之 材料’且可利用一塗佈方法來形成。如果需要的話,配件、 抗靜電、财磨等功能可以被額外提地提供予保護層。 1342834 在本七月中’如上所述,樣式化樹脂層以形成凹槽及 凸起的方法可關用壓模板來進行。特別是,在本發明中, 使用壓模板疋較佳的’該壓模板係利用一光固化立體成型 (stereolith〇graphy)方法來製備,以便具有大的面積。該 用語“光固化立體成型”係表示一方法,在方法中一可光 固化合成物之薄膜係可利用經電腦之雷射控制器來予以固 化,以製備一立體形狀。該方法已詳細揭露於美國專利號 碼 4,575,330、4,801,477、4,929,402、及 4,752,498 與韓國 鲁 尚未審查之專利申清刊物號碼1992-11695及1998-63937 中。在本發明中,因為光固化立體成型方法是用來製備壓 模板,故依照本發明該壓模板係被應用於樣式化導電層之 方法中,因此是有可能去製備一個具有奈米大小模型且具 一大面積之壓模板,且因此在較大面積方面,其樣式化是 可以有效率的。甚且,利用上述方法來製備一具大面積之 奈米柵極偏光元件是可行的。在本發明中,壓模板之模子 #料可以是金屬,如錄、鉻、域,或—有機金屬,如環 氧樹脂和矽樹脂。第七圖係在說明利用光固化立體成型方 法之壓模板之製備。 由下列範例可以得到對本發明之—較佳的了解,所舉 出之範例係在說明,而不應被解釋成本發明之限制。 範例1 依照本發明所製備之偏光元件如第五圖所示。特別的 是-雷射光固化立體成型方法來製備一錄壓模板, 因此向度為200奈米而奈米柵極之線寬為65奈米。作為一 j 12 1342834 樹脂層之具100 μΓΠ厚度之一透明聚酯膜,以鎳壓模板壓製 並加熱至150 C,以形成和壓模板模型一樣之凹槽及凸起 (利用韓國NND公司之奈米壓印儀器)。接下來,利用刮 刀塗佈方法(不鑛刀stainless comma knife),將具有作為 導電填充材料之銀奈米顆粒分散且穩定於乙醇中之一溶液 (由韓國Advanced Nano Products公司製作),有選擇地填 充形成在聚酯膜上的凹槽,然後在Hot乾燥30分鐘。接 下來’利用透明的丙烯基(acryl-based)樹脂來形成一保 鲁 護膜’以製備一奈米栅極偏光元件。 範例2 依照顯示於第六圖之步驟製備一偏光元件。特別是, 將一透明可光固化之液態製模用之聚氨酯丙烯酸酯 (urethane acrylate)樹脂(韓國 SK_CYTECH 公司)塗佈 至一作為一基板之具1〇〇 厚度透明聚酯膜上,以形成 -光固化樹脂層。接著’再以—說明如範例丨之鎮壓模板 來進行壓製,用UV光輻射至樹脂層上20秒,使樹脂層固 化’然後移除壓模板,以在光固化樹脂層上形成凹槽及凸 S。接著,將紹以一 80。之傾斜角度、〇 2 nm/秒的速率濺 鑛’沈積一 150⑽的厚度(日本ULVAC公司),因此铭只 會選擇性地填充在樹脂層之凸起上。然後,形成一保護膜 以製備該奈米柵極偏光元件。 對照範例1 -依據第三圖所示之步驟所製備之偏光元件。特別 地,紹被沈積在-石英基板上。在這個關聯上,利用一塗 13 1342834 佈方法來塗佈一光阻劑,然後.利用光罩來威 光。接著’利用敍刻方法將與光阻劑曝露部份二=層予二 移除’然後進行清洗和沖刷’以製備該奈米柵極偏光0元件。 對照範例2 一依據第四圖所示之步驟所製備之偏光元件。特別 地,除了使用一壓模板來壓製光阻劑後再進行曝光以取代 利用一光罩之曝光方法外’重覆對照範例1的二法來製備 奈米柵極偏光元件。 (工業應用性) 與樣式化一導電層之傳統的方法相比較,該傳統方法 包含一光阻層及一姑刻處理,依本發明之一樣式化一導電 層的優點是價格較低、方法確實較為簡單、原料之使用效 率可被極大化、且可預防因姓刻所造成的污染,因此處理 過程保證是乾淨的。甚且,因為利用光固化立體成型方法 所製備之一具大面積之壓模板可被用來樣式化導電層,所 以也可以有效率地大面積製備導電層。因此,本發明的方 法對於=備具大面積之奈米柵極偏光元件是有用的。 咖雖然本發明之較佳具體實施例因說明的目的而被揭 路’但那4b鈐铀, 一熟本技藝的人仍可以在不偏離本發明架構及 嗎'评,如揭霞认灿 的改谁、 於伴心之專利申範圍中’察知那些可能不同 附加及取代。 14 1342834 【圖式簡單說明】 第一圖係概要地說明一奈米柵極偏光元件之操作構 造; 第二圖係一傳統的奈米柵極偏光元件之斷面圖; 第三圖係說明利用光罩曝光及蝕刻方法之傳統奈米柵 極偏光元件之製備; 第四圖係說明利用奈米壓印及蝕刻方法之傳統奈米柵 極偏光元件之製備; 第五圖係說明依照本發明之具體實施例之一奈米柵極 偏光元件之製備; 第六圖係說明依照本發明之另一具體實施例之一奈米 柵極偏光元件之製備; 第七圖係說明使用一光固化立體成型 (stereolithographic )方法之一壓模板之製備; 第八圖至第十二圖係依照本發明之奈米柵極偏光元件 之結構斷面圖;及 第十三圖係說明一導電填充材料之選擇性填充。 【主要元件符號說明】 益 *»»、 15Next, using the three-dimensional shape of the grooves and the projections on the resin layer, a solid coating line is formed into a red color to form a pattern. In the three-dimensional shape of the groove and the protrusion on the Lei (4) ☆ 'Lilin grease layer, a guide material is applied to the resin layer to form a pattern - not a simple = coating method, but The conductive filler material is selectively coated with a specific portion of the surface of the grease layer, for example, only the groove of the resin layer, only the protrusion of the 2 lipid layer, or the partial groove and the convex portion. From the three-dimensional shape of the == bulge to form - a patterned layer of conductive green material. 8 Examples of methods of applying a conductive filler include, but are not limited to, an optional wet coating method such as knife eGating, roll coating, and slit die coating. [sl〇t die coating]' or - an optional dry coating method, such as a deposition method including physical vapor deposition (PVD) and tilting. The ship is a method in which the recording gas is injected into an empty chamber and then collided with a target substance forming a layer to produce - (4), and then the target substance is coated on the substrate. The oblique sputtering is carried out by applying the gas in an inclined manner. For example, as shown in FIG. 13, by using the oblique sputtering method, the conductive filler material can be selectively applied to a part of the wall of the recess of the resin layer and a portion of the protrusion. The conductive layer is thus patterned on the surface. In the present invention, as described above, the conductive filler is directly applied to the resin layer to form a pattern by the three-dimensional shape of the grooves and projections on the resin layer. Therefore, as for the conductive filler material, it is not necessary to selectively remove the conductive filler material for patterning, so the method can be simplified. If necessary, after the conductive filler is applied onto the resin layer to form a pattern, a protective film can be formed thereon. In accordance with another embodiment of the present invention, a method of patterning a conductive layer is described in the sixth figure. In this embodiment, a resin layer is formed by heat or light curing on a substrate as a support. Next, the cured resin layer is patterned to form grooves and projections. In this particular embodiment, the patterning of the grooves and projections, the application of the conductive filler material, and the formation of a protective film have been described in the specific embodiment of the fifth embodiment. In the present invention, a material of a resin layer which can be used without a separate support is an organic substance such as a plastic, for example, an optically transparent organic substance and a polyacetate or a poly bond (P〇). lyetherSUlf〇ne), 11⁄4 acid, the purpose of the polyphenolic acid (p〇lyesternaphthenate), polyacrylic acid. Since the above-mentioned substance can be used as a holder and a molding resin, if a resin layer made of the above substance is used, a separate substrate can be omitted. In the present invention, a photocurable resin on which a photocuring method can be used to form a micropattern can be used as a material of a resin layer formed on a substrate. As a stent, the substance can be exemplified by a transparent liquid resin such as urethane acrylate, epoxy acrylate (ep0Xy acryiate), and polyester acrylate. Since the above transparent liquid resin has low viscosity, the liquid resin can be easily filled with a nanometer-sized die frame and can easily form a nanometer-sized entity. Furthermore, there are many advantages, such as good adhesion to the substrate, and separation from the die plate after curing is also easy. If the above resin layer can be formed on a substrate, an inorganic substrate such as glass or quartz or an optically transparent organic substance can be used as a substrate. In the conventional method of patterning a conductive layer, since an inorganic substrate such as glass or quartz is used as a substrate, there is a problem that the device is poor in elasticity. However, in the present invention, both elastic organic substances and inorganic substances can be used as the material of the substrate. Therefore, the conventional method is more suitable for a batch type process, but the present invention uses an organic substrate such as a plastic film, and thus can be applied to a continuous method (c〇ndnu〇us process). In the present invention, the function of the electrically conductive filler material provides electrical conductivity to a target device. In particular, when the method of the present invention is used to prepare a nano-gate polarizing element, the conductive filler material can provide conductivity to a nano-gate portion to achieve the function of the polarizing element. In the present invention, the conductive filler material may be exemplified by one or more conductive metals such as silver, copper, road, New Zealand, recorded, and aluminum, a mixture of organic materials, or a conductive organic substance such as polyacetylene. , polyamine, polyethylenedioxythiophene (polyethylenedioxythiophene). Since a metal thin film layer is used to form a conductive layer, the elasticity of the material is poor, so the conventional technique is problematic. However, in the present invention, the above-mentioned required materials can be used to improve the elasticity of the device. Preferably, the shape of the recess and the protrusion of the nano-gate shape can be utilized to selectively coat a specific portion of the resin layer with particles of conductive metal of several to several tens of nanometers in size. . Further, as an example of an organic material, the material may be mixed with a conductive metal powder, but is not limited to epoxy acrylate. If necessary, in the present invention, after the conductive metal material is selectively coated on the resin layer by using the three-dimensional shape of the groove and the protrusion of the nano-gate shape, a layer can be formed on the conductive metal material. The protective film is formed. The protective layer may be a material such as epoxy acrylate and may be formed by a coating method. If necessary, accessories, antistatic, and grinding functions can be provided to the protective layer with additional mention. 1342834 In the middle of July, as described above, the method of patterning the resin layer to form grooves and projections can be carried out using a press stencil. In particular, in the present invention, the press template is preferably used. The press template is prepared by a stereolithography method to have a large area. The term "photocuring stereolithography" means a method in which a film of a photocurable composition can be cured by a computerized laser controller to prepare a three-dimensional shape. This method has been disclosed in detail in U.S. Patent Nos. 4,575,330, 4,801,477, 4,929,402, and 4,752,498, and Korean Patent No. 1992-11695 and 1998-63937. In the present invention, since the photocuring stereolithography method is used to prepare a stamper, the stamper is applied to a method of patterning a conductive layer according to the present invention, so it is possible to prepare a model having a nanometer size and It has a large area of pressed template, and therefore its styling can be efficient in terms of large area. Moreover, it is feasible to use the above method to prepare a large-area nano-gate polarizing element. In the present invention, the mold of the die plate may be a metal such as a chrome, a chrome, a domain, or an organic metal such as an epoxy resin and a ruthenium resin. The seventh figure is a description of the preparation of a press template using a photocuring stereolithography method. The invention is best understood by the following examples, which are given by way of illustration and not limitation. Example 1 A polarizing element prepared in accordance with the present invention is shown in Figure 5. In particular, a laser photocuring stereolithography method is used to prepare a recording plate, so that the orientation is 200 nm and the line width of the nanogate is 65 nm. As a j 12 1342834 resin layer, a transparent polyester film with a thickness of 100 μΓΠ, pressed with a nickel press template and heated to 150 C to form the same grooves and embossments as the template model (using the NAN Company of Korea) Meter imprinting instrument). Next, using a blade coating method (stainless comma knife), a solution having silver nanoparticles dispersed as a conductive filler and stabilized in ethanol (manufactured by Advanced Nano Products, Korea), selectively The grooves formed on the polyester film were filled and then dried in Hot for 30 minutes. Next, a transparent acryl-based resin is used to form a protective film to prepare a nano-gate polarizing element. Example 2 A polarizing element was prepared in accordance with the procedure shown in Figure 6. In particular, a transparent urethane urethane acrylate resin (Korea SK_CYTECH Co., Ltd.) is applied to a 1-inch thick transparent polyester film as a substrate to form - Light curing resin layer. Then, 'repeatedly, the stamping template of the example 说明 is used for pressing, irradiating the resin layer with UV light for 20 seconds to cure the resin layer' and then removing the stamper to form grooves and convexities on the photocurable resin layer. S. Then, it will be an 80. The tilt angle, 〇 2 nm/sec rate of sputtering, deposits a thickness of 150 (10) (ULVAC, Japan), so the seal is only selectively filled on the bumps of the resin layer. Then, a protective film is formed to prepare the nano-gate polarizing element. Comparative Example 1 - A polarizing element prepared according to the procedure shown in the third figure. In particular, it is deposited on a quartz substrate. In this connection, a photoresist is applied by a coating method of 13 1342834, and then a mask is used to light up. Next, the photoresist is exposed to the exposed portion of the photoresist and then removed and then washed and washed to prepare the nano-gate polarized 0 device. Comparative Example 2 A polarizing element prepared in accordance with the steps shown in the fourth figure. Specifically, a nano-gate polarizing element was prepared by using a stamper to press the photoresist and then performing exposure instead of the exposure method of a photomask to repeat the two methods of Comparative Example 1. (Industrial Applicability) Compared with the conventional method of patterning a conductive layer, the conventional method includes a photoresist layer and a etch process, and the advantage of styling a conductive layer according to one of the inventions is that the price is lower, and the method It is indeed simpler, the efficiency of the use of raw materials can be maximized, and the pollution caused by the surname can be prevented, so the treatment process is guaranteed to be clean. Moreover, since a stamper having a large area prepared by a photocuring stereolithography method can be used to pattern the conductive layer, the conductive layer can also be efficiently produced in a large area. Therefore, the method of the present invention is useful for a nano-gate polarizing element having a large area. Although the preferred embodiment of the present invention has been devised for the purpose of illustration, but the 4b uranium, a person skilled in the art can still not deviate from the structure of the present invention, such as Jie Xia Whoever changes, in the scope of the patent application of the companion, 'knows that those may be differently added and replaced. 14 1342834 [Simple description of the drawings] The first figure is an outline of the operation structure of a nano-gate polarizing element; the second figure is a sectional view of a conventional nano-gate polarizing element; Preparation of a conventional nano-gate polarizing element for reticle exposure and etching methods; the fourth drawing illustrates the preparation of a conventional nano-gate polarizing element using a nanoimprinting and etching method; DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One of the steps of preparing a nano-gate polarizing element; the sixth drawing illustrates the preparation of a nano-gate polarizing element according to another embodiment of the present invention; and the seventh drawing illustrates the use of a photo-curing stereolithography (stereolithographic) method for preparing a pressure template; the eighth to twelfth drawings are structural sectional views of a nano-gate polarizing element according to the present invention; and the thirteenth drawing illustrates the selectivity of a conductive filling material filling. [Main component symbol description] Benefit *»», 15