096Q015 25860twf.doc/p 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種織物,且特別是有關於一種電熱 織物。 【先前技術】 隨著經濟加速全球化,紡織產業面臨強大的轉型與競 爭壓力,因此必須不斷提升紡織技術’並開發高價值的產 品。目前,已有多種多功能織物逐漸被提出’如防水織物、 保暖織物、電熱織物等。現階段已有許多的電熱織物相繼 被提出,如 US 7,038,177、US 6,963,055、US 6,888,112、 US 6,875,963、US 6,852,956、US 6,723,967、US 6,548,789、 US 6,501,055、US 6,414,286、US 6,389,681、US 6,373,034、 US 6,307,189、US 6,215,1 U、US 6,160,246、US 6,111,233、 中華民國專利號第535453號之内容。然而,在這些習知技 術中,所述及的電熱織物皆為平面式(亦即,二維結構的織 造方式)的電熱織物。其中’由於平面式的電熱織物因其織 物結構之因素,使得電熱紗線配置至於其上時,常會有熱 均勻度不佳與電熱織物過熱之問題。此外,若欲製作且有 較良好之熱阻隔性與舒適性的電熱織物時,則需要將電熱 織物經過多道加工步驟處理(如刷毛布及塗佈技術),才能 使電熱織物達到上述之功能。 換言之,習知之平面式的電熱織物除了在熱阻絕性以 及熱均溫性方面的表現不甚理想外,在製作較佳之熱阻隔 性與熱均溫性的電熱織物時,其製作過程亦相當繁瑣。因 096Q015 25860twf.doc/p 此,習知之電熱織物仍有其可改善之空間。 【發明内容】 本發明提供一種電熱織物,其具有蓄溫與均勻發熱之 功效。 本發明提出一種電熱織物,此電熱織物包括一立體織 物以及至少一電熱紗線。電熱紗線位於立體織物内。另外, 立體織物包括二表面層以及一間隙層。間隙層配置於表面 層之間,以於表面層之間形成多個間隙。 在本發明之一實施例中,上述之表面層包括一内表面 層以及一外表面層。 在本發明之一實施例中,上述之内表面層為一透氣 層0 在本發明之一實施例中,上述之外表面層為一熱阻隔 層。 在本發明之一實施例中,上述之間隙層具有多個交替 排列的峰(peaks)與槽(troughs),這些峰與外表面層交織, 而這些槽與内表面層交織。 在本發明之一實施例中,上述之電熱紗線位於間隙層 上,且較靠近内表面層。 在本發明之一實施例中,上述之電熱紗線位於間隙層 上,且較靠近外表面層。 在本發明之一實施例中,上述之電熱紗線位於間隙層 上,且電熱紗線與内表面層的距離實質上等於電熱紗線與 外表面層的距離。 在本發明之一實施例中,上述之電熱紗線位於間隙層 096Q015 25860twf.doc/p 上,部分的電熱紗線較靠近内表面層,且部分的電熱紗線 較靠近外表面層。 在本發明之一實施例中’上述之電熱紗線位於立體織 物的内表面層,且至少部分的電熱紗線係外露於立體織物 外0 在本發明之一實施例中,上述之電熱紗線位於立體織 物的外表面層,且至少部分的電熱紗線係外露於立體織物 外0 在本發明之一實施例中 2毫米至50毫米之間。 在本發明之一實施例中 物或梭織織物。 在本發明之一實施例中 纖維或碳纖維。 在本發明之一實施例中 過塗佈或電鍵的非導電纖維 在本發明之一實施例中 纖維、鍍銀纖維。 上述之立體織物的厚度介於 ’上述之立體織物包括針織織 ,上述之電熱紗線包括金屬性 ’上述之金屬性纖維包括—經 ’上述之金屬性纖維包括碳黑 蒂「在本例中,上述之電熱織物更包括 制早疋,其中控制單元與電熱紗線電性連接。 二 综上所述’本發明將電熱紗線酉己置於具有 體織物内。當施加電壓或電流至電熱紗線時,電^绣合 產生熱能,㈣使得本發明之電_物具祕如及^ 發熱的特性。 4 一』 096Q015 25860twf.doc/p 為讓本發明之上述特徵和優點能更明顯易懂,下 舉較佳實施例,並配合所關式’作詳細說明 ' 【實施方式】 圖1為本發明之電熱織物的局部剖面示意圖。請 圖卜電熱織物觸包括—立體織物110以及 雷埶 紗線120。電熱紗、線120位於立體織物110内。立體織物 :括内二/面^ 括内表面層112a與一外表面層112b。間隙層114配 ,面層m之間,且於表面層112之間二:二 1 工多:交替排列的峰114b與槽 表面層ma交織。表面層⑽交織,槽114c與内 可以實施例巾,立職物UG的内表面層收 將立體織物二=面:2二可以是-熱阻隔層。當 面層U2a具有透氣;^用在^飾或衣物上時,由於内表 皮膚上時合使人產生备/因此’内表面層112a披覆在 ⑽具有熱阻隔的特性=覺外二:外表面層 e ^卜表面層U2b能阻止熱 的服飾或是衣物“特性有上逃立體織物110結構 κ内表面層仙交織。因此,上述結構 1341880 096Q015 25860twf.doc/p 在内熱織物1()()中的電熱紗線120是織 J内表面層112a與外表面層112b ’ 間隙㈣形成在内表===熱賴^096Q015 25860twf.doc/p IX. Description of the Invention: TECHNICAL FIELD The present invention relates to a fabric, and more particularly to an electrothermal fabric. [Prior Art] As the economy accelerates globalization, the textile industry faces strong transformation and competitive pressures, so it is necessary to continuously upgrade textile technology and develop high-value products. At present, a variety of multifunctional fabrics have been proposed [such as waterproof fabrics, warm fabrics, electric heating fabrics, and the like. At present, a number of electrothermal fabrics have been proposed, such as US 7,038,177, US 6,963,055, US 6,888,112, US 6,875,963, US 6,852,956, US 6,723,967, US 6,548,789, US 6,501,055, US 6,414,286, US 6,389,681, US 6,373,034, US 6,307,189 US 6,215,1 U, US 6,160,246, US 6,111,233, Republic of China Patent No. 535453. However, in these prior art, the electrothermal fabrics described are all planar (i.e., two-dimensionally woven) electrothermal fabrics. Among them, due to the fact that the planar electric heating fabric is placed on the electrothermal yarn due to its fabric structure, there is often a problem that the thermal uniformity is poor and the electrothermal fabric is overheated. In addition, if you want to make electric heating fabric with better thermal barrier and comfort, you need to process the electric heating fabric through multiple processing steps (such as brushing cloth and coating technology) to make the electric heating fabric achieve the above functions. . In other words, the conventional planar electric heating fabric is not very satisfactory in terms of thermal resistance and thermal uniformity, and the manufacturing process is quite cumbersome when fabricating the electric thermal fabric with better thermal barrier properties and thermal uniformity. . Because of the 096Q015 25860twf.doc/p, the conventional electric heating fabric still has room for improvement. SUMMARY OF THE INVENTION The present invention provides an electrothermal fabric having the effects of temperature storage and uniform heat generation. The present invention provides an electrothermal fabric comprising a three-dimensional fabric and at least one electrothermal yarn. The electrothermal yarn is located within the three-dimensional fabric. In addition, the three-dimensional fabric includes two surface layers and a gap layer. The gap layer is disposed between the surface layers to form a plurality of gaps between the surface layers. In one embodiment of the invention, the surface layer comprises an inner surface layer and an outer surface layer. In one embodiment of the invention, the inner surface layer is a gas permeable layer. In one embodiment of the invention, the outer surface layer is a thermal barrier layer. In one embodiment of the invention, the gap layer has a plurality of alternating peaks and troughs that are interwoven with the outer surface layer and the grooves are interwoven with the inner surface layer. In an embodiment of the invention, the electrothermal yarn is located on the gap layer and is closer to the inner surface layer. In one embodiment of the invention, the electrothermal yarn is located on the gap layer and is closer to the outer surface layer. In an embodiment of the invention, the electrothermal yarn is located on the gap layer, and the distance between the electrothermal yarn and the inner surface layer is substantially equal to the distance between the electrothermal yarn and the outer surface layer. In one embodiment of the invention, the electrothermal yarn is located on the gap layer 096Q015 25860twf.doc/p, a portion of the electrothermal yarn is closer to the inner surface layer, and a portion of the electrothermal yarn is closer to the outer surface layer. In an embodiment of the invention, the electrothermal yarn is located on the inner surface layer of the three-dimensional fabric, and at least part of the electrothermal yarn is exposed outside the three-dimensional fabric. In one embodiment of the invention, the above-mentioned electric heating yarn Located on the outer surface layer of the three-dimensional fabric, and at least a portion of the electrothermal yarn is exposed outside the three-dimensional fabric, in an embodiment of the invention between 2 mm and 50 mm. In one embodiment of the invention a woven or woven fabric. In one embodiment of the invention a fiber or carbon fiber. Non-conductive fibers overcoated or electrically bonded in one embodiment of the invention are fibers, silver plated fibers in one embodiment of the invention. The above-mentioned three-dimensional fabric has a thickness of 'the above-mentioned three-dimensional fabric including knitted woven fabric, and the above-mentioned electrothermal yarn includes metallicity'. The above-mentioned metallic fiber includes - the above-mentioned metallic fiber includes carbon black thimble "in this example, The above electric heating fabric further comprises an early twisting, wherein the control unit is electrically connected to the electric heating yarn. In the above, the present invention places the electric heating yarn in the body fabric. When a voltage or current is applied to the electric heating yarn. In the case of the wire, the electric embroidery generates heat energy, and (4) makes the electric_object of the present invention have the characteristics of heat and heat. 4 A 096Q015 25860twf.doc/p To make the above features and advantages of the present invention more obvious and understandable BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial cross-sectional view of an electrothermal fabric of the present invention. Please refer to the electro-mechanical fabric to include a three-dimensional fabric 110 and a Thunder yarn. Line 120. The electric heating yarn and the wire 120 are located in the three-dimensional fabric 110. The three-dimensional fabric includes an inner surface layer 112a and an outer surface layer 112b. The gap layer 114 is disposed between the surface layers m and on the surface layer. 112 Between the two: two more than one: the alternately arranged peaks 114b are interlaced with the surface layer ma of the trough. The surface layer (10) is interwoven, the trough 114c and the inner can be implemented, and the inner surface layer of the standing UG receives the three-dimensional fabric two = surface: 2 may be a thermal barrier layer. When the top layer U2a has air permeability; when used on a decoration or clothing, since the inner surface of the skin is made up, the inner surface layer 112a is covered with (10) having a thermal barrier. The characteristics of the outer surface layer 2: the outer surface layer e ^ surface layer U2b can prevent hot clothing or clothing "characteristics have escaped three-dimensional fabric 110 structure κ inner surface layer fairy intertwined. Therefore, the above structure 1341880 096Q015 25860twf.doc/p in the inner heat fabric 1 () () of the electric heating yarn 120 is the inner surface layer 112a of the weave J and the outer surface layer 112b ' gap (four) formed in the table === hot ^
7的空氣傳遞至整個電熱織物_。盆 中,、、、月b傳遞至外表面層1I2b 8夺,會 的熱阻隔特性而不至於彻 ”’卜表面層112b Μ祕〜卜部。此外,當電熱紗線120 產的”、、π傳遞至内表面層U2a時,會因内 的透氣性,進而使内表面層112a舞 曰a 覺到舒適與溫暖。其中,將電熱紗線12〇 i在;;m 士 ==織法或梭織法。一般來說,二; =^方式以針織為主,而,本發明並不較間隙層ii4 的織法。 另外,當外加電壓至電熱紗線12〇使其產生熱能時,The air of 7 is transferred to the entire electric heating fabric. In the basin, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , When it is transmitted to the inner surface layer U2a, the inner surface layer 112a feels comfortable and warm due to the inner gas permeability. Among them, the electric heating yarn 12〇 i is;; m 士 == weave or weave. In general, the second method is mainly knitted, and the present invention is not the weave of the gap layer ii4. In addition, when a voltage is applied to the heating yarn 12 to generate heat energy,
便得立體織物 由於電熱紗線120織在間隙層114上之位置不同,因此, 電熱紗線120會在立體織物11〇内產生不同的熱分佈。此 外,立體織物110的厚度也會影響到電熱紗線12〇的熱分 # ° ”、、 為了探討電熱紗線120織在立體織物110内的間隙層 114上之位置與電熱紗線120產生的熱分佈關係,以下將 做詳細的討論。圖2A為電熱紗線配置在立體織物厚度為 2〇mm時的剖面示意圖,而圖2B為圖2A在不同位置上所 量測的加熱時間與溫度之關係曲線圖。請同時參考圖2a 9 090Q015 25860twf.doc/p 與圖2B’將電熱紗線120配置在間隙層114上且較靠近外 表面層112b,例如是A點所標示之位置’並對電熱紗線 120施以電壓或電流使其產生熱能。由於電熱紗線12〇所 產生的熱能會藉著間隙層114内的空氣傳遞,因此,在不 同位置所量測的溫度也會有所不同。請繼續參考圖2B,在 加熱時間120秒,位置S1所量測的溫度變化量約為〇15& C/sec’而最高溫度約為41。0另外,在位置幻所量測的 溫度變化量約為〇.〇83°C/sec,而最高溫度約為3rc。此 外’在位置S3所量測的溫度變化量約為〇〇58〇c/sec,而 最高溫度約為30。〇因此,量測位置距離電熱炒線12〇 越遠,則溫度變化量就越小,也就是說,電熱紗線12〇所 產生的熱能藉由間隙114a内的空氣傳遞而擴散,進而使得 較遠距離的平面上具有較均勻的熱分佈。此外’若要使^ 熱織物100的整體溫度提高,則須調高電熱紗線12〇的發 熱溫度,亦即需要提供較高的電壓或電流。換言之,若^ 電熱紗線120織於靠近外表面層U2b>時,由於外表面層 U2b具有隔熱之特性以及内表面層U2a具有透氣性,^ 内表面層112b離電熱紗線120距離較遠,因此,使得電熱 織物100不會產生過熱的情形,以及具有較均勻的熱分 圖3A為電熱紗線配置在立體織物厚度為1〇mm時的 剖面示意圖,而圖3B為圖3A在不同位置上所量測的加熱 時間與溫度之關係曲線圖。請同時參考圖3a與圖3B,^ 電熱紗線120織在間隙層114上且較靠近内表面層U2a, 例如是B點所標示之位置,並對電熱紗線12〇施以電壓或 1341880 096Q015 25860twf.doc/p 電流使其產生熱能。如同之前所述,電熱紗線12〇所產生 的熱能藉著間隙層114内的空氣傳遞,因此,在不同位置 所量測的溫度也會有所不同。請參考圖3B,在加熱時間 120秒内,位置S1所量測的溫度變化量約為〇 〇75。〇咖, 而最局温度為32°C。另外’在位置S2所量測的溫度變化 里為0.083 C/sec ’而隶南溫度為33°c。因此,當立體織 物110的厚度變小時,溫度變化量隨著與電熱紗線12〇的 距離之變化便不那麼明顯,且位置Sl、S2所量測的最高 溫之相差量亦不大。因此,當立體織物11〇的厚度縮小時, 在相同的需求溫度下施加在電熱紗線的電壓或電流可 以較小。換言之,若將電熱紗線120織於靠近内表面層n2b 時,由於電熱織物1〇〇之整體厚度縮小,且内表面層U2b 離電熱紗、線120距離較近。因此,若要使得電熱織物1〇〇 不會產生過熱的情形,以及具有較均勻的熱分佈,則需將 施加於電熱紗線120之電壓或電流值減小。 圖4A為電熱紗線配置在立體織物厚度為2mm時的剖 面不意圖,而圖4B為圖4A在不同位置上所量測的加熱時 間與溫度之關係曲線圖。請同時參考圖4A與圖4B,將電 熱紗線120織入間隙層114上,且電熱紗線120與内表面 層U2a的距離實質上等於電熱紗線12〇與外表面層U2b 的,離,例如是C點所標示之位置。電熱紗線120產生的 熱能及其傳遞方式如上所述,在此不再贅述。請參考圖 4B ’在加熱時間12〇秒内,位置S1所量測的溫度變化量 約為0.066°C/sec 1而最高溫度為3rc。另外,在位置S2 11 096Q015 25860twf.doc/p 所量測的溫度變化量為〇.〇416°C/Sec,而最高溫度為30。 C。隨著立體織物110的厚度縮小,相對來說,在間隙層 114内傳遞熱此之空氣的空間便較小,也就是說,熱的均 勻度變得較差。然而,在相同的需求溫度下,施加於電熱 紗線120上的電壓或電流值便可較小。換言之,構成電熱 織物100之立體織物11〇的厚度與熱均勻度之要求視使用 者的需求來設計’本發明並不特別限定。 在其他實施例中,立體織物110之厚度亦可以是從 2mm〜50mm,上述僅為舉例,非用以限定本發明。換言之, 由上述之實施例中可知,隨著立體織物11〇之厚度'增°加或 縮小時,電熱紗線120纖於立體織物11〇之靠近外表面層 ii2b、間隙層m或是外表面層112a所產生賴分布也就 有所不同。而不同的熱分佈情況之應用範缚端視使用者的 需求而設計。 圖5為本發明之電熱織物之系統示意圖。請參考圖5, 電熱織物100除了包括立體織物11〇與至少一電熱紗線 U0外,更包括一控制單元13〇。控制單元BO與電执紗線 120電性連接。控制單元13G可以是—微電路控制基板, 其用以控制電壓或電流輸人至電熱紗線W,使得在電孰 織物100内的電熱紗線12G產生㈣的熱能,並且再藉由 j織物110的二表面们12結構,使得電熱織物刚具 木軟舒適、保溫、蓄溫以及均勻發熱的特性。此外, 二制單7L 130可以用來控制電熱織物1〇〇的保暖溫度 發熱溫度。 1341880 096Q015 25860twf.doc/p , 值得一提的是,在其他實施例令,電熱紗線12〇選可 以位於間隙層114上,而部分的電熱紗線12〇較靠近内表 面層112a以及部分的電熱紗線12〇較靠近外表面層 112b。亦即,電熱紗線120可以交錯地織在靠近内表面層 112a與外表面層112b的間隙層114上。由於電熱紗線12〇 父錯的分佈於靠近内表面層112a與外表面層112b之間, 因此,施加於電熱紗線120的電壓或電流值只須適當,便 月b使電熱織物100具有良好的保溫性與均勻發熱之特性。 在本發明另一實施例中,電熱紗線120更可以是位於 立體織物110的内表面層112a,且至少部分的電熱紗線 外蕗於立體織物110外。或是,電熱紗線12〇位於立體織 物110的外表面層U2b,且至少部分的電熱紗線12〇外露 於立體織物110外。亦即,電熱紗線可以織在内表面 層112a内,或是外表面層112b内。當然,電熱紗線 也更可以是同時織在内表面層112a與外表面層ii2b内。 此外,在本實施例中,立體織物110例如是一針織織 物或—梭織織物。而電熱紗線120的材質可以是金屬性纖 維或碳纖維,其中,金屬性纖維可以是—經過塗佈或電鍍 的非導電纖維。另外,金屬性纖維也可以是碳黑纖維、鍍 銀纖維。 又 更值得一提的是,内表面層H2a、外表面層1 i2b以 及間隙層114之織造方式可同為一針織法。亦即,藉由針 織織造之方式,使得外表面層112b具有隔熱性、内表面層 U2a具有透氣性以及具有間隙層114的立體織物n〇具有 13 1341880 096Q015 25860twf.doc/p 柔軟之彈性 綜上所述,本發明之電熱織物至少具有下列優點。 ί透物具有二表面層’其令,表面層具有隔熱 透=特性,因此使得電熱織物具有舒適與保溫 ί物表面層之間具有一間隙層,使得電熱 使得電熱紗線配置於電熱織物内, 有#糾置-/、有均勻發熱的特性。最後,電熱織物更且 此,工本發日===熱織物的發熱溫度以適於人體。因 勻發熱之特性。,、、&具有舒適、保溫、柔軟彈性以及均 限定本發露如上’ ^其並非用以 脫離本發明之精 f技術領域中具有通常知識者,在不 因此本發明之保關内’當可作些許之更動與潤飾, 為準。 〜把圍當視後附之申請專利範圍所界定者 【圖式簡單說明】 圖1為本明 圖2A為^的局部剖面示意圖。 剖面示意圖。、線配置在立體織物厚度為20mm時的 圖2β為圖2A在 之關係曲線圖。 置上所量測的加熱時間與溫度 圖3Α為電埶妇 剖面示意圖。 入配置在立體織物厚度為10mm時的 圖3B為圖3A在不同位 置上所I測的加熱時間與溫度 14 1341880 096Q015 25860twf.doc/p 之關係曲線圖。 圖4A為電熱紗線配置在立體織物厚度為2mm時的剖 面示意圖。 圖4B為圖4A在不同位置上所量測的加熱時間與溫度 之關係曲線圖。 圖5為本發明之電熱織物之系統示意圖。 【主要元件符號說明】 100 :電熱織物 ® 110 :立體織物 120 :電熱紗線 112 :二表面層 114 :間隙層 112a :内表面層 112b :外表面層 114a :間隙 114b :峰 • 114c:槽 130 :控制單元 SI、S2、S3 :位置 A、B、C :點 15The three-dimensional fabric has different heat distribution in the three-dimensional fabric 11 because the positions of the electric heating yarns 120 woven on the gap layer 114 are different. In addition, the thickness of the three-dimensional fabric 110 also affects the thermal score of the electrothermal yarn 12A, in order to investigate the position of the electrothermal yarn 120 woven on the gap layer 114 in the three-dimensional fabric 110 and the electric heating yarn 120. The heat distribution relationship will be discussed in detail below. Fig. 2A is a schematic cross-sectional view of the electric heating yarn disposed at a thickness of 2 〇mm of the three-dimensional fabric, and Fig. 2B is the heating time and temperature measured at different positions of Fig. 2A. A relationship diagram. Please refer to FIG. 2a 9 090Q015 25860twf.doc/p and FIG. 2B' to arrange the heating yarn 120 on the gap layer 114 and closer to the outer surface layer 112b, for example, the position indicated by point A. The electrothermal yarn 120 is subjected to a voltage or current to generate thermal energy. Since the thermal energy generated by the electrothermal yarn 12 is transmitted by the air in the gap layer 114, the temperature measured at different positions may also be different. Continuing to refer to FIG. 2B, during the heating time of 120 seconds, the temperature change measured at position S1 is approximately 〇15 & C/sec' and the maximum temperature is approximately 41. 0 In addition, the temperature change measured at the positional illusion The amount is about 〇.〇83°C/sec The maximum temperature is about 3 rc. In addition, the temperature change measured at position S3 is about 〇58〇c/sec, and the maximum temperature is about 30. Therefore, the farther the measurement position is from the electric frying line 12〇 The smaller the amount of temperature change, that is, the thermal energy generated by the heating yarn 12〇 is diffused by the air in the gap 114a, thereby providing a more uniform heat distribution in a farther plane. In order to increase the overall temperature of the thermal fabric 100, it is necessary to increase the heating temperature of the electric heating yarn 12 ,, that is, to provide a higher voltage or current. In other words, if the electromotive yarn 120 is woven close to the outer surface layer. In the case of U2b>, since the outer surface layer U2b has heat insulating properties and the inner surface layer U2a has gas permeability, the inner surface layer 112b is far away from the electric heating yarn 120, so that the electric heating fabric 100 does not cause overheating. And a more uniform heat score. FIG. 3A is a schematic cross-sectional view of the electric heating yarn disposed at a thickness of 1 〇mm of the three-dimensional fabric, and FIG. 3B is a graph of heating time and temperature measured at different positions of FIG. 3A. Please Referring to Figures 3a and 3B, the electrothermal yarn 120 is woven on the gap layer 114 and closer to the inner surface layer U2a, for example, at the position indicated by point B, and applies a voltage to the electrothermal yarn 12 or 1341880 096Q015 25860 twf. The doc/p current causes it to generate thermal energy. As mentioned earlier, the heat generated by the heating yarn 12 turns through the air in the gap layer 114, so the temperature measured at different locations will vary. Referring to FIG. 3B, the amount of temperature change measured at position S1 is about 〇〇75 during the heating time of 120 seconds. Coffee, and the most local temperature is 32 °C. Further, 'the temperature change measured at the position S2 is 0.083 C/sec' and the temperature at the south is 33 °C. Therefore, when the thickness of the three-dimensional fabric 110 becomes small, the amount of temperature change is less noticeable as the distance from the electrothermal yarn 12 is changed, and the difference in the maximum temperature measured at the positions S1, S2 is not large. Therefore, when the thickness of the three-dimensional fabric 11 is reduced, the voltage or current applied to the electrothermal yarn at the same required temperature can be made small. In other words, when the electric heating yarn 120 is woven close to the inner surface layer n2b, the entire thickness of the electric heating fabric 1 is reduced, and the inner surface layer U2b is closer to the electric heating yarn and the wire 120. Therefore, in order to prevent the electric heating fabric from being overheated and having a relatively uniform heat distribution, the voltage or current value applied to the electrothermal yarn 120 needs to be reduced. Fig. 4A is a cross-sectional view of the electric heating yarn disposed at a thickness of 2 mm of the three-dimensional fabric, and Fig. 4B is a graph showing the heating time and temperature measured at different positions of Fig. 4A. Referring to FIG. 4A and FIG. 4B simultaneously, the electrothermal yarn 120 is woven into the gap layer 114, and the distance between the electrothermal yarn 120 and the inner surface layer U2a is substantially equal to that of the electric heating yarn 12〇 and the outer surface layer U2b. For example, the position indicated by point C. The heat energy generated by the electrothermal yarn 120 and the manner of transmission thereof are as described above, and will not be described herein. Referring to Fig. 4B', within 12 seconds of the heating time, the temperature change measured at position S1 is about 0.066 ° C / sec 1 and the maximum temperature is 3 rc. In addition, the amount of temperature change measured at the position S2 11 096Q015 25860twf.doc/p is 〇.〇416°C/Sec, and the maximum temperature is 30. C. As the thickness of the three-dimensional fabric 110 is reduced, the space for transferring heat in the gap layer 114 is relatively small, that is, the uniformity of heat becomes poor. However, at the same required temperature, the voltage or current applied to the electrothermal yarn 120 can be small. In other words, the thickness and thermal uniformity of the three-dimensional fabric 11 constituting the electrothermal fabric 100 are designed according to the needs of the user. The present invention is not particularly limited. In other embodiments, the thickness of the three-dimensional fabric 110 may also be from 2 mm to 50 mm. The foregoing is by way of example only and is not intended to limit the invention. In other words, as can be seen from the above embodiments, as the thickness of the three-dimensional fabric 11 is increased or decreased, the electrothermal yarn 120 is applied to the outer surface layer ii2b, the gap layer m or the outer surface of the three-dimensional fabric 11〇. The layer distribution produced by layer 112a is also different. The application of different heat distribution conditions is designed according to the needs of users. Figure 5 is a schematic view of the system of the electrothermal fabric of the present invention. Referring to FIG. 5, the electrothermal fabric 100 includes a control unit 13A in addition to the three-dimensional fabric 11〇 and the at least one electric heating yarn U0. The control unit BO is electrically connected to the electro-optic yarn 120. The control unit 13G may be a microcircuit control substrate for controlling the voltage or current input to the electric heating yarn W such that the electrothermal yarn 12G in the electric woven fabric 100 generates (4) thermal energy, and is further provided by the j fabric 110. The structure of the two surfaces 12 makes the electric heating fabric have the characteristics of softness, comfort, heat preservation, temperature storage and uniform heating. In addition, the two-sheet 7L 130 can be used to control the warming temperature of the electric heating fabric. 1341880 096Q015 25860twf.doc/p, it is worth mentioning that in other embodiments, the electrothermal yarn 12 can be selected on the gap layer 114, and part of the electrothermal yarn 12 is closer to the inner surface layer 112a and part of the The electrothermal yarn 12 is closer to the outer surface layer 112b. That is, the electrothermal yarns 120 may be interlaced on the gap layer 114 adjacent to the inner surface layer 112a and the outer surface layer 112b. Since the electric heating yarn 12 is distributed between the inner surface layer 112a and the outer surface layer 112b, the voltage or current value applied to the electric heating yarn 120 only needs to be appropriate, so that the electric heating fabric 100 has a good condition. Insulation and uniform heating characteristics. In another embodiment of the invention, the electrothermal yarns 120 may be located on the inner surface layer 112a of the three-dimensional fabric 110, and at least a portion of the electrothermal yarns are external to the three-dimensional fabric 110. Alternatively, the electrothermal yarn 12 is located on the outer surface layer U2b of the three-dimensional fabric 110, and at least a portion of the electrothermal yarn 12 is exposed outside the three-dimensional fabric 110. That is, the electric heating yarn may be woven in the inner surface layer 112a or in the outer surface layer 112b. Of course, the electric heating yarn may also be woven in the inner surface layer 112a and the outer surface layer ii2b at the same time. Further, in the present embodiment, the three-dimensional fabric 110 is, for example, a knitted fabric or a woven fabric. The material of the heating yarn 120 may be a metallic fiber or a carbon fiber, wherein the metallic fiber may be a coated or electroplated non-conductive fiber. Further, the metallic fibers may be carbon black fibers or silver-plated fibers. It is also worth mentioning that the weaving method of the inner surface layer H2a, the outer surface layer 1 i2b and the gap layer 114 can be the same as a knitting method. That is, the outer surface layer 112b has heat insulating properties, the inner surface layer U2a has gas permeability, and the three-dimensional fabric having the gap layer 114 has 13 1341880 096Q015 25860 twf.doc/p soft elastic composite by means of knitting and weaving. As described above, the electrothermal fabric of the present invention has at least the following advantages. The λ has a two-surface layer, which makes the surface layer have a heat-insulating property, so that the electric heating fabric has a gap layer between the comfort and the heat-resisting surface layer, so that the electric heating causes the electric heating yarn to be disposed in the electric heating fabric. , There are #纠定-/, with uniform heating characteristics. Finally, the electric heating fabric is more and more, and the heat generation temperature of the hot fabric is suitable for the human body. Due to the characteristics of uniform heating. , , , & comfortable, heat-insulating, soft-elastic, and both of which are defined as above. ^^ It is not intended to depart from the technical knowledge of the present invention, and is not in the warranty of the present invention. There are a few changes and refinements that can be made. ~ The definition of the scope of the patent application attached to the circumstance is as follows: [Simplified illustration of the drawings] Fig. 1 is a partial cross-sectional view of Fig. 2A. Schematic diagram of the section. Fig. 2 is a relationship diagram of Fig. 2A when the thickness of the three-dimensional fabric is 20 mm. Putting the measured heating time and temperature Figure 3 is a schematic diagram of the electric wife's profile. Fig. 3B is a graph showing the relationship between the heating time measured at different positions of Fig. 3A and the temperature 14 1341880 096Q015 25860 twf.doc/p. Fig. 4A is a schematic cross-sectional view showing the arrangement of the electric heating yarn at a thickness of 2 mm of the three-dimensional fabric. Figure 4B is a graph of heating time versus temperature measured at various locations of Figure 4A. Figure 5 is a schematic view of the system of the electrothermal fabric of the present invention. [Main component symbol description] 100: electrothermal fabric® 110: three-dimensional fabric 120: electrothermal yarn 112: two surface layer 114: gap layer 112a: inner surface layer 112b: outer surface layer 114a: gap 114b: peak • 114c: groove 130 : Control unit SI, S2, S3: Position A, B, C: Point 15