TWI339147B - Calibration method of an erosion machine and a grinding machine - Google Patents

Calibration method of an erosion machine and a grinding machine Download PDF

Info

Publication number
TWI339147B
TWI339147B TW93141552A TW93141552A TWI339147B TW I339147 B TWI339147 B TW I339147B TW 93141552 A TW93141552 A TW 93141552A TW 93141552 A TW93141552 A TW 93141552A TW I339147 B TWI339147 B TW I339147B
Authority
TW
Taiwan
Prior art keywords
machine
grinding
tracker
workpiece
test
Prior art date
Application number
TW93141552A
Other languages
Chinese (zh)
Inventor
Thomas Engelfried
Heinz Haeckh
Christian Dilger
Original Assignee
Walter Maschb Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Walter Maschb Gmbh filed Critical Walter Maschb Gmbh
Priority to TW93141552A priority Critical patent/TWI339147B/en
Application granted granted Critical
Publication of TWI339147B publication Critical patent/TWI339147B/en

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Description

九、發明說明: 【發明所屬之技術領域】 本發明涉及一種方法,用於對一個研磨機、一個侵蝕 =或一個組合的研磨侵蝕機進行校準和再校準,本發明還 ~及一個實現這種方法的機器。 【先前技術】 10 例如在具製造t使用研磨機和/或侵㈣,以便以高 til又製W工具。對精準加工有越來越高的需求。不僅是在 兄下’亦S要長期的系列製造保證這種加工精度。 ^ 對各個的機為進行仔細的校準與控制。 長期保持有效並以簡單的方法實現。 早要 【發明内容】 15 本發明的目的暑括彳妓 的校準方法,藉由於一個研磨機或侵飯機 工。此外本發明夠長期地保證"具的精準加 這個目的$ •的疋提供一種實現這種方法的機器。 20IX. INSTRUCTIONS: TECHNICAL FIELD The present invention relates to a method for calibrating and recalibrating a grinder, an erosion=or a combined abrasive erosive machine, and the present invention Method of the machine. [Prior Art] 10 For example, in the case of manufacturing, use a grinder and/or invade (4) to make a W tool with a high til. There is an increasing demand for precision machining. Not only under the brothers, but also S long-term series manufacturing to ensure this processing accuracy. ^ Carefully calibrate and control each machine. It stays effective for a long time and is implemented in a simple way. Early on [Explanation] 15 The purpose of the present invention is to calibrate the method of sputum by means of a grinder or a rice-filling machine. In addition, the present invention is long enough to ensure that the precise addition of this purpose is provided by a machine that implements this method. 20

項所述的方法得=第—部分藉由如申請專利範圍第1 按照本發明的方 時地進行再校準I 疋’各別的機器在初校準後不 通過-個機ί追蹤:Λ通過—個參考追蹤器進行初校準而 再校準過程進行再校準。通過一個機器追縱器在 機器控制程式準值是修正資料,它們被存儲並由 後、,的研磨或侵蝕過程中使用,以便修正 96^) 日修(史)正替技頁 磨床或侵蝕機器的軸位移。所述再校準依需要可以不時自 動進行,因此所述再校準在其精度上引導回初校準。所述 初校準最好通過參考追蹤器進行,該參考追蹤器附接於工 件載具。在加工主軸上而非在侵餘或研磨工具上附接一個 茶考體’亦即-個參考盤。當已達成如此,則藉由參考追 蹤器多次追蹤參考體。在此對於每個座標方向χ,γ,ζ分別 進行至少一次追蹤程序,所述座標方向例如與相應的、作 用於工件載具或加工主軸托架的定位裝置的調整方向相 致由此對於母個座標方向獲得一個初始測量值。明破 地說,通過由各分派於各座標的調整裝置提供的位置數值 =已知的芩考盤或芩考追蹤器的三維座標的計算獲得測 量值。但是這樣獲得的測量值只是一個第一近似值:因為 ^此方式中,最好可切換的參考追蹤器的切換點通常不能 知$知道。因此為了計算首先隨機地假設一個追蹤器的切 換點並在以這個假設以及已知的參考盤和追蹤器尺寸以 及f整部件的座標值為前提的條件下計算一個用於所有 座‘的第—修正值Δχ,,心。這彳時正值應該表示不 完全的定位,由於機器機架、導向元件的結構不精確性、 :於:變化等在每個座標方向所導致。所述修正值存儲在 控制裝置或一個對應於這個控制裝置的記憶體裏面。 現在在第二步驟中進行一個研磨測試,在該過程中使 =所存儲的修正值崎正調整裝置之校正控制指令。係將 夕正值以適當符號添加到用於研磨測試的預定座標方 向在研磨測忒過程中多次輕微研磨一個測試工件,尤其 %竿)月A修⑧正公额 對於t個要被檢驗的座標由兩個方向進行研磨 。打磨斷面 測試工件表面上磨出的很小的棱面。兩個打磨測 _面屬於相同座標且由不同的麟方向(亦即+χ和— 打磨’而相關聯的棱面相鄰地設置。由尺寸差能 „出+X與1之間的位置誤差。如果兩個棱面大小 二兰::存在位置誤差。如果兩個棱面大小不同,則由 0寸差推¥出-個修正值^吻,^並存财 =:單元裏面。然後進行第二次研磨測試,仍然以ί _ d對其進仃評估。—直重複進行這種迭代直到在各 別的鉢方向上研磨出相同大小的棱面。在此方式中 =早-的座標例如\座標進行這種迭代過㈣ =於至少在所❹的參考追縱器對於其追縱銷在所有 上,側向偏轉具有相同的切換點位置時。對於X座样 (或所選擇的其他座標)獲得的追蹤器修正: 他現有的座標。 人用於其 〃一旦研«或侵賴輯種方式獲得其純準 心由使位於機中的測試工件與位於機 器接觸而立即以及時序列進行第—次再校準 ,測中獲得的修正值。它們 :縱=於參考追縱器的測量偏差。後續的再校準過; 通過初鮮料的修域上進行測量。如果例 X,Y,Z#.m Δχη,ΛΥη,ΛΖη^,^ Δχδ, 二,些偏差表示例如由於溫度變化引起的機Ρ 尺寸交化亚在進一步的加工中予以考慮。 :利的使甩所述參考追縱器兩次或至少 ==:Γ次使用於且切換在追晴二 值處理縱销的_點’它對於後續的測量 上述目的的第二部分通過_個 :〇=徵的機器得以實現。這個機器配有4= 和一個機器追縱哭,並由 ._ 干 架上而二: 種部件附接在加工主軸托 10 "抒f二1:接在工件載具上。此外該機器具有-個 二相應的控制軟體’該控制軟體可以在- =準拉式中通過參考追縱器進行校準過程並可以在- 再4又準核式中通過相應的機器追縱器進行上述再校节 =。該控制軟體執行上述步驟’其中它要求由操作者在 15 =過程(初校準)中輸入資料。這些輸入資料在最簡單 的t月況下可以是尺寸偏差的推測值Δχ,由在步驟2令產 生的棱面尺寸差得出該推難。機器調整專家必須提供一 =二理Γ推測值。但是也可以在控制軟體中設置一個推測 a ’它可以由棱面的尺寸差推測出修正值Δχ(或勿或 20 △小在此該推測模型建立在這樣一個假設上,即,對柃 面之間的-個較大的尺寸差有配置一個更大的修正值 =趨勢。在最簡單的情況下假設一個成比例的關係並用作 為基礎。 【附圖說明】 •9- 1339147 ------- A年。月V日修(充)正替汶頁 5 10 15 由附圖、描述以及中缚直釗狄ZZ 卜 肀叫專利祀圍顯示出本發明有利實 心. 傾81中不出―個本發明的實施例。附 圖中· 圖1以極其概略的_示出—個研磨機或侵I虫機, 圖2至5以示意圖示出初校準過程的不同步驟, 圖6和7分別以俯視示意圖示出在研磨測試期間在不 同的位置之具有研磨工具的研磨頭與—個毛述接觸, 圖8以正視示意圖示出按照圖6和7的研磨工具和毛 述, 圖9以另-比例的側視示意圖示出具有輕微打 的毛述, 圖10和11分別以極其簡化的俯視圖示出在—個研磨 過程期間在不同的研磨位置之具有一個研 頭和毛坯, 圖12以簡化正視圖示出在完成按照圖1〇和〗1的研 磨過程之後的毛坯。 圖13至16顯示研磨機之第一再校準。 i 20 【實施方式】 在圖1中簡示出一個研磨機1,它具有一個機器機架 2,該機架支承一個研磨頭3或研磨主軸托架和—個工件 栽具。所述研磨頭3裝設在—個相應的橇型配置,其可在 兩個方向Y,Z上移動。為了在這兩個方向上調整研磨頭使 用兩個對應的驅動裝置,該驅動裝置經由一根丫控制導線 -10- 1339147 5矛根Z 4工制‘線6連接到一個控制裝置7上 “控制導線”也可以理解為各種資訊通道,例如—個Ϊ = 流排,通過它們可以將控制命令傳遞到相應的驅動穿= 將驅動裝置的位置信號返回到控制裝置7。動-置亚 所述工件載具4同樣以—個橇 2上’使得它可以在X方向上調整。該 =機木 制》此外可《主張,置7進行控 ^ 1干戰具4圍繞一個番亩μ括The method described in the above section is partially recalibrated according to the present invention as in the first application of the patent scope. 疋 'Each machine does not pass through the initial calibration after the initial calibration. The reference tracker performs an initial calibration and the recalibration process recalibrates. Through a machine tracker in the machine control program is the correction data, they are stored and used by the post, grinding or erosion process, in order to correct 96 ^) Japanese repair (history) is a technical page grinder or erosion machine Axis displacement. The recalibration can be performed automatically from time to time as needed, so the recalibration leads back to the initial calibration in its accuracy. The initial calibration is preferably performed by a reference tracker attached to the workpiece carrier. Attach a tea test body on the processing spindle rather than on the invading or grinding tool. When this is done, the reference body is tracked multiple times by reference to the tracer. In this case, for each coordinate direction χ, γ, ζ respectively, at least one tracking procedure is carried out, which corresponds, for example, to the corresponding adjustment direction of the positioning device acting on the workpiece carrier or the machining spindle carrier. An initial measurement is obtained for each coordinate direction. Explicitly speaking, the measured value is obtained by the calculation of the position value provided by each adjustment device assigned to each coordinate = the known three-dimensional coordinate of the test disk or the reference tracker. However, the measurement obtained in this way is only a first approximation: because ^ in this mode, it is generally not possible to know the switching point of the switchable reference tracker. Therefore, in order to calculate, the switching point of a tracker is first randomly assumed and a section for all the seats' is calculated under the assumption that the assumption and the known reference disk and tracker size and the coordinate value of the f-part are Correction value Δχ,, heart. The positive value of this time should indicate incomplete positioning, due to the structural inaccuracy of the machine frame and the guiding elements, and: changes in the direction of each coordinate. The correction value is stored in a control device or a memory corresponding to the control device. A grinding test is now carried out in the second step, in which the stored correction value is corrected by the correction control command of the device. The positive value is added to the predetermined coordinate direction for the grinding test with a proper symbol to slightly grind a test piece during the grinding and testing process, especially %竿) month A repair 8 positive amount for t to be inspected The coordinates are ground in two directions. Grinding section Tests the small facets that are ground on the surface of the workpiece. The two grinding _ faces belong to the same coordinate and are arranged adjacent to each other by different lining directions (ie + χ and - sanding). The positional error between the +X and 1 is determined by the difference in size. If the two facets are two lan:: There is a position error. If the two facets are different in size, then the 0-inch difference is pushed out - a correction value ^ kiss, ^ and saved =: inside the unit. Then proceed to the second The secondary grinding test is still evaluated by ί _ d—the iteration is repeated until the same size of the facet is ground in the respective 钵 direction. In this way = early-the coordinates such as \ coordinates Perform this iteration over (4) = at least when the reference tracker is at its same for all of the tracking pins, and the lateral deflection has the same switching point position. For the X-seat (or other coordinates selected) Tracker correction: his existing coordinates. People use it once they are researching or invading the way to get their pure alignment by making the test workpieces located in the machine contact with the machine and immediately and sequentially Recalibration, the correction obtained in the measurement. They: vertical = measurement deviation of the reference tracker. Subsequent recalibration; measurement by the repair field of the fresh material. If the case X, Y, Z#.m Δχη, ΛΥη, ΛΖη^, ^ Δχδ, two, some The deviation indicates that, for example, the size of the casing due to temperature changes is considered in further processing. The advantage is that the reference tracker is used twice or at least ==: Γ times and switched in chasing The value handles the _point of the vertical sales. It is used for the subsequent measurement of the second part of the above purpose. The machine is equipped with 4= and a machine chasing and crying, and by the ._ dry shelf And two: the parts are attached to the processing spindle support 10 "抒f 2: connected to the workpiece carrier. In addition, the machine has a two corresponding control software 'the control software can pass in the - = quasi-pull Refer to the tracer for the calibration process and the above recalibration can be performed in the -4 and quasi-nuclear modes by the corresponding machine tracker. The control software performs the above steps 'where it is required by the operator at 15 = process ( Input data in the initial calibration. These inputs are the simplest In the case of t-month, it may be the estimated value Δχ of the dimensional deviation, which is caused by the difference in the facet size produced in step 2. The machine adjustment expert must provide a =2 rationality estimate, but it can also be in the control software. Set a speculation a 'It can be inferred from the difference in the size of the facet to estimate the correction value Δχ (or no or 20 △ small. Here the speculative model is based on the assumption that the larger between the faces The size difference is configured with a larger correction value = trend. In the simplest case, a proportional relationship is assumed and used as a basis. [Description of the Drawings] • 9- 1339147 ------- A year. Month V The present invention is advantageous in that it is shown by the drawings, the description, and the patented 钊 钊 ZZ 肀 祀 祀 祀 祀 祀 祀 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 In the drawings, Fig. 1 shows, in an extremely schematic manner, a grinder or an invader, and Figs. 2 to 5 show different steps of the initial calibration process, and Figs. 6 and 7 are respectively shown in a top view. The grinding head with the grinding tool at different positions during the grinding test is in contact with the hair. Figure 8 shows the grinding tool and the head according to Figures 6 and 7 in a front view, Figure 9 in a different-side view. The schematic diagram shows a slightly struck description, and Figures 10 and 11 respectively show, in an extremely simplified top view, a spar and blank at different grinding positions during a grinding process, Figure 12 is shown in simplified front view. The blank after completion of the grinding process according to Fig. 1 and Fig. 1 is obtained. Figures 13 through 16 show the first recalibration of the grinder. i 20 [Embodiment] A grinder 1 is schematically illustrated in Fig. 1 and has a machine frame 2 which supports a grinding head 3 or a grinding spindle bracket and a workpiece carrier. The polishing head 3 is mounted in a respective sled type configuration that is movable in both directions Y, Z. In order to adjust the grinding head in these two directions, two corresponding drive units are used, which are connected via a 丫 control line -10- 1339147 5 spear root Z 4 'wire 6 to a control unit 7' A conductor can also be understood as a variety of information channels, for example a Ϊ = flow row, by means of which control commands can be transmitted to the respective drive penetrations = the position signal of the drive is returned to the control device 7. The workpiece carrier 4 is also mounted on a sled 2 so that it can be adjusted in the X direction. The = machine wood system can also be "advocate, set 7 to control ^ 1 dry combat equipment 4 around a mu mu

可旋轉地裝設。該旋轉運動 I直軸、.泉A 用,它通仍# λ μ轉運動通過—個旋轉驅動裝置起作 :=一"控制導線9與控制裝 裝置7例如是一個且右一 ^ ^ ^ 腦,哕存儲壯罟一 干儲存裝置11的控制電 月包。玄存錯衣置可以存儲資料 隨時以備存取。 、卫由儲存瓜置n 15 所述研磨頭3具有一個加工主軸i2 研磨工具,例如砂輪,用於加工工件:力上可以附接 的旋轉軸線平行於丫方向 ^加卫主軸12 設置-個機器追蹤器14 °。二,在研磨頭3上還 一個測試工件ι6 #/ μ态、蹤态具有一個用於追蹤 似列a工件16的追蹤器部 件載具4上。所述洌_试工 心式工件固定在工 件載呈4上的玫f ^&牛丨6例如是一個固定裝配在工 忏U上的球體’而追蹤器 和/或追蹤球的追蹤鎖。所述工件 ”有追蹤板 個工件、如-個圓柱形毛枉的容;個用於一 一個研磨程序令製造一個鑽頭或並他1且,由该毛料在 因此對目前所述之研磨機1進行如下、的校準. -11 - 20 如圖2所示 ^ 軸12卜附技’、, 了進行初校準,在研磨頭3的加工主 截且」 個例如參考盤18幵》式的參考體,並在工件 來者、自,,=件谷納體17上附接—個參考追蹤器19。這個 是可= = = ί切換的測量追縱器。其追縱銷21 轉轉 移動的。如圖3所示,在側向偏 轉時该棟測銷圍繞一個樞軸D旋轉。 '考益18和芩考追蹤器19固定在研磨頭3和工 研磨頭述控制裝置7以—個校準操作方式使 、 向上移動到工件載具4的高度,並且該控 15 ^置使工件載具4在X方向上朝向研磨頭3驅動,以便 ^過茶考追縱器19追縱參考盤18,如圖2所示。為此目 2,VL所述工件載具4圍繞妹線A這樣補,使追縱銷 1沿者X方向延伸。當追蹤器到達其切換點時,停止工 件載具4的趨近運動。現在通過已知的和存制參考盤18 和參考追縱器19的尺寸資料計算通過义控制導線$得到 的工件載具4的位置資料。由參考追縱器19和來考般 的尺寸資料以及X—位置資料得到一個所期望的ς換 點,於該切換點所述參考追蹤器19將被致動。實際的切 換點通常與其偏離。儲存該行程差Αχ。 20 然後如圖3所示,經由A控制導線9發指令予分派於 A軸線的控制裝置,使參考追蹤器19通過其追蹤銷2丨平 行於Y方向延伸。然後再藉由經由又控制導線8對分派 於X方向的驅勤裝置的觸發來進行參考盤18在χ方向上 的追蹤。亦由這個測試決定一個值,其中由按照圖2 -12· 1339147 叽年。月,物正 試的結果比較能夠決定在參考追縱" 中追蹤銷21之旋轉軸線D的位置。 現在接著進行在圖4中所 中垂直於圖面的ζ鈾你*、ώ 便用在圖4 這樣追縱分❹ζ 财向。經由Ζ㈣導線6 廣之。缺接h叩 的驅動裝置,使參考追蹤器19響 #1值二5進行γ方向的測試。由此得到相應的 數值Δχ Ay。將它們進行儲存。 第行這些測試之後還總是在用於重新校準的 弟:步中進行—系列的研磨測試。在圖6至12至 =、:!:則試。按照圖6’—個對應於χ方向的第-研磨 22:丫方:由二件4夾緊的圓柱形毛这或其他本體 的砂輪Μ導;:在XJ =個由研磨頭3支承 守W現在在X方向上進行一個進入别机定 15 方向的短推送而後 2 本體22上藉由同-砂輪23進行第二 次研磨測試’其中該工件載具4圍繞Α崎 = 圍繞其縱軸線旋轉18〇。。現在直接在第一次研磨 的且在圖9中示出的棱面24旁邊產生一個第 -棱面25。在此按照現有的機器調整資料的目標在 深度]但纽-般不能在第—次測財直接得到, =在上❹考中獲得的修正值Λχ (按照圖2和圖^ :^是不精確的。圖8示出’對於按照圖6和圖7的 研磨測試所述砂輪23實際上如何在以不同的深度貫 牙本體22,因此在研磨深度幾乎沒有不同的時 面 -13- 20 1339147 %年ο月w日修(更)正替捷買 24 ’ 25已經具有明顯不同的大小。 現在由棱面24’25的尺寸差可以推斷出修正值Δχ的 一個必要的修正。在最簡單的情況下這一點可以由操作者 進行並通過輸入裝置輸入到控制裝置7。但是也可以僅測 量棱面24, 25的尺寸差,即,其在本體22圓周方向上的 長度差並將這個尺寸輸入到控制裝置7。在這種情況下所 述控制裝置7可以通過一個量修正來修正值Αχ,該量與 棱面24 ’ 25的尺寸差成比例。 在完成這個修正以後重複進行按照圖6和圖7的研磨 核對總和與其銜接的棱面24 ’ 25的測試以及修正值Δχ的 G正’直到所述棱面24 ’ 25大小相同。如果做到這一點, 可以考慮將研磨測試中所反復決定的並加至修正值Δχ的 附加修正值AxR作為參考追蹤器的修正值並據此用於其 餘的座標方向Y和Z。至少在參考追蹤器19在所有垂直 於其探測銷21的偏轉方向上這個修正值具有相同的切換 點位置。 在圖6至9中所示的研磨測試被用以於按照圖3至5 的參考追縱益19的追縱程序定標(referencing),而圖 至12示出一個研磨測試程序用以於對參考追蹤器19在其 按照圖2的追蹤過程中定標。仍然使用所述測試工件22 或者也可以使用其他的相應測試工件並且這一次在其端 面上研磨。為此該測試工件從正的或負的χ方向導向砂輪 23並分別研磨標定的相同深度。由按照圖丨2所產生的具 有不同棱面26,27的打磨斷面仍然可以推斷出一個χ誤 -14- H39147It is rotatably mounted. The rotary motion I is used for the straight axis, the spring A, and it is still # λ μ rotating motion through a rotating drive device: = one " control wire 9 and the control device 7 is for example one and the right one ^ ^ ^ The brain, the sputum stores the control electric moon pack of the sturdy storage device 11. Xuan Cang wrong clothes can store data at any time for access. The grinding head 3 has a machining spindle i2 grinding tool, such as a grinding wheel, for machining the workpiece: the rotational axis that can be attached to the force is parallel to the 丫 direction ^ 卫 spindle 12 set - a machine Tracker 14 °. Second, a test piece ι6 #/μ state on the polishing head 3 has a tracker component carrier 4 for tracking the workpiece a. The 洌_trial core workpiece is fixed on the workpiece carrier 4, such as a ball fixed to the workpiece U and a tracking lock for the tracker and/or the tracking ball. The workpiece "has a track of a workpiece, such as a cylindrical burr"; one for a grinding process to make a drill bit or he and the wool is thus used in the grinding machine 1 Perform the following calibration. -11 - 20 As shown in Figure 2, the axis 12 is attached to the ', and the initial calibration is performed. The machining head of the polishing head 3 is cut, for example, the reference disk 18幵. Body, and attached to the workpiece comer, self, = guana body 17 - a reference tracker 19. This is a measurement tracker that can be switched = = = ί. Its tracking pin 21 turns and moves. As shown in Figure 3, the test pin rotates about a pivot D when laterally deflected. 'Coursie 18 and reference tracker 19 are fixed in the grinding head 3 and the grinding head control device 7 to move up to the height of the workpiece carrier 4 in a calibration operation mode, and the control is placed on the workpiece. The tool 4 is driven toward the polishing head 3 in the X direction so as to pass through the tea tester 19 to track the reference disk 18, as shown in FIG. For this purpose, the workpiece carrier 4 is replenished around the sister line A so that the tracking pin 1 extends in the X direction. When the tracker reaches its switching point, the approaching motion of the workpiece carrier 4 is stopped. The positional data of the workpiece carrier 4 obtained by the control wire $ is now calculated from the known and stored reference disk 18 and the size data of the reference tracker 19. A desired switching point is obtained from the reference tracker 19 and the sized data and the X-position data at which the reference tracker 19 will be actuated. The actual switching point usually deviates from it. Save the itinerary. Then, as shown in Fig. 3, the control device assigned to the A-axis is commanded via the A control wire 9, so that the reference tracker 19 is extended in the Y direction by its tracking pin 2丨. Tracking of the reference disk 18 in the x-direction is then performed by triggering the pair of drive devices assigned to the X direction via the control wire 8. This value is also determined by this test, which is based on the following figures in Figure 2 -12·1339147. In the month, the result of the test is relatively able to determine the position of the rotation axis D of the pin 21 in the reference tracking ". Now proceed to the uranium that is perpendicular to the plane in Figure 4, and you can use it in Figure 4 to trace the wealth. Via the Ζ (4) wire 6 wide. The drive device lacking h叩 causes the reference tracker 19 to ring the #1 value two 5 for the gamma direction test. The corresponding value Δχ Ay is thus obtained. Store them. After the first line of these tests, it is always done in the step of recalibration: the series of grinding tests. In Figures 6 to 12 to =, :! : Then try. According to Fig. 6'--the first grinding 22 corresponding to the χ direction: 丫 square: the cylindrical bristles clamped by two pieces 4 or the grinding wheel of the other body;: at XJ = supported by the grinding head 3 Now a short push in the X direction is entered into the direction of the other machine 15 and then the second body 22 is subjected to a second grinding test by the same-grinding wheel 23, wherein the workpiece carrier 4 is rotated around the longitudinal axis of the workpiece carrier 4 Hey. . A first facet 25 is now produced directly next to the facet 24 which has been ground for the first time and which is shown in FIG. In this case, the target of adjusting the data according to the existing machine is in the depth] but the New Zealand can not be directly obtained in the first measurement, = the correction value obtained in the upper examination Λχ (according to Figure 2 and Figure ^: ^ is not accurate Fig. 8 shows 'how the grinding wheel 23 actually passes through the tooth body 22 at different depths for the grinding test according to Figs. 6 and 7, so that there is almost no difference in the grinding depth - 13 - 20 1339147 % Year ο月 w日修 (more) is just for the purchase of 24' 25 has a significantly different size. Now the difference in the size of the facet 24'25 can be inferred a necessary correction of the correction value Δχ. In the simplest case This can be done by the operator and input to the control device 7 via the input device. However, it is also possible to measure only the dimensional difference of the facets 24, 25, ie the difference in length in the circumferential direction of the body 22 and to input this size into Control device 7. In this case, the control device 7 can correct the value 通过 by a quantity correction, which is proportional to the size difference of the facet 24' 25. After repeating this correction, repeat the operation according to Fig. 6 and 7 grind checksum sum The test of the facet 24' 25 with which it is engaged and the G positive of the correction value Δχ are the same size until the facet 24'25. If this is done, it is considered to add the correction value repeatedly determined in the grinding test to the correction value. The additional correction value AxR of Δχ is used as the correction value of the reference tracker and is used accordingly for the remaining coordinate directions Y and Z. This correction value is identical at least in the deflection direction of the reference tracker 19 in all of its detection pins 21 perpendicular thereto. Switching point position. The grinding test shown in Figures 6 to 9 is used to referencing according to the tracking procedure of Figures 3 to 5, while Figure 12 shows a grinding test procedure. It is used to calibrate the reference tracker 19 during its tracking process according to Fig. 2. The test workpiece 22 is still used or other corresponding test workpieces can be used and this time it is ground on its end face. Guide the grinding wheel 23 from the positive or negative χ direction and grind the same depth respectively. The grinding section with different facets 26, 27 produced according to Fig. 2 can still infer a fallacy-14-H3 9147

差。這個誤差表示一個對於參考追蹤器1 9軸向的偏差 △XA。在迭代進行的研磨測試中獲得的棱面26, 27的參 數大小相同的時候完成決定數值ΔχΑ。 10 在由此實現的機器1和參考追蹤器19的定標之後必 須進行研磨機1的第一次再校準,其中係校準所述機器追 蹤器14。在圖13至16中示出這個過程。藉由以機器追蹤 器14或其追蹤器部件15追蹤測試工作16而實行所述再 校準,該追蹤器部件例如係設計為一個立方體。為此所述 測試工件16按照圖3和4兩次在X方向上探測,其中該 測試工件在兩次探測檢驗期間以90。圍繞Α軸旋轉。在緊 接著前面通過參考追蹤器19進行的初校準之後存儲現在 獲得的切換位置並作為給定值,於該切換位置所述觸摸追 蹤益14係響應。所述測試工件15相應地按照圖15在γ 15 方向上並按照圖16在Z方向上被追蹤,其中所獲得的切 換位置仍作為設定值儲存。 由此元王元成研磨機的校準。可以以現有修正值Ax、 △y、AxR、ΔχΑ為基礎納入操作。 如果在一定的時間過後需要再校準,例如因為研磨機 產生溫度變化,則重複進行按照目13纟16的再校準。如 果在這四個試件探測過程中產生與在初校準中存儲的 料的偏差’則㈣並再存儲這些與所存職值的偏差 為在研磨頭3和1件載具4在未來定位時的再校 所述再校準可以隨意地經常重複並且每—次都藉由 •15- 20 1339147 以機為追1 e 新校準。°。追縱方向追縱而實行。無需重 磨,機:::準可:再貫:準對於侵敍機和在組合的研 種㈣對磨床和/錢㈣器進 二=準考=和,1的再校準過程。在初校準過= m :考 參考追縱11對所述機器進行一次 榀川 >、中邊參考體固定在—個加工 10 上而參考追蹤器固定在工件η工二”工件載具 座標方向的第一次追縱過程接二磨測二:所: 並使其不純ί 其是以追縱11允差為參考的偏差 使其不’此為切料之必要料 力:驗並因此完成對加工機器的 ㈡ 15 向觸摸機器追縱器和-個測試工件並;::; 工。 再校準提供測量值,其係二 ===:的 由所述偏差決定以對工件進行附=Γ 修正值 20 【主要元件符號說明】 10研磨機 11機器機架 12研磨頭 13工件載具 14 Υ控制導線 ' 16 - f339147 「「—- _ 谷许9月冲修(東3正替換頁 15 Z控制導線 16 控制裝置 17 X控制導線 18 A控制導線 11 儲存裝置 12 加工主轴 14 機器追蹤器 15 追蹤器部件 16 測試工件 10 17 容納部件 18 參考盤 19 參考追蹤器 21 追蹤銷 22 本體 15difference. This error represents a deviation ΔXA from the axial direction of the reference tracker 19. The decision value ΔχΑ is completed when the parameters of the facets 26, 27 obtained in the iterative grinding test are the same. 10 The first recalibration of the grinder 1 must be performed after the calibration of the machine 1 and the reference tracker 19 thus achieved, wherein the machine tracker 14 is calibrated. This process is illustrated in Figures 13-16. The recalibration is carried out by tracking the test work 16 with the machine tracker 14 or its tracker component 15, which is for example designed as a cube. To this end, the test workpiece 16 is probed twice in the X direction according to Figs. 3 and 4, wherein the test workpiece is at 90 during two probe inspections. Rotate around the x-axis. The now-obtained switching position is stored immediately after the initial calibration by the reference tracker 19 and is used as a given value at which the touch-tracking benefit 14 is a response. The test workpiece 15 is accordingly tracked in the γ 15 direction according to Fig. 15 and in the Z direction according to Fig. 16, wherein the obtained switching position is still stored as a set value. This is the calibration of Yuan Wang Yuancheng grinder. The operation can be incorporated on the basis of the existing correction values Ax, Δy, AxR, ΔχΑ. If recalibration is required after a certain period of time, for example because the grinder produces a temperature change, repeat the recalibration according to item 13纟16. If the deviation from the material stored in the initial calibration is generated during the detection of the four specimens, then (4) and the deviation from the stored value is stored for the future positioning of the grinding head 3 and the one-piece carrier 4 The recalibration described in the recalibration can be repeated frequently and arbitrarily every time and again by the •15-20 1339147 machine. °. Follow the direction of tracking and practice. No need to re-grind, machine::: quasi-could: re-compliance: quasi-calibration process for invaders and in combination research (four) on grinder and / money (four) device two = quasi-test = and 1,. In the initial calibration = m: test reference tracking 11 to the machine a 榀chuan>, the middle reference body is fixed on a processing 10 and the reference tracker is fixed in the workpiece η 2" workpiece carrier coordinate direction The first tracking process is followed by two grinding tests:: and make it impure. It is based on the deviation of the tracking tolerance of 11 to make it not necessary. This is the necessary material for cutting: (2) 15-way touch machine chasing device and - test piece and;::; work. Recalibration provides the measured value, which is determined by the deviation to be attached to the workpiece = Γ correction Value 20 [Description of main component symbols] 10 Grinding machine 11 Machine frame 12 Grinding head 13 Workpiece carrier 14 Υ Control wire ' 16 - f339147 『 "-- _ Gu Xu September repair (East 3 positive replacement page 15 Z control Wire 16 Control device 17 X Control wire 18 A Control wire 11 Storage device 12 Machining spindle 14 Machine tracker 15 Tracker component 16 Test workpiece 10 17 Housing part 18 Reference disk 19 Reference tracker 21 Tracking pin 22 Body 15

23 砂輪23 grinding wheel

24 棱面 25 棱面 26 棱面 27 棱面 2024 facets 25 facets 26 facets 27 facets 20

Claims (1)

« x Appln. No. 93141552 後刻線$申婧專利範团中文本-附件(二) Amended Cl a ί mg in Chinese - Enel. (Π) J民θ 99 牟 l(TjT5 曰送i>~ (Submitted on Oct, 5, 2010) R cfj年e月亡 -------_ 申請專利範固: 1. *種用於對一研磨機(1)、~侵蝕機或一組合的研磨— ^敍機進仃校準和再校準之方法該㈣具有用於安裝 研磨工具(23)或一侵蝕工具的一加工主軸(12)和連接 =一加工主軸托架(3)的一機器追蹤器〇4),以及用於具 工件容納部件(17)之-工件载具(4),其中所述加工 。口由托架(3)和工件載具⑷藉由一控制裝置在一控制 的監控下可以相互觀,其中所述控制單元⑺ '、有-記憶體單元⑻以儲存校準值,並且在加工主軸 ^架^)上並在工件載具⑷上固定—機器追縱器(14)和 測„式工件(16),本方法具有一第—步驟,在其中對加 :主軸(η)配備—參考體(18)㈣卫件容納部件(⑺配 備:參考追縱器⑽’並且在該步驟中通過相應地調整 调:裝置’對參考體⑽進行多次物,並儲存得到的 測置值;本方法具有一第二步驟,在其中對加工主軸02 酉己備-研磨工具(寧對工件容納部件(寧備一本體 (22)並在該步驟中於研磨測試中對本體㈣由不同的方 ==打磨;本方法具有一第三步驟,在其中由在 卜驟中產生的打磨斷面(24,25,%,寧差異所 ::值係在第—步驟期間應用於所儲存的測 ^ '該修正值大於—個容許值時,將該修正值 通知控制早元⑼’以便修与㈣校準值,該方法並 :m驟情況下 ;本方 在具有一第四步驟,在其中;ξδ 過機器追蹤器(14)追蹤測 2 式工件(16)並將探測結果調整至在第一步驟至第三步 驟中決定的測量值。 申%專利範圍第1項所述的方法,其中在第四步驟中 進行調整期間,決定對現存機器座標(^⑷之修正 值為在第一步驟至第三步驟中決定的測量值,並且在以 後的部件加工時考慮該修正值。 .如申凊專利範圍第1項所述的方法,其中不時地重複第 四步驟,以便實現測量值之調整。 4·如申凊專利範圍第1項所述的方法,其中使用一參考盤 作為參考體(18)。 5. 如申請專利範圍第1項所述的方法,其中使用一切換追 縱器作為參考追蹤器(19)。 6. 如申請專利範圍第1項所述的方法,其中分別從所有的 座標方向(χ,γ,ζ)各一次地追蹤所述參考體(19),並從所 選擇的座標方向(X)以不同的追蹤器方向兩次地追蹤朱 考體。 ^ 7·如申請專利範圍第1項所述的方法,其中在第二步驟中 輕微打磨所述本體(22)以從該座標的相反方向^別檢 驗一座標的精度。 W 8. 如申請專利範圍帛7項所述的方法,其中在兩個相鄰的 部位(24,2S ’ 26,27)輕微打磨所述本體(22)。 9. 如申請專利範圍第8項所述的方法,其中將在第三步驟 中推測的修正值係由所述相鄰部位(24,25,26,27)的 尺寸差決定。 ’ 的 1339147 I说年9月,修(裏)正替換页丨 七、指定代表圖: (一) 本案指定代表圖為:第(1 )圖。 (二) 本代表圖之元件符號簡單說明: 1 研磨機 2 機器機架 3 研磨頭 4 工件载具 5 Y控制導線 6 Z控制導線 7 控制裝置 8 X控制導線 9 A控制導線 11 儲存裝置 12 加工主軸 14 機器追蹤器 15 追蹤器部件 16 測試工件 17 容納部件 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:« x Appln. No. 93141552 After the engraved line $申婧 patent corps Chinese text - Annex (II) Amended Cl a ί mg in Chinese - Enel. (Π) J民θ 99 牟l (TjT5 i送i>~ (Submitted On Oct, 5, 2010) R cfj year e month death -------_ Patent application: 1. * Kind of grinding for a grinder (1), ~ erosion machine or a combination - ^ Method for calibrating and recalibrating the machine (4) having a machining spindle (12) for mounting the grinding tool (23) or an erosion tool and a machine tracker for connecting = a machining spindle bracket (3) 〇 4 And a workpiece carrier (4) for the workpiece receiving part (17), wherein the processing. The port (3) and the workpiece carrier (4) can be viewed by a control device under a controlled control, wherein the control unit (7)', the memory unit (8) stores the calibration value, and the machining spindle ^架^) and fixed on the workpiece carrier (4) - the machine tracer (14) and the test type workpiece (16), the method has a first step, in which the addition: the spindle (η) is equipped with a reference Body (18) (4) Guard accommodating member ((7) equipped with: reference finder (10)' and in this step by adjusting the modulo: device 'to the reference body (10) multiple times, and storing the obtained measured value; The method has a second step in which the machining spindle 02 is equipped with a grinding tool (rather than the workpiece receiving part (for a body (22) and in this step the grinding test is performed on the body (four) by a different side = = sanding; the method has a third step in which the sanding section produced by the step (24, 25, %, Ning difference:: value is applied to the stored test during the first step) When the correction value is greater than the allowable value, the correction value is notified to control the early element (9)' The repair and (4) calibration values, the method and: m case; the party has a fourth step, in which; ξ δ through the machine tracker (14) to track the 2 type workpiece (16) and adjust the detection result to The measured value determined in the first to third steps. The method of claim 1 wherein the adjustment of the existing machine coordinates (^(4) is performed during the adjustment in the fourth step. The measured value determined in the first step to the third step, and the correction value is taken into consideration in the subsequent processing of the component. The method of claim 1, wherein the fourth step is repeated from time to time to achieve the measurement. The method of claim 1, wherein a reference disk is used as the reference body (18). 5. The method of claim 1, wherein a switch is used. The terminator is used as a reference tracker (19). 6. The method of claim 1, wherein the reference body (19) is tracked once from all coordinate directions (χ, γ, ζ), respectively. And from the selected coordinate side (X) Tracking the test body twice in different tracker directions. The method of claim 1, wherein the body (22) is slightly sanded in the second step from the coordinate In the opposite direction, do not check the accuracy of a target. W 8. The method of claim 7, wherein the body is slightly polished at two adjacent locations (24, 2S '26, 27) (22 9. The method of claim 8, wherein the correction value estimated in the third step is determined by a difference in size of the adjacent portions (24, 25, 26, 27). 1339147 I said that in September, Xiu (Li) was replacing page 、7, designated representative map: (1) The representative representative of the case is: (1). (2) Brief description of the symbol of the representative figure: 1 Grinding machine 2 Machine frame 3 Grinding head 4 Workpiece carrier 5 Y control wire 6 Z Control wire 7 Control device 8 X Control wire 9 A Control wire 11 Storage device 12 Processing Spindle 14 Machine Tracker 15 Tracker Unit 16 Test Workpiece 17 Containment Parts 8. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention:
TW93141552A 2004-12-31 2004-12-31 Calibration method of an erosion machine and a grinding machine TWI339147B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93141552A TWI339147B (en) 2004-12-31 2004-12-31 Calibration method of an erosion machine and a grinding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93141552A TWI339147B (en) 2004-12-31 2004-12-31 Calibration method of an erosion machine and a grinding machine

Publications (1)

Publication Number Publication Date
TWI339147B true TWI339147B (en) 2011-03-21

Family

ID=45074772

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93141552A TWI339147B (en) 2004-12-31 2004-12-31 Calibration method of an erosion machine and a grinding machine

Country Status (1)

Country Link
TW (1) TWI339147B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107850885A (en) * 2015-07-09 2018-03-27 西门子公司 For nonproductive time, the track of motion determines method
CN110582375A (en) * 2017-05-11 2019-12-17 沃尔特机器制造有限责任公司 Grinding and/or etching machine, and method for testing and/or checking machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107850885A (en) * 2015-07-09 2018-03-27 西门子公司 For nonproductive time, the track of motion determines method
US10513034B2 (en) 2015-07-09 2019-12-24 Siemens Aktiengesellschaft Trajectory determination method for non-productive movements
CN107850885B (en) * 2015-07-09 2020-11-10 西门子公司 Trajectory determination method for non-productive time motion
CN110582375A (en) * 2017-05-11 2019-12-17 沃尔特机器制造有限责任公司 Grinding and/or etching machine, and method for testing and/or checking machine

Similar Documents

Publication Publication Date Title
JP7206037B2 (en) kinematic calibration
CN100506480C (en) Grinding machine with a concentricity correction system
JP6419575B2 (en) Machine tool and workpiece measurement method
JP4275632B2 (en) Calibration method for parallel mechanism mechanism, calibration verification method, calibration verification program, data collection method, and correction data collection method for spatial position correction
KR0162906B1 (en) Multi-functional measurement system
US20130173043A1 (en) Robotic machining apparatus method and system for turbine buckets
JPH0525626B2 (en)
US20110040523A1 (en) Method and program for identifying errors
CN102483621A (en) Machine tool calibration method
US10184774B2 (en) Correcting apparatus and correcting method
Huang et al. Identification of geometric errors of rotary axes on 5-axis machine tools by on-machine measurement
CN1807020B (en) Calibration method and corrosion and milling machine used thereof
JP5957872B2 (en) Processing method and processing apparatus
CN115026706B (en) Aeroengine blade polishing method and system
TWI339147B (en) Calibration method of an erosion machine and a grinding machine
KR20200023746A (en) Complextype 5-axis machining and measuring apparatus
US20040128849A1 (en) Spindle squaring device and method of operation
Lee et al. Optimal on-machine measurement of position-independent geometric errors for rotary axes in five-axis machines with a universal head
US20130035781A1 (en) Control of a machining operation
WO2012053356A1 (en) Centering method and device
WO2020047413A1 (en) Milling machine calibration method, and article of manufacture
ES2820649T3 (en) Method for operating a CNC machine
US7103441B2 (en) Calibration procedures and such using an erosion and grinding machine
KR101121955B1 (en) Calibration method of an erosion machine and a grinding machine
CN108214099B (en) Method and system for measuring position-related geometric errors of numerical control machine turntable