TWI338921B - Improved method for etching photolithographic substrates - Google Patents
Improved method for etching photolithographic substrates Download PDFInfo
- Publication number
- TWI338921B TWI338921B TW095145608A TW95145608A TWI338921B TW I338921 B TWI338921 B TW I338921B TW 095145608 A TW095145608 A TW 095145608A TW 95145608 A TW95145608 A TW 95145608A TW I338921 B TWI338921 B TW I338921B
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- etching
- photo
- gas
- vacuum chamber
- Prior art date
Links
Landscapes
- Drying Of Semiconductors (AREA)
- ing And Chemical Polishing (AREA)
Description
1338921 九、發明說明: 【發明所屬之技術領域】 本發明大致有關半導體處理,且尤其有關一種蝕刻光 蝕印基板的改良方法。 【先前技術】 為了要改善裝置性能,半導體電路密度正持續地增加。 電路密度之增加係由降低特徵大小所實現。目前的技術以1338921 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to semiconductor processing, and more particularly to an improved method of etching a etched substrate. [Prior Art] In order to improve device performance, the density of semiconductor circuits is continuously increasing. The increase in circuit density is achieved by reducing the feature size. Current technology
〇·15微米和〇.13微米之特徵大小為目標,而期盼於不久的 將來有進一步降低。 在裝置内之特徵的精準尺寸係由製造方法中的所有步 驟所控制。垂直尺寸係由摻雜法和成層法所控制另一方 面’水平尺寸則主要由光蝕印法所決定。才冓成電路圖案的 線路和空間的水平寬度常稱為關鍵尺寸(CD)。The feature size of 〇·15 μm and 〇.13 μm is targeted, and it is expected to be further reduced in the near future. The precise dimensions of the features within the device are controlled by all steps in the manufacturing process. The vertical dimension is controlled by the doping method and the layering method. The horizontal dimension is mainly determined by photolithography. The horizontal width of the lines and spaces that are formed into a circuit pattern is often referred to as the critical dimension (CD).
光蝕印術係用來形成精確的電路圖案於基板表面上之 技術。該等圖案將藉由隨後的蝕刻或沈積法而轉移至晶圓 結構。理想地,該純印步料在所料的位置(所謂對齊 或校準)產生精準地匹配於設計尺寸(正確CD)的圖案。 光姓印術係多重步驟之方法.在該方法中,首先形成 所企望之圖案於光罩上;然冑,透過光罩的操作來轉移圖 案至基板’其中係透過圖案化之光罩來透射輻身"例如紫 外光(UV))而使基板上的輻射敏感覆層曝光。當曝光於該 輻射時’此覆層(光阻)會經歷化學改變,而使所曝光的區 域更會或更不會溶解於隨後之顯影化學物。光㈣技術係 熟知於本項技藝中,其總論可獲得於Thompson等人編輯 1338921 之 Introduction to Microlithography”的本文中。 因此光罩扮演用以產生電路圖案於許多基板上之主導 者,所以在光罩之製造期間所引入的任何缺陷將複製於以 。玄光罩成像的所有晶圓上。因此,針對產生高產能之製造 方法,製造出可確實地代表所設計圖案及尺寸之高品質光 罩係關鍵性的。 在本項技藝中存在有兩種熟知之主要類型的光罩:吸 收光罩及相移光罩。典型地,吸收光罩係由披覆有不透明 膜(例如Cr)之光學透明基板(例如熔凝石英、CaF^等)所構 成,該不透明膜可包含單層或多重材料(例如抗反射層(AR 鉻)於下方鉻層之頂部上)。在二元鉻光罩的情況中,一般 所使用之不透明膜包含但未受限於(以商標名所列):AR8、 NTAR7、NTAR5、TF11及TF21。在光罩之製造期間,該 不透明膜係沈積在透明基板上;接著,光阻層沈積於不透 明層的頂部上且予以圖案化(例如曝光於雷射或電子束)。 一旦曝光,則接著顯影該光阻層以暴露即將被去除之下方 不透明膜的區域’而隨後的蝕刻操作可去除所暴露之膜以 形成吸收光罩。 在本項技藝中存在有兩種熟知之副種類的相移光罩: 父k式光罩和嵌入衣減式光罩。典型地,交變式相移光罩 係由彼覆有不透明膜(例如Cr及抗反射Cr)之光學透明 基板(例如炼凝石英、Cab等)所構成。在該光罩之製造 期間’不透明膜係沈積在透明基板上;接著,光阻層沈積 於不透明層的頂部i ’且利用雷射或電子束來圖案化。一 6 1338921 旦曝光,則接著顯影該光阻層以暴露即將被去除之下方不 透明膜的區域。蝕刻過程去除所暴露之不透明膜而暴露出 下方基板。使用第二個過程來蝕刻精確的深度進入該下方 基板内。選用地,如本項技藝中所熟知的是,在該第二蝕 刻過程之前,可使該基板接受第二光阻覆層及顯影過程。 嵌入衰減式相移光罩(EAPSM)典细地係由披覆有可衰 減在所企望波長處所透射之光線而相移180度之膜或膜堆 疊的光學透明基板(例如熔凝石英、CaF2等)所構成,然後 沈積不透明之膜或膜堆疊(例如Cr及抗反射Cr)於相移材 料上。接著,先阻層沈積於該不透明層的頂部上,且予以 圖案化(例如使用雷射或電子束)^ 一旦曝光,則接著顯影 該光阻層以暴露即將被去除之下方不透明膜;然後,使用 姓刻過程來去除所暴露之不透明膜,而暴露出下方的相移/ 衰減膜或膜堆疊β在該不透明膜之蝕刻後,使用第二蝕刻 過程來姓刻相移層而停止於下方基板上β選擇性地,蝕刻 阻斷層可存在於相移層與基板之間,在該情況中,該第二 姓刻過程將選擇性地停止於蝕刻阻斷層。 理想地’蝕刻過程將具有同時相對於最頂部蝕刻阻體 遮罩(例如光阻、電子束阻體等)如下方材料(基板或蝕刻阻 斷物)之高蝕刻選擇性,而產生具有平滑的直立側壁以精確 地複製原始遮罩(例如光阻)圖案之CD的特徵。濕蝕刻法(例 如用於AR Cr/Cr蝕刻之氣酸和硝酸銨鈽的水溶液)顯示對 於蝕刻遮罩及下方基板具有良好的蝕刻選擇性但係均向 性的,且會造成遮罩嚴重的側蝕,以及產生具有斜度的特 1338921 徵輪廓。該側触及具有斜度的特徵輪廓會改變触刻之特徵 CD,而在CD中之所不企望的改變及/或具有斜度的特徵輪 廓將使所完成之光罩的光學性能劣化。 乾蝕刻(電漿)法係相對於濕蝕刻法之熟知的另一選 擇。電漿蝕刻法可提供更勝於濕蝕刻法之異向性的蝕刻結 果。乾触刻法一般係使用於所有三種遮罩類型之製造。在 二元Cr光罩的情況中,典型地使用含氣氣體及含氧氣體 的混合物,而包含惰性物及鈍化物之額外的氣趙成分則已 ®被用來改善製程性能。 早期在光罩上之乾蝕刻作業利用低密度(約1 09離子/立 方公分)電漿於電谷柄合式(二極趙)反應器中,而最先進的 乾蝕刻光罩法則使用高密度(101。至10)2離子/立方公分)組 態(例如感應耦合式電漿(ICP),變壓器耦合式電激(TCp), 電子迴旋加速器共振(ECR)等)。 針對用於二元Cr光罩之乾餘刻法的例子,該方法典型 Φ 地包含三個主要步驟。第一步驟利用含氣電漿(例如c丨2、 HC1、CC14、BCI3)來去除抗反射覆層(例如氧化鉻、氮化鉻、 - 氮氧化絡)。選用地,該AR Cr|i刻步驟可包含含氧氣體(例 ,如〇2、CO、c〇2、n2〇、n〇2、s〇2等)以及惰性氣體(例如 He、Ar、Ne、Xe、Kr等)。該第-步驟可以以時間為基礎 作運作,或透過終點技術(例如雷射反射攝譜術、發光攝譜 術)的使用而終止於AR Cr/ Cr界面。 _ 第二步驟蝕刻Cr主體材料而停止於下方膜或基板上 用於第二步驟之處理氣體混合物典型地包含氣源和氧源。 8 1338921 '、第一步驟相同的是,該處理氣體混合物亦 者第第—步驟與第二步驟可具有相同的處理::Γ l用地,第二步驟可透過終點技術之使用來終止。条件。 第三步驟係,過姓刻步驟’以韻可完全 G負載區。該㈣刻步驟亦可用來改善在低心=的 所遭遇之具有斜度的輪廓。雖然更長的過钱刻時間可:: =全清除高密度Cr區及確保改善(更直立的)特徵^確呆Photolithography is a technique used to form precise circuit patterns on the surface of a substrate. These patterns will be transferred to the wafer structure by subsequent etching or deposition. Ideally, the print step produces a pattern that precisely matches the design size (correct CD) at the desired location (so-called alignment or calibration). The method of multiple steps in the name of the printing process. In this method, the desired pattern is first formed on the reticle; then, the operation of the reticle is used to transfer the pattern to the substrate, which is transmitted through the patterned reticle. The radiation body, such as ultraviolet light (UV), exposes the radiation-sensitive coating on the substrate. When exposed to the radiation, the coating (photoresist) undergoes a chemical change that renders the exposed regions more or less soluble in subsequent developing chemicals. The Department of Light (4) technology is well known in the art, and its general knowledge can be found in the article "Introduction to Microlithography" by Thompson et al., edited 1339821. Thus, the reticle plays a dominant role in generating circuit patterns on many substrates, so Any defects introduced during the manufacture of the reticle will be replicated on all wafers imaged by the reticle. Therefore, for high-capacity manufacturing methods, high-quality reticle that reliably represents the design pattern and size is produced. There are two main types of masks that are well known in the art: absorbing reticle and phase shifting reticle. Typically, the absorbing reticle is optically coated with an opaque film such as Cr. The transparent substrate (for example, fused quartz, CaF^, etc.) may comprise a single layer or multiple materials (for example, an anti-reflective layer (AR chrome) on top of the lower chrome layer). In the binary chrome mask In the case, generally used opaque films include, but are not limited to, (listed under the trade name): AR8, NTAR7, NTAR5, TF11 and TF21. This opacity is produced during the manufacture of the reticle. The film is deposited on a transparent substrate; then, a photoresist layer is deposited on top of the opaque layer and patterned (eg, exposed to a laser or electron beam). Once exposed, the photoresist layer is subsequently developed to expose the layer to be removed. Subsequent opaque film regions' and subsequent etching operations remove the exposed film to form an absorbing reticle. There are two well-known subtypes of phase shifting reticle in the art: parent k-type reticle and embedding A light-reducing reticle. Typically, an alternating phase-shifting reticle is constructed of an optically transparent substrate (eg, condensed quartz, Cab, etc.) coated with an opaque film (eg, Cr and anti-reflective Cr). During the manufacture of the cover, an opaque film is deposited on the transparent substrate; then, a photoresist layer is deposited on top of the opaque layer and patterned using a laser or electron beam. After exposure to a 6 1338921, the photoresist is subsequently developed. The layer exposes the area of the underlying opaque film that is to be removed. The etching process removes the exposed opaque film to expose the underlying substrate. A second process is used to etch the precise depth into the underlying substrate. Alternatively, as is well known in the art, the substrate can be subjected to a second photoresist coating and development process prior to the second etching process. Embedded Attenuation Phase Shift Mask (EAPSM) The ground system consists of an optically transparent substrate (eg, fused quartz, CaF2, etc.) coated with a film or film stack that is attenuated by 180° degrees of light transmitted at the wavelength of interest, and then an opaque film or film stack is deposited. (eg, Cr and anti-reflective Cr) on the phase shifting material. Next, a resist layer is deposited on top of the opaque layer and patterned (eg, using a laser or electron beam). Once exposed, the light is subsequently developed. a resist layer to expose the underlying opaque film to be removed; then, using a surname process to remove the exposed opaque film, and exposing the underlying phase shift/attenuation film or film stack β after etching the opaque film, using The second etching process is performed by sequentially shifting the layer and stopping on the lower substrate. Selectively, the etch stop layer may exist between the phase shift layer and the substrate. In this case, the second surrogate process will selectively stop Etching blocking layer. Ideally, the etching process will have a high etch selectivity with respect to the topmost etch stop mask (eg, photoresist, electron beam stop, etc.) as follows (substrate or etch blocker), resulting in a smooth The upright sidewalls feature to accurately replicate the CD of the original mask (e.g., photoresist) pattern. Wet etching methods (such as aqueous solutions of argon acid and ammonium nitrate lanthanum for AR Cr/Cr etching) show good etch selectivity to the etch mask and the underlying substrate, but are uniform, and cause serious masking. Lateral erosion, as well as the creation of a special 1338821 sign with a slope. Touching the characteristic profile with the slope on the side changes the characteristic CD of the etch, and undesired changes in the CD and/or characteristic contours having a slope will degrade the optical performance of the finished reticle. The dry etch (plasma) process is another well known alternative to wet etch. The plasma etching method provides an etching result that is superior to the anisotropic method of the wet etching method. Dry lithography is generally used in the manufacture of all three mask types. In the case of a binary Cr mask, a mixture of a gas-containing gas and an oxygen-containing gas is typically used, and an additional gas-containing component containing an inert substance and a passivation is used to improve process performance. Early dry etching operations on reticles used low-density (about 1 09 ions/cm 3 ) plasma in an electric stalk-type (two-pole Zhao) reactor, while the most advanced dry-etch reticle method used high density ( 101. to 10) 2 ions / cubic centimeter) configuration (such as inductively coupled plasma (ICP), transformer coupled electric shock (TCp), electron cyclotron resonance (ECR), etc.). For an example of a dry remnant method for a binary Cr reticle, the method typically comprises three main steps Φ. The first step utilizes a gas-containing plasma (eg, c丨2, HCl, CC14, BCI3) to remove the anti-reflective coating (eg, chromium oxide, chromium nitride, - nitrogen oxide). Optionally, the AR Cr|i step may include an oxygen-containing gas (eg, 〇2, CO, c〇2, n2〇, n〇2, s〇2, etc.) and an inert gas (eg, He, Ar, Ne) , Xe, Kr, etc.). This first step can be performed on a time basis or terminated by the end point technique (e.g., laser reflectance spectroscopy, luminescence spectroscopy) at the AR Cr/Cr interface. The second step etches the Cr host material to stop on the underlying film or substrate. The process gas mixture used in the second step typically comprises a source of gas and a source of oxygen. 8 1338921 ', the first step is the same, the process gas mixture can also have the same treatment as the first step and the second step: Γ l land, the second step can be terminated by the use of the end point technology. condition. The third step is to use the surname step to make the rhyme complete G load zone. This (four) engraving step can also be used to improve the profile with a slope that is encountered at low heart =. Although the longer time for money can be:: = Full clearance of high-density Cr areas and ensuring improved (more upright) characteristics
=的過敍刻時間亦將造成更大的側向钱刻及更高的^ 偏差。該㈣刻步驟的參數可相同於第—及第二步驟 :任-(或兩者)。典型地,該過姓刻步驟的時間係以前二 v驟之時間的比率為基礎。 選用地’在蝕刻AR鉻層之前可執行除渣或修整步驟, 以改善姓刻遮罩(例如光阻)的輪廓。 雖然電漿敍刻法會比濕钮刻法更為異向性,但電焚钱 刻法仍可在圖案化的材料中引起尺寸改變。在㈣過程期 間所引起之CD上的增減程度係稱為“CD偏差,,。於蝕刻 過程之CD偏差可藉由取得蝕刻過程後之最後特徵cd及 減去蝕刻過程前之最初特徵CD來加以計算。所企望的是, 使導致CD偏差之側向蝕刻的程度能夠最小化。 在製程之CD偏差係非零的情況中,必須考慮CD偏 差均勻性。該CD偏差均勻性係在平均cD偏差值附近之 值的分佈。該CD偏差均勻性可具有系統的和隨機的分量。 在光罩敍刻令已觀察到之—系統的非均勻性乃對應於局部 的蝕刻負載效應(例如微負载或負載效應)。 9 1338921 一般稱為“負載相依性,,之現象係已知於乾蝕刻法的 技藝中。負載相依性是指即將蝕刻之所暴露材料的面積與 材料敍刻速率間的關係。例如在二元Cr光罩乾敍刻法中, 垂直的Cr姓刻速率會在具有更高cr密度的區域中變低。 假定側向蝕刻速率亦係負載相依的,則可合理地期望的 疋更向的Cr岔度將具有更低的側向触刻速率,且因而 具有更低的CD偏差。然而,實際上所觀察的却是相反的, 亦即,當相較於更低的Cr密度(更低的負載)區時,更高的The over-synchronization time of = will also result in greater lateral money and higher deviations. The parameters of the (four) step can be the same as the first and second steps: any - (or both). Typically, the time of the surname step is based on the ratio of the time of the previous step. The slag removal or trimming step can be performed prior to etching the AR chrome layer to improve the profile of the surname mask (e.g., photoresist). Although the plasma lithography method is more anisotropic than the wet button scribe method, the electric incineration method can still cause dimensional changes in the patterned material. The degree of increase or decrease on the CD caused during the process of (4) is called "CD deviation." The CD deviation during the etching process can be obtained by taking the final feature cd after the etching process and subtracting the original feature CD before the etching process. It is expected that the degree of lateral etching that causes CD bias can be minimized. In the case where the CD deviation of the process is non-zero, the CD deviation uniformity must be considered. The CD deviation uniformity is at the average cD. The distribution of values around the deviation value. The CD deviation uniformity can have both systematic and random components. It has been observed in reticle characterization that the non-uniformity of the system corresponds to local etch loading effects (eg microloading) Or load effect) 9 1338921 Generally referred to as "load dependence," the phenomenon is known in the art of dry etching. Load dependence refers to the relationship between the area of the material to be etched and the material characterization rate. For example, in the binary Cr mask dry scribe method, the vertical Cr surname rate will become lower in regions with higher cr density. Assuming that the lateral etch rate is also load dependent, it is reasonably desirable that the 岔 more Cr 将 will have a lower lateral etch rate and thus a lower CD bias. However, what is actually observed is the opposite, that is, higher when compared to the lower Cr density (lower load) zone.
Cr密度特徵(具有更低的垂直蝕刻速率)典型上具有更高的 CD偏差。 * :,’、了要评估製程之CD性能,需就兩個因素來考慮:Cr 臈隹疊之側向钱刻速率,及所触刻之特徵的最後輪廊。在 圖案含有不同的Cr負載區域之Cr姓刻情況中,在更高& 密度(高光阻密度或淨空)區域令之特徵典型地敍刻 低的姓刻速率(如所如堃 θ ^ 輕日… 是當與低負載區域相比 較時則顯示更大的CD偏差(非期望地)。 因此,有必要提供_錄 特微私“㈣供種改良的方法’以製造具有改良 特徵輪廓及CD性能之光罩。 在先前技藝中並未提供伴隨本發明而至的優點。 【發明内容】 因此,本發明之目的在於提供一種 服先前技藝褒置之不 良方法,其可克 藝之增進。 其係主要貝獻於半導體處理技 本發明之另一目的在於提供一 用以處理光蝕印基板 10 1338921 之方法,包含:裝載該光蝕印基板進入—真空室之内;冷 却該光蝕印基板至一目標溫度;引入至少一處理氣體進入 真空室之内;在該冷却步驟之後,自該處理氣體點燃一電 漿;使用該電漿來處理該光蝕印基板;以及自該真空室卸 載該光蝕印基板。 本發明之又一目的在於提供一種用以處理光蝕印基板 之方法,包含:裝載該光蝕印基板至一真空室内之一基板 支架上;透過一流體來控制該光蝕印基板之溫度;引入至 少一處理氣體進入該真空室之内;自該處理氣體點燃—電 聚;使用該電漿來處理該光蝕印基板;以及自該真空室卸 載該光姓印基板。 本發明之再一目的在於提供一種姓刻光姓印基板之方 法,包含:裝載該光蝕印基板至一真空室内之一基板支架 上;引入至少一處理氣體進入該真空室之内;自該處理氣 體點燃一第一電漿;針對一第一組之方法條件,使用該第 一電聚姓刻該光蝕印基板;冷却該光蝕印基板至一目標ρ 度;在該冷却步驟之後,自該處理氣體點燃一第二電焚; 針對一第二組之方法條件,使用該第二電漿來蝕刻該光蝕 印基板基板;以及自該真空室卸載該光蝕印基板。 本發明之仍一目的在於提供一種在電漿過程之期間以 尚熱質量來控制基板溫度的方法,包含:調整該基板之溫 度至一目標溫度;裝載該基板至一真空室内之一基板支: 上;引入至少一處理氣體進入該真空室之内;自該處理氣 體點燃一電聚;使用該電漿來處理該基板;以及自該真空 11 ^38921 室卸載該基板。 本發明之再—目的在於提供一種蝕刻光蝕印基板之方 法,包含:裝載該光蝕印基板至一真空室内之一基板支架 上;引入至少-處理氣體進人該真空室之内;自該處理氣 體點燃-電漿,’在一第一組之方法條件,制該電漿來蝕 刻在-第-目標溫度的該光蝕印基板;在—第二組之方法 條件’使用該電聚來轴刻在一第二目標溫度的該光触印基 板;以及自該真空室卸載該光蝕印基板。Cr density characteristics (having a lower vertical etch rate) typically have higher CD bias. * :, ', to evaluate the CD performance of the process, it is necessary to consider two factors: the lateral velocity of the Cr stack, and the last veranda of the characteristics of the touch. In the case of a Cr-like pattern in which the pattern contains different Cr-loading regions, the higher & density (high photoresist density or headroom) region typically characterizes a low surname rate (as 所θ^ light day) ... is a larger CD deviation (unexpectedly) when compared to a low load area. Therefore, it is necessary to provide a method for improving the characteristic profile and CD performance. The present invention does not provide the advantages associated with the present invention. Accordingly, it is an object of the present invention to provide a method of performing the prior art, which is an improvement of the art. A further object of the present invention is to provide a method for processing a photo-etching substrate 10 1338921 comprising: loading the photo-etching substrate into a vacuum chamber; and cooling the photo-etching substrate to a target temperature; introducing at least one process gas into the vacuum chamber; after the cooling step, igniting a plasma from the process gas; using the plasma to treat the photoetching substrate; And discharging the photo-etching substrate from the vacuum chamber. A further object of the present invention is to provide a method for processing a photo-etching substrate, comprising: loading the photo-etching substrate onto a substrate holder in a vacuum chamber; a fluid to control the temperature of the photo-etching substrate; introducing at least one processing gas into the vacuum chamber; igniting-electropolymerizing from the processing gas; using the plasma to treat the photo-etching substrate; and from the vacuum chamber Unloading the photo-printing substrate. A further object of the present invention is to provide a method for printing a substrate with a surname, comprising: loading the photo-etching substrate onto a substrate holder in a vacuum chamber; introducing at least one processing gas into the substrate Having ignited a first plasma from the process gas; for the first set of method conditions, using the first electrode to etch the substrate; cooling the etch substrate to a target ρ After the cooling step, igniting a second electrical combustion from the processing gas; using the second plasma to etch the lithographic substrate substrate for a second set of method conditions; The vacuum chamber unloads the photo-etching substrate. Still another object of the present invention is to provide a method for controlling substrate temperature by a thermal mass during a plasma process, comprising: adjusting a temperature of the substrate to a target temperature; loading the Substrate to a substrate support in a vacuum chamber: upper; introducing at least one process gas into the vacuum chamber; igniting an electropolymer from the process gas; using the plasma to treat the substrate; and from the vacuum 11 ^ 38921 The invention further provides a method for etching a photo-etching substrate, comprising: loading the photo-etching substrate onto a substrate holder in a vacuum chamber; introducing at least a processing gas into the vacuum chamber Internally; from the process gas igniting - plasma, 'in a first set of method conditions, the plasma is etched to etch the substrate at the -target temperature; in the second method of conditional use Discharging the photolithographic substrate at a second target temperature; and unloading the photolithographic substrate from the vacuum chamber.
上文已描繪本發明若干之相關目的,該等目的應予以 ,讀為僅描繪π意圖發明之若干更突出的特性和應用。許 多其他有益的結果可由應用所揭示之發明於不同的方式 中,或由修正本發明於所揭示之範疇内所獲得。因此,本 發明之其他目的及完全的瞭解’可藉由參考除了與附圖結 合所取得t由申料利㈣所卩$的本發明料外之本發 明的概述及較佳實施例的詳細說明來予以獲得。 為了要概述本發明之緣故,此發明包含一種使用電漿 系統來飯刻光姓印基板的改良方法。 本發明的特性在於提供一種用以處理於真空室内的基 支架上之例如二元Cr光罩或嵌入衰減式相移遮罩之光蝕 印基板的方法’該方法包含在真空室内使用電漿來處理例 如蝕刻光蝕印基板之前,先冷却該光蝕印基板至目標溫 度,例如小於大約攝氏負3〇度。該光蝕印基板之冷^ =生於處理該光姓印基板的真空室中,或發生於不必在真 空下的分離的室中。引入例如含氣氣體及含氧氣體之至少 12 1338921 一種處理氣體進入真空室。該含氣氣體可以相對於含氧氣 比大約15 t匕1之更大的比例來引入。在該光触印基 板來到目標溫度之後,自該處理氣體點燃電漿其中該光 餘印基板係使用該電漿來加以處理。此外,該光钱印基板 之處理可以以時間為基礎來調變,例如振幅調變或脈波調 變。一旦處ί里完成時,可將該光飯印基板自真空室卸載。 本發明之另一特性在於提供一種用以處理例如二元Cr 光罩或嵌入衰〉咸式相移遮罩之光餘印基㈣方法。該方法 包含在真空室内之光餘印基板之例如钱刻的處理期間,透 過在小於大約i托爾(Torr)的壓力之例如惰性氣體的流體 來控制光钱印基板之溫度。該流體溫度可為控制式,且該 =體可持續地穿過真空室而流動。此外,可溫度控制真空 室之至少一室表面,其中可定位該室表面距離該光敍印基 板的表面大約5公分。右马·畲办令 刀在°亥真空至内之用以支撐光蝕印基 板的基板支架可包含至少三點,用以做成與光姓印基板之 最小接觸。-旦該處理完成時,可將該光姓印基板自真空 室卸載。 本發明之又一特性在於提供一種在真空室内姓刻例如 -凡C4罩之純印基板的方法,該方法包含引入至少 :處理氣體進入該真空室内的步驟。自該處理氣體點燃第 -電漿’且接著’針對第一組之過程條件,使用該第一電 聚來触刻該絲印基板,該第一組之過程條件可設計來钱 刻光钱印基板之抗反射層。此外’在敍刻光钱印基板上之 卜殘留的&之前’可剝除該光的基板之光阻層。在A number of related objects of the present invention have been described above, and such objects are to be read as merely depicting a number of more prominent features and applications of the π intended invention. A number of other beneficial results can be obtained by applying the invention in a different manner, or by modifying the invention within the scope of the disclosure. Therefore, the other objects and the complete description of the present invention can be understood by referring to the detailed description of the present invention and the preferred embodiments of the present invention in addition to the invention obtained in conjunction with the accompanying drawings. Come and get it. In order to summarize the present invention, the invention includes an improved method of using a plasma system to etch a substrate. A feature of the present invention is to provide a method for processing a photolithographic substrate such as a binary Cr mask or an attenuated phase shift mask on a base support in a vacuum chamber. The method includes using plasma in a vacuum chamber. Prior to processing, for example, etching the etched substrate, the etched substrate is cooled to a target temperature, such as less than about minus 3 degrees Celsius. The etch of the etched substrate is generated in a vacuum chamber that processes the photo-printing substrate or in a separate chamber that does not have to be in a vacuum. Introducing at least 12 1338921, for example, a gas-containing gas and an oxygen-containing gas, into a vacuum chamber. The gas-containing gas can be introduced in a larger ratio than the oxygen-containing gas ratio of about 15 t匕1. After the photo-touch substrate reaches the target temperature, the plasma is ignited from the process gas, wherein the photo-printing substrate is processed using the plasma. In addition, the processing of the optical printing substrate can be modulated on a time basis, such as amplitude modulation or pulse modulation. Once the ί is completed, the photonic substrate can be unloaded from the vacuum chamber. Another feature of the present invention is to provide a method for processing, for example, a binary Cr mask or an optically imprinted substrate that is embedded in a fading phase shift mask. The method includes controlling the temperature of the optical printing substrate through a fluid such as an inert gas at a pressure of less than about i Torr during the process of, for example, etching of the optical residual substrate in the vacuum chamber. The fluid temperature can be controlled and the body can flow continuously through the vacuum chamber. Additionally, at least one of the chamber surfaces of the vacuum chamber can be temperature controlled wherein the chamber surface can be positioned about 5 cm from the surface of the photolithographic substrate. Right-hand 畲 令 令 基板 基板 在 在 在 在 在 在 在 在 在 在 在 在 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板 基板Once the process is complete, the photo-printing substrate can be unloaded from the vacuum chamber. Yet another feature of the present invention is to provide a method of engraving a substrate, such as a C4 cover, in a vacuum chamber, the method comprising the step of introducing at least: a process gas into the vacuum chamber. The first set of process conditions can be designed to etch the screen printed substrate by igniting the first plasma from the process gas and then using the first electropolymer to process the first set of process conditions. Anti-reflective layer. Further, the photoresist layer of the substrate on which the light is removed can be removed from the < in
J 13 1338921 光蝕印基板之任何進一步處理之前,使光蝕印基板冷却至 目標溫度。該光蝕印基板之冷却可發生於處理光蝕印基板 的真空至中,或發生於不必在真空下的分離的室中。一旦 獲得該光蝕印基板之目標溫度時,則自該處理氣體點燃第 一電漿且使用第一組之過程條件,利用該第二電漿來敍 刻該光蝕印基板。一旦該處理完成時,可將該光蝕印基板 自真空室卸載。 本發明之再一特性在於提供一種在電漿過程期間以高 熱質置來控制基板溫度的方法,該方法包含調整真空室内 之基板支架上的基板溫度至目標溫度之步驟。引入至少一 處理氣體進入該真空室之内。自該處理氣體點燃電漿,其 中該基板係使用該電毁來處理。該基板可熱隔離自基板支 架。此外,該電漿法可設計來引入小於每平方公分〇 5瓦 的功率進入該基板之内β 一旦該處理完成時,可將該基板 自真空室卸載。 本發明之再一特性在於提供一種用以處理真空室内之 基板支架上例如二元Cr光罩或MoSi〇N相移光罩之光蝕 印基板的方法,該方法包含引入至少一處理氣體進入該真 空室内的步驟。電漿係自該處理氣體點燃,其中該光蝕印 基板係於第一目標溫度在第一組過程條件使用該電漿來予 以蝕刻。然後,該光蝕印基板係於第二目標溫度在第二組 過程條件使用該電聚來予以㈣。該第二目標溫度可依據 即將蝕刻自光蝕印基板的材料而比第一目標溫度更高或更 低。该光蝕印基板之冷却或加熱可發生於處理光蝕印基板 1^38921 的真空室中’或發生於不必在真空下的分離的室中。此外, &第一組過程條件可設計來蝕刻光蝕印基板之抗反射層, 且可在餘刻光触印基板上之任一殘留的Cr之前,剝除在 該光姓印基板上之光阻層。或者,該第一組過程條件可設 计來姓刻MoSiON相移光罩之M〇SjON層,且該蝕刻可停 止於該MoSiON層相對該M〇Si〇N相移光罩的表面的界面 處。一旦該處理完成時,可將該光蝕印基板自真空室卸載。 為了可較佳地瞭解隨後之本發明的詳細說明,上文已 更廣泛地描繪本發明對於本項技藝之貢獻。本發明之額外 的特性將描述於下文中,而形成本發明申請專利範圍之標 的。而且,熟習本項技藝之該等人士亦應體會的是,此等 等效之架構並不會背離附錄申請專利範圍所陳明之本發明 的精神及範疇。 【實施方式】 本發明之觀點將引用感應耦合式電漿室來敘述。適合 的#刻室包含販售自佛羅里達州聖彼得堡市之美國 Oerlikon公司的遮罩蝕刻器(Mask Euher) IV平台。其他的 反應器組態可用來執行本發明之方法,包含電容耦合式反 應器(例如反應性離子蝕刻器(RIE) '電漿增強式(pE)反應 器、二極管反應器等)、高密度反應器(例如lCp、Tcp等) 以及磁性增強式反應器(例如ECR、磁性增強式反應性離子 蝕刻器(MERIE)等)。 第1圖係ICP反應器之示意圖。處理氣體透過氣體入 口 120來導入至室15〇之内。處理氣體混合物之流大致地 15 1338921 由質量流控制器(未顯示)所調節。該處理室15〇包含壁ι〇〇 和能量透明的室表面i 10。該等室壁1〇〇典型地係金屬(例 如鋁、不銹鋼等),而該能量透明表面1 10典型地係介電質 (例如陶瓷)。電漿區145係由室壁100、基板支架135及 能量透明表面110所界定。來自RF產生器115之RF能量 係供應至電感器105 β來自該產生器i 15之RF能量可以以 時間(例如振幅、頻率等)來調變◊該RF能量係透過能量透 明表面110耦合至電漿區145。阻抗匹配網路(未顯示)使 來自RF產生器115之RF能量能夠有效率地轉移至電漿 145 ° 基板支系1 3 5係配置於該室内,以便在過程之期間來 支撐光蝕印基板丨30〇該基板支架135連接於電源供應器 1 40。在所供應至基板支架的電壓係RF電壓的情況中,阻 抗匹配網路(未顯示)係插入於偏壓供應器140與基板支架 1 35之間。該RF偏壓可為電壓控制的或功率控制的。該 偏壓供應器140可以以時間(例如振幅、頻率等)來加以調 變0 在習知的乾蝕刻法中’基板的溫度係藉由保持基板與 舰控式基板支架成熱接觸而予以主動控制。此係典型地由 本項技藝中之熟知為後方氦冷却所達成’此可藉由機械性 地或靜電地箝失該基板至基板支架來執行。在機械性箝夹 法的情況中,失具實體地接觸基板之側邊或頂部表面,以 便保持基板與基板支架接觸。一旦保持時,則引入氣體(例 如氦氣)於基板支架與晶圓間之空間中,而增加該基板與基 16 1338921 板支架間之熱轉移。為了要達成主動的基板溫度控制,在 晶圓與基板支架間之氣體壓力典型高於3托爾。選擇性地, 基板可以以相同的後方氣體引入而靜電地箝夾至基板支 架。雖然靜電箝夾法僅接觸基板之背面表面,但難以靜電 地箝夾介電材料。目前之光罩基板係介電質的。若靜電箝 爽電壓足夠高時,則可“貫穿基板”地箝夹基板之頂部上 所配置之導電層或半導體層。 由於光叙印基板之缺陷敏感性,所以對光罩基板之可 准許的接觸已歷史觀點地受限於基板後方最外面1 〇毫米。 此附加的基板接觸限制已妨礙到乾蝕刻處理期間之光蝕印 基板的箝失。注意的是,由於典型的光蝕印基板之質量, 可在低壓時引入熱轉移氣體於基板與陰極之間而無需箝夾 (針對1 50毫米光罩基板’小於大約1托爾)。雖然低壓氣 體將提供受限的熱轉移至基板,但小於丨托爾之後方氣體 壓力典型地並不足以主動溫控該基板,因此,光罩基板的 溫度將在曝露於電漿之期間上升。 第2圖顯示基板130係選用地設置於支架覆蓋板2〇5 之上,該覆蓋板205可以與基板支架135熱接觸或熱隔離。 "玄支架覆蓋板205擺放於基板支架135之上。典型地,該 覆蓋板含有適應於基板130之凹處,使得基板與覆蓋板之 頂部表面大略地共平面。該覆蓋板僅在光罩2丨5之背面表 面的外緣上接觸遮罩。該光罩之背面的接觸區典型地係在 光罩背面表面的最外面1〇毫米之内。在該光罩與覆蓋板 之間的接觸可為連續的棚架、點接觸、或其某種結合。因 17 1338921 為覆蓋板205僅接觸光罩13〇之背面的外緣,所以在基板 130的背面與基板支架135之間大致存在有薄的間隙21〇。 雖然基板支架的溫度係在過程之期間透過與熱轉移流 體(未顯示)接觸而予以控制,但在基板13〇與覆蓋板2〇5 之間僅存在有限制的熱轉移。因此,在缺少後方氦冷却中, 光蝕印基板將在乾蝕刻過程接受電漿之加熱。在過程期間 之加熱速率係過程參數的函數,該過程參數包#RF功率、 室壁溫度等。該光蝕印基板典型上並未被主動地冷卻於乾 蝕刻過程之期間。因此,基板的溫度將在曝露於電漿時之 期間增加。 針對光蝕印基板之典型ICP乾蝕刻法,在基板處之熱 負載將小於約0.5瓦/平方公分。由於光蝕印基板之比較高 的熱質量,所以無主動冷卻之乾蝕刻處理將在處理期間產 生最小的溫度上升(典型小於約2〇c /分鐘)。而針對用來蝕 刻光蝕印基板之典型的電漿過程,總溫度上升會小於約切 。。。 ' 選用地’擴散阻障(未顯示)可設置於覆蓋板上,以改 善此過程的钱刻均勻性。 處理氣體及反應產物將透過真空出口 125自該室去 除。節流閥(未顯示)係配置於該出口内,以便在乾蝕刻過 程之期間控制該室壓力。 第3圖顯示方法流程的方塊圖。該方法以具有即將被 乾蝕刻之膜的光蝕印基板來開始。蝕刻阻檔遮罩係藉由本 項技藝中所熟知之方法來沈積於基板上以及予以圖案化; 18 1338921 然後,冷却該基板至小於約-30°C的溫度。一旦冷却時,則 使該基板接受電漿過程,以去除所留下來之由該触刻阻擒 遮罩所曝露之材料。 選用地’一旦完成乾蝕刻過程’可在基板暴露於大氣 條件之前加熱基板至大約20°C。在暴露於大氣之前加熱該 基板可防止會不利地影響遮罩性能的凝結。該加熱步驟可 執行於電漿反應室中。電漿加熱步驟可由反應性氣體混合 物(例如清除殘留之蝕刻光阻的含氧氣體)或非反應性氣體 (例如He、Ar等)所組成。 在#刻前之冷却步称可發生於電漿蝕刻室中或分離的 室中。在冷却過程之期間,該室可保持於大於或接近大氣 壓力之壓力,或保持於小於大氣壓力之壓力。在所有的情 況中,該大氣應為乾淨且乾燥的,以防止來自異物或凝結 之缺陷形成於板上。 在基板無法充分冷却以維持足夠低的溫度於蝕刻過程 之該等情況中,可隔開該過程成為多區段(例如停止蝕刻且 在重續蝕刻過程之前再冷却該基板卜此可視需要地予以重 複許多次。 在使用超過一個方法步驟之過程中(例如二元光蝕 印光罩),基板溫度可在該過程之各個步驟間予以冷却。回 想在電㈣程之誠,因為並無基板之主動冷却:所以基 m將纟電漿處理步驟之過程期間增力〇。在企望於步驟 之間加熱該基板的情況中,可使用非 』使用非反應性電漿來加熱基 板0 1338921 而且已觀察到的是’在溫度小於約_9(rc時,Cr : Ar Cr 之選擇性會增加。在-40°C時,蝕刻選擇性cr : AR Cr約為 1 . 1 ’而在大約-140°C時之相似過程將產生大約3 : 1之Cr : AR Cr蝕刻選擇性。依據該等觀察,在低的基板溫度時, 可使用AR鉻層來作為下方鉻之蝕刻遮罩。 - 第4a至4d圖顯示典型之光罩蝕刻法的示意圖。在光 .罩係二元Cr遮罩的情況中,第4a圖顯示蝕刻前之遮罩結 鲁構的實例。該結構包含光學透明基板415,該光學透明基 板可廣泛地界定為包含但未受限於對3〇〇奈米或以下之波 長光線(例如248nm、193nm、l57nm)為透明的材料。不 透明層410配置於基板415上,該不透明層可由金屬(例 如絡)或其他適用之材料所構成。 抗反射(AR)層405係配置於不透明層410上,該AR 層405被5忍為可改善遮罩之光姓印性能。該ar層可由金 屬衍生物所構成(例如金屬氧化物、金屬氮化物、金屬碳化 φ 物、金屬氮氧化物等)。層400代表可使下方不透明層和AR 層圖案化之蝕刻阻擋遮罩,該蝕刻阻擋遮罩可基於聚合物 (例如光阻或電子束阻體)或是在前一方法步驟中所圖案化 , 之硬式遮罩材料(例如Si02、SiN、DLC等)。 第4b圖描繪去除AR覆層405之蝕刻步驟。在aR層 係含絡媒的情況中’係使用以基於氣之蝕刻方法。典型上 含氣氣體之流動速率的範圍係在大約5〇 sccm與大約4〇〇 seem之間。選用地,該AR層蝕刻方法可含有含氧之處理 氣體’其中該含氧氣趙佔了總氣流的〇%到大約5〇%。惰 20 1338921 性氣體亦可存在於處理氣體混合中,該惰性氣體典型上構 成〇%與大約20%之間的總氣流。 在ICP組態中,| AR钮刻步驟中之電源功率典型係 在大約iOO瓦與大約1000瓦之間。RF偏壓功率大致地在 大約1瓦與大約30瓦之間。$ RF偏壓供應器可為電壓控 制的。處理壓力典型地在約i毫托爾與約2〇毫托爾之間。 第4e圖顯示去除不透明層41()之㈣步驟(及過触刻 步驟)。在該不透明層係含鉻膜的情況中,係使用含氣及含 攀氧触刻法。典型地,含氣氣體流動於大約5〇咖與大約 400 seem間的範圍,含氧氣體構成總氣流之大約2〇/。至大 約50%之間。惰性氣體亦可存在於處理氣體混合物中,哼 惰性氣體典型地構成0%與大約2〇%之間的總氣流。用‘ 過钱刻步驟之方法參數可相同於不透明層姓刻步驟,或可 不同。例如在該不透明層過蝕刻步驟之期間,增加氧之組 成來改善特徵輪廓並非少見。 ” # 第4d圖係顯示去除光阻層_之步驟的典型光罩触刻 法之示意圖。 在ICP組態中,於不透明層餘刻步驟中之電源功率並 型地在大請瓦與大約测瓦之間QRF偏壓功率血型 地在大約1瓦與大約30瓦之間。該RF偏壓供應器可為電 壓控制的。處理壓力典型地在約丨毫托爾與約20 之間。 方法 雖然 ,但 可箝夾及冷却習知的基板於低於室溫下來執行此 在電聚處理之期間,由於操控限制,冑夾光姓印 21 1338921 基板以供後方冷却則是不實用的。如相較於習知的基板, 光钱印基板具有比較高的熱質量(例如6英寸平方之炫凝石 英光罩基板之大約22H/K相對6英切晶圓之大約17 J/K)利用比較大之熱質量的光蝕印基板,可於钮刻前藉 由冷却基板而於方法的期間達成低溫處理,而無需主動冷 却該基板。由於基板之高的熱質量、比較低的RF功率、 以及短的過程時間,光蝕印基板的溫度將從過程開始時之 溫度典型地僅上升小於,約4。。。。而在開啟電漿之週期期 間,基板溫度將單調地增加。 第5a及5c圖顯示在室溫(2〇。〇)時於低Cr密度圖案中 之Cl2/〇2乾蝕刻結果的先前技術實例。該兩實例均顯示出 有害於光罩之光學性能的嚴重斜面於所蝕刻之特徵輪廓 中 〇 本發明人已發現的是,降低基板溫度會急遽地改變所 蝕刻之Cr輪廓。第5b及5d圖顯示在-9〇°C之基板溫度時 於低Cr密度圖案中之Ci2/〇2乾蝕刻結果的實例。注意的 是’在第5b圖之中’已實質地改善蝕刻輪廓;而在第5d 圖之中’正的斜率已被換成為負的側蝕輪廓。 雖然上文說明已描述應用本發明於蝕刻二光鉻光罩, 但亦可察覺的是,本發明也可應用於諸如EAPSM和交替 孔徑PSM遮罩之其他光蝕印基板上的乾蝕刻過程。 在本項技術中所熟知的是,在EASPM光罩的製造中 使用含氟電漿來蝕刻矽化鉬(Mosi)及氮氧化矽鉬 (MoSixNyOz)膜。在EAPSM遮罩之製造期間,所企望的是, 22 1338921 獲得高的蝕刻選擇性於相移材料和下方基板之間。而為了 要獲付此選擇性,係使用更低的離子能量法(減低所施加之 RF偏壓)。然而,雖然減低RF偏壓可改善選擇性,但亦將 犧牲蝕刻異向性,亦即,減低RF偏壓會造成更為均向性 的特徵輪靡。於餘刻前冷卻光蝕印基板則可提供低RF偏 壓功率下之改良的蝕刻異向性。 實例 實驗係執行於佛羅里達州聖彼得堡市之美國〇erHk〇n 公司所販售的商用Mask Etcher(遮罩蝕刻器)IV系統上。在 二元Cr光罩蝕刻之中,除了確保自光阻轉移高傳真之圖 案至Cr之外,所企望的是獲得對光阻之高選擇性。當基 板在室溫時,獲得Cr :光阻之選擇性>2 : 1的更高Icp功 率(>200瓦)及更低氧濃度之方法條件常造成非直立的& 輪廓及/或不良的圖案轉移傳真性。當冷却基板至更低溫度 時,則此先前所未實現之方法空間可變成有用。 . 在一實驗中’係使用Oerlikon Mask Etcher IV來姓刻 四個光罩。首先的兩個遮罩(遮罩2983和2982)係利用兩 個不同的蝕刻過程來予以蝕刻於室溫。 遮罩ID 遮罩298.3 遮罩2982 方法 “室溫/低〇2” “室溫/適中〇2” Cl2 195 seem 180 seem 〇2 5 seem 20 seem 壓力 4.5 mT 4.5 mT RIE 800 Vpp 800 Vpp 23 1338921 600瓦 218+109 秒 3.0 ICP 600 瓦 時間(姓刻+過姓刻)484 + 242秒 選擇性 2./ (注一意:該:遮罩係飯刻至終點(例如由雷射:射終點 法所決定)’接著利用相同的大呔 N的方法條件做50〇/。過蝕刻。) 遮罩29 84和2981則油力啻將紅 勺在電衆蝕刻之前予以冷却至大 約-90 C。在戎方法模组_ ψ,祕、人一 中所冷却之遮罩係利用相同於室 溫遮罩上所使用的方法條件來蝕刻 遮罩ID 方法 Cl2 〇2 壓力 RIE ICP 時間(蝕刻+過蝕刻) 選擇性 遮罩2981 1低溫/適中Ο: 180 seem 20 seem 4.5 mT 800 Vpp 600瓦 268+134 秒 2.9 遮罩2984 ‘低溫/低〇2, 195 seem 5 seem 4.5 mT 800 Vpp 600瓦 466+233 秒 3.3 #刻速率依據溫度和氧濃度而變化。在低氧條件時 蝕刻速率在低溫時會更快約4% ;在高氧條件時,蝕刻速 率會慢23%。對光阻之選擇性大略相同於高氧條件中之各 個溫度。在低氧4,當操作於低溫時,選擇性有明顯較好。 光阻、ARC層,及Cr·主體層的#刻速率之更密切檢驗顯 示出各個層間之選擇性亦依據溫度和氧濃度而變化。 第5圖顯示各個遮罩之所蚀刻的Cr輪廊。從該等輪廊 24 1338921 可瞭解的是’氧和初始基板溫度均對輪廓有實質影響。低 溫實驗傾向於顯示更直立或側蝕的輪廓,而室溫實驗則易 於顯示更斜面的輪廓。氧扮演的角色為在低氧實驗比高氧 實驗更易於成為斜面(或更少側蝕)。 本發明揭示包含附錄申請專利範圍以及上文說明中所 含之内容。雖然本發明^有某—程度之特殊性的較 佳形式來敘述,但較佳式之本揭示僅藉由舉例方式來作 成,且可訴諸結構之細節以及部件之結合和設置中的種種 改變’而不會背離本發明之精神和範疇。 現已描述本發明。 【圖式簡單說明】 第1圖係典型的ICP電漿系統之示意圖; 第2圖係基板支架之示意圖; 第3圖係本發明的方法流程之方塊圖; 第4a圖隸型的光罩#刻過程之示意圖,顯示触刻前 之遮罩結構; 第4b圖係典型的光罩姓刻過程之示意圖,顯示去除ar 覆層之#刻步驟; 第4C圖係典㈣光罩_過程之示意圖,顯示去除不 透明層之蝕刻步驟; 第4d圖係典型的光罩触刻過程之示意圖,顯示去除光 阻層之步驟; 第5a圖係抑·描電子相片 /士 m + 、, ^ 顯不使用先前技術之蝕刻結 果; 25 1338921 第5b圖係掃描電子相片,顯示使用本發明之蝕刻結 果; 第5c圖係掃描電子相片,顯示使用先前技術之蝕刻結 果; 第5d圖係掃描電子相片,顯示使用本發明之蝕刻結 果。 在該等圖式中,類似的參考符號代表類似的部件。 【主要元件符號說明】 100 室壁 105 電感器 110 能量透明室表面 1 15 RF產生器 120 氣體入口 125 真空出口 130 光蝕印基板 135 基板支架 140 偏壓供應器 145 電漿區 150 室 205 支架覆蓋板 210 間隙 215 光罩 400 層(蝕刻阻檔遮罩 26 1338921 405 抗反射(AR)層 410 不透明層 415 基板J 13 1338921 The etched substrate is cooled to the target temperature prior to any further processing of the photolithographic substrate. Cooling of the etched substrate can occur in the vacuum to process the etched substrate or in a separate chamber that does not have to be under vacuum. Once the target temperature of the photolithographic substrate is obtained, the first plasma is ignited from the process gas and the first set of process conditions are utilized to quantify the photolithographic substrate. Once the process is complete, the photolithographic substrate can be unloaded from the vacuum chamber. Still another feature of the present invention is to provide a method of controlling the temperature of a substrate with a high thermal mass during a plasma process, the method comprising the step of adjusting the temperature of the substrate on the substrate holder in the vacuum chamber to a target temperature. At least one process gas is introduced into the vacuum chamber. The plasma is ignited from the process gas, wherein the substrate is processed using the electrical destruction. The substrate can be thermally isolated from the substrate holder. In addition, the plasma process can be designed to introduce less than 5 watts per square centimeter of power into the substrate. Once the process is complete, the substrate can be unloaded from the vacuum chamber. Yet another feature of the present invention is to provide a method for processing a photoetching substrate such as a binary Cr mask or a MoSi〇N phase shifting mask on a substrate holder in a vacuum chamber, the method comprising introducing at least one processing gas into the The steps in the vacuum chamber. The plasma is ignited from the process gas, wherein the photolithographic substrate is etched using the plasma at a first set of process conditions at a first target temperature. The etched substrate is then applied to the second target temperature using the electropolymer in a second set of process conditions (4). The second target temperature may be higher or lower than the first target temperature depending on the material to be etched from the photolithographic substrate. Cooling or heating of the etched substrate can occur in a vacuum chamber that processes the etched substrate 1^38921 or in a separate chamber that does not have to be under vacuum. In addition, & the first set of process conditions can be designed to etch the anti-reflective layer of the photo-etching substrate, and can be stripped on the photo-printing substrate before any residual Cr on the remaining photo-printing substrate Photoresist layer. Alternatively, the first set of process conditions can be designed to name the M〇SjON layer of the MoSiON phase shift mask, and the etching can be stopped at the interface of the MoSiON layer relative to the surface of the M〇Si〇N phase shift mask. . Once the process is complete, the photolithographic substrate can be unloaded from the vacuum chamber. In order to provide a better understanding of the following detailed description of the invention, the present invention has been more broadly described in the foregoing. Additional features of the invention will be described hereinafter which form the subject of the scope of the invention. In addition, it should be understood by those skilled in the art that these equivalents are not to be construed as a departure from the spirit and scope of the invention. [Embodiment] The viewpoint of the present invention will be described by referring to an inductively coupled plasma chamber. A suitable #刻室 contains the Mask Euher IV platform sold by Oerlikon, Inc. of St. Petersburg, Florida. Other reactor configurations can be used to perform the methods of the present invention, including capacitively coupled reactors (eg, reactive ion etchers (RIE) 'plasma enhanced (pE) reactors, diode reactors, etc.), high density reactions (eg, lCp, Tcp, etc.) and magnetically enhanced reactors (eg, ECR, magnetically enhanced reactive ion etcher (MERIE), etc.). Figure 1 is a schematic representation of an ICP reactor. The process gas is introduced into the chamber 15 through the gas inlet 120. The flow of the process gas mixture is roughly 15 1338921 regulated by a mass flow controller (not shown). The processing chamber 15 includes a wall 〇〇 and an energy-transmissive chamber surface i 10 . The chamber walls 1 are typically metal (e.g., aluminum, stainless steel, etc.) and the energy transparent surface 110 is typically dielectric (e.g., ceramic). The plasma zone 145 is defined by the chamber wall 100, the substrate support 135, and the energy transparent surface 110. The RF energy from the RF generator 115 is supplied to the inductor 105. The RF energy from the generator i 15 can be modulated by time (e.g., amplitude, frequency, etc.). The RF energy is coupled to the energy through the energy transparent surface 110. Slurry area 145. An impedance matching network (not shown) enables RF energy from the RF generator 115 to be efficiently transferred to the plasma 145 °. The substrate support is disposed in the chamber to support the etched substrate during the process. The substrate holder 135 is connected to the power supply 1400. In the case of a voltage-based RF voltage supplied to the substrate holder, an impedance matching network (not shown) is interposed between the bias supply 140 and the substrate holder 1 35. The RF bias can be voltage controlled or power controlled. The bias supply 140 can be modulated by time (eg, amplitude, frequency, etc.). In conventional dry etching, the temperature of the substrate is actively maintained by maintaining the substrate in thermal contact with the shipboard substrate support. control. This is typically accomplished by the art known as rear slewing cooling. This can be performed by mechanically or electrostatically clamping the substrate to the substrate holder. In the case of the mechanical clamping method, the lost body physically contacts the side or top surface of the substrate to maintain the substrate in contact with the substrate holder. Once held, a gas (e.g., helium) is introduced into the space between the substrate holder and the wafer to increase the heat transfer between the substrate and the substrate holder of the base 13 1338921. In order to achieve active substrate temperature control, the gas pressure between the wafer and the substrate holder is typically higher than 3 Torr. Alternatively, the substrate can be electrostatically clamped to the substrate holder with the same rear gas introduction. Although the electrostatic clamping method only contacts the back surface of the substrate, it is difficult to electrostatically clamp the dielectric material. Currently, the reticle substrate is dielectric. If the electrostatic clamping voltage is sufficiently high, the conductive layer or semiconductor layer disposed on the top of the substrate can be clamped "through the substrate". Due to the defect sensitivity of the optical printing substrate, the permissible contact with the reticle substrate has historically been limited to the outermost 1 mm of the rear of the substrate. This additional substrate contact limitation has prevented the clamping of the etched substrate during the dry etch process. Note that due to the quality of a typical photolithographic substrate, a heat transfer gas can be introduced between the substrate and the cathode at low pressure without clamping (less than about 1 Torr for a 150 mm reticle substrate). While the low pressure gas will provide limited heat transfer to the substrate, gas pressures less than the 丨 Torr are typically not sufficient to actively temperature control the substrate, and therefore, the temperature of the reticle substrate will rise during exposure to the plasma. 2 shows that the substrate 130 is optionally disposed over the stent cover plate 2〇5, which may be in thermal or thermal isolation from the substrate support 135. " Xuan bracket cover plate 205 is placed on the substrate holder 135. Typically, the cover sheet contains recesses adapted to the substrate 130 such that the substrate is substantially coplanar with the top surface of the cover sheet. The cover plate contacts the mask only on the outer edge of the back surface of the mask 2丨5. The contact area on the back side of the reticle is typically within 1 mm of the outermost surface of the back surface of the reticle. The contact between the reticle and the cover sheet can be a continuous scaffolding, point contact, or some combination thereof. Since 17 1338921 is the cover plate 205 which only contacts the outer edge of the back surface of the photomask 13A, there is a thin gap 21〇 between the back surface of the substrate 130 and the substrate holder 135. Although the temperature of the substrate holder is controlled during contact with the heat transfer fluid (not shown) during the process, there is only limited heat transfer between the substrate 13A and the cover sheet 2〇5. Therefore, in the absence of rear helium cooling, the photolithographic substrate will be heated by the plasma during the dry etching process. The heating rate during the process is a function of the process parameters, the process parameters include #RF power, chamber wall temperature, and the like. The etched substrate is typically not actively cooled during the dry etch process. Therefore, the temperature of the substrate will increase during exposure to the plasma. For a typical ICP dry etch process for a photolithographic substrate, the thermal load at the substrate will be less than about 0.5 watts per square centimeter. Due to the relatively high thermal mass of the photolithographic substrate, dry etching without active cooling will result in minimal temperature rise during processing (typically less than about 2 〇 c / min). For a typical plasma process used to etch a photo-etched substrate, the total temperature rise will be less than about cut. . . A 'selective ground' diffusion barrier (not shown) can be placed on the cover to improve the uniformity of the process. The process gas and reaction products are removed from the chamber through a vacuum outlet 125. A throttle valve (not shown) is disposed in the outlet to control the chamber pressure during the dry etching process. Figure 3 shows a block diagram of the method flow. The method begins with a photolithographic substrate having a film to be dry etched. The etch stop mask is deposited on the substrate and patterned by methods well known in the art; 18 1338921 The substrate is then cooled to a temperature of less than about -30 °C. Once cooled, the substrate is subjected to a plasma process to remove the material left behind by the etch stop mask. Alternatively, once the dry etch process is completed, the substrate can be heated to about 20 ° C before the substrate is exposed to atmospheric conditions. Heating the substrate prior to exposure to the atmosphere prevents condensation that can adversely affect the performance of the mask. This heating step can be performed in a plasma reaction chamber. The plasma heating step may consist of a reactive gas mixture (e.g., an oxygen-containing gas that removes residual etching photoresist) or a non-reactive gas (e.g., He, Ar, etc.). The cooling step before the # inscription can occur in the plasma etching chamber or in the separate chamber. During the cooling process, the chamber can be maintained at a pressure greater than or close to atmospheric pressure or at a pressure less than atmospheric pressure. In all cases, the atmosphere should be clean and dry to prevent defects from foreign matter or condensation from forming on the board. In the case where the substrate is not sufficiently cooled to maintain a sufficiently low temperature in the etching process, the process may be separated into multiple segments (eg, stopping the etching and cooling the substrate before the repetitive etching process) Repeated many times. During the use of more than one method step (such as binary etch reticle), the substrate temperature can be cooled between the various steps of the process. Recall that in the electricity (four) process, because there is no active cooling of the substrate : Therefore, the base m will increase the force during the process of the plasma processing step. In the case where the substrate is heated between steps, it is possible to use a non-reactive plasma to heat the substrate 0 1338921 and has observed Yes, when the temperature is less than about _9 (rc, the selectivity of Cr: Ar Cr increases. At -40 ° C, the etching selectivity cr : AR Cr is about 1.1 ° and at about -140 ° C A similar process will result in a Cr:AR Cr etch selectivity of approximately 3:1. Based on these observations, the AR chrome layer can be used as an underlying chrome etch mask at low substrate temperatures. - Figures 4a through 4d Show typical light Schematic of the etching process. In the case of a light-masked binary Cr mask, Figure 4a shows an example of a masking junction before etching. The structure comprises an optically transparent substrate 415, which can be broadly defined For inclusion, but not limited to, a material that is transparent to wavelengths of light of 3 nanometers or less (eg, 248 nm, 193 nm, 57 nm). The opaque layer 410 is disposed on a substrate 415, which may be metal (eg, a network) or The other anti-reflective (AR) layer 405 is disposed on the opaque layer 410, and the AR layer 405 is forbearing to improve the photo-printing performance of the mask. The ar layer may be composed of a metal derivative ( For example, metal oxides, metal nitrides, metal carbides, metal oxynitrides, etc.) Layer 400 represents an etch stop mask that can pattern the underlying opaque layer and the AR layer, which can be based on a polymer ( For example, a photoresist or an electron beam resist) or a hard mask material (for example, SiO 2 , SiN, DLC, etc.) patterned in the previous method step. FIG. 4b depicts an etching step of removing the AR cladding layer 405. aR layer In the case of a network containing a gas-based etching method, the flow rate of the gas-containing gas is typically in the range of about 5 〇 sccm to about 4 〇〇 seem. Alternatively, the AR layer etching method can be used. Containing an oxygen-containing treatment gas 'where the oxygen-containing gas accounts for 〇% to about 5% of the total gas stream. The inert gas 13 1338921 gas may also be present in the process gas mixture, which typically constitutes 〇% and about 20%. The total airflow between %. In the ICP configuration, the power supply power in the | AR buttoning step is typically between approximately 100 watts and approximately 1000 watts. The RF bias power is approximately 1 watt and approximately 30 watts. between. The RF bias supply can be voltage controlled. The treatment pressure is typically between about i millitor and about 2 Torr. Figure 4e shows the step (4) of removing the opaque layer 41() and the over-etching step. In the case where the opaque layer is a chromium-containing film, a gas-containing and oxygen-containing etching method is used. Typically, the gas-containing gas flows between about 5 〇 coffee and about 400 seem, and the oxygen-containing gas constitutes about 2 〇 / of the total gas stream. It is about 50%. An inert gas may also be present in the process gas mixture, and the inert gas typically constitutes a total gas stream between 0% and about 2%. The method parameters can be the same as the opaque layer surname step, or can be different. For example, during the over-etching step of the opaque layer, it is not uncommon to increase the composition of oxygen to improve the feature profile. ” #4d is a schematic diagram showing the typical reticle lithography of the step of removing the photoresist layer _. In the ICP configuration, the power of the power supply in the opaque layer is stepped in the form of a large tile and approximately The QRF bias power between the tiles is between about 1 watt and about 30 watts. The RF bias supply can be voltage controlled. The processing pressure is typically between about 丨 Torr and about 20. However, it is not practical to clamp and cool the conventional substrate at a temperature lower than room temperature during the electropolymerization process. Due to the control limitation, it is not practical to use the 13 1338921 substrate for rear cooling. Compared with the conventional substrate, the optical printing substrate has a relatively high thermal quality (for example, about 22 H/K of a 6-inch square dazzling quartz photomask substrate and about 17 J/K of a 6-inch wafer). The thermal mass of the etched substrate can be cooled during the method by cooling the substrate before the button is engraved without actively cooling the substrate. Due to the high thermal mass of the substrate, relatively low RF power, and short Process time, the temperature of the etched substrate The temperature from the beginning of the process typically rises only less than about 4%, and during the period of plasma turning on, the substrate temperature will increase monotonically. Figures 5a and 5c show at room temperature (2〇.〇) Prior art examples of Cl2/〇2 dry etch results in low Cr density patterns. Both examples show severe bevels that are detrimental to the optical properties of the reticle in the etched feature profile, which the inventors have discovered. Yes, lowering the substrate temperature will violently change the etched Cr profile. Figures 5b and 5d show examples of Ci2/〇2 dry etch results in low Cr density patterns at substrate temperatures of -9 °C. It is 'in Figure 5b' that the etching profile has been substantially improved; and in the 5th figure, the positive slope has been replaced by a negative side etching profile. Although the above description has described the application of the present invention to etching two light Chrome reticle, but it is also perceptible that the present invention is also applicable to dry etch processes on other lithographic substrates such as EAPSM and alternate aperture PSM masks. It is well known in the art that EASPM light Fluorine-containing plasma used in the manufacture of the cover To etch molybdenum molybdenum (Mosi) and molybdenum oxynitride (MoSixNyOz) films. During the manufacture of EAPSM masks, it is expected that 22 1338921 achieves high etch selectivity between the phase shifting material and the underlying substrate. To get this selectivity, use a lower ion energy method (reducing the applied RF bias). However, while reducing the RF bias improves selectivity, it also sacrifices etch anisotropy, ie, reduces The RF bias causes a more uniform feature rim. Cooling the etched substrate before the remainder provides improved etch anisotropy at low RF bias power. Example experiments were performed in St. Petersburg, Florida. The commercial Mask Etcher IV system sold by the US 〇erHk〇n company. Among the binary Cr mask etchings, in addition to ensuring the transfer of high-fax patterns from photoresist to Cr, it is expected to obtain high selectivity to photoresist. When the substrate is at room temperature, the method conditions for obtaining a higher Icp power (>200 watts) of Cr: photoresist selectivity > 2:1 and lower oxygen concentrations often result in non-erectal & contours and/or Bad pattern transfer fax. This previously unimplemented method space can become useful when the substrate is cooled to a lower temperature. In an experiment, the Oerlikon Mask Etcher IV was used to name four masks. The first two masks (masks 2983 and 2982) were etched at room temperature using two different etching processes. Mask ID mask 298.3 Mask 2982 Method "room temperature / low 〇 2" "room temperature / moderate 〇 2" Cl2 195 seem 180 seem 〇 2 5 seem 20 seem Pressure 4.5 mT 4.5 mT RIE 800 Vpp 800 Vpp 23 1338921 600 Watt 218+109 seconds 3.0 ICP 600 watts time (last name + past name engraved) 484 + 242 seconds selectivity 2./ (Note: This: the mask is the rice to the end point (for example, by the laser: the end point method The decision) 'then use the same method of the large 呔N to do 50 〇 /. Over-etching.) Mask 29 84 and 2981 oil 啻 will be cooled to about -90 C before the red etch. The masks cooled in the 戎 method module _ ψ, 秘, 人一一 etch the mask ID method using the same method conditions used on the room temperature mask. Method Cl2 〇2 Pressure RIE ICP Time (etch + over etch) Selective mask 2981 1 low temperature / moderate Ο: 180 seem 20 seem 4.5 mT 800 Vpp 600 watt 268 + 134 seconds 2.9 mask 2984 'low temperature / low 〇 2, 195 seem 5 seem 4.5 mT 800 Vpp 600 watt 466 + 233 The second 3.3 mark rate varies depending on the temperature and oxygen concentration. Under low oxygen conditions, the etch rate is about 4% faster at low temperatures; under high oxygen conditions, the etch rate is 23% slower. The selectivity to the photoresist is approximately the same as the temperature in the high oxygen conditions. At low oxygen 4, when operating at low temperatures, the selectivity is significantly better. A closer examination of the photoresist, the ARC layer, and the Cr' body layer's engraving rate shows that the selectivity between the layers also varies with temperature and oxygen concentration. Figure 5 shows the Cr wheel gallery etched by each mask. It is understood from these corridors 24 1338921 that both oxygen and initial substrate temperatures have a substantial effect on the profile. Low temperature experiments tend to show a more upright or undercut profile, while room temperature experiments tend to show a more beveled profile. Oxygen plays a role in the tendency to be beveled (or less undercut) in hypoxic experiments than in hyperoxic experiments. The disclosure of the present invention includes the scope of the patent application of the appendix and the contents contained in the above description. Although the present invention has been described in terms of a particular form of particularity, the present invention is disclosed by way of example only, and the details of the structure and the ' Without departing from the spirit and scope of the invention. The invention has now been described. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view of a typical ICP plasma system; Fig. 2 is a schematic view of a substrate holder; Fig. 3 is a block diagram of the method flow of the present invention; Schematic diagram of the engraving process, showing the mask structure before the engraving; Figure 4b is a schematic diagram of a typical mask surname process, showing the engraving step of removing the ar cladding; Figure 4C is a schematic diagram of the mask (process) The etching step of removing the opaque layer is shown; the 4th drawing is a schematic diagram of a typical reticle engraving process, showing the step of removing the photoresist layer; the 5a drawing is an electronic photo/sm+, , ^ is not used Prior art etching results; 25 1338921 Figure 5b is a scanning electronic photograph showing the etching results using the present invention; Figure 5c is a scanning electronic photograph showing the etching results using the prior art; and Figure 5d is a scanning electronic photograph showing the use The etching result of the present invention. In the drawings, like reference characters refer to the like. [Main component symbol description] 100 chamber wall 105 inductor 110 energy transparent chamber surface 1 15 RF generator 120 gas inlet 125 vacuum outlet 130 photo-etching substrate 135 substrate holder 140 bias supply 145 plasma area 150 chamber 205 bracket cover Plate 210 gap 215 photomask 400 layer (etch stop mask 26 1338921 405 anti-reflection (AR) layer 410 opaque layer 415 substrate
2727
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US75134905P | 2005-12-16 | 2005-12-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200731400A TW200731400A (en) | 2007-08-16 |
TWI338921B true TWI338921B (en) | 2011-03-11 |
Family
ID=40206424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW095145608A TWI338921B (en) | 2005-12-16 | 2006-12-07 | Improved method for etching photolithographic substrates |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101331431B (en) |
TW (1) | TWI338921B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103698972A (en) * | 2012-09-27 | 2014-04-02 | 中芯国际集成电路制造(上海)有限公司 | Masking plate curing method and masking plate processing technology |
US9852923B2 (en) * | 2015-04-02 | 2017-12-26 | Applied Materials, Inc. | Mask etch for patterning |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6063710A (en) * | 1996-02-26 | 2000-05-16 | Sony Corporation | Method and apparatus for dry etching with temperature control |
-
2006
- 2006-12-07 TW TW095145608A patent/TWI338921B/en active
- 2006-12-07 CN CN200680047345.6A patent/CN101331431B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN101331431A (en) | 2008-12-24 |
TW200731400A (en) | 2007-08-16 |
CN101331431B (en) | 2014-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI391987B (en) | Methods for processing a photolithographic reticle | |
US8202441B2 (en) | Process for etching a metal layer suitable for use in photomask fabrication | |
US7718539B2 (en) | Method for photomask fabrication utilizing a carbon hard mask | |
US7371485B2 (en) | Multi-step process for etching photomasks | |
TWI326467B (en) | Method for quartz photomask plasma etching | |
US20130040231A1 (en) | Method for etching a molybdenum layer suitable for photomask fabrication | |
KR101333744B1 (en) | Method for processing a photolithographic reticle | |
JP5036726B2 (en) | Method for etching a substrate for photolithography | |
JP2004038154A (en) | Method for etching photolithographic reticle | |
US20030003374A1 (en) | Etch process for photolithographic reticle manufacturing with improved etch bias | |
TWI338921B (en) | Improved method for etching photolithographic substrates | |
US20040000535A1 (en) | Process for etching photomasks |