TWI338845B - - Google Patents

Download PDF

Info

Publication number
TWI338845B
TWI338845B TW95141714A TW95141714A TWI338845B TW I338845 B TWI338845 B TW I338845B TW 95141714 A TW95141714 A TW 95141714A TW 95141714 A TW95141714 A TW 95141714A TW I338845 B TWI338845 B TW I338845B
Authority
TW
Taiwan
Prior art keywords
sequence
chaotic
signal
generate
encryption
Prior art date
Application number
TW95141714A
Other languages
Chinese (zh)
Other versions
TW200821864A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW95141714A priority Critical patent/TW200821864A/en
Publication of TW200821864A publication Critical patent/TW200821864A/en
Application granted granted Critical
Publication of TWI338845B publication Critical patent/TWI338845B/zh

Links

Description

1338845 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種混沌視覺加密方法與裝置,主要是 為了避免心電圖/腦電波圖生醫訊號遭駭客攻擊獲竊取而 設計的一種混沌視覺加密方法與裝置,利用一維混亂攪亂 碼將數值映射並重新洗牌來達到心電圖/腦波圖生醫訊號 的視覺加密效果,以達成其訊號的不可辨視性者。 魯 【先前技術】 按,加岔疋作為保護訊息的一種程序,以避免遭受到 ^ 駭客的攻擊,達到訊號的不可辨認性,對於極具個人私密 , 性的生醫醫療信號而言,當然更需要進行加密,若將心電 圖/知電波圖生醫訊號視為資料位元流,則與其他類型的 數位資料加密機制並沒有差異。 然而,近年來應用混沌理論於視覺加密領域正逐漸受 到重視,其中視覺加密的概念是在1994年由Naor和Shamir 鲁兩人提出,它的原理是利用人類對圖像視覺上的敏感,將 具有個人隱私或機密的生醫或影像訊號進行加密,使人無 法清楚辨識他原本的特徵。 目前常見的視覺加密機制一般是藉由(i)訊號位置排 列(11)轉換訊號的數值(iii)訊號位置排列和轉換訊號的 數值等二方面來達成’在先前的研習中’我們已使用混洗 理論優越的不可預測性,設計基於二維渾沌視覺加密機制 應用在JPEG2000醫學影像及一維渾屯視覺加密機制應用於 個別的心電圖和腦電波生醫訊號。 5 1338845 基於此,我們進一步設計一種混沌視覺加密方法與裝 置應用於整合之心電圖/腦電波生醫訊號,期能在心電圖 /腦電波等生醫訊號的加密上’獲得更優越的成效。 【發明内容】 本發明係設計了一種混沌視覺加密方法與裝置,以 之應用於心電圖/腦電波圖整合混波生醫訊號之加密,藉 由混沌理論的不可預測性質所設計的視覺加密機制,其加 _ 密效果相當優越,當輸入正確加密參數時,心電圖/腦電 波圖生醫訊號可正確回復,當輸入起始值有〇〇〇〇〇〇1%誤差 ^ 時,所解密的心電圖生醫訊號與腦電波生醫訊號均嚴重失 •真變形,無法進行相關之醫事判讀,加密效果相當良好, 同時藉由調整加密參數’ _可以增加視覺加冑方法與裝 置的強韌度或者是視覺加密的速度,達到即時加密的目的 0 【實施方式】1338845 IX. Description of the invention: [Technical field of invention] The present invention relates to a chaotic visual encryption method and apparatus, mainly for avoiding a chaotic visual encryption designed to avoid the hacking attack of an electrocardiogram/brain wave image. The method and device use a one-dimensional chaotic messy code to map values and reshuffle the card to achieve the visual encryption effect of the electrocardiogram/brain wave map medical signal to achieve the indistinguishability of the signal. Lu [Previous Technology] Press and add as a program to protect the message, so as to avoid the attack of the hacker and achieve the unrecognizable signal. For the personal medical signal of personal privacy and sexuality, of course More need to be encrypted. If the ECG/Knowledge signal is regarded as a data bit stream, there is no difference with other types of digital data encryption mechanisms. However, in recent years, the application of chaos theory has been paid more and more attention in the field of visual encryption. The concept of visual encryption was proposed by Naor and Shamir Lu in 1994. Its principle is to use human visual sensitivity to images. Personal privacy or confidential biomedical or video signals are encrypted so that one cannot clearly identify his or her original features. At present, the common visual encryption mechanism is generally achieved by (i) signal position alignment (11) conversion signal value (iii) signal position alignment and conversion signal value, etc. In the previous study, we have used the hybrid The superiority of the wash theory is unpredictable. The design is based on the two-dimensional chaotic visual encryption mechanism applied to JPEG2000 medical images and one-dimensional visual encryption mechanism applied to individual ECG and brainwave biomedical signals. 5 1338845 Based on this, we further designed a chaotic visual encryption method and device for the integrated ECG/brain wave biomedical signal, which can achieve better results in the encryption of biomedical signals such as ECG/EEG. SUMMARY OF THE INVENTION The present invention is directed to a chaotic visual encryption method and apparatus for applying an encryption of an electrocardiogram/brain wave map integrated mixed-wave medical signal, and a visual encryption mechanism designed by the unpredictable nature of chaos theory. The effect of adding _ density is quite superior. When the correct encryption parameter is input, the electrocardiogram/brain wave map biomedical signal can be correctly recovered. When the input starting value has 〇〇〇〇〇〇1% error ^, the decrypted electrocardiogram is generated. Both the medical signal and the brainwave medical doctor signal are seriously lost. True deformation, the medical interpretation cannot be performed, and the encryption effect is quite good. At the same time, by adjusting the encryption parameter ' _ can increase the visual enhancement method and the strength or visuality of the device. The speed of encryption, to achieve the purpose of instant encryption 0 [Implementation]

有關於本發明之實施、技術手段及功效達成方面,謹 配合圖式在予舉例說明於后: 請參閱第1圖之-維混洗視覺加密架構圖、第2圖之 混泡授亂加密流程圖、第3圖之混錢牌加密流程圖、以 及第4圖之硬體架構示意圖。 為了達到生醫訊號在傳輸過程的加密,我們設計了一 維混死訊號祕機制,如第丄圖所示,訊㈣亂 機制的概念是根據混、;屯理論產生—組無法為駭客所破解的 隨機序列;將原始生醫訊號與混⑽機序列相祕,使得 6 1338845 原始的生醫訊號變的無法辨識’達到視覺加密之效果這 樣的加密機制’相當適合需仰賴醫師視覺進行判斷的心電 圖生醫訊號。 其訊號攪亂機制敘述如下: 首先,透過混沌位址配置程序匕產生混沌攪亂隨機 序列的索引位址。接著,使用混沌隨機數值產生器化^產 生一個混沌序列,並依據混沌位址配置程序所產生的索引 • 位址產生混沌攪亂序列,對心電圖/腦電波圖等生醫訊號 進行攪亂。 ^ 混沌位址配置程序fcm概念描述如下: 首先’在眾多的混屯地圖當中,選取一個作為心的 混沌地圖(CMT,),這是加密參數一,並輸入^^巧的起始 點(巧)’這是加密參數二,藉由CM7;.和奶.,我們可 以產生一混沌序列,並對此混沌序列的前〜的點進行刪除 ,這是加密參數三,剩餘的混沌序列大於~的點進行刪除 鲁,這是加密參數四,最後餘的混沌序列取倒數和接近的整 數’產生索引位址。 其混沌位址配置程序詳述如下: 步驟一:選擇一組 步驟二:輸入與々,%.,尽 其中A·.是輸入心電圖/腦電波圖等生醫訊號的長度。 步驟三:(a)若冬>1,中止程序; 否則執行下一步驟。 (b) x〇=spf 1338845 步驟四 (c)產生混見序列%個點. \=CMTf(x„.,) ⑴ 然後刪除這些點。 (a) V丨=叫(\) (b) 若則刪除這些點 否則執行下一步驟 ,回到步驟2 ; (c) mj (2) 其中j的初始值為1 , j=。 步驟五:比較恥與胳,i。 否 若叫-η,則刪除這些點,然後回到步 則執行下一步驟。 — 步驟六:若,中止程序並且將叫輸出, ^j^LF 。 接下來,混沌隨機數值產生器%〇,的產生過程,首先將對 G(XS選擇一混沌地圖及起始值邓,輸出混沌隨機序列 A〜,這裡<為心中最大的索引位址。 其產生程序描述如下: 步驟一:選擇一混*;屯地圖 cmtg。 步驟二·輸入起始值S7^ 。 步驟三:產生有限個數的混沌序列。 xn=CMT(;(x^) ⑶ x〇=SPGx0=SPccsc J i<n<OT; 步驟四:輸出 xn * \<n<mc 0 1338845 因此’我們可以依據所產生索引位置,來選取仏^ 所輸出的混沌隨機數值序列,產生一維混沌攪亂序列,其 過程概述如下: 步驟 藉由心產生混沌索引位置序列叫…~ ⑹斗,_ ’心最大索引位置=2?广。 藉由Gccs 產生 < 個的混沌隨機數值序列。 藉由混沌索引位置序列,選取混沌隨機數值序列 ’產生一維混;屯授序列\…xm ’丨s/斗。 將原始心電圖/腦電波圖等生醫訊號與一維混沌攪亂序列 進行攪亂’達成視覺加密的效果。 而所謂的「混沌洗牌策略」,係將攪亂後的心電圖/ 腦電波圖等生醫訊號的位置重新洗牌,進行排列組合,可 以進一步強化視覺加密的效果❶其原理類似心利用混 沌索引位址的排序將攪亂的心電圖/腦電波圖等生醫訊號 重新洗牌,並在接收端用相同的混沌索引位址排列將訊號 解密回來,其混沌洗牌策略&描述如下: 步驟 步驟 步驟一 步驟 選一組混;屯地圖 輸入起始值%和洗牌策略長度!^ 驟一.產生此沌索引位址相對應的位址” j” \^j^LF 。 xn=CMTFcr(x^) ⑹ 右·巧>&,捨棄mj執行步驟三 其中 9 1338845 否則’繼續執行下—步驟。 步驟四.比較(Π〗與此’ l S -1。 mJ emt,l<A:<y-l ,則丢棄這此 否則’繼續執行下一步驟。 步驟五:若’中止程序並將恥輸出,】 否則,執行以下程序:Regarding the implementation of the present invention, the technical means and the achievement of the effect, the following figures are illustrated with reference to the following: Please refer to the figure 1 - the dimensional hybrid visual encryption architecture diagram, and the second diagram of the mixed bubble encryption encryption process. Figure, Figure 3, the encryption chart of the mixed money card, and the hardware architecture of Figure 4. In order to achieve the encryption of the biomedical signal in the transmission process, we designed a one-dimensional mixed-signal secret mechanism, as shown in the figure, the concept of the (four) chaos mechanism is based on the mix; the theory generated - the group can not be the hacker The random sequence of the crack; the original biomedical signal and the mixed (10) machine sequence are secreted, so that the original biomedical signal of 6 1338845 becomes unrecognizable. The encryption mechanism that achieves the effect of visual encryption is quite suitable for the judgment of the physician. ECG biomedical signal. The signal shuffling mechanism is described as follows: First, through the chaotic address configuration procedure, the index address of the chaotic messy random sequence is generated. Then, a chaotic random number generator is used to generate a chaotic sequence, and the chaotic messing sequence is generated according to the index generated by the chaotic address configuration program, and the medical signals such as the electrocardiogram/brain wave map are disturbed. ^ The chaotic address configuration program fcm concept is described as follows: First of all, in a large number of mixed maps, select a chaotic map (CMT) as the heart, which is the encryption parameter one, and enter the starting point of ^^ Qiao) 'This is the encryption parameter two. With CM7;. and milk., we can generate a chaotic sequence and delete the first point of the chaotic sequence. This is the encryption parameter three, the remaining chaotic sequence. The point larger than ~ is deleted, this is the encryption parameter four, and the last chaotic sequence takes the reciprocal and the close integer 'generates the index address. The chaotic address configuration procedure is detailed as follows: Step 1: Select a group Step 2: Input and 々, %., where A·. is the length of the input medical signal such as ECG/EEG. Step 3: (a) If winter > 1, abort the program; otherwise, perform the next step. (b) x〇=spf 1338845 Step 4 (c) produces a mixture of % points. \=CMTf(x„.,) (1) Then delete these points. (a) V丨=叫(\) (b) Then delete these points or proceed to the next step, return to step 2; (c) mj (2) where j has an initial value of 1, j=. Step 5: Compare shame and yoke, i. If it is called -η, then Delete these points, then go back to the next step. — Step 6: If you abort the program and will call the output, ^j^LF. Next, the generation process of the chaotic random number generator %〇, will first be G (XS selects a chaotic map and the starting value Deng, and outputs a chaotic random sequence A~, where < is the largest index address in the heart. The program is described as follows: Step 1: Select a mixed *; 屯 map cmtg. 2. Enter the starting value S7^ Step 3: Generate a finite number of chaotic sequences. xn=CMT(;(x^) (3) x〇=SPGx0=SPccsc J i<n<OT; Step 4: Output xn * \ <n<mc 0 1338845 Therefore, we can select the chaotic random numerical sequence output by 仏^ according to the generated index position to generate one-dimensional chaos The chaotic sequence is summarized as follows: Steps: The chaotic index position sequence generated by the heart is called...~ (6) bucket, _ 'heart maximum index position = 2? wide. Generates a chaotic random numerical sequence by Gccs. Sequence of index positions, select chaotic random numerical sequence 'generate one-dimensional mixing; 屯 序列 sequence\...xm '丨s/ 斗. 搅 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始The so-called "chaotic shuffling strategy" is to reshuffle the position of the medical signal such as the electrocardiogram/encephalogram after the disorder, and to arrange and combine, which can further enhance the effect of visual encryption. The ordering of the chaotic index addresses reshuffles the medical signals such as the disturbed electrocardiogram/brain wave map, and decrypts the signals with the same chaotic index address arrangement at the receiving end. The chaotic shuffling strategy & description is as follows: Step Step 1 Select a group of blends; 屯 Map input start value % and shuffling strategy length! ^ Step 1. Generate the address corresponding to this chaotic index address j" \^j^LF. xn=CMTFcr(x^) (6) Right · Qiao >&, discard mj to perform step three of which 9 1338845 otherwise 'continue to perform the next step. Step 4. Compare (Π〗 with this' l S -1. mJ emt,l<A:<yl , discard this or else 'continue to the next step. Step 5: If 'abort the program and shame output,' otherwise, execute the following procedure:

(3) /»<-n+l (b) jx-j+i (c)執行步驟三(3) /»<-n+l (b) jx-j+i (c) Perform step three

點然後執行步 驟 經由實際模擬結果發現’第5圖為原始心電圖與腦波 圖生醫訊號結合之混波圖形,其中心電圖生醫訊號—争丨^ 具有360個取樣值’腦波圖生醫訊號一秒鐘具有256個取 樣值;因此,我們將腦波圖生醫訊號昇頻為一秒鐘具有3 60個取樣值,與心電圖生醫訊號進行1:1混波,混波信 號一秒鐘具有720個取樣值,而混波信號經由(1) 一維混 沌信號攪亂機制(2)混沌洗牌策略,進行視覺加密,其加 密參數描述如下:Point and then perform the steps through the actual simulation results found that '5th picture is the original ECG and brain wave map biomedical signal combined with the mixed wave pattern, the central electrogram biomedical signal - dispute ^ has 360 samples 'brain wave map biomedical signal There are 256 samples in one second; therefore, we upsample the brain wave biomedical signal to 3 60 samples per second, 1:1 mix with the ECG biosignal, and mix the signal for one second. There are 720 sample values, and the mixed signal is visually encrypted via (1) one-dimensional chaotic signal shuffling mechanism (2) chaotic shuffling strategy, and the encryption parameters are described as follows:

Sf =0.1 nF - ί〇6 CMT, ' CMTc ' cmfcr ,均假設為混沌地圖C(:c,r): C(x,r) = rx{\-x\ 〇<^<l (5) 〜丨=%(l-') (6) 其中’ 皆設定為〇. 1 。藉由,調整加密參數, 1338845 我們可以增加視覺加密機制的強韌度或者是視覺加密的速 度達到即時加密的目的。第6圖為混波信號經由—維混 沌信號攪亂機制和混沌洗牌策略的視覺加密輸出信號。在 此圖中’醫師將無法判斷病患的心臟與腦相關疾病,加密 效果優越。與原始混波信號相比較,其Pearson相關係數為 0. 02,這裡,pearson相關係數定義為: smSf = 0.1 nF - ί〇6 CMT, ' CMTc ' cmfcr , both assumed to be chaotic maps C(:c,r): C(x,r) = rx{\-x\ 〇<^<l (5 ) ~丨=%(l-') (6) where 'all are set to 〇. 1 . By adjusting the encryption parameters, 1338845 we can increase the robustness of the visual encryption mechanism or the speed of visual encryption for instant encryption. Figure 6 shows the visually encrypted output signal of the mixed-wave signal via the -dimensional chaotic signal shuffling mechanism and the chaotic shuffling strategy. In this picture, the physician will not be able to determine the heart and brain-related diseases of the patient, and the encryption effect is superior. Compared with the original mixed-wave signal, the Pearson correlation coefficient is 0.02, where the pearson correlation coefficient is defined as: sm

(7) ‘ 八中X和Y分別為原始昆波訊號與加密後的混波訊號,N 為訊號的總長度。第7圖和第8圖為輸入正確解碼參數後 後,所回復的心電圖生醫訊號與腦電波生醫訊號,和原始 〜電圖生醫訊號與腦電波生醫訊號相比較,其最小均方誤 差分別為ι.33ιχ10-32和3·9?1χ1俨,醫師可依據回復的心電圖 生醫訊號與腦電波生醫訊號進行相關之醫事判讀工作,圖 • 第9圖和第1〇圖為輸入起始值有0.000001%誤差時,所解 密的心電圖生醫訊號與腦電波生醫訊號。由圖中可知,所 解论的心電圖生醫訊號與腦電波生醫訊號均嚴重失真變形 ,無法進行相關之醫事判讀,加密效果相當良好。 整理以上說明内容’可知本發明之混沌加密機制達成 上乃侍透過電腦程式,或者是將電腦程式燒製成硬體方式 呈現,提供軟、硬體兩種不同實施模式,其中; 該電腦程式的加密架構主要包括:一維混沌攪亂信號 序列之產生、以及一維混沌洗牌信號序列; 1338845 在一維混先授亂信號序列之產生步驟如下; 步驟1 :選取混沌位址配置地圖(CiW7> ),並輸入起始點 (叱)、截取參數(〜、4 )和加密ECG/EEG信 七2丄. 號長度參數尽,產生混沌序列1 步驟2 :截取混沌序列1第;v +1之後的點,產生混沌序列 2 {Vn }n=l,2,3..., 步驟3 :截取混洗序列2小於&的點,產生混洗序列3(7) ‘ Eight X and Y are the original Kunbo signal and the encrypted mixed signal, respectively, and N is the total length of the signal. Figure 7 and Figure 8 show the ECG signal and brainwave medical signal recovered after inputting the correct decoding parameters, and the minimum mean square of the original ~ electrogram biomedical signal and the brainwave biomedical signal. The errors are ι.33ιχ10-32 and 3·9?1χ1俨, and the physician can perform the medical interpretation according to the recovered ECG biomedical signal and the brainwave biomedical signal. Fig. 9 and Fig. 1 are inputs. When the initial value has an error of 0.000001%, the ECG signal and the brainwave medical signal are decrypted. As can be seen from the figure, the electrocardiogram biomedical signals and the brainwave biomedical signals that are discussed are severely distorted and deformed, and the relevant medical interpretation cannot be performed, and the encryption effect is quite good. According to the above description, it can be seen that the chaotic encryption mechanism of the present invention achieves the above-mentioned computer program, or the computer program is burned into a hardware manner, and provides two different implementation modes, namely, software and hardware. The encryption architecture mainly includes: the generation of one-dimensional chaotic messing signal sequence and the one-dimensional chaotic shuffling signal sequence; 1338845 The steps of generating the one-dimensional mixed-first chaotic signal sequence are as follows; Step 1: Select chaotic address configuration map (CiW7> ), and input the starting point (叱), intercept the parameters (~, 4) and encrypt the ECG/EEG letter 7 2丄. The length parameter is exhausted, and the chaotic sequence is generated. Step 2: Intercept the chaotic sequence 1; v +1 Point, generate chaotic sequence 2 {Vn }n=l, 2, 3..., step 3: intercept the shuffle sequence 2 less than & point, resulting in shuffle sequence 3

iZn L=|,2,3... , 步驟4 :將混沌序列3取倒數,產生序列4kL123 ; 步驟5 :將序列4四捨五入,產生整數序列5丨%匕23 ; 步驟6 :選取序列5中不相同的LF個值,產生混沌位址序 列 6 ’ 步驟7 :選取混沌信號值地圖並輸入起始點SPG和產生信 號序列長度參數smaxh}^〜’產生混沌信號 值序列7 ; 步驟8 :藉由混沌位址序列6選取混沌信號值序列7,進 而產生一維混死攪亂信號序列{V丄=匕丨 而在一維混沌洗牌信號序列的產生步驟如下: 步驟1 :選取混沌位址配置地圖(CM7;.),並輸入起始點 (SPF )、截取參數(〜、4 )和加密ECG/EEG信 號長度參數心,產生混沌序列1 k}„=123 ; 步驟2 :載取混沌序列1第第〜+1之後的點,產生混泥序 列 2 kLu ; 12 1338845 步驟3 :截取混沌序列2小於心的點,產生混沌序列3 lZn 1/1=1,2,3 ., 步驟4 :將混沌序列3取倒數,產生序列4kU2,3.; 步驟5 :將序列4四捨五入’產生整數序列5 kU2,3.: 步驟6 :選取序列5中不大於且不相同的LF個值,產生混 沌位址序列6 {m„}„=12 3 & ; 步驟7 :選取長度LF的心電圖生醫訊號£cg„ „=|2, ^、並導入iZn L=|, 2,3... , Step 4: Count the chaotic sequence 3 to produce the sequence 4kL123; Step 5: Round the sequence 4 to produce the integer sequence 5丨%匕23; Step 6: Select the sequence 5 Different LF values, generate chaotic address sequence 6 'Step 7: Select the chaotic signal value map and input the starting point SPG and generate the signal sequence length parameter smaxh}^~' to generate the chaotic signal value sequence 7; Step 8: Borrow The chaotic signal value sequence 7 is selected by the chaotic address sequence 6, and then the one-dimensional mixed-and-dead signal sequence {V丄=匕丨 is generated and the first-order chaotic shuffling signal sequence is generated as follows: Step 1: Select chaotic address configuration Map (CM7;.), and enter the starting point (SPF), intercept parameters (~, 4) and encrypt the ECG/EEG signal length parameter heart to generate chaotic sequence 1 k} „=123 ; Step 2: Carry chaotic sequence 1 point after the first ~ +1, produces the mud sequence 2 kLu; 12 1338845 Step 3: intercept the point where the chaotic sequence 2 is smaller than the heart, and generate the chaotic sequence 3 lZn 1/1 = 1, 2, 3 ., Step 4: The chaotic sequence 3 is reciprocated to produce the sequence 4kU2, 3.; Step 5: Rounding the sequence 4 into 'generating integers Column 5 kU2, 3.. Step 6: Select LF values in sequence 5 that are not greater than and not identical, and generate chaotic address sequence 6 {m„}„=12 3 &; Step 7: Select ECG with length LF Medical signal £cg„ „=|2, ^, and import

一維混沌攪亂序列叉,„=1,2, v,進而產生一維混沌洗 牌信號序列 . • 而將之燒製成硬體時,主要係由一組混沌訊號攪亂位 址產生器(1 )、以及一組混沌訊號攪亂訊號產生器(2 )所組成,其中: 該混沌訊號攪亂位址產生器(1 ),包括一可輸入起 始點(% )、截取參數U,、& )和加密ECG/EEG信號長 • 度參數4以產生混沌序列1 kL——123之混沌地圖1 ( 1 1 ) 、一混沌序列記憶體(1 2)、一可截取混沌序列1在第 〜+1之後的點以產生混沌序列2kU2,3.之信號截取器1 ( 1 3 )、一可截取混沌序列2小於A的點以產生混沌序列 3 kU2.3.之信號截取器2 ( 1 4 )、一可將混沌序列3取 倒數以產生序列4 k}„=1,2,3...,並將序列4四捨五入以產生整 數序列5 {以„=,23整數序列產生器(15)、一選取序列5 中不相同的LF個值以產生混沌位址序列6 {m„},之比較 器(1 6 )、以及一混沌位址序列記憶體(1 7); 13 1338845 該混沌訊號攪亂訊號產生器(2) ’包括一可輪入起 始點SPG和產生信號序列長度參數< =2 以產生 混沌信號值序列7 k}„=1,2,.x之混沌地圖2 ( 2 1 )、—現 沌信號值序列記憶體(2 2 )、一序號擷取器(2 3 )、 以及一組一維混沌攪亂信號序列記憶體(2 4 )。One-dimensional chaos stirs the sequence fork, „=1,2, v, which in turn produces a one-dimensional chaotic shuffling signal sequence. • When burning it into a hard body, it is mainly caused by a set of chaotic signals to disturb the address generator (1) And a set of chaotic signal scramble signal generators (2), wherein: the chaotic signal scrambles the address generator (1), including an input start point (%), interception parameters U, & And encrypt the ECG/EEG signal length and degree parameter 4 to generate chaotic sequence 1 kL - 123 chaotic map 1 (1 1 ), a chaotic sequence memory (1 2), a interceptable chaotic sequence 1 at the first +1 The following points are used to generate a chaotic sequence 2kU2, 3. The signal interceptor 1 (1 3 ), a interceptor chaotic sequence 2 is smaller than the point A to generate a chaotic sequence 3 kU2.3. The signal interceptor 2 (1 4), The chaotic sequence 3 can be reciprocated to generate the sequence 4 k} „=1, 2, 3..., and the sequence 4 is rounded off to generate an integer sequence 5 { „=, 23 integer sequence generator (15), one Select different LF values in sequence 5 to generate chaotic address sequence 6 {m„}, comparator (16), and a chaotic address sequence memory (1) 7); 13 1338845 The chaotic signal scramble signal generator (2) 'includes a wheel start point SPG and generates a signal sequence length parameter <=2 to generate a chaotic signal value sequence 7 k} „=1, 2, .x chaotic map 2 ( 2 1 ), the existing chaotic signal value sequence memory (2 2 ), a serial number picker (2 3 ), and a set of one-dimensional chaotic clutter signal sequence memory (2 4 ).

總結以上說明’本發明乃設計了 一個混沌視覺加密機 制應用於心電圖/腦電波圖整合混波生醫訊號之加密,由 模擬結果可知’藉由混沌理論的不可預測性質所設計的視 覺加费機制’加密效果相當優越。當輸入正確加密參數時 ’心電圖/腦電波圖生醫訊號可正確回復,當輸入起始值 有〇. 000001%誤差時,所解密的心電圖生醫訊號與腦電波生 醫訊號均嚴重失真變形,無法進行相關之醫事判讀,加密 效果相當良好。同時藉由調整加密參數,我們可以增加視 覺加密機制的強韌度或者是視覺加密的速度,達到即時加 密的目的,整體而言,卻有其實務上的利用價值,誠不失 為一優異之發明,爰依法提出專利申請。 【圖式簡單說明】 第1圖·係一維混 >也視覺加密架構圖。 第2圖:係混洗擾加密流程圖。 第3圖:係混沌洗牌加密流程圖。 第4圖:係本發明之硬體架構圖。 第5圖 第6圖 心電圖與腦波圖生醫訊號結合之混波訊號。 ==維料信號㈣機制和混繼 耒略的視見加密輪出信號。 845 845 1.331XUT32 )。 = 3.971x10-32 ) 0 所解密的心電圖 所解密的腦電波 第7 ’圖:回復的心電圖生醫訊號(= 楚 π 8圖:回復的腦電波圖生醫訊號(似记 $ 9圖:輸入起始值有0.000001%誤差時, 生醫訊號。 第 Ί 丄〇 :輸入起始值有0.000001%誤差時, 圖生醫訊號。 【主要 元件符號說明】 (I) 混沌訊號攪亂位址產生器 (II) 混沌地圖 (1 2)混沌序列記憶體 (13)信號截取器1 (1 4)信號截取器2 (1 5 )整數序列產生器 (1 6 )比較器 (1 7)混沌位址序列記憶體 (2 )混沌訊號攪亂訊號產生器 (21)混沌地圖 (2 2 )混沌信號值序列記憶體 (2 3 )序號擷取器 (2 4 ) 一維混沌攪亂信號序列記憶體 15Summarizing the above description, the present invention designs a chaotic visual encryption mechanism for the encryption of the electrocardiogram/brain wave map integrated mixed-wave medical signal. The simulation results show that the visual fee-adding mechanism is designed by the unpredictable nature of chaos theory. 'The encryption effect is quite good. When the correct encryption parameters are input, the electrocardiogram/brain wave map biomedical signal can be correctly recovered. When the input initial value has 〇1000001% error, the decrypted electrocardiogram biomedical signal and the brainwave biomedical signal are severely distorted. Unable to perform related medical interpretation, the encryption effect is quite good. At the same time, by adjusting the encryption parameters, we can increase the strength of the visual encryption mechanism or the speed of visual encryption to achieve the purpose of instant encryption. On the whole, it has the practical value of use, and it is an excellent invention.提出 Submit a patent application in accordance with the law. [Simple description of the diagram] Figure 1 is a one-dimensional hybrid > also visual encryption architecture diagram. Figure 2: Flowchart of the shuffling encryption. Figure 3: Flowchart of chaotic shuffling encryption. Figure 4 is a diagram showing the hardware architecture of the present invention. Fig. 5 Fig. 6 The mixed signal of the electrocardiogram combined with the brain wave map biomedical signal. ==Material signal (4) Mechanism and mixing The strategy of the encryption is rounded up. 845 845 1.331XUT32 ). = 3.971x10-32 ) 0 The brainwave that was decrypted by the decrypted ECG is 7': Recalling the ECG signal (= Chu π 8 Figure: Responding to the brain wave map of the doctor's signal (like the $9 figure: input When the starting value has an error of 0.000001%, the medical signal is generated. Dimensional 丄〇: When the input starting value has an error of 0.000001%, the figure is the medical signal. [Main component symbol description] (I) Chaotic signal scrambled address generator ( II) Chaotic map (1 2) Chaotic sequence memory (13) Signal interceptor 1 (1 4) Signal interceptor 2 (1 5 ) Integer sequence generator (1 6 ) Comparator (17) Chaotic address sequence memory Body (2) chaotic signal scramble signal generator (21) chaotic map (2 2 ) chaotic signal value sequence memory (2 3 ) serial number picker (2 4 ) one-dimensional chaotic messing signal sequence memory 15

Claims (1)

1338845 十、申請專利範圍: 1、一種心電圖/腦波圖混沌視覺加密方法,特別是 針對心電圖/腦電波圖等生醫醫療訊號在傳輸過程中之加 密保護而創設的加密機制’利用混沌理論產生一組無法為 駭客所破解之隨機序列與原始生醫訊號相攪亂,使得原始 的生醫訊號變得無法辨識達到視覺加密之效果者,而其加 密係由電腦程式依預設步驟所達成者;該電腦程式的加密 鲁 架構主要包括:一維混沌攪亂信號序列之產生、以及一維 混沌洗牌信號序列;其中: • 在一維混先攪亂信號序列之產生步驟如下; 步驟1 :選取混沌位址配置地圖(CMrF ),並輸入起始點 (% )、截取參數(〜、& )和加密ECG/EEG信 號長度參數4,產生混沌序列1 {xn}n=U3 ; 步驟2 :載取混沌序列1第〜+i之後的點,產生混、;屯序列 2 k 1=,,2,3..: # 步驟3 :截取混沌序列2小於冬的點,產生混沌序列3 {Zn )/1=1,2,3 ..' 步驟4 :將混沌序列3取倒數,產生序列4 ; 步驟5 ··將序列4四捨五入,產生整數序列5 (Ί23 ; 步驟6 :選取序列5中不相同的LF個值,產生混沌位址序 列 6 {wn 1=1,2,3...4. ’ 步驟7 :選取混沌信號值地圖並輸入起始點SPG和產生信 號序列長度參數=max{m丄=| 2 /f ,產生混池信號 值序列 7 kU.2: 1338845 步驟8 :藉由混沌位址序列6選取混沌信號值序列7,進 而產生一維混先攪亂信號序列^= 而在一維混沌洗牌信號序列的產生步驟如下: 步驟1 :選取混沌位址配置地圖(),並輸入起始點 (spf )、戴取參數(〜、今)和加密ECG/EEG信 號長度參數4,產生混沌序列1 hi23 ;1338845 X. Patent application scope: 1. An electrocardiogram/encephalogram chaotic visual encryption method, especially for the encryption mechanism created by the encryption protection of biomedical medical signals such as electrocardiogram/brain radiography in the transmission process' A random sequence that cannot be cracked by the hacker is disturbed by the original biomedical signal, so that the original biomedical signal becomes unrecognizable to achieve the effect of visual encryption, and the encryption is achieved by the computer program according to the preset steps. The encrypted architecture of the computer program mainly includes: generation of a one-dimensional chaotic messy signal sequence, and a one-dimensional chaotic shuffling signal sequence; wherein: • the steps of generating the first-order mixed chaotic signal sequence are as follows; Step 1: selecting chaos Address configuration map (CMrF), and enter the starting point (%), intercept parameters (~, &) and encrypt ECG/EEG signal length parameter 4, generate chaotic sequence 1 {xn}n=U3; Step 2: Take the point after the chaotic sequence 1 ~~i, and produce the mixture; 屯 sequence 2 k 1=,, 2,3..: # Step 3: intercept the chaotic sequence 2 is smaller than the winter point, and generate the chaotic sequence 3 {Zn )/1=1,2,3 ..' Step 4: Reciprocate chaotic sequence 3 to produce sequence 4; Step 5 · Round up sequence 4 to produce integer sequence 5 (Ί23; Step 6: Select sequence 5 The LF values are different, and the chaotic address sequence 6 {wn 1=1, 2, 3...4. ' Step 7: Select the chaotic signal value map and input the starting point SPG and generate the signal sequence length parameter = Max{m丄=| 2 /f , generating the mixed cell signal value sequence 7 kU.2: 1338845 Step 8: Selecting the chaotic signal value sequence 7 by the chaotic address sequence 6 to generate the one-dimensional mixed-spread signal sequence ^= The steps of generating the one-dimensional chaotic shuffling signal sequence are as follows: Step 1: Select the chaotic address configuration map (), and input the starting point (spf), wear the parameters (~, present), and encrypt the ECG/EEG signal length. Parameter 4, generating chaotic sequence 1 hi23; 步驟7 步驟2 :截取混洗序列1第〜+1之後的點,產生混洗序列 2 iV/i }n=l,2,3... 步驟3 :截取混沌序列2小於&的點,產生混沌序列3 ii=l,2,3…, 步驟4 :將混沌序列3取倒數,產生序列4 k匕23 ; 步驟5 :將序列4四捨五入’產生整數序列5 {wJn=l23 ; 步驟6 :選取序列5中不大於且不相同的LF個值,產生混 洗位址序列6kU,y ; .選取長度LF的心電圖生醫訊號£CGn 2 ^、並導入 一維混死攪亂序列\n=12 &,進而產生一維混沌洗 2、 如申請專利範圍第丨項所述之一種心電圖/腦波 圖混沌視覺加密方法,其所加密的媒體包括心電圖、腦波 圖與心電圖/腦電波圖等生醫訊號。 3、 一種心電圖/腦波圖混沌視覺加密裝置,特別是 針對心電圖/腦電波圖等生醫醫療訊號在傳輸過程令之加 17 1338845 密保護而創設的加密機制’利用混沌理論產生一組無法為 駭客所破解之隨機序列與原始生醫訊號相攪亂,使得原始 的生醫訊號變得無法辨識達到視覺加密之效果者,而其加 密係由一維混沌訊號攪亂器所達成者;其一維混沌訊號授 亂器係由一組混沌訊號攪亂位址產生器、以及一組混沌訊 號攪亂訊號產生器所組成,其中: 該混洗訊號授亂位址產生器,包括一可輸入起始點( I sp,)、截取參數、心)和加密ECG/EEG信號長度參數 心以產生混沌序列1 kLm.之混沌地圖1、一混沌序列記 • 憶體、一可裁取ί昆·;屯序列1第\ +1之後的點以產生混屯序 列2 k}„=l.2,3之信號截取器1、一可戴取混沌序列2小於〜 的點以產生混,;屯序列3 kjn=12 3之信號截取器2、一可將混 沌序列3取倒數以產生序列4 kU2,3 ,並將序列4四捨五 入以產生整數序列5卜上=|23整數序列產生器、一選取序列 5中不相同的LF個值以產生混沌位址序列6 {巧}„=1,2,3 A.之比 0 較器、以及一混沌位址序列記憶體; 該混沌訊號攪亂訊號產生器,乃包括一可輸入起始點 SPG和產生信號序列長度參數< =maxK}n=i2 i 以產生混沌 信號值序列7 kt,.2....<之混沌地圖2、一混沌信號值序列 記憶體、一序號擷取器、以及一組一維混沌攪亂信號序列 記憶體。 4、如申請專利範圍第3項所述之一種心電圖/腦波 圖混洗視覺加密裝置,其所加密的媒體包括心電圖、腦波 圖與心電圖/腦電波圖等生醫訊號。Step 7 Step 2: Intercept the point after the +1 sequence of the shuffling sequence 1 to generate the shuffling sequence 2 iV/i }n=l, 2, 3... Step 3: Intercept the point where the chaotic sequence 2 is smaller than & Generate chaotic sequence 3 ii=l,2,3..., step 4: reciprocate chaotic sequence 3 to produce sequence 4 k匕23; Step 5: round up sequence 4 to produce integer sequence 5 {wJn=l23; Step 6: Select the LF values in sequence 5 that are not greater than and different from each other, and generate a shuffling address sequence of 6kU, y; select the ECG of the length LF to generate the medical signal £CGn 2 ^, and import the one-dimensional mixed-use chaotic sequence\n=12 &, and then generate a one-dimensional chaotic wash 2, as described in the scope of the patent application, an electrocardiogram / brain wave map chaotic visual encryption method, the encrypted medium includes electrocardiogram, brain wave map and electrocardiogram / brain wave map, etc. Health doctor signal. 3, an electrocardiogram / brain wave map chaotic visual encryption device, especially for the electrocardiogram / brain wave map and other biomedical medical signals in the transmission process to add 17 1338845 secret protection created by the encryption mechanism 'utilization of chaos theory to generate a group can not be The random sequence cracked by the hacker is disturbed by the original biomedical signal, so that the original biomedical signal becomes unrecognizable to achieve the effect of visual encryption, and the encryption is achieved by the one-dimensional chaotic signal scrambler; The chaotic signal messenger is composed of a set of chaotic signal scrambled address generators and a set of chaotic signal scrambled signal generators, wherein: the shuffle signal excavation address generator includes an input start point ( I sp,), intercept parameter, heart) and encrypt ECG/EEG signal length parameter to generate chaotic sequence 1 kLm. chaotic map 1, a chaotic sequence record, remember body, one can be cut ί 昆 · 屯 sequence 1 The point after the first +1 to generate the mixed sequence 2 k} „=l.2, 3 of the signal interceptor 1, a point that can take the chaotic sequence 2 less than ~ to produce a mixture; 屯 sequence 3 kjn=12 3 signal interceptor 2 First, the chaotic sequence 3 can be reciprocated to generate the sequence 4 kU2,3, and the sequence 4 is rounded off to generate an integer sequence 5 ==23 integer sequence generator, and a different LF value in the sequence 5 is selected to generate Chaotic address sequence 6 {巧} „=1, 2, 3 A. ratio 0 comparator, and a chaotic address sequence memory; the chaotic signal scramble signal generator includes an input start point SPG and Generating a signal sequence length parameter <=maxK}n=i2 i to generate a chaotic signal value sequence 7 kt, .2....< chaotic map 2, a chaotic signal value sequence memory, a serial number picker, And a set of one-dimensional chaotic messing signal sequence memory. 4. An electrocardiogram/encephalogram hybrid visual encryption device according to claim 3, wherein the encrypted medium comprises an electrocardiogram, an electroencephalogram, an electrocardiogram/brain wave map and the like.
TW95141714A 2006-11-10 2006-11-10 Chaos-based visual encryption mechanism TW200821864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95141714A TW200821864A (en) 2006-11-10 2006-11-10 Chaos-based visual encryption mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95141714A TW200821864A (en) 2006-11-10 2006-11-10 Chaos-based visual encryption mechanism

Publications (2)

Publication Number Publication Date
TW200821864A TW200821864A (en) 2008-05-16
TWI338845B true TWI338845B (en) 2011-03-11

Family

ID=44770638

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95141714A TW200821864A (en) 2006-11-10 2006-11-10 Chaos-based visual encryption mechanism

Country Status (1)

Country Link
TW (1) TW200821864A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI550427B (en) * 2015-04-23 2016-09-21 Jin-Feng Lin A single - channel brainwave signal empirical modal disassembly / chaotic visual reinforcement method
CN106963360A (en) * 2017-03-06 2017-07-21 四川大学 A kind of eigenmatrix design method recognized for electrocardio

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109143891B (en) * 2018-09-04 2021-08-10 青岛科技大学 Method for remotely controlling and measuring bioelectric signals of biological robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI550427B (en) * 2015-04-23 2016-09-21 Jin-Feng Lin A single - channel brainwave signal empirical modal disassembly / chaotic visual reinforcement method
CN106963360A (en) * 2017-03-06 2017-07-21 四川大学 A kind of eigenmatrix design method recognized for electrocardio

Also Published As

Publication number Publication date
TW200821864A (en) 2008-05-16

Similar Documents

Publication Publication Date Title
Ding et al. DeepKeyGen: a deep learning-based stream cipher generator for medical image encryption and decryption
Hua et al. Image encryption using Josephus problem and filtering diffusion
Hua et al. Medical image encryption using high-speed scrambling and pixel adaptive diffusion
Chai et al. TPE-GAN: Thumbnail preserving encryption based on GAN with key
Shankar et al. RGB-based secure share creation in visual cryptography using optimal elliptic curve cryptography technique
Hu et al. A pixel-based scrambling scheme for digital medical images protection
CN110086601A (en) Based on the associated Josephus traversing of pixel value and hyperchaotic system image encryption method
KR101324351B1 (en) Method for generating a cipher-based message authentication code
CN106296561B (en) Image encryption method and device, decryption method and device based on hyperchaotic system
Iqbal et al. DNA strands level scrambling based color image encryption scheme
CN105956991B (en) Resume image based on dynamic DNA encoding and double chaotic maps
CN107196760A (en) Syndrome with adjustable reconstructs the sequential encryption method of key at random
TWI338845B (en)
CN110535624A (en) A kind of medical image method for secret protection applied to DICOM format
Dagadu et al. Chaotic medical image encryption based on Arnold transformation and pseudorandomly enhanced logistic map
CN114389788B (en) Image encryption algorithm with mixed chaos and block scrambling
Krishna et al. Evolvable hardware-based data security system using image steganography through dynamic partial reconfiguration
JP5115930B2 (en) An image information encryption method, an image information encryption device, and a computer program for image encryption.
Liu et al. Mutil-medical image encryption by a new spatiotemporal chaos model and DNA new computing for information security
CN107453866A (en) A kind of method that data are encrypted
CN113992810A (en) Agile image encryption method based on deep learning
TWM339162U (en) Chaos encryption device based on different degrees of mobile healthcare
CN115732097A (en) Traditional Chinese medicine acupuncture information consensus identification system of block chain
CN109255748A (en) Digital watermark treatment method and system based on dual-tree complex wavelet
Maniyath et al. A novel DNA based encryption algorithm for multimedia information

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees