TWI338160B - Polarizer and method for making same - Google Patents
Polarizer and method for making same Download PDFInfo
- Publication number
- TWI338160B TWI338160B TW96112603A TW96112603A TWI338160B TW I338160 B TWI338160 B TW I338160B TW 96112603 A TW96112603 A TW 96112603A TW 96112603 A TW96112603 A TW 96112603A TW I338160 B TWI338160 B TW I338160B
- Authority
- TW
- Taiwan
- Prior art keywords
- carbon nanotube
- film
- polarizing element
- carbon
- nanotube film
- Prior art date
Links
Landscapes
- Polarising Elements (AREA)
Description
13,38160 099年12月08日修正替換頁 六、發明說明: 【發明所屬之技術領域】 ‘ [0001] 本發明涉及一種光學器件及其製備方法,尤其涉及一種 偏光元件及其製備方法。 【先前技術】13,38160 Revision of the page on December 8, 099. Description of the Invention: [Technical Field] [0001] The present invention relates to an optical device and a method of fabricating the same, and more particularly to a polarizing element and a method of fabricating the same. [Prior Art]
[0002] 偏光元件係一種重要之光學器件,被廣泛應用於太陽鏡 與液晶顯示器中。先前廣泛應用之一種偏光元件,可吸 收一個偏振態之光,而另一偏振態之光則通過偏光元件 。此種偏光元件通常採用這樣一種方法制得:將二向色 性分子溶于或吸收在高分子物質中,如聚乙烯醇,並將 所得薄膜以一個方向拉伸配列二向色性分子。這時,二 向色性分子沿著拉伸方向有規則排列起來,形成一條長 鏈。在入射光波中,光振動方向平行於長鏈方向之光被 吸收,垂直於長鏈方向之光能透過,所以透射光成為線 偏振光。此種偏光元件也可以通過將二向色性分子吸收 在單軸拉伸之聚合物膜上之方法來生產。[0002] Polarizing elements are an important optical device and are widely used in sunglasses and liquid crystal displays. A polarizing element that has been widely used in the past absorbs light of one polarization state, and light of the other polarization state passes through the polarizing element. Such a polarizing element is usually produced by dissolving or absorbing a dichroic molecule in a polymer material such as polyvinyl alcohol, and stretching the resulting film in one direction to form a dichroic molecule. At this time, the dichroic molecules are regularly arranged along the stretching direction to form a long chain. In the incident light wave, light having a direction of light vibration parallel to the long-chain direction is absorbed, and light perpendicular to the long-chain direction is transmitted, so that the transmitted light becomes linearly polarized light. Such a polarizing element can also be produced by a method of absorbing a dichroic molecule on a uniaxially stretched polymer film.
[0003] 由於此種偏光元件之製造需要將二向色性分子結合高分 子聚合物作為偏光膜,製備過程較為複雜。而應用高分 子聚合物作為偏光膜之偏光元件於50°C以上使用一段時 間後,偏光膜之偏光率減少,甚至失去偏光作用。而且 此類偏光元件對濕度要求也較高,一旦工作環境惡劣, 濕度大,偏光元件將失去偏光作用。 [0004] 另,先前之偏光元件一般只對某一波段之電磁波(如微 波、紅外光、可見光、紫外光等)具有良好之偏振性能 ,無法對各種波長之電磁波有均一之偏振吸收特性。 096112603 表單編號A0101 第3頁/共17頁 0993439638-0 1338160 [0005] [0006] L〇99年12月08日修正替換頁 繁於此,提供-種對各種波長之電磁波均具有良好之 偏振性能之偏光元件.及其製備方法實為必要。 【發明内容】 “偏光το件’其包括—切體與—由切體支擇之偏 光膜,其中’該偏光膜包括至少_奈米碳管薄膜,該偏 光膜中奈米碳管均沿同-方向定向排列。 剛豸奈米碳管薄膜之層數大於等於1〇層。 闺該奈米碳管薄膜之厚度為0.0卜100微米。 闺該奈米碳管_為多個首尾相連之奈米碳管束以擇優取 向排列形成之薄膜結構。 [0010]該支撐體為固定框架或透明基板。 _1]-種偏光元件之製備方法,其包括以下步驟:提供一支 律體’提供至少-層奈求碳管薄臈’該奈米碳管薄膜中 奈米碳管均沿同-方向排列;以及將上述奈米破管薄膜 粘附固定於上述支撐體形成偏光元件。 剛進-步將多層奈米碳管薄膜沿相同方向重疊軸附固定 于支撐體形成偏光元件,該偏光元件中奈米碳管均沿同 一方向排列。 [0013]上述奈米碳管薄膜之製備方法包括以下步驟:提供一奈 米碳管陣列;從上述奈米碳管陣列中選定一定寬度之多 個奈米碳管束;以及以一定速度沿基本垂直于奈米碳管 陣列生長方向拉伸該多個奈米碳管束,以形成一連續之 奈米碟管薄臈。 096112603 表單编號A0101 第4頁/共17頁 0993439638-0 1338160 [0014] [0015][0003] Since the fabrication of such a polarizing element requires the use of a dichroic molecule in combination with a high molecular polymer as a polarizing film, the preparation process is complicated. When a polarizing element using a high molecular polymer as a polarizing film is used at a temperature of 50 ° C or more for a period of time, the polarizing ratio of the polarizing film is reduced, and even the polarizing effect is lost. Moreover, such polarizing elements have high requirements on humidity. Once the working environment is bad and the humidity is high, the polarizing element will lose its polarizing effect. [0004] In addition, the prior polarizing elements generally have good polarization properties only for electromagnetic waves of a certain wavelength band (such as microwave, infrared light, visible light, ultraviolet light, etc.), and have no uniform polarization absorption characteristics for electromagnetic waves of various wavelengths. 096112603 Form No. A0101 Page 3 of 17 0993439638-0 1338160 [0005] [0006] L〇 December 08, revised replacement page is hereby provided, providing a good polarization performance for electromagnetic waves of various wavelengths The polarizing element and its preparation method are really necessary. SUMMARY OF THE INVENTION [Positioning light τ ο </ RTI> includes a -cut body and a polarizing film selected by a cut body, wherein 'the polarizing film includes at least a carbon nanotube film, and the carbon nanotubes in the polarizing film are all along - Directional alignment. The number of layers of the carbon nanotube film is greater than or equal to 1 。 layer. The thickness of the carbon nanotube film is 0.0 b 100 μm. 闺 The carbon nanotube _ is a plurality of end-to-end The carbon nanotube bundle is arranged in a preferred orientation to form a film structure. [0010] The support is a fixed frame or a transparent substrate. _1] A method for preparing a polarizing element, comprising the steps of: providing a law body to provide at least a layer In the carbon nanotube film, the carbon nanotubes are arranged in the same direction; and the nanotube film is adhered and fixed to the support to form a polarizing element. The carbon nanotube film is attached to the support body in the same direction and is fixed to the support body to form a polarizing element, wherein the carbon nanotubes are arranged in the same direction. [0013] The method for preparing the above carbon nanotube film comprises the following steps: One carbon carbon array Selecting a plurality of carbon nanotube bundles of a certain width from the array of carbon nanotubes; and stretching the plurality of carbon nanotube bundles at a speed substantially perpendicular to the growth direction of the carbon nanotube array to form a continuous Nano disk tube 臈 096112603 Form number A0101 Page 4 / Total 17 page 0993439638-0 1338160 [0015]
099年12月08日後正替换WReplacement W after December 08, 099
[0016] [0017] [0018][0018] [0018]
[0019] [0020] 上述奈米碳管陣列之製備方法包括以下步驟:提供一平 整基底;在基底表面均勾形成催化削層;將上述形成 有催化劑層之基底在700J90(rc之空氣中退火分鐘 ~90分鐘;以及將處理過之基底置於反應爐中在保護氣 體環境下加熱到500〜74(TC,然後通入碳源氣反應約 5〜30分鐘,生長得到高度為2〇〇〜4〇〇微米之奈米碳管陣 列。 進一步包括用有機溶劑處理該偏光元件中之奈米碳管薄 膜。 上述使用有機溶劑處理奈米碳管薄膜之方法包括通過試 管將有機溶劑滴落在奈米碳管薄膜表面浸潤整個奈米碳 管溥膜,或將上述形成有奈米碳管薄膜之支撑體整個浸 入盛有有機溶劑之容器中浸潤。 上述有機溶劑為乙醇 '甲醇、丙酮、二氣乙烷或氣仿。 相較於先前技術,所述之偏光元件採用多層奈米碳管薄 膜作為偏振獏,由於奈米碳管具有高溫之熱穩定性,對 於各種波長之電磁波有均一之吸收特性,故本發明之偏 光元件對於各種波長之電磁波有均一之偏振吸收性能, 具有廣泛之應用範圍。 【實施方式】 以下將結合附圖對本發明作進一步之詳細說明。 請參閱圖1,本發明提供一種偏光元件1〇,該偏光元件1〇 包括一支撐體12與一由支撐體12支撐之奈米碳管薄骐丄4 。該支撐體12可為一固定框架或一透明基板。該奈米碳 096112603 表單編珑Α0ΗΗ 第5頁/共17頁 0993439638-0 1338160 099年 12月 〇8 日 1 管薄膜14直接粘附於固定框架外框或透明基板表面作為 偏光膜。該奈米碳管‘薄膜14可為一層或堆疊之多層薄犋 結構。每層奈米碳管薄膜14為多個首尾相連之奈米碳管 束以擇優取向排列形成之薄膜結構。當該奈米碳管薄膜 14為多層時,該奈米碳管薄膜丨4中奈米碳管束基本沿同 一方向定向排列。 [0021] 本發明實施例中該奈米碳管薄膜14之寬度可為卜1〇厘米 ,該奈米碳管薄膜14之厚度為〇.〇ι〜100微米。本發明實 施例偏光元件10之偏振吸收性能與奈米碳管薄膜14之層 數有關,奈米碳管薄膜14層數越多,該偏光元件1〇之偏 振性能越好。 [0022] 由於奈米碳管對電磁波之吸收接近絕對黑體,奈米碳管 對於各種波長之電磁波均有均一之吸收特性,故本發明 之偏光元件10對於各種波長之電磁波也有均一之偏振吸 收性能。當光波入射時,振動方向平行于奈米碳管束長 度方向之光被吸收,垂直于奈米碳管束長度方向之光能 透過,所以透射光成為線偏振光。 [0023] 請參閱圖2,本發明實施例偏光元件1〇之製備方法主要包 括以下幾個步驟: [0024] 步驟一:提供一奈米碳管陣列,優選地,該陣列為超順 排奈米碳管陣列。 [0025] 本實施例中,超順排奈米碳管陣列之製備方法採用化學 氣相沉積法,其具體步驟包括:(a)提供—平整基底, 該基底可選用P型或N型矽基底,或選用形成有氧化層之 096112603 表單編號A0101 第6頁/共17頁 0993439638-0 1338.160 099年12月08日後正替換頁 矽基底’本實施例優選為採用4英寸之矽基底;(b)在 基底表面均勻形成一催化劑層·,該催化劑層材料可選用 鐵(Fe)、鈷(Co)、鎳(Ni)或其任意組合之合金乂 一;(c)將上述形成有催化劑層之基底在70〇〜9〇〇°C2 空氣令退火約30分鐘~90分鐘;(d)將處理過之基底置 於反應爐中’在保護氣體環境下加熱到5〇〇〜740°C,然後 通入碳源氣體反應約5〜3 0分鐘,生長得到超順排奈米碳 管陣列,其尚度為2 0 0 ~ 4 0 0微米。該超順排奈米破管陣列 為多個彼此平行且垂直於基底生長之奈米碳管形成之純 奈米碳管陣列。通過上述控制生長條件,該超順排奈米 碳管陣列中基本不含有雜質,如無定型碳或殘留之催化 劑金屬顆粒等。該奈米碳管陣列中之奈米碳管彼此通過 凡德瓦爾力緊密接觸形成陣列。 [0026] 本實施例中碳源氣可選用乙炔等化學性質較活潑之碳氣 化合物,保護氣體可選用氮氣、氨氣或惰性氣體。 [0027] 步驟二:採用一拉伸工具從奈米碳管陣列中拉取獲得至 少一奈米碳管薄膜。該奈米碳管薄膜之製備具體包括以 下步驟.(a)從上述奈米碳管陣列中選定一定寬度之多 個奈米碳管片斷,本實施例優選為採用具有一定寬度之 膠帶接觸奈米碳管陣列以選定一定寬度之多個奈米碳管 束;(b)以一定速度沿基本垂直于奈米碳管陣列生長方 向拉伸多個該奈米碳管束,以形成一連續之奈米碳管薄 膜。 ‘ [0028] 096112603 在上述拉伸過程中,該多個奈米碳管束在拉力作用下沪 拉伸方向逐漸脫離基底之同時,由於凡得瓦力作用,兮 .表單編號A0101 第7頁/共17頁 0993439638-0 1338160 099年12月08日修正替换頁 [0029] [0030] [0031] [0032] 選定之多個奈米碳管束分別與其他奈米碳管束首尾相連 地連續地被拉出,從而形成一奈米碳管薄膜。該奈米碳 官薄膜為擇優取向排列之多個奈米碳管束首尾相連形成 之具有一定寬度之奈米碳管薄膜。該奈米碳管薄膜中奈 米碳官之排列方向基本平行于奈米碳管薄膜之拉伸方向 〇 本實施例中,該奈米碳管薄膜之寬度與奈米碳管陣列所 生長之基底之尺寸有關,該奈米碳管薄膜之長度不限, 可根據實際需求制得。本實施例中採用4英寸之基底生長 超順排奈米碳管陣列,該奈米碳管薄膜之寬度可為卜1〇 厘米,該奈米碳管薄膜之厚度為〇叭〜丨⑽微米。 V驟—.提供一支撐體,將上述奈米碳管薄膜沿預定方 向粘附固定於支撐體,從而得到偏光元件。 本實施例中,該支撐體可為—方形之金屬固定框架,用 於固定奈米碳管薄膜,其材質不限,固定框架外之多餘 之奈米碳管薄膜可直接去除。 由於本實施例步驟-中提供之超順排奈米碳管陣列中之 2米碳管非常純淨,且由於奈米碳管本身之比表面積非 常大,所以該奈米碳管薄膜本身具有較強之粘性。步驟 =中該奈米破管薄膜可利用其本身之祕直接_於固 疋框架’使該奈求碳管薄膜之四周通過固定框架固定, 該奈米碳管薄膜之中間部分懸空。 本實施例t,該支撑體也可為—透明基板4述第一奈 米碳管薄獏可直接黏附於透明基板表面。 096112603 表單編號A0101 苐8頁/共17頁 0993439638-0 [0033] 1338.165 _ 099年12月08日俊正替換頁 [0034] 本技術領域技術人員應明白,該支撐體之大小可依據實 際需求確定,當支撐體之寬度·大於上述奈米碳管薄膜之 寬度時,可將多個上述奈米碳管薄膜無間隙地並排覆蓋 並粘附在支撐體上。 [0035] 可以理解,步驟三中,可將多層奈米碳管薄膜沿相同之 方向钻附固定於上述支撐體得到偏先元件。 [0036] 該多層纟米碳f薄膜之間由於凡得瓦力緊密連接形成穩 定之多層奈米碳管薄膜結構。該奈米碳管薄膜之層數不 • 限,具體可依據實際需求製備。 闺料,上賴得之偏先元件可進—步❹錢溶劑處理 偏光元件中之奈米碳管薄膜, [0038]彳通過試管將有機溶劑滴落在奈米碳管薄膜表面浸润整 個奈米碳管_ ’或者’也可將上述形成有奈米碳管薄 膜之固定框架整個浸入盛有有機溶劑之容器中浸潤。該 有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙_、二 • 氣乙烷或氣仿,本實施例中優選採用乙醇。該奈米碳管 薄膜經有機溶劑浸潤處理後,在揮發性有機溶劑之表2 張力之作用下,奈米碳管薄膜中之平行之奈米碳管束會 部分裝集,因此,處理後之該奈米碳管薄膜表面趙積二 小,無粘性,且具有良好之機械強度及韌性。處理後之 偏光元件能更方便地應用於宏觀領域。 闕請參閱圖3及圖4 ’為本發明實施例偏光元件使用有機溶 劑處理前後之掃描電子顯微鏡照片(SEM)對比示音圖。偏 光疋件之奈米碳管薄膜中奈米峻管均定向排列相鄰奈 096丨丨2603[0020] The preparation method of the above carbon nanotube array comprises the steps of: providing a flat substrate; forming a catalytic layer on the surface of the substrate; and annealing the substrate on which the catalyst layer is formed in an air of 700 J90 (rc) Minutes~90 minutes; and the treated substrate is placed in a reaction furnace and heated to 500~74 (TC in a protective gas atmosphere, and then reacted with carbon source gas for about 5 to 30 minutes, and the growth height is 2〇〇~ 4 〇〇 micron carbon nanotube array. Further comprising treating the carbon nanotube film in the polarizing element with an organic solvent. The method for treating the carbon nanotube film by using the organic solvent comprises dropping an organic solvent into the naphthalene through a test tube. The surface of the carbon nanotube film is infiltrated with the entire carbon nanotube film, or the support formed with the carbon nanotube film is immersed in a container containing an organic solvent. The above organic solvent is ethanol 'methanol, acetone, two gases. Ethane or gas imitation. Compared with the prior art, the polarizing element adopts a multi-layered carbon nanotube film as a polarization enthalpy, and since the carbon nanotube has high temperature thermal stability, The electromagnetic wave of various wavelengths has a uniform absorption characteristic, so that the polarizing element of the present invention has uniform polarization absorption performance for electromagnetic waves of various wavelengths, and has a wide range of applications. [Embodiment] Hereinafter, the present invention will be further described in detail with reference to the accompanying drawings. Referring to FIG. 1, the present invention provides a polarizing element 1A, which comprises a support body 12 and a carbon nanotube thinner 4 supported by the support body 12. The support body 12 can be fixed. Frame or a transparent substrate. The carbon carbon 096112603 Form Compilation 0ΗΗ Page 5 / Total 17 Page 0993439638-0 1338160 099 December 〇 8 1 The film 14 is directly adhered to the frame of the fixed frame or the surface of the transparent substrate The polarizing film. The carbon nanotube film 14 can be a layer or a stacked multi-layered thin crucible structure. Each layer of the carbon nanotube film 14 is a film structure in which a plurality of end-to-end carbon nanotube bundles are arranged in a preferential orientation. When the carbon nanotube film 14 is a plurality of layers, the carbon nanotube bundles in the carbon nanotube film 丨4 are aligned substantially in the same direction. [0021] The nanometer in the embodiment of the invention The width of the tube film 14 may be 1 〇 cm, and the thickness of the carbon nanotube film 14 is 〇. 〇1 to 100 μm. The polarization absorption property of the polarizing element 10 of the embodiment of the present invention and the layer of the carbon nanotube film 14 According to the number, the more the number of layers of the carbon nanotube film 14 is, the better the polarization performance of the polarizing element is. [0022] Since the absorption of electromagnetic waves by the carbon nanotubes is close to the absolute black body, the carbon nanotubes are electromagnetic waves for various wavelengths. The polarizing element 10 of the present invention has a uniform polarization absorption performance for electromagnetic waves of various wavelengths. When the light wave is incident, the light whose direction of vibration is parallel to the length of the carbon nanotube bundle is absorbed, perpendicular to the nanometer. The light in the longitudinal direction of the carbon tube bundle is transmitted, so that the transmitted light becomes linearly polarized light. [0023] Please refer to FIG. 2, the method for preparing the polarizing element 1 of the embodiment of the present invention mainly includes the following steps: [0024] Step 1: providing a carbon nanotube array, preferably, the array is super-shun Carbon tube array. [0025] In this embodiment, the method for preparing the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, and the substrate may be a P-type or N-type germanium substrate. Or 096112603 formed with an oxide layer Form No. A0101 Page 6 / 17 pages 0993439638-0 1338.160 After December 08, 099, the page is replaced. The substrate is preferably a 4-inch substrate; (b) A catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni) or any combination thereof; (c) the substrate on which the catalyst layer is formed. Annealing at 70〇~9〇〇°C2 for about 30 minutes to 90 minutes; (d) placing the treated substrate in a reaction furnace, heating to 5〇〇~740°C in a protective gas atmosphere, and then passing The carbon source gas is reacted for about 5 to 30 minutes, and a super-sequential carbon nanotube array is grown, and the degree is from 200 to 400 μm. The super-sequential nanotube array is a plurality of pure carbon nanotube arrays formed of carbon nanotubes that are parallel to each other and perpendicular to the substrate. The super-sequential carbon nanotube array is substantially free of impurities such as amorphous carbon or residual catalyst metal particles by the above controlled growth conditions. The carbon nanotubes in the array of carbon nanotubes are in close contact with each other to form an array by van der Waals force. [0026] In the embodiment, the carbon source gas may be a carbonaceous compound having a relatively chemical nature such as acetylene, and the shielding gas may be nitrogen, ammonia or an inert gas. [0027] Step 2: using a stretching tool to extract at least one carbon nanotube film from the carbon nanotube array. The preparation of the carbon nanotube film specifically includes the following steps: (a) selecting a plurality of carbon nanotube segments of a certain width from the carbon nanotube array, and the embodiment preferably uses a tape having a certain width to contact the nanometer. The carbon tube array selects a plurality of carbon nanotube bundles of a certain width; (b) stretching the plurality of carbon nanotube bundles at a constant speed along a growth direction substantially perpendicular to the carbon nanotube array growth to form a continuous nanocarbon bundle Tube film. [0028] 096112603 In the above stretching process, the plurality of carbon nanotube bundles are gradually separated from the substrate by the tensile force, and due to the effect of van der Waals, 表单. Form No. A0101 Page 7 / Total 17 pages 0993439638-0 1338160 Modified on December 8, 2008, the replacement page [0029] [0032] [0032] The selected plurality of carbon nanotube bundles are continuously pulled out end to end with other carbon nanotube bundles Thereby forming a carbon nanotube film. The nano carbon film is a carbon nanotube film having a certain width formed by connecting a plurality of carbon nanotube bundles arranged in a preferred orientation. The alignment direction of the carbon nanotubes in the carbon nanotube film is substantially parallel to the stretching direction of the carbon nanotube film. In the present embodiment, the width of the carbon nanotube film and the substrate grown by the carbon nanotube array are The size of the carbon nanotube film is not limited and can be obtained according to actual needs. In this embodiment, a 4-inch substrate is used to grow a super-sequential carbon nanotube array. The width of the carbon nanotube film can be 1 厘米 cm, and the thickness of the carbon nanotube film is 丨 丨 丨 (10) μm. V--providing a support body, the above-mentioned carbon nanotube film is adhered and fixed to the support in a predetermined direction, thereby obtaining a polarizing element. In this embodiment, the support body may be a square metal fixing frame for fixing the carbon nanotube film, the material of which is not limited, and the excess carbon nanotube film outside the fixed frame can be directly removed. Since the 2 meter carbon tube in the super-sequential carbon nanotube array provided in the step of the present embodiment is very pure, and since the specific surface area of the carbon nanotube itself is very large, the carbon nanotube film itself is strong. Sticky. Step = The nanotube film can be fixed by its own secret directly to the solid frame, and the periphery of the carbon nanotube film is fixed by a fixing frame, and the middle portion of the carbon nanotube film is suspended. In this embodiment t, the support body may also be a transparent substrate. The first carbon nanotube thin layer may be directly adhered to the surface of the transparent substrate. 096112603 Form No. A0101 苐8 pages/Total 17 pages 0993439638-0 [0033] 1338.165 _ December 08, 2017, the replacement page [0034] Those skilled in the art should understand that the size of the support can be determined according to actual needs. When the width of the support body is larger than the width of the above-mentioned carbon nanotube film, a plurality of the above-mentioned carbon nanotube films may be covered side by side without gaps and adhered to the support. [0035] It can be understood that in the third step, the multilayered carbon nanotube film can be drilled and fixed to the support body in the same direction to obtain a biasing element. [0036] The multi-layered nano-carbon carbon film is tightly connected by van der Waals to form a stable multi-layered carbon nanotube film structure. The number of layers of the carbon nanotube film is not limited, and can be prepared according to actual needs. In the first step, the first component can be used to process the carbon nanotube film in the polarizing element. [0038] The organic solvent is dropped on the surface of the carbon nanotube film through the test tube to infiltrate the whole nanometer. The carbon tube _ 'or ' can also be immersed in the above-mentioned fixed frame in which the carbon nanotube film is formed, and immersed in a container containing an organic solvent. The organic solvent is a volatile organic solvent such as ethanol, methanol, propane, dioxin or gas, and ethanol is preferably used in this embodiment. After the carbon nanotube film is infiltrated by an organic solvent, the parallel carbon nanotube bundles in the carbon nanotube film are partially assembled under the action of the tension of the volatile organic solvent, and therefore, after treatment, The surface of the carbon nanotube film is small, non-viscous, and has good mechanical strength and toughness. The processed polarizing element can be more conveniently applied to the macroscopic field. 3 and FIG. 4' is a scanning electron micrograph (SEM) contrast diagram of the polarizing element before and after treatment with an organic solvent in the embodiment of the present invention. The nanotubes in the polarized carbon nanotube film are oriented adjacent to each other. 096丨丨2603
表單編號A010J 第9頁/共17頁 0993439638-0 1338160 099年1·2月08日修正替換頁 米碳管薄膜之間通過凡得瓦力結合。進一步地,將上述 獲得之偏光元件中之奈米碳管薄膜使用有機溶劑處理後 ,在表面張力之作用下,處理後之該奈米碳管薄膜中之 奈米碳管聚集成束。處理後之該奈米碳管薄膜表面體積 比小,無粘性,且具有良好之機械強度及韌性,因此能 更方便地應用於宏觀領域。 [0040] 請參閱圖5,本發明偏光元件分別採用2層、5層、10層、 20層與30層奈米碳管薄膜作為偏振膜,由於奈米碳管對 於各種波長之電磁波均有均一之吸收特性,故本發明之 偏光元件對於各種波長之電磁波也有均一之偏振吸收性 能。同時,從圖5中可明顯看Β,當奈米碳營薄膜層數較 少時,該偏光元件在紫外波段會有較好之偏振性能,當 偏光元件中奈米碳管薄膜之層數越多,偏光元件之偏振 度越高,可在各個波段均具有良好之偏振性能。 [0041] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0042] 圖1係本發明實施例偏光元件之結構示意圖。 [0043] 圖2係本發明實施例偏光元件之製備方法之流程圖。 [0044] 圖3係本發明實施例有機溶劑處理前之偏光元件之掃描電 鏡照片。 096112603 表單編號Α0101 第10頁/共17頁 0993439638-0 I33S160 099年12月08日俊正替換頁 [0045] 圖4係本發明實施例有機溶劑處理後之偏光元件之掃描電 鏡照片。 [0046] 圖5係本發明實施例採用不同層數之奈米碳管薄膜之偏光 元件在各波長下之偏振度對比示意圖。 【主要元件符號說明】 [0047] 偏光元件10支撐體12 [0048] 奈米碳管薄膜1 4Form No. A010J Page 9 of 17 0993439638-0 1338160 Correction and Replacement Page of January 1st, 2008. The carbon nanotube film is combined by van der Waals force. Further, after the carbon nanotube film in the polarizing element obtained above is treated with an organic solvent, the carbon nanotubes in the treated carbon nanotube film are aggregated into a bundle under the action of surface tension. The treated carbon nanotube film has a small surface volume ratio, is non-tacky, and has good mechanical strength and toughness, so that it can be more conveniently applied to a macroscopic field. [0040] Referring to FIG. 5, the polarizing element of the present invention uses two layers, five layers, ten layers, 20 layers, and 30 layers of carbon nanotube film as polarizing films, respectively, because the carbon nanotubes have uniform electromagnetic waves for various wavelengths. Since the absorption characteristics are such that the polarizing element of the present invention has uniform polarization absorption properties for electromagnetic waves of various wavelengths. At the same time, it can be clearly seen from Fig. 5 that when the number of nanocarbon film layers is small, the polarizing element has better polarization performance in the ultraviolet band, and the number of layers of the carbon nanotube film in the polarizing element is higher. Many, the higher the degree of polarization of the polarizing element, the better the polarization performance in each band. [0041] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0042] FIG. 1 is a schematic structural view of a polarizing element according to an embodiment of the present invention. 2 is a flow chart of a method for preparing a polarizing element according to an embodiment of the present invention. 3 is a scanning electron micrograph of a polarizing element before organic solvent treatment according to an embodiment of the present invention. 096112603 Form No. Α0101 Page 10 of 17 0993439638-0 I33S160 December 08, 2008, the replacement page [0045] FIG. 4 is a scanning electron micrograph of the polarizing element after the organic solvent treatment of the embodiment of the present invention. 5 is a schematic view showing the comparison of polarization degrees of polarizing elements of different layers of carbon nanotube films at respective wavelengths according to an embodiment of the present invention. [Main component symbol description] [0047] Polarizing element 10 support 12 [0048] Nano carbon nanotube film 1 4
096112603 表單編號A0101 第11頁/共17頁 0993439638-0096112603 Form No. A0101 Page 11 of 17 0993439638-0
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96112603A TWI338160B (en) | 2007-04-10 | 2007-04-10 | Polarizer and method for making same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96112603A TWI338160B (en) | 2007-04-10 | 2007-04-10 | Polarizer and method for making same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200841052A TW200841052A (en) | 2008-10-16 |
TWI338160B true TWI338160B (en) | 2011-03-01 |
Family
ID=44821409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW96112603A TWI338160B (en) | 2007-04-10 | 2007-04-10 | Polarizer and method for making same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI338160B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI459055B (en) * | 2009-12-18 | 2014-11-01 | Hon Hai Prec Ind Co Ltd | Polarization element and method for manufacturing thereof |
CN102452647B (en) | 2010-10-27 | 2013-06-19 | 北京富纳特创新科技有限公司 | Carbon nanotube film carrying structure and use method thereof |
CN102452648B (en) | 2010-10-27 | 2013-09-25 | 北京富纳特创新科技有限公司 | Carbon nanotube film carrying structure and use method thereof |
-
2007
- 2007-04-10 TW TW96112603A patent/TWI338160B/en active
Also Published As
Publication number | Publication date |
---|---|
TW200841052A (en) | 2008-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101276012B (en) | Polarization element and preparation method thereof | |
JP4504446B2 (en) | Carbon nanotube film manufacturing apparatus and manufacturing method thereof | |
JP4422785B2 (en) | Method for producing transparent carbon nanotube film | |
JP5059833B2 (en) | Carbon nanotube structure | |
JP4589438B2 (en) | Carbon nanotube composite | |
JP5118117B2 (en) | Method for stretching carbon nanotube structure | |
JP5059834B2 (en) | Carbon nanotube structure | |
JP5043871B2 (en) | LCD panel | |
CN101591015B (en) | Preparation method of banded carbon nano tube film | |
JP4589439B2 (en) | Method for producing carbon nanotube composite | |
JP5054068B2 (en) | Method for producing carbon nanotube film | |
JP5590598B2 (en) | Carbon nanotube-containing resin composite and method for producing the same | |
CN102717537B (en) | A graphene-carbon nano tube composite membrane structure | |
JP2004102217A (en) | Polarizing element and its manufacturing method | |
US8318295B2 (en) | Carbon nanotube composite structure | |
US8668952B2 (en) | Carbon wire and nanostructure formed of carbon film and method of producing the same | |
US20130266729A1 (en) | Method for making strip shaped graphene layer | |
US8518206B2 (en) | Method for making carbon nanotube composite structure | |
CN101905877A (en) | Method for preparing carbon nanotube membrane | |
CN101993055A (en) | Carbon nanotube membrane precursor, carbon nanotube membrane and preparation method thereof | |
JP5118072B2 (en) | LCD panel | |
JP2009217265A (en) | Liquid crystal display panel | |
TWI338160B (en) | Polarizer and method for making same | |
TW201134755A (en) | Method for making carbon nanotube film | |
Ho et al. | Self-assembled growth of coaxial crystalline nanowires |