1337782 ΟΙ[ΡΟ...ϋ9Πη7^..^ 九、發明說明: 【發明所屬之技術領域】 本發明為一種準直均勻之發光二極體結構,特別為應用於 照明之發光二極體結構。 【先前技術】 隨著發光二極體製作技術不斷進步,使得發光二極體的發 光功率逐漸提高,發光二極體之亮度亦逐漸增加,因此發光二 極體可應用之層面也更加廣泛,例如應用於日常照明或情境照 明…等。當發光二極體應用於照明時,其光線需均勻且準直, 使得光線的能量集中,以便於實際應用。 第1圖係為習知準直發光二極體結構10之剖面圖。如第1 圖所示,其為在2006年1月消費性電子國際研討會 (International Conference on Consumer Electronics,IECC)上發 表之「高效率發光系統之超小型投影器」(Ultra Small Projector with High Efficiency Illumination System)中提出之一種準直發 光二極體結構10。上述準直發光二極體結構10,係具有一球 面11、一第一非球面12、一第二非球面13、一第三非球面14、 以及一發光二極體光源15。發光二極體光源15之光線16、 16’、16”由球面11入射,而發光二極體光源15所發出的大角 度的光線16係先於第三非球面14反射後,再於第二非球面13 折射出光,使光線變為近似準直,而由發光二極體光源15發 出的小角度的光線16’則由第一非球面12折射出光。 第2A圖係為習知準直發光二極體結構10之光斑圖。第 5 丄JJ / /oz 、♦ 2B圖係為習知準直 圖及第圖所示,雖_^ ^^==如第2八 發―、==。= == 與第二非球面13間所形成有一大夾二 至第-非球二為具有大傾斜角度的一傾斜面,而部份入射 •的Ϊ件ί 線16”因為無法滿足入射角小於臨界角 一非球面Γ無法折射出準直透鏡,使得第—非球面12及第 ► 度㈣度不均勻,進㈣發光二極體光 原的先斑形成—同心圓,並且使以均勾度下降。 【發明内容】 光均^ 2 ^用習知準直發光二極體結構無法提升光源出 的缺點’藉由設計透鏡之形狀,將第一折射面及第四 出光,^第一成Λ第一折射面入射之光線皆於第四折射面折射 身並I: ::計成可反射入射於第-反射面光線之 於第= 角度,# , D毛先一極體光源出光的發散 ^传發光二極體光源所發出的光線均勾且準直。 ^達上述目的,本發明提供一 二其:::=r有-中心 心袖旋轉對稱,並且第二;—第二折射面,以令 相接以形成一容置部;一第:緣係與第-折射面之邊緣 且第-反射面之邊緣係與第二折射面二 6 1337782 «· 第一反射面係使入射至第一反射面之光線全反射;一第三折射 面,以中心軸旋轉對稱,並且第三折射面之邊緣係與第一反射 面相接以形成一第二接線,又第三折射面係設置於能折射所有 由第二折射面入射之光線的位置;以及一第四折射面,係為一 凸面,第四折射面係以中心軸旋轉對稱,並且第四折射面之面 周緣係與第三折射面相接以形成一第三接線,又第四折射面係 設置於能折射所有由第一折射面入射之光線的位置;以及至少 一發光二極體光源,係設置於容置部内,並且發光二極體光源 •之幾何中心係位於中心軸之延長線上。 為達上述目的,本發明又提供一種準直均勻透鏡結構,包 括:一第一折射面,其面中心軸係與準直均勻透鏡結構之一中 心軸相重合;一第二折射面,以中心軸旋轉對稱,並且第二折 射面之邊緣係與第一折射面之邊緣相接以形成一容置部;一第 一反射面,以中心軸旋轉對稱,並且第一反射面之邊緣係與第 二折射面相接形成一第一接線,又第一反射面係使入射至第一 φ反射面之光線全反射;一第三折射面,以中心軸旋轉對稱,並 且第三折射面之邊緣係與第一反射面相接以形成一第二接 線,又第三折射面係設置於能折射所有由第二折射面入射之光 線的位置;以及一第四折射面,係為一凸面,第四折射面係以 中心轴旋轉對稱,並且第四折射面之面周緣係與第三折射面相 接以形成一第三接線,又第四折射面係設置於能折射所有由第 一折射面入射之光線的位置。 藉由本發明的實施,至少可以達到下列之進步功效: 一、提高發光二極體的發光均勻性。 1337782 • ΟΙΙΡΟ..ϋ9ϋΤ'ι72α2 二、改善準直均勻透鏡之出光折射面之形狀,藉以減少出光的 發散角度。 為了使任何熟習相關技藝者了解本發明之技術内容並據 以實施且根據本5兒明書所揭露之内容、申請專利範圍及圖 .式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優 點,因此將在實施方式中詳細敘述本發明之詳細特徵以及優 w【實施方式】 第3圖係為本發明之—種準直均勻發光二極體結構之 立體實施例圖。第4A圖係為本發明之一種準直均勻發光二極 體結構20之第一剖視實施例圖。第4B圖係為本發明之一種準 直均勻發光二極體結構20之第二剖視實施例圖。第4C圖係為 本發明之-種準直均勻發光二極體結構20之第三剖視實施例 圖第4D圖係為本發明之一種準直均勻發光二極體結構 _之第四剖視實施例圖。第4E圖係為本發明之一種準直均勻發 =二極體結構20之第五剖視實施例圖。帛4F 0係為本發明: 一種準直均勻發光二極體結構20之第六剖視實施例圖。第5八 圖係為第4C圖之準直均勻發光二極體結構2〇之光斑圖。第 5Β圖係為第4C圖之準直均勻發光二極體結構2〇之照度分佈 以 如第3圖及第4Α圖至第4F圖所示,本實施例係為—種準 直均勻之發光二極體結構20,包括··一準直均勻透鏡2ι 及至少一發光二極體光源23。 8 1337782 準直均勻透鏡21,其具有一中心軸211,並且準直均句透 :2!係以一中心軸211旋轉對稱,以形成—圓對稱結構或— 橢圓對稱結構。準直均勻透鏡21係包括:_第—折射面212、 212,第―折射面213;—第—反射面叫;一第三 折射面215、215,;以及一第四折射面216。 —1337782 ΟΙ[ΡΟ...ϋ9Πη7^..^ IX. Description of the Invention: [Technical Field] The present invention is a collimating uniform light-emitting diode structure, particularly for a light-emitting diode structure for illumination. [Prior Art] With the continuous advancement of the manufacturing technology of the light-emitting diode, the light-emitting power of the light-emitting diode is gradually increased, and the brightness of the light-emitting diode is gradually increased, so that the applicable level of the light-emitting diode is also wider, for example, Used in everyday lighting or situational lighting...etc. When the light-emitting diode is applied to illumination, the light needs to be uniform and collimated, so that the energy of the light is concentrated for practical application. Figure 1 is a cross-sectional view of a conventional collimated light emitting diode structure 10. As shown in Figure 1, it is the "Ultra Small Projector with High Efficiency" published in the January 2006 International Conference on Consumer Electronics (IECC). A collimated light emitting diode structure 10 proposed in the Illumination System. The collimated light emitting diode structure 10 has a spherical surface 11, a first aspheric surface 12, a second aspheric surface 13, a third aspheric surface 14, and a light emitting diode light source 15. The light rays 16, 16', 16" of the light-emitting diode light source 15 are incident by the spherical surface 11, and the large-angle light 16 emitted by the light-emitting diode light source 15 is reflected before the third aspheric surface 14, and then after the second The aspherical surface 13 refracts light to cause the light to become approximately collimated, and the small angle of light 16' emitted by the light-emitting diode source 15 is refracted by the first aspherical surface 12. The second embodiment is a conventional collimated illumination The spot diagram of the diode structure 10. The 5th 丄JJ / /oz, ♦ 2B diagram is the conventional collimation diagram and the figure, although _^ ^^== as the 2nd 八-, ==. = == A large clip is formed between the second aspheric surface and the second aspheric surface 13 as an inclined surface having a large inclination angle, and a part of the incident element ί line 16" is less than the incident angle. The critical angle-aspherical surface cannot refract the collimating lens, so that the first aspheric surface 12 and the ►degree (four) degree are not uniform, and the first (four) light-emitting diode light source is formed by the first spot-concentric circle, and the uniformity is decline. [Summary of the Invention] The light average ^ 2 ^ with the conventional collimated light-emitting diode structure can not improve the shortcomings of the light source 'by designing the shape of the lens, the first refractive surface and the fourth light, ^ first into the first The light incident on the refracting surface is refracted on the fourth refracting surface and I: :: is calculated to reflect the light incident on the first reflecting surface at the first angle, #, D, and the first dipole light source emits light. The light from the diode source is hooked and collimated. To achieve the above object, the present invention provides one or two of the following:::=r has a central core sleeve rotationally symmetric, and a second; a second refractive surface to join to form a receiving portion; And the edge of the first-refractive surface and the edge of the first-reflecting surface and the second refractive surface two 6 1337782 «· The first reflecting surface totally reflects the light incident on the first reflecting surface; the third refractive surface is centered The axis is rotationally symmetrical, and the edge of the third refractive surface is in contact with the first reflecting surface to form a second wiring, and the third refractive surface is disposed at a position capable of refracting all the light incident from the second refractive surface; The fourth refractive surface is a convex surface, the fourth refractive surface is rotationally symmetric with respect to the central axis, and the peripheral edge of the fourth refractive surface is in contact with the third refractive surface to form a third wiring, and the fourth refractive surface is And disposed at a position capable of refracting all of the light incident from the first refracting surface; and at least one illuminating diode light source disposed in the accommodating portion, and the geometric center of the illuminating diode light source is located on an extension line of the central axis. To achieve the above object, the present invention further provides a collimating uniform lens structure comprising: a first refractive surface having a central axis of the surface coincident with a central axis of the collimating uniform lens structure; and a second refractive surface centered The axis is rotationally symmetrical, and the edge of the second refractive surface is in contact with the edge of the first refractive surface to form a receiving portion; a first reflecting surface is rotationally symmetric with the central axis, and the edge of the first reflecting surface is coupled to the first The two refractive surfaces are connected to form a first wiring, and the first reflecting surface totally reflects the light incident on the first φ reflecting surface; a third refractive surface is rotationally symmetric with the central axis, and the edge of the third refractive surface is Connecting with the first reflecting surface to form a second wiring, the third refractive surface is disposed at a position capable of refracting all the light incident from the second refractive surface; and a fourth refractive surface is a convex surface, the fourth The refractive surface is rotationally symmetric with respect to the central axis, and the peripheral edge of the fourth refractive surface is in contact with the third refractive surface to form a third wiring, and the fourth refractive surface is disposed to refract all incidents from the first refractive surface. Light s position. By the implementation of the present invention, at least the following advancements can be achieved: 1. Improving the uniformity of illumination of the light-emitting diode. 1337782 • ΟΙΙΡΟ..ϋ9ϋΤ'ι72α2 2. Improve the shape of the light-refractive surface of the collimating uniform lens to reduce the divergence angle of the light. In order to make the technical content of the present invention known to those skilled in the art, and according to the contents disclosed in the present specification, the scope of the patent application, and the drawings, any person skilled in the art can easily understand the related art. The detailed features and advantages of the present invention will be described in detail in the embodiments. FIG. 3 is a perspective view of a collimating uniform light-emitting diode structure of the present invention. Figure 4A is a first cross-sectional view of a collimating uniform light emitting diode structure 20 of the present invention. Figure 4B is a second cross-sectional view of a collimated uniform light emitting diode structure 20 of the present invention. 4C is a third cross-sectional embodiment of the collimating uniform light-emitting diode structure 20 of the present invention. FIG. 4D is a fourth cross-sectional view of a collimating uniform light-emitting diode structure of the present invention. Example map. Figure 4E is a diagram of a fifth cross-sectional embodiment of a collimating uniformity = diode structure 20 of the present invention.帛4F 0 is the invention: A sixth cross-sectional embodiment of a collimated uniform light emitting diode structure 20. The fifth figure is a spot diagram of the collimated uniform light-emitting diode structure of Fig. 4C. The fifth diagram is the illuminance distribution of the collimated uniform light-emitting diode structure of FIG. 4C. As shown in FIG. 3 and FIG. 4 to FIG. 4F, the present embodiment is a collimated uniform illumination. The diode structure 20 includes a collimating uniform lens 2i and at least one light emitting diode source 23. 8 1337782 A collimating uniform lens 21 having a central axis 211 and collimating uniformly: 2! is rotationally symmetric with a central axis 211 to form a circularly symmetric structure or an elliptical symmetric structure. The collimating uniform lens 21 includes: a first refractive surface 212, 212, a first refractive surface 213, a first reflective surface, a third refractive surface 215, 215, and a fourth refractive surface 216. -
$ 一折射面212、212’、212”,係分別可為一凹面(如第4A 圖、第4D圖所示)、一凸面(如第4B@、第犯圖所示)、或一 平面(如第4C圖、第4F圖所示),且第一折射面2i2 2i2,、 212”之面中心軸係與準直均勻透鏡21之中心轴hi重合。 如第3圖及第4A圖至第4F圖所示’第 :中心㈣_稱之一任意曲面。第二折射面213之邊: ”第一折射面212、212,、212”之邊緣相接以形成-容置部 217 ’用以容置發光二極體光源23,又發光二極體光⑽所發 出之光線231、231,由第二折射面213及第一折射面mm,、 212”入射於準直均勻透鏡21。 第一反射面214,為以中心軸211旋轉對稱之一任奇曲 面’並且第一反射面214之邊緣係與第二折射面213相鄉成 -第-接線2H反射面214之形狀係設計成使入射至第 一反射面214之光線231,全反射至第三折射面2i5、215,,意 P第反射面214之形狀需滿足光線231,入射於第一反射面 214之入射角大於臨界角之條件,進而使光線加,反射,藉以 改變光線231,之行進方向。 第一折射面215、215,為以令心軸211旋轉對稱之一任 意曲面,叫彻㈣、2丨㈣帽 9 1337782 • aiJijojj〇〇Tv.7^·;]? 相接以形成一第二接線219。第三折射面215、215,係設置於 能折射所有由第二折射面213入射之光線231、231’的位置。 被第三折射面215、215’折射的光線231、231,包括:由第二折 射面213入射後直接被第三折射面215、215,折射的光線231, 以及先被第一反射面214反射後,再被第三折射面215、215, 折射的光線231’。並且,第三折射面215、215,之形狀係使入 射至第三折射面215、215,之光線23卜231,的入射角小於臨界 角,進而使得光線231、231’折射出準直均勻透鏡21,並且折 射後的光線231、231’係近似平行於中心軸211,也就是說由 第三折射面215、215,出光之光線23卜231,的發散角度非常小 並且相當準直。 第四折射面216,為以中心軸211旋轉對稱之一凸面,並 且第四折射面216之面周緣係與第三折射面215、215,相接以 形成一第三接線220。第四折射面216係設置於能折射所有由 第一折射面212、212,、212”入射之光線231的位置,並且第 _.四折射面216之形狀係使入射至第四折射面216之光線231的 入射角小於臨界角,進而使得被第一折射面212、212,、2丨2,, 折射後之光線231再次被折射,並且折射出準直均勻透鏡21 的光線231近似平行於中心軸211,意即由準直均勾透鏡21 出光之光線231相當準直。 為了使微調本實施例之出光準直均勻性,進一步設計第三 轉面215、215之形狀。如第4A圖、第4B圖及第4c圖所 不,將第一距離D1設計成大於第二距離D2(D1〉D2),第一距 離係為第一接線219與第-接線218所在平面間的距離, 丄 二妨 —('iuroj%_re7·^ =Γ=2係為第三接線22G與第-接線218所在平面間 如第40圖、第4E圖及第4F圖所示,將第一距 D2>DM 距離D2皆設計成大於第三距離D3(D1>D3及 )’第二距離D3係為第三折射面215,之最低點與第— 接線218所在平面間的距離。 發光二極體光源23,係可為至少一發光二極體晶片、或至 >一已封裝之發光二極體’並且其發光波長介於獅奈米至 不米之間為可見光光源。發光二極體光源23設置於第 折射面212、212,、212”及第二折射面213所形成之容置部 217内,並且發光二極體光源23的幾何中心係位於中心軸扣 之延長線上,進而使得發光二極體光源23之光線23ι、Μ。 可平均地入射準直均勻透鏡21。 以第4C圖之準直均勻之發光二極體結構2〇為例其係為 圓對稱之結構。如第5A圖及第5B圖所示,其為利用美國 Breault Research 〇rganization 之 ASAp ⑽霞以〜輪$ a refractive surface 212, 212', 212", respectively, may be a concave surface (as shown in Figure 4A, Figure 4D), a convex surface (as shown in Figure 4B@, the first map), or a plane ( As shown in FIG. 4C and FIG. 4F, the central axis of the plane of the first refractive surfaces 2i2 2i2, 212" coincides with the central axis hi of the collimating uniform lens 21. As shown in Fig. 3 and Fig. 4A to Fig. 4F, 'the center: four (4) _ is an arbitrary curved surface. The edge of the second refractive surface 213: the edges of the "first refractive surface 212, 212, 212" are connected to form a receiving portion 217' for accommodating the light-emitting diode light source 23, and the light-emitting diode light (10) The emitted light rays 231, 231 are incident on the collimating uniform lens 21 by the second refractive surface 213 and the first refractive surface mm, 212". The first reflecting surface 214 is one of the rotational axes of the central axis 211. And the edge of the first reflecting surface 214 and the second refraction surface 213 are formed. The shape of the first wiring 2H reflecting surface 214 is designed to totally reflect the light 231 incident on the first reflecting surface 214 to the third refractive surface. 2i5, 215, the shape of the P-reflecting surface 214 is required to satisfy the ray 231, and the incident angle incident on the first reflecting surface 214 is greater than the critical angle, thereby adding and reflecting the light, thereby changing the traveling direction of the light 231. The first refractive surfaces 215, 215 are arbitrary curved surfaces which are rotationally symmetrical with the mandrel 211, and are called (4), 2 (4) caps 9 1337782 • aiJijojj〇〇Tv.7^·; Wiring 219. The third refractive surface 215, 215 is disposed to refract all of the second refraction The position of the incident light rays 231, 231'. The light rays 231, 231 refracted by the third refractive surface 215, 215' include: light that is directly refracted by the third refractive surface 215, 215 after being incident by the second refractive surface 213 231, and the light ray 231' which is first reflected by the first reflecting surface 214 and then refracted by the third refractive surface 215, 215. The third refractive surface 215, 215 is shaped to be incident on the third refractive surface 215. 215, the light ray 23 231, the incident angle is smaller than the critical angle, so that the light rays 231, 231' are refracted by the collimating uniform lens 21, and the refracted light rays 231, 231' are approximately parallel to the central axis 211, that is, It is said that the divergence angle of the light illuminating 23 231 by the third refracting surface 215, 215 is very small and fairly collimated. The fourth refracting surface 216 is a convex surface which is rotationally symmetric with the central axis 211, and the fourth refractive surface 216 The peripheral edge is in contact with the third refractive surface 215, 215 to form a third wire 220. The fourth refractive surface 216 is disposed to refract all of the light 231 incident from the first refractive surface 212, 212, 212" Position, and the shape of the fourth refracting surface 216 The incident angle of the light ray 231 incident on the fourth refractive surface 216 is made smaller than the critical angle, so that the refracted light 231 is again refracted by the first refractive surface 212, 212, 2, 2, and the collimation is uniform. The light ray 231 of the lens 21 is approximately parallel to the central axis 211, that is, the light 231 emitted by the collimating uniform hook lens 21 is relatively collimated. In order to fine tune the light collimation uniformity of the present embodiment, the shapes of the third transfer faces 215, 215 are further designed. As shown in FIG. 4A, FIG. 4B and FIG. 4c, the first distance D1 is designed to be larger than the second distance D2 (D1>D2), and the first distance is between the planes of the first wiring 219 and the first wiring 218. The distance, 丄 妨 - ('iuroj%_re7·^ = Γ = 2 is the third wiring 22G and the first wiring 218 between the plane as shown in Figure 40, 4E and 4F, will be the first The distance D2 > DM distance D2 is designed to be greater than the third distance D3 (D1 > D3 and) 'the second distance D3 is the distance between the lowest point of the third refractive surface 215 and the plane of the first wiring 218. The body light source 23 can be at least one light-emitting diode wafer, or to a packaged light-emitting diode 'and has a light-emitting wavelength between lion nanometer and no meter. The light-emitting diode is a light-emitting diode. The light source 23 is disposed in the accommodating portion 217 formed by the first refractive surfaces 212, 212, 212" and the second refractive surface 213, and the geometric center of the light-emitting diode light source 23 is located on the extension line of the central axis buckle, thereby The light rays 23 Μ and Μ of the light-emitting diode light source 23 can be uniformly incident on the collimating uniform lens 21. The collimation uniformity of the 4Cth image is uniform Light diode structure 2〇 system which is an example of a circular symmetric structure. As shown in FIG. FIG. 5A and second 5B, which is a U.S. Breault Research 〇rganization using the wheel with ~ Xia ASAp ⑽
AnalySls pr〇gram)光學模擬軟體模擬第4c圖之準直均勻之發 光二極體結構20’在距發光二極體光源23約18公釐處平面的 光斑圖及照度分佈圖。光斑的有效均勻範圍之直徑約為15公 釐’並且照度之強度均自,光斑不再出現同心圓之形狀即表 示本實施例之準直均勻之發光二極體結構2〇,其出光之光線 231、231’係相當準直並且照度分佈相當平均。 本實施例之準直均勻透鏡21之發光二極體結構2〇係具有 使發光二極體光源23達到準直且均勻之功效,因此可應用本 實施例於照明設備上。 1337782 • CliIP0..09fiTH'7^:V2 惟上述各實施例係用以說明本發明之特點,其目的在使熟 習該技術者能瞭解本發明之内容並據以實施,而非限定本發明 之專利範圍,故凡其他未脫離本發明所揭示之精神而完成之等 效修飾或修改,仍應包含在以下所述之申請專利範圍中。 【圖式簡單說明】 第1圖係為習知準直發光二極體結構之剖面圖。 第2A圖係為習知準直發光二極體結構之光斑圖。 • 第2B圖係為習知準直發光二極體結構之照度分佈圖。 第3圖係為本發明之一種準直均勻發光二極體結構之立體 實施例圖。 第4A圖係為本發明之一種準直均勻發光二極體結構之第 一剖視實施例圖。 第4B圖係為本發明之一種準直均勻發光二極體結構之第 二剖視實施例圖。 φ 第4C圖係為本發明之一種準直均勻發光二極體結構之第 三剖視實施例圖。 第4D圖係為本發明之一種準直均勻發光二極體結構之第 四剖視實施例圖。 第4E圖係為本發明之一種準直均勻發光二極體結構之第 五剖視實施例圖。 第4F圖係為本發明之一種準直均勻發光二極體結構之第 六剖視實施例圖。 第5A圖係為第4C圖之準直均勻發光二極體結構之光斑 12 1337782 amu.uoi/rv.T^.i? 圖。 第5B圖係為第4C圖之準直均勻發光二極體結構之照度 分佈圖。 【主要元件符號說明】 10 ..............................習知準直發光二極體結構 11 ...............................球® 12 ..............................第一非球面AnalySls pr〇gram) Optical simulation software simulation of the collimated uniform light of Fig. 4c. The light pattern and illuminance distribution of the photodiode structure 20' at a plane of about 18 mm from the light-emitting diode source 23. The effective uniform range of the spot is about 15 mm in diameter and the intensity of the illuminance is from the shape of the concentric circle, which means that the collimated uniform light-emitting diode structure of the embodiment is 2 〇, and the light of the light is emitted. The 231, 231' are fairly straightforward and the illuminance distribution is fairly average. The light-emitting diode structure 2 of the collimating uniform lens 21 of the present embodiment has the effect of achieving collimation and uniformity of the light-emitting diode light source 23, and thus the present embodiment can be applied to a lighting apparatus. 1337782 • CliIP0..09fiTH'7^: V2 The above embodiments are intended to illustrate the features of the present invention, and the purpose of the present invention is to enable those skilled in the art to understand the present invention and to implement the present invention without limiting the invention. The scope of the patents, and other equivalent modifications or modifications which may be made without departing from the spirit of the invention, are still included in the scope of the claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a conventional collimated light-emitting diode structure. Figure 2A is a spot diagram of a conventional collimated light emitting diode structure. • Figure 2B is an illumination distribution of a conventional collimated light-emitting diode structure. Figure 3 is a perspective view of a collimated uniform light emitting diode structure of the present invention. Fig. 4A is a first cross-sectional view showing a structure of a collimating uniform light-emitting diode of the present invention. Figure 4B is a second cross-sectional view of a collimated uniform light emitting diode structure of the present invention. φ Figure 4C is a third cross-sectional view of a collimating uniform light-emitting diode structure of the present invention. Fig. 4D is a fourth cross-sectional view showing a structure of a collimating uniform light-emitting diode of the present invention. Fig. 4E is a fifth cross-sectional view showing a structure of a collimating uniform light-emitting diode of the present invention. Fig. 4F is a sixth cross-sectional view showing a structure of a collimating uniform light-emitting diode of the present invention. Figure 5A is a spot of the collimated uniform light-emitting diode structure of Figure 4C. 12 1337782 amu.uoi/rv.T^.i? Fig. 5B is a illuminance distribution diagram of the collimated uniform light-emitting diode structure of Fig. 4C. [Main component symbol description] 10 .............................. Known collimated light-emitting diode structure 11 ... ............................Ball® 12 ................... ...........the first aspherical surface
13 ..............................第二非球面 14 ..............................第三非球面 15 ..............................發光二極體光源 16、16’、16”.............光線 20 ..............................準直均勻發光二極體結構 21 ..............................準直均勻透鏡 211.............................中心軸 212、212’、212”.......第一折射面 213 .............................第二折射面 214 .............................第一反射面 215、215’..................第三折射面 216.............................第四折射面 217 .............................容置部 218 .............................第一接線 219 .............................第二接線 220 .............................第三接線 1337782 αίίρ〇_υο〇·ην7〇\)^ 23 ..............................發光二極體光源 231、231’..................光線 D1..............................第一距離 D2..............................第二距離 D3..............................第三距離13 ..............................Second aspheric 14 .............. ................the third aspheric surface 15 ............................ Light-emitting diode light source 16, 16', 16".............light 20 ...................... ........ collimating uniform light-emitting diode structure 21 ..............................collimation uniformity Lens 211..........................central axis 212, 212', 212".......first refraction Face 213 .............................The second refractive surface 214 .............. ...............the first reflecting surface 215, 215'..................the third refractive surface 216.... .........................The fourth refractive surface 217 .................... ......... accommodating portion 218 .............................first wiring 219 .... .........................Second wiring 220 ..................... ........The third wiring 1337782 αίίρ〇_υο〇·ην7〇\)^ 23 .......................... ....Lighting diode light source 231, 231'..................light D1................. .............first distance D2..............................second distance D3... ........................third distance