TWI337702B - Micro liquid cooling device and droplet generator thereof - Google Patents

Micro liquid cooling device and droplet generator thereof Download PDF

Info

Publication number
TWI337702B
TWI337702B TW96130494A TW96130494A TWI337702B TW I337702 B TWI337702 B TW I337702B TW 96130494 A TW96130494 A TW 96130494A TW 96130494 A TW96130494 A TW 96130494A TW I337702 B TWI337702 B TW I337702B
Authority
TW
Taiwan
Prior art keywords
plate
liquid
droplet
electrode
micro
Prior art date
Application number
TW96130494A
Other languages
Chinese (zh)
Other versions
TW200910065A (en
Inventor
Yen Chih Chen
Original Assignee
Foxconn Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foxconn Tech Co Ltd filed Critical Foxconn Tech Co Ltd
Priority to TW96130494A priority Critical patent/TWI337702B/en
Publication of TW200910065A publication Critical patent/TW200910065A/en
Application granted granted Critical
Publication of TWI337702B publication Critical patent/TWI337702B/en

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

1337702 099年10月19日修正替換頁 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種微型液體冷卻裝置,尤係涉及一種用於 對發熱電子元件進行冷卻之微型液體冷卻裝置,本發明 - 還涉及一種該微型液體冷卻裝置所採用之微液滴產生器 〇 【先前技術】 [0002] 隨著電腦產業之迅速發展,CPU追求高速度化,高功能化 及小型化所衍生之散熱問題越來越嚴重,這在筆記型電 腦等内部空間狭小之電子裝置中更為突出。如果無法將 筆記型電腦内之CPU等電子元件所產生之:熱量及時有效地 散發出去,將極大地影響電子元件、之)工作性能,同時還 會縮減電子元件之使用壽命,故葉竦通奮採用一冷卻裝 置來對電子元件散熱。 [0003] 在眾多冷卻技術中,液體冷卻係一種極為有效之冷卻方 式。傳統之液體冷卻裝置為由吸熱體、散熱體、泵及傳 輸管所構成之一回路,該回路中填充有冷卻液,冷卻液 在該吸熱體處吸收電子元件所產生之熱量,經傳輸管傳 至散熱體後放出熱量。在該泵之驅動作用下,該冷卻液 在回路中不斷循環,從而源源不斷地帶走該電子元件所 產生之熱量。 [0004] 目前,液體冷卻裝置已被業者用於桌上型電腦中對CPU進 行散熱,然而由於傳統液體冷卻裝置中泵所佔用之空間 較大,很難適用於内部空間狹小之筆記型電腦内對電子 元件散熱。另外,泵在運行時還會產生較大噪音,影響 096130494 表單編號A0101 第4頁/共30頁 0993373642-0 13377021337702 October 19, 2010, MODIFICATION REPLACEMENT PAGE 6. Description of the Invention: [Technical Field] [0001] The present invention relates to a micro-liquid cooling device, and more particularly to a micro-liquid cooling for cooling a heat-generating electronic component The present invention relates to a micro-droplet generator for use in the micro-liquid cooling device. [Prior Art] [0002] With the rapid development of the computer industry, the CPU pursues high speed, high functionality, and miniaturization. The resulting heat dissipation problem is getting more and more serious, which is more prominent in electronic devices with small internal space such as notebook computers. If it is impossible to dissipate the heat generated by the electronic components such as the CPU in the notebook computer in a timely and effective manner, the performance of the electronic components and the electronic components will be greatly reduced, and the service life of the electronic components will be reduced. A cooling device is used to dissipate heat from the electronic components. [0003] Among many cooling techniques, liquid cooling is an extremely effective cooling method. The conventional liquid cooling device is a circuit composed of a heat absorbing body, a heat sink, a pump and a transmission pipe, and the circuit is filled with a cooling liquid, and the coolant absorbs heat generated by the electronic component at the heat absorbing body, and is transmitted through the transmission pipe. Heat is released after the heat sink. Under the driving of the pump, the coolant circulates continuously in the circuit, thereby continuously taking away the heat generated by the electronic components. [0004] At present, a liquid cooling device has been used by a manufacturer to dissipate heat from a CPU in a desktop computer. However, since the space occupied by the pump in the conventional liquid cooling device is large, it is difficult to apply to a notebook computer having a small internal space. Dissipate heat from electronic components. In addition, the pump will also generate a large noise during operation, affecting 096130494 Form No. A0101 Page 4 of 30 0993373642-0 1337702

年10月19日接正替換頁I 使用者之聽覺感受。伴隨著筆記型電腦等電子裝置朝向 微型化及高性能化方向設計,發熱量增加同時散熱裝置 所能伯據之空間卻在不斷減少。如何設計出能適用於筆 記型電腦内對電子元件進行有效散熱之新型液體冷卻裝 置,對於業者來說係又一個新的研究課題。 [0005] 介質材料上之電湖濕、效應(Electrowetting OnOn October 19th, the user's auditory experience was replaced by the page I. With the design of electronic devices such as notebook computers in the direction of miniaturization and high performance, the amount of heat generated increases while the space available for the heat sink is decreasing. How to design a new liquid cooling device that can be used for efficient heat dissipation of electronic components in a notebook computer is a new research topic for the industry. [0005] Electric lake wetness on dielectric materials, effect (Electrowetting On

Dielectric,EW0D)係一種藉由施加電勢來改變液體表 面張力之可逆現象。圖1A與圖1B為介質上之電潤濕效應 之原理圖。如圖1A所示,下極板1〇包括一基底11,基底 11上設有下電極層12,該下電極層12被一層絕緣層13覆 蓋’液滴14位於絕緣層13之表Φ.,上電極15插入液滴14 之内部。該上電極15與下電择層12之間藉由電源線連接 有一開關16及一可調電源1 7,該開關16用於控制電路之 斷開與閉合,該可調電源1 7用來給下極板1 〇與上電極15 之間提供施加電壓。當上電極15與下極板1〇之間不加電 壓,即開關16處於斷開狀態時,該下極板1〇之絕緣層13 之表面為疏水的,此時液滴14之靜態接觸角為Θ >90。。 0 如圖1B所示’當開關16閉合時,可調電源17提供一電壓V ,在液滴14與下極板10之間產生電勢作用,此時,液滴 14之靜態接觸角由原來之變化為。 當V之大小達到一定值時,θ (V)<90。,此時絕緣層13之 表面變成親水的。當開關16重新斷開時,亦即液滴14與 下電極板10之間沒有電勢作用時,液滴14之靜態接觸角 重新回復到❶上述現象稱為介質材料上之電潤濕效應 096130494 表草編號Α0101 第5頁/共30頁 0993373642-0 1337702 ^99年10月19日後正替換i [0006]利用這種介質材料上之電潤濕效應原理,美國杜克大學 (Duck University)之Pollack M G等人首先基於介 質材料上之電潤濕效應並採用微機械製作之微電極陣列 進行微液滴之運動控制,並提出“數位微流體(Digital Microfluidics) ”之概念。美國洛杉磯加州大學( UCLA)的Cho S K等人成功地利用EW0D效應對直徑為70 // m之微液滴進行了微液滴之產生、傳輸、混合和分裂四 個基本操作,並在25V之交流電壓下得到了 25〇mm/s之微 液滴移動速度(Cho S K,Moon H,Kim C J. Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Distal Circuits [J]. Journal of Microelectromechanical Sys-tems,2003,12 ( 1 ):70-80.)。可見,基於介質材 料上之電潤濕效應係一種十分有效之微流體控制技術。 【發明内容】 [000Π 有鑒於此’有必要提供一種佔用體積小且具有較好靜音 效果之微型液體冷卻裝置。 [0008] 本發明還提供一種該微型液體冷卻裝置所採用之微液滴 產生器。 [0009] 一種微液滴產生器,包括一第一極板及蓋設於該第一極 板上之一第二極板,其中該第一極板與第二極板之間形 成有一液滴通道,該微液滴產生器在該液滴通道之一端 與另一端分別設有與該液滴通道相連通之一進液口與一 出液口,該第一極板上對應該液滴通道間隔設置有若干 096130494 表單編號A0101 第6頁/共30頁 0993373642-0 1337702 099年10月19日修正替換頁 [0010] [0011] [⑻ 12] [0013] 控制電極,該第二極板上設有—參考電極層’該參考電 極層與該等控制電極藉由一控制電路電連接,藉由控制 電路規律性地對各控制電極施加電壓, 自進液口進入到 微液滴產生器的液體將產生出液滴並沿液滴通道向出液 口運動。 種微型液體冷卻裝置’其中該微型液體冷卻裝置包括 一吸熱體、一散熱體、一微液滴產生器及複數傳輸管, 该等傳輸管將該吸熱體、散熱體及微液滴產生器串接形 成一回路,該回路中填充有適量之冷卻液,冷卻液在該 微液滴產生器之作用下產生液滴並在該回路中循環流動 Ο 與習知液體冷卻裝置相比,本發明微型液冷散熱裝置中 採用一微液滴產生器來對冷卻液進行傳輸.該微液滴產 生器製作工藝簡單,適合進行微型化設計,可用於内部 空間較小之電子裝置内對電子元件進行散熱。該微液滴 產生器中’對冷卻液傳輸未採用像泵這類機械傳動件, 故具有良好之靜音效果。 【實施方式】 本發明旨在將基於介質材料上之電潤濕效應這一微流體 控制技術應用於微型液體冷卻裝置中。 如圖2所示為本發明微型液體冷卻裝置2〇〇其中—較佳實 施例之立體組裝圖。該微型液體冷卻裝置200包括一吸熱 體20、一散熱體30、一微液滴產生器4〇及複數傳輸管5〇 096130494 。該吸熱體20、散熱體30及微液滴產生器藉由該等傳 輸管50串接而形成一回路,該回路中填充有冷卻液(圖 表箪編號A0101 第7頁/共30頁 0993373642-0 1337702 099年10月19日後正替換頁 未示)。該吸熱體20與一發熱電子元件熱連接並吸收其 所產生之熱量,該散熱體30用於對流經其内部之冷卻液 進行冷卻。在微液滴產生器40之驅動作用下,冷卻液在 該回路中循環流動,從而源源不斷地將吸熱體20所吸收 之熱量帶走。 [0014] 該吸熱體20用於貼設在一發熱電子元件(圖未示)之表 面以吸收其所產生之熱量。在本實施例中,該吸熱體20 為一長方體塊狀之吸熱塊。該吸熱體20包括一上蓋21與 一底座22,該底座22内設有供冷卻液流經之流道(圖未 示),該流道之入口及出口分別藉由傳輸管50與散熱體 30及微液滴產生器40相連通。該吸體20並不局限於圖2 中所示之形狀及結構,可以旅據不同:散熱需求,對該吸 熱體20進行合理設計。 [0015] 該散熱體30用於對經吸熱體20加熱後之冷卻液進行冷卻 。本實施例中,該散熱體30為一散熱器,其包括一基座 31及設於該基座31上之複數散熱片32。該基座31内亦設 有供冷卻液流經之流道(圖未示),該基座31内之流道 之入口及出口藉由傳輸管50分別與微液滴產生器40及吸 熱體20相連通。該基座31之流道内還可以設置各種散熱 結構如散熱柱等以增加散熱體30與冷卻液間之換熱效率 。經基座31之流道之入口流入基座31内之冷卻液與散熱 體30進行熱交換,冷卻液被降溫後流向吸熱體20。該散 熱體30並不局限於圖2中所示之形狀及結構,該散熱體30 還可以為其他形狀及結構。例如用於筆記型電腦内時, 該散熱體30可為設於顯示屏背面之一設有流道之冷卻板 096130494 表單編號A0101 第8頁/共30頁 0993373642-0 1337702 _ ’ 、· I 099年10月19日修正替換頁_ 〇 [0016] 如圖3及圖4所示,該微液滴產生器4〇包括一下極板42、 蓋忒於該下極板42上之一上極板44 '連接於下極板42與 上極板44間之相應控制電路(圖未示)、兩支撐件46以 及第一、第二端蓋48、49。 [0017] 該下極板42為一長方體板狀結構,其具有與上極板44相 對之一表面425。該下極板42之左右兩端分別自該表面 425向内凹陷形成有矩形之第一、第二凹槽426、427 , 該第一、第二凹槽426、427分別用來收容與之相對應之 第一、第二端蓋48、49。請一併參閱圖5,該下極板42包 括一下基板421、複數控制電極422 ' —介電層423及一 疏水層424。該下基板421可為一玻璃基板或一矽基板, 在本實施例中,該下基板421為一玻璃基板。該等控制電 極422呈間隔設置於下基板421上,並排列於下基板421 之中央位置。該等控制電極422之表面覆蓋有介電層423 ,該介電層423係在控制電極422之表面沉積一層絕緣材 料所形成。該介電層423之表面覆蓋有一層很薄之疏水材 料作為疏水層424。 [0018] 請繼續參照圖3,下基板42上於最左端之控制電極422與 第一凹槽426之間設有一圓柱形之儲液槽428以用來儲存 冷卻液,該最左端之控制電極422延伸至與儲液槽428之 邊緣相接。該下極板42之表面425上於該等控制電極422 之中間位置設有一具有較小寬度之溝槽429 ’該溝槽429 之左端與儲液槽428相連通,其右端與第二凹槽427相連 通。由於該溝槽429之寬度較小’對進入該溝槽429内之 096130494 表單編號A0101 第9頁/共30頁 0993373642-0 1337702 _099年叫 冷卻液能夠展生毛細吸力作用,從而僅需藉由外接之^^ 制電路在下極板4 2與上極板4 4之間施加—較小電壓就可 以將液滴從儲液槽428中產生出來並沿控制電極422運% 。由於該溝槽429之設置,將每一控制電極422分成彼此 相連通之三部分,即位於溝槽429兩側之電極部分4221及 位於溝槽429内之電極部分4222。該下極板42之表面425 上對應每一控制電極422還設有一外接電極43〇,並藉由 一引線431將相應之控制電極422與外接電極430相連通 。該等外接電極430可分佈在該等控制電極422之兩側, 亦可僅分佈在該等控制電極422之一側。在本實施例中, 該等外接電極4 3 0分佈在該等控制電極4 22 極板42上還設有複數用於安轉固定第二、 49之安裝孔心2及複數用於凄裝ί:定支褚;|^46與上極板 44之安裝孔433。 [0019] 兩側。該下 第二端蓋48、 該上極板44亦為一長方體板狀結構,其包括一上基板441 、一參考電極層442及一疏水層443 (圖5所示)。該上基 板441可以為一玻璃基板或一石夕基板,在本實施例中該 上基板441為一玻璃基板^該參考電極層442覆蓋於該上 基板441與下極板42相對之一表面上,該參考電極層442 之表面覆蓋有一層很薄之疏水材料作為疏水層443,其中 該參考電極層442與疏水層443之間亦可設置一層很薄之 介電層。 該兩支撐件46均為狹長板體,其設於下極板42與上極板 44之間以用於支撐上極板44。該兩支撐件“上對應下極 板42上之安裝孔433亦設有相應之安裝孔444。本實施例 096130494 表單編號Α0101 第10頁/共30頁 0993373642-0 [0020] 1337702 [0021] [0022] [0023] 096130494 099年10月19日梭正替換頁 中,該兩支撐件46為與上、下極板44、42相分離之板體 。可以理解地,該兩支撐件46亦可以一體形成於上極板 44上。 該第一、第二端蓋48、49均為一長方體塊狀結構’其中 該第一端蓋48上設有一進液口,該第二端蓋49上設有一 出液口。該進液口與出液口均包括—入口端與一出口端 ,其中進液口之入口端及出口端之形狀分別與出液口之 出口端及入口端之形狀相對應,圖3中僅示出進液口之出 口端481及出液口之出口端491。該第一端蓋48内還可在 其入口端與出口端481之間設置—儲液空間以用來儲存冷 卻液。同樣地,該第二端蓋49内亦可以表其入口端與出 口端491之間設置一儲液空間。該進液口之入口端及出液 口之出口端491分別用來與一傳輸管5〇相連接》將第一' 第二端蓋48、49設於下極板42之第―、第二凹槽426、 427内時’該進液口與下極板42上之儲液槽428相對,該 出液口則與下極板42上之溝槽429之末端相對。另外,該 第一、第二端蓋48、49上對應下極板42之安裝孔432亦 相應地設有安裝孔482、492。 為使對本發明中之微液滴產生器40之製作有一個清楚認 識,現對本實施例中微液滴產生器之下極板42及上極 板44之製作過程作如下說明: 下極板42之製作過程為:首先在玻璃基板上利用機械加 工或濕法刻蝕之方法製作出第一、第二凹槽426、427、 儲液槽428 '溝槽429及安裝孔432、433,然後利用化學 氣相沉積法(Chemical Vapor Deposition)在玻璃 表單編號A0101 第11頁/共30頁 0993373642-0 099年10月19日桉正替換頁 基板上沉積一層具有導電能力之ITO (Indium Tin Oxide) 透明玻螭層; 對 IT〇 層進行圖形化光刻蝕 ,形成具 有—疋形狀且呈間隔分佈之控制電極422、外接電極430 及引線431 ;然後利用氣相沉積法在該等控制電極422及 引線431之表面沉積一層氮化矽(s、、)作為介電層423 ’然後再藉由旋轉覆蓋(Spin Coat)之方法在介電層 423上塗布一層τ^π〇η作為疏水層424。 [0024] 上極板44之製作過程為:首先在玻璃基板上利用機械加 工或濕法刻蝕之方法製作出安裝孔444 ;然後利用化學氣 相沉積法在玻璃基板上形成一層均勻之I 層作為參考電 極層442 ;然後在丨別層上^轉會蓋ϋ法塗布一層 Tefl〇n作為疏水層443。 Λ :, [0025] 如圖4所示,將製作好之各部件組裝成微液滴產生器4〇時 ,該兩支撐件46設於下極板42上並位於下極板42之控制 電極422之兩側,從而在下極板42與上極板44之間於對應 控制電極422之位置形成用於傳輸液滴之液滴通道。每一 支撐件46位於下極板42之控制電極422與外接電極430之 間,即下極板422之外接電極43〇位於支撐件46之外側, 這樣可以便於將外接電極4 3 0與外部之控制電路電連接。 该上極板44蓋設於該兩支撐件46上,並藉由螺栓等連接 件穿過下極板42、支撐件46及上極板44上所設之安裝孔 433、461、444從而將三者固定在一起。該兩支撐件46 對上極板44進行支撐之同時還將微液滴產生器4〇之兩側 進行密封。為增加密封效果,還可以在支撐件46與下極 板42及上極板44之間塗一層密封膠或設置一密封件。該 096130494 表單編號Α0101 第12頁/共30頁 0993373642-0 1337702 • ι· 099年10月19日俊正 第一、第二端蓋48、49分別收容於下極板42之兩端所設 之第一、第二凹槽426、427内並將上極板44夾設於該第 一、第二端蓋48、49之間,再藉由螺栓等連接件穿過第 一、第二端蓋48、49及下極板42上所設之安裝孔482、 492 ' 432以將第一、第二端蓋48、49與下極板4 2固定在 一起’從而將微液滴產生器40之兩端密封。同樣地,為 增加密封效果’該第一、第二端蓋48、49與下極板42及 上極板4 4之間亦可以塗一層密封移或設置一密封件。該 第一、第二端蓋48、49安裝至下極板42之兩端第一、第 二凹槽426、427内時’第一端蓋48上所設之進液口與儲 液槽428相連通,而第二端蓋49所設之出液口則與控制電 極422相對’亦即該儲液槽428與液滴通道之左端連通, 該出液口則與液滴通道之右^連.通。 [0026] 如圖2所示,將微型液體冷卻裝置2〇〇組裝在一起時,藉 由傳輸管50將微液滴產生器4〇、吸熱體2〇及散熱體30依 次串接從而形成一回路,在該回路中充入適量之冷卻液 。該冷卻液為可電解、可極化、具有導電能力或帶電之 液體。在本實施例中,該冷卻液為去離子水。微液滴產 生器40之上極板44之參考電極層442及下極板42之外接 電極422藉由導線與外部控制電路進行電連接。外部之控 制電路採用電腦程式來控制施加於各控制電極422上之電 壓之施加時間及施加順序,所施加之電壓之大小由電源 控制’該等控制電極之控制方法及電壓大小之控制方法 採用常規之控制方法。 [0027] 如圖6Α至圖6C所示,液滴D從微液滴產生器40之儲液槽 096130494 表單編珑Α0101 第13頁/共30頁 0993373642-0 1337702 099年10月19日垵正替換頁 4 2 8產生出來之過程為··首先藉由外接控制電路對控制電 極422a (為使敍述方便,將控制電極從左至右依次命名 為42 2a、422b、422c......)施加一定之電壓,由於電潤 濕效應,與該控制電極422a相接觸之冷卻液之接觸角會 變小’接觸角之變小表現為冷卻液之表面張力之變化, 當施加之電壓達到一定值時,冷卻液會自儲液槽428沿電 極422a向右運動(圖6A所示);冷卻液運動至與電極 422b接觸時對電極422b施加同樣大小之電壓,從而使冷 卻液沿控制電極422b繼續向右運動(圖6B所示);當冷 卻液運動至與控制電極422c接觸時,對控制電極422c施 加電壓之同時取消控制電極42 2 b,上所辑加A電壓,冷卻 液在控制電極422a、422(:上知加電壓.乏作摩下在控制電 .承.:,’,. 極422b處斷開,從而形成液濟沴(圖6C所示)。 [0028] 如圖7A至圓7C所示’液滴D之傳輸過程為:當液滴d接觸 到控制電極422d時,對控制電極422d施加電壓之同時取 ·/肖4 2 2 c上所施加之電壓,從而使液滴])由控制電極4 2 2 c 所在位置運動到控制電極422d所在位置;當液滴d運動至 與控制電極422e接觸時,對控制電極422e施加電壓之 同時取消控制電極422d上所施加之電壓’從而使液滴〇從 控制電極422d所在位置運動到控制電極422e所在位置。 藉由這樣有規律性地對各控制電極422施加電壓,就可以 實現將儲液槽428中所產生出之液滴!)沿控制電極422之從 左向右傳輸 請繼續參照圖2 ,液冷散熱系统2QQjl作時,吸熱體別貼 设於-發熱電子元件(圖未示)上,利用外接控制電路 096130494 表單編號A0101 第14頁/共30頁 0993373642-0 [0029] 1337702 099年10月19日核正替換頁 對微液滴產生器40之各控制電極4 22上電壓之施加時間及 施加順序進行控制,可以從儲液槽428中產生出液滴,並 沿液滴通道向右傳輸。液滴傳到該等控制電極422之最右 端時因具有一定之速度會繼續向前運動,並經第二端蓋 49所設出液口之入口端流入到該第二端蓋49内。藉由控 制電路對該等控制電極422進行循環控制,就可以不斷地 從儲液槽428中產生出液滴並傳輸到第二端蓋49内,從而 將第二端蓋49内之冷卻液壓出並經傳輸管50流向散熱體 30。冷卻液經散熱體30冷卻後再經傳輸管50流向吸熱體 20。冷卻液在吸熱體20内與吸熱體20發生熱交換,被加 熱後之冷卻液經傳輸管50流向微液滴產生器40之第一端 蓋48内,再經第一端蓋48進液口流回至微液滴產生器40 之儲液槽428内,從而完成一次循環流動。 [0030] 該液冷散熱系統200中,由微液滴產生器40、散熱體30、 吸熱體20及傳輸管50串接形成一回路,吸熱體20用來吸 收電子所產生之熱量,該微液滴產生器40對冷卻液進行 傳輸,使冷卻液在該回路中循環流動,從而源源不斷地 將吸熱體20所吸收之熱量帶走。 [0031] 該微液滴產生器40製作工藝簡單,適合進行微型化設計 ,可用於内部空間較小之筆記型電腦等電子裝置内對電 子元件進行散熱。該微型液體冷卻裝置200中,採用微液 滴產生器40來對冷卻液進行傳輸,沒有像泵這類機械傳 動件,故具有良好之靜音效果。 [0032] 上述實施例中,微液滴產生器40之下極板42之兩端分別 設有第一、第二凹槽426、427,第一、第二端蓋48、49 096130494 表單編號A0101 第15頁/共30頁 0993373642-0 099年10月19日修正替換頁· 收合於s玄第一、第二凹槽426、427内以將微液滴產生器 40之兩端密封。可以理解地,該第_、第二端蓋48、〇 亦可以與下極板42或上極板44一體成型,當第一、第二 端蓋48、49與下極板42_體成型時,則不需要再在下極 板42之兩端設置第一、第二凹槽426、427。 [0033] 上述實施例中,微液滴產生器4〇之進液口設於第一端蓋 48上。可以理解地,該微液滴產生器4〇之進液口亦可設 置於上極板44上並與儲液槽428相對。 [0034] 上述實施例中,微液滴產生器4〇之下極板42上設有一儲 液槽428。可以理解地,該錬槳撐Mg内亦可以設置一控 制電極,該儲液槽428内之控淛電極可:以藉由一引線與一 外接電極相連’並利用導線‘“外丨g電極與:外部之控制 電路電相連。該儲液槽428内之控制電極可以用於在產生 液滴時將斷裂後之液體拉回儲液槽428内。 [0035] 上述實施例中’微液滴產生器4〇之下極板42與上極板44 之間設有兩支撐件46 ’從而在下板板42與上極板44之間 形成傳輸液滴之液滴通道。可以理解地,該下極板42與 上極板44之間亦可以不設置支撐件46和儲液槽428,此種 情況下,藉由在下極板42上凹設一細長之槽體,該槽體 之兩端分別與微液滴產生器40之進液口及出液口連通, 該上極板44直接蓋設於該下極板42上,從而形成傳輸液 滴之液滴通道。該槽體之寬度與控制電極422之寬度相同 或略大於控制電極之寬度,控制電極422設於該槽體内。 [0036] 综上所述,本發明符合發明專利要件,爰依法提出專利 096130494 表單編號A0101 第16頁/共30頁 0993373642-0 1337702 099年10月19日按正替換頁 申請。惟,以上所述者僅為本發明之較佳實施例,舉凡 熟悉本案技藝之人士,在爰依本發明精神所作之等效修 飾或變化,皆應涵蓋於以下之申請專利範圍内。 【圖式簡單說明】 [0037] 圖1 A係在不加電壓時,液滴之靜態接觸角為0/90°之情 況; [0038] 圖1B係在施加一定電壓作用下,液滴之靜態接觸角為Θ (V)<90°之情況。 [0039] 圖2係本發明微型液體冷卻裝置其中一較佳實施例之立體 組裝示意圖。 [0040] 圖3係圖2中微型液體冷卻裝置中之微液滴產生器之立體 分解示意圖。 [0041] 圖4係圖3中微液滴產生器之立體組裝示意圖。 [0042] 圖5係圖4中微液滴產生器之局部剖視圖。 [0043] 圖6A、6B及6C係微液滴之產生過程之示意圖。 [0044] 圖7A、7B及7C係微液滴傳輸過程之示意圖。 【主要元件符號說明】 [0045] 〈本發明〉 [0046] 微型液體冷卻系統:200 [0047] 微型液體冷卻裝置:200 [0048] 吸熱體:20 [0049] 上蓋:21 096130494 表單編號A0101 第17頁/共30頁 0993373642-0 1337702 099年10月19日梭正替換頁 [0050] 底座:22 [0051] 散熱體:30 [0052] 基座:31 [0053] 散熱片:32 [0054] 微液滴產生器:40 [0055] 下極板:42 [0056] 下基板:421 [0057] 介電層:423 [0058] 電極部分:4221、4222 [0059] 疏水層:424、443 [0060] 表面:425 [0061] 第一凹槽:42 6 [0062] 第二凹槽:42 7 [0063] 儲液槽:428 [0064] 溝槽:42 9 [0065] 外接電極:430 [0066] 引線:431 [0067] 上極板:44 [0068] 上基板:441 096130494 表單編號A0101 第18頁/共30頁 0993373642-0 1337702 099年10月19日按正替换頁 [0069] 參考電極層:442 [0070] 支撐件:46 [0071] 第一端蓋:48 [0072] 出口端:481、491 [0073] 第二端蓋:49 [0074] 傳輸管:50Dielectric, EW0D) is a reversible phenomenon that changes the surface tension of a liquid by applying an electric potential. Figures 1A and 1B are schematic diagrams of the electrowetting effect on a medium. As shown in FIG. 1A, the lower plate 1A includes a substrate 11 on which a lower electrode layer 12 is disposed, and the lower electrode layer 12 is covered by an insulating layer 13 to which the droplets 14 are located on the insulating layer 13. The upper electrode 15 is inserted into the inside of the droplet 14. A switch 16 and an adjustable power supply 1 7 are connected between the upper electrode 15 and the lower electrification layer 12 via a power line. The switch 16 is used for controlling the opening and closing of the circuit. The adjustable power supply 17 is used to An applied voltage is supplied between the lower plate 1 〇 and the upper electrode 15. When no voltage is applied between the upper electrode 15 and the lower plate 1〇, that is, when the switch 16 is in the off state, the surface of the insulating layer 13 of the lower plate 1 is hydrophobic, and the static contact angle of the droplet 14 at this time For Θ >90. . 0 As shown in FIG. 1B, when the switch 16 is closed, the adjustable power supply 17 provides a voltage V, and an electric potential is generated between the liquid droplet 14 and the lower plate 10. At this time, the static contact angle of the liquid droplet 14 is from the original Change to. When the magnitude of V reaches a certain value, θ (V) < 90. At this time, the surface of the insulating layer 13 becomes hydrophilic. When the switch 16 is re-opened, that is, when there is no potential between the droplet 14 and the lower electrode plate 10, the static contact angle of the droplet 14 is restored to ❶. The above phenomenon is called the electrowetting effect on the dielectric material 096130494. Grass No. 101 0101 Page 5 / Total 30 Pages 0993373642-0 1337702 ^ After October 19, 1999, I replaced i [0006] using the principle of electrowetting effect on this dielectric material, the University of Duke (Duck University) Pollack MG et al. first based on the electrowetting effect on the dielectric material and micro-electrode arrays for micro-droplet motion control, and proposed the concept of "Digital Microfluidics". Cho SK et al. of the University of California, Los Angeles (UCLA) successfully used the EW0D effect to perform four basic operations of generating, transmitting, mixing and splitting microdroplets with a diameter of 70 // m, and at 25V. The droplet movement speed of 25〇mm/s is obtained under AC voltage (Cho SK, Moon H, Kim C J. Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Distal Circuits [J]. Journal Of Microelectromechanical Sys-tems, 2003, 12 (1): 70-80.). It can be seen that the electrowetting effect based on the dielectric material is a very effective microfluidic control technique. SUMMARY OF THE INVENTION [000 Π In view of this, it is necessary to provide a micro liquid cooling device that is small in size and has a good mute effect. The present invention also provides a microdroplet generator for use in the micro liquid cooling device. [0009] A micro-droplet generator includes a first plate and a second plate disposed on the first plate, wherein a droplet is formed between the first plate and the second plate a channel, the microdroplet generator is provided at one end and the other end of the droplet channel respectively with an inlet port and a liquid outlet connected to the droplet channel, and the first plate corresponds to the droplet channel The interval setting has a number of 096130494 Form No. A0101 Page 6 / Total 30 Page 0993373642-0 1337702 October 19, 1999 Correction Replacement Page [0010] [0011] [(8) 12] [0013] Control electrode, the second plate a reference electrode layer is disposed. The reference electrode layer is electrically connected to the control electrodes by a control circuit, and a voltage is regularly applied to each control electrode by the control circuit, and the liquid inlet port enters the microdroplet generator. The liquid will produce droplets and move along the droplet channel to the outlet. The micro-liquid cooling device includes a heat absorbing body, a heat sink, a micro-droplet generator and a plurality of transfer tubes, the heat transfer body, the heat sink and the micro-droplet generator string Forming a circuit, the circuit is filled with an appropriate amount of cooling liquid, and the cooling liquid generates droplets under the action of the micro-droplet generator and circulates in the circuit. The micro-invention of the present invention is compared with the conventional liquid cooling device. The liquid cooling device uses a micro-droplet generator to transfer the coolant. The micro-droplet generator has a simple manufacturing process and is suitable for miniaturization design, and can be used for dissipating electronic components in an electronic device having a small internal space. . In the micro-droplet generator, the mechanical transmission member such as a pump is not used for the coolant transfer, so that it has a good mute effect. [Embodiment] The present invention is directed to the application of a microfluidic control technique based on the electrowetting effect on a dielectric material to a micro liquid cooling device. 2 is an assembled, isometric view of a preferred embodiment of a microfluidic cooling device 2 of the present invention. The micro-liquid cooling device 200 includes a heat absorbing body 20, a heat sink 30, a micro-droplet generator 4, and a plurality of transfer tubes 5 096130494. The heat absorbing body 20, the heat sink 30, and the microdroplet generator are connected in series by the transfer tubes 50, and the circuit is filled with a coolant (chart 箪 No. A0101, page 7 / 30 pages, 0993373642-0) 1337702 After October 19, 099, the replacement page is not shown). The heat absorbing body 20 is thermally coupled to a heat generating electronic component and absorbs heat generated therefrom, and the heat radiating body 30 is for cooling the coolant flowing through the inside thereof. Under the action of the microdroplet generator 40, the coolant circulates in the loop, thereby continuously taking away the heat absorbed by the heat absorbing body 20. [0014] The heat absorbing body 20 is for attaching to the surface of a heat-generating electronic component (not shown) to absorb the heat generated by the heat-absorbing body 20. In this embodiment, the heat absorbing body 20 is a heat block having a rectangular parallelepiped shape. The heat absorbing body 20 includes an upper cover 21 and a base 22. The base 22 is provided with a flow path (not shown) through which the coolant flows. The inlet and the outlet of the flow path are respectively passed through the transfer tube 50 and the heat sink 30. The microdroplet generator 40 is in communication with each other. The suction body 20 is not limited to the shape and structure shown in Fig. 2, and the heat absorbing body 20 can be rationally designed according to different heat dissipation requirements. [0015] The heat sink 30 is for cooling the coolant heated by the heat absorbing body 20. In this embodiment, the heat sink 30 is a heat sink, and includes a base 31 and a plurality of heat sinks 32 disposed on the base 31. The base 31 is also provided with a flow passage (not shown) through which the coolant flows, and the inlet and the outlet of the flow passage in the base 31 are respectively connected to the micro-droplet generator 40 and the heat absorbing body by the transfer tube 50. 20 phases are connected. Various heat dissipation structures such as heat dissipation columns may be disposed in the flow path of the base 31 to increase the heat exchange efficiency between the heat sink 30 and the coolant. The coolant flowing into the susceptor 31 through the inlet of the flow path of the susceptor 31 exchanges heat with the heat radiating body 30, and the cooling liquid is cooled and then flows to the heat absorbing body 20. The heat dissipating body 30 is not limited to the shape and structure shown in Fig. 2. The heat dissipating body 30 may have other shapes and structures. For example, when used in a notebook computer, the heat sink 30 can be a cooling plate 096130494 provided on one of the back sides of the display screen with a flow path. Form No. A0101 Page 8 / Total 30 Page 0993373642-0 1337702 _ ' , · I 099 October 19th, Revision Replacement Page _ 〇 [0016] As shown in FIG. 3 and FIG. 4, the micro-droplet generator 4 includes a lower plate 42 and a top plate on the lower plate 42 44' is connected to a corresponding control circuit (not shown) between the lower plate 42 and the upper plate 44, the two support members 46, and the first and second end covers 48, 49. [0017] The lower plate 42 is a rectangular parallelepiped structure having a surface 425 opposite the upper plate 44. The left and right ends of the lower plate 42 are recessed inwardly from the surface 425 to form a first and second recesses 426 and 427, and the first and second recesses 426 and 427 are respectively received for receiving Corresponding first and second end caps 48, 49. Referring to FIG. 5 together, the lower plate 42 includes a lower substrate 421, a plurality of control electrodes 422'-dielectric layer 423, and a hydrophobic layer 424. The lower substrate 421 can be a glass substrate or a germanium substrate. In the embodiment, the lower substrate 421 is a glass substrate. The control electrodes 422 are disposed on the lower substrate 421 at intervals and arranged at a central position of the lower substrate 421. The surface of the control electrodes 422 is covered with a dielectric layer 423 formed by depositing a layer of insulating material on the surface of the control electrode 422. The surface of the dielectric layer 423 is covered with a very thin layer of hydrophobic material as the hydrophobic layer 424. [0018] With continued reference to FIG. 3, a cylindrical reservoir 428 is disposed between the leftmost control electrode 422 and the first recess 426 of the lower substrate 42 for storing the cooling liquid. The leftmost control electrode 422 extends to interface with the edge of the reservoir 428. A groove 429 having a smaller width is disposed on a surface 425 of the lower plate 42 at a position intermediate the control electrodes 422. The left end of the groove 429 is in communication with the reservoir 428, and the right end and the second groove are 427 is connected. Since the width of the groove 429 is small 'for the 096130494 entering the groove 429, the form number A0101, page 9 / total 30 pages 0993373642-0 1337702 _099 is called the coolant can exhibit capillary suction, so only by An external circuit is applied between the lower plate 42 and the upper plate 44 to generate droplets from the reservoir 428 and transport along the control electrode 422. Due to the arrangement of the trenches 429, each of the control electrodes 422 is divided into three portions that are in communication with each other, that is, an electrode portion 4221 located on both sides of the trench 429 and an electrode portion 4222 located in the trench 429. An external electrode 43A is further disposed on the surface 425 of the lower plate 42 corresponding to each of the control electrodes 422, and the corresponding control electrode 422 is connected to the external electrode 430 by a lead 431. The external electrodes 430 may be distributed on both sides of the control electrodes 422, or may be distributed only on one side of the control electrodes 422. In this embodiment, the external electrodes 430 are distributed on the control electrodes 4 22 and 42 are further provided with a plurality of mounting holes 2 for fixing the second and 49, and a plurality of mounting holes ί : Fixed support; |^46 and mounting hole 433 of upper plate 44. [0019] Both sides. The lower end cover 48 and the upper plate 44 are also a rectangular parallelepiped structure including an upper substrate 441, a reference electrode layer 442 and a hydrophobic layer 443 (shown in FIG. 5). The upper substrate 441 may be a glass substrate or a slab substrate. In the embodiment, the upper substrate 441 is a glass substrate. The reference electrode layer 442 covers a surface of the upper substrate 441 and the lower plate 42. The surface of the reference electrode layer 442 is covered with a thin hydrophobic material as the hydrophobic layer 443. A thin dielectric layer may be disposed between the reference electrode layer 442 and the hydrophobic layer 443. The two support members 46 are both elongated plates disposed between the lower plate 42 and the upper plate 44 for supporting the upper plate 44. The mounting holes 433 on the upper support plate 42 are also provided with corresponding mounting holes 444. This embodiment 096130494 Form No. 1010101 Page 10/Total 30 Page 0993373642-0 [0020] 1337702 [0021] 0022] [0023] 096130494 In the shuttle replacement page of October 19, 099, the two support members 46 are separate from the upper and lower plates 44, 42. It will be understood that the two support members 46 may also The first end cover 48 is formed on the upper plate 44. The first end cover 48 and 49 are each a rectangular block structure. The first end cover 48 is provided with a liquid inlet, and the second end cover 49 is provided. There is a liquid outlet. The liquid inlet and the liquid outlet include an inlet end and an outlet end, wherein the shape of the inlet end and the outlet end of the liquid inlet respectively correspond to the shapes of the outlet end and the inlet end of the liquid outlet Only the outlet end 481 of the liquid inlet and the outlet end 491 of the liquid outlet are shown in Fig. 3. The first end cover 48 may also be provided between the inlet end and the outlet end 481 - a liquid storage space for The coolant is stored. Similarly, the second end cap 49 can also be provided with a liquid storage between the inlet end and the outlet end 491. The inlet end of the liquid inlet and the outlet end 491 of the liquid outlet are respectively connected to a transfer tube 5", and the first 'second end cover 48, 49 is disposed at the bottom of the lower plate 42. When the second recesses 426, 427 are in the same direction, the liquid inlet is opposite to the liquid reservoir 428 on the lower plate 42. The liquid outlet is opposite to the end of the groove 429 on the lower plate 42. 1. The mounting holes 432 of the second end covers 48, 49 corresponding to the lower plates 42 are correspondingly provided with mounting holes 482, 492. In order to have a clear understanding of the manufacture of the microdroplet generator 40 of the present invention, The manufacturing process of the lower plate 42 and the upper plate 44 of the micro-droplet generator in the present embodiment is as follows: The manufacturing process of the lower plate 42 is as follows: firstly, mechanical processing or wet etching is used on the glass substrate. First and second recesses 426, 427, reservoir 428' trench 429 and mounting holes 432, 433 are fabricated, and then chemical vapor deposition (Chemical Vapor Deposition) is used in glass form number A0101. 30 pages 0993373642-0 On October 19, 099, a layer of conductive ITO (Indiu) was deposited on the substrate of the replacement page. m Tin Oxide) transparent glass layer; patterned photolithography of the IT layer to form a control electrode 422 having a -疋 shape and spaced intervals, an external electrode 430 and a lead 431; and then using a vapor deposition method A layer of tantalum nitride (s, , ) is deposited as a dielectric layer 423 ' on the surface of the control electrode 422 and the lead 431. Then, a layer of τ^π〇η is applied on the dielectric layer 423 by means of spin coat. Hydrophobic layer 424. [0024] The upper plate 44 is fabricated by first forming a mounting hole 444 on the glass substrate by mechanical processing or wet etching; then forming a uniform layer I on the glass substrate by chemical vapor deposition. As the reference electrode layer 442; then a layer of Tefl〇n is applied as a hydrophobic layer 443 on the discriminating layer. Λ :, [0025] As shown in FIG. 4, when the fabricated components are assembled into the micro-droplet generator 4, the two support members 46 are disposed on the lower plate 42 and located at the control electrode of the lower plate 42. On both sides of the 422, a droplet passage for transporting droplets is formed between the lower plate 42 and the upper plate 44 at a position corresponding to the control electrode 422. Each support member 46 is located between the control electrode 422 of the lower plate 42 and the external electrode 430, that is, the external electrode 43 of the lower plate 422 is located outside the support member 46, so that the external electrode 4 3 0 and the external portion can be facilitated. The control circuit is electrically connected. The upper plate 44 is disposed on the two supporting members 46, and passes through the connecting members 433, 461, 444 provided on the lower plate 42, the supporting member 46 and the upper plate 44 by bolts and the like. The three are fixed together. The two support members 46 support the upper plate 44 while sealing both sides of the droplet generator 4〇. To increase the sealing effect, a layer of sealant or a seal may be applied between the support member 46 and the lower plate 42 and the upper plate 44. The 096130494 Form No. 1010101 Page 12/Total 30 Page 0993373642-0 1337702 • ι· October 19, 1999, the first and second end caps 48, 49 are respectively accommodated at the ends of the lower plate 42 First, the second recesses 426, 427 and the upper plate 44 are sandwiched between the first and second end covers 48, 49, and then pass through the first and second end covers 48 by bolts or the like. , 49 and mounting holes 482, 492 432 provided on the lower plate 42 to fix the first and second end covers 48, 49 and the lower plate 42 together to thereby "two of the micro-droplet generators 40" End seal. Similarly, in order to increase the sealing effect, the first and second end covers 48, 49 and the lower plate 42 and the upper plate 44 may be coated with a seal or a sealing member. When the first and second end covers 48, 49 are mounted to the first and second recesses 426, 427 at the two ends of the lower plate 42, the liquid inlet and the liquid reservoir 428 are provided on the first end cover 48. The liquid outlet of the second end cover 49 is opposite to the control electrode 422, that is, the liquid storage tank 428 communicates with the left end of the droplet passage, and the liquid outlet is connected to the right side of the droplet passage. .through. As shown in FIG. 2, when the micro liquid cooling device 2 is assembled, the microdroplet generator 4, the heat absorbing body 2, and the heat sink 30 are sequentially connected in series by the transfer tube 50 to form a The circuit is filled with an appropriate amount of coolant. The coolant is an electrolyzable, polarizable, electrically conductive or charged liquid. In this embodiment, the cooling liquid is deionized water. The reference electrode layer 442 of the upper plate 44 of the microdroplet generator 40 and the external electrode 422 of the lower plate 42 are electrically connected to an external control circuit by wires. The external control circuit uses a computer program to control the application time and application sequence of the voltage applied to each control electrode 422. The magnitude of the applied voltage is controlled by the power supply. The control method of the control electrodes and the control method of the voltage magnitude are conventional. Control method. [0027] As shown in FIG. 6A to FIG. 6C, the droplet D is prepared from the reservoir 096130494 of the microdroplet generator 40. Form 10101 Page 13 of 30 Page 0993373642-0 1337702 October 19, 1999 The replacement page 4 2 8 is generated by first controlling the electrode 422a by an external control circuit (for convenience of description, the control electrodes are named 42 2a, 422b, 422c from left to right in order... Applying a certain voltage, due to the electrowetting effect, the contact angle of the coolant in contact with the control electrode 422a becomes smaller. The smaller the contact angle is represented by the change in the surface tension of the coolant, when the applied voltage reaches a certain level. At the time, the coolant will move to the right from the reservoir 428 along the electrode 422a (shown in FIG. 6A); when the coolant moves to contact the electrode 422b, a voltage of the same magnitude is applied to the electrode 422b, so that the coolant is along the control electrode 422b. Continue to move to the right (shown in FIG. 6B); when the coolant moves to contact with the control electrode 422c, the control electrode 42b is cancelled while the voltage is applied to the control electrode 422c, and the A voltage is added to the control electrode. 422a, 422 (: know the voltage. In the absence of control, the voltage is turned off at the pole 422b, thereby forming a liquid enthalpy (shown in Fig. 6C). [0028] As shown in Fig. 7A to circle 7C, the transmission of the droplet D The process is: when the droplet d contacts the control electrode 422d, the voltage applied to the control electrode 422d is taken while the voltage applied on the CCD 4 2 2 c is taken, so that the droplet is) by the control electrode 4 2 2 c The position moves to the position where the control electrode 422d is located; when the droplet d moves to contact with the control electrode 422e, the voltage applied to the control electrode 422d is canceled while the voltage is applied to the control electrode 422e, so that the droplet 〇 is from the control electrode 422d. The position moves to the position where the control electrode 422e is located. By regularly applying a voltage to each of the control electrodes 422, it is possible to transfer the droplets generated in the reservoir 428 from left to right along the control electrode 422. Please continue to refer to FIG. 2, liquid cooling. When the heat dissipation system 2QQjl is used, the heat absorbing body is attached to the heat-generating electronic component (not shown), and the external control circuit 096130494 is used. Form No. A0101 Page 14 / Total 30 Page 0993373642-0 [0029] 1337702 October 19, 1999 The daily nuclear replacement page controls the application time and application sequence of the voltages on the respective control electrodes 422 of the microdroplet generator 40, and droplets can be generated from the reservoir 428 and transported to the right along the droplet channel. When the droplets are transmitted to the rightmost end of the control electrodes 422, they continue to move forward due to a certain speed, and flow into the second end cap 49 through the inlet end of the liquid outlet provided by the second end cover 49. By controlling the control electrodes 422 by the control circuit, droplets can be continuously generated from the reservoir 428 and transferred into the second end cap 49, thereby cooling the cooling in the second end cap 49. And flowing through the transfer tube 50 to the heat sink 30. The coolant is cooled by the heat sink 30 and then flows through the transfer pipe 50 to the heat absorbing body 20. The coolant exchanges heat with the heat absorbing body 20 in the heat absorbing body 20. The heated coolant flows through the transfer pipe 50 to the first end cover 48 of the microdroplet generator 40, and then passes through the first end cover 48 inlet port. Flow back into the reservoir 428 of the microdroplet generator 40 to complete a circulating flow. [0030] In the liquid cooling system 200, a micro-droplet generator 40, a heat sink 30, a heat absorbing body 20 and a transfer tube 50 are connected in series to form a circuit, and the heat absorbing body 20 is used for absorbing heat generated by electrons. The droplet generator 40 transfers the coolant to circulate the coolant in the circuit, thereby continuously taking away the heat absorbed by the heat absorber 20. [0031] The microdroplet generator 40 has a simple manufacturing process and is suitable for miniaturization design, and can be used for dissipating heat to electronic components in an electronic device such as a notebook computer having a small internal space. In the micro-liquid cooling device 200, the micro-liquid droplet generator 40 is used to transport the coolant, and there is no mechanical transmission member such as a pump, so that it has a good mute effect. [0032] In the above embodiment, the two ends of the lower plate 42 of the micro-droplet generator 40 are respectively provided with first and second grooves 426, 427, first and second end covers 48, 49 096130494 Form No. A0101 Page 15 of 30 Page 0993373642-0 October 19, 2010 Correction Replacement Page · Collapsed in the s-first and second grooves 426, 427 to seal the ends of the micro-droplet generator 40. It can be understood that the first and second end covers 48 and 〇 can also be integrally formed with the lower plate 42 or the upper plate 44 when the first and second end covers 48, 49 and the lower plate 42_ are integrally formed. Therefore, it is not necessary to provide the first and second grooves 426 and 427 at both ends of the lower plate 42. [0033] In the above embodiment, the liquid inlet of the micro-droplet generator 4 is disposed on the first end cap 48. It can be understood that the liquid inlet of the micro-droplet generator 4 can also be disposed on the upper plate 44 and opposite to the liquid storage tank 428. [0034] In the above embodiment, a reservoir 428 is disposed on the lower plate 42 of the micro-droplet generator 4 . It can be understood that a control electrode can also be disposed in the cymbal paddle Mg. The control electrode in the sump 428 can be connected to an external electrode by a lead wire and utilize the wire “ The external control circuit is electrically connected. The control electrode in the reservoir 428 can be used to pull the fractured liquid back into the reservoir 428 when droplets are generated. [0035] In the above embodiment, 'microdroplet generation Two support members 46' are disposed between the lower plate 42 and the upper plate 44 of the device 4 to form a droplet passage for transporting liquid droplets between the lower plate 42 and the upper plate 44. It is understood that the lower pole The support member 46 and the liquid storage tank 428 may not be disposed between the plate 42 and the upper electrode plate 44. In this case, by recessing an elongated groove body on the lower electrode plate 42, the two ends of the groove body are respectively The liquid inlet and the liquid outlet of the micro-droplet generator 40 are in communication, and the upper plate 44 is directly disposed on the lower plate 42 to form a droplet passage for transporting droplets. The width of the groove and the control electrode The width of the 422 is the same or slightly larger than the width of the control electrode, and the control electrode 422 is disposed in the cavity. [0036] According to the invention, the invention meets the requirements of the invention patent, and the patent is filed 096130494. Form No. A0101 Page 16/30 pages 0993373642-0 1337702 October 19, 1999, according to the replacement page application. DETAILED DESCRIPTION OF THE INVENTION The equivalent modifications and variations of the present invention in light of the spirit of the present invention are intended to be included in the scope of the following claims. [FIG. 1] A is the case where the static contact angle of the droplets is 0/90° when no voltage is applied; [0038] FIG. 1B is the static contact angle of the droplets under the action of a certain voltage, Θ (V) < 90° 2 is a perspective exploded view of a preferred embodiment of the micro liquid cooling device of the present invention. [0040] FIG. 3 is a perspective exploded view of the microdroplet generator of the micro liquid cooling device of FIG. 4 is a perspective view of a micro-droplet generator of FIG. 3. [0042] FIG. 5 is a partial cross-sectional view of the micro-droplet generator of FIG. 4. [0043] FIGS. 6A, 6B and 6C are micro-liquids. Schematic diagram of the process of generating droplets [0044] Figures 7A, 7B and 7 Schematic diagram of the transmission process of the C-series microdroplet. [Main component symbol description] [0046] [0046] Micro liquid cooling system: 200 [0047] Micro liquid cooling device: 200 [0048] Heat absorbing body: 20 [0049] ] Top cover: 21 096130494 Form No. A0101 Page 17 / Total 30 Page 0993373642-0 1337702 October 19, 2017 Shuttle replacement page [0050] Base: 22 [0051] Heat sink: 30 [0052] Base: 31 [ 0053] Heat sink: 32 [0054] Microdroplet generator: 40 [0055] Lower plate: 42 [0056] Lower substrate: 421 [0057] Dielectric layer: 423 [0058] Electrode part: 4221, 4222 [0059 Hydrophobic layer: 424, 443 [0060] Surface: 425 [0061] First groove: 42 6 [0062] Second groove: 42 7 [0063] Reservoir: 428 [0064] Trench: 42 9 [ 0065] External electrode: 430 [0066] Lead: 431 [0067] Upper plate: 44 [0068] Upper substrate: 441 096130494 Form number A0101 Page 18 of 30 0993373642-0 1337702 October 19, 2017 Replacement page [0069] Reference electrode layer: 442 [0070] Support: 46 [0071] First end cap: 48 [0072] Outlet end: 481, 491 [0073] Second end cap: 49 [0074] Transmission tube: 50

[0075] 液滴:D[0075] Droplet: D

[0076] 控制電極:422、422a、422b、422c、422d、422e、 422f [0077] 安裝孔:432、433、444、461 “82、492 [0078] 〈習知〉 [0079] 下極板:10 [0080] 基底:11 [0081] 下電極層:12 [0082] 絕緣層:13 [0083] 液滴:14 [0084] 上電極:15 [0085] 開關:1 6 [0086] 可調電源:17 [0087] 靜態接觸角:0^、0(V) 096130494 表單編號A0101 第19頁/共30頁 0993373642-0[0076] Control electrodes: 422, 422a, 422b, 422c, 422d, 422e, 422f [0077] Mounting holes: 432, 433, 444, 461 "82, 492 [0078] <Practical> [0079] Lower plate: 10 [0080] Substrate: 11 [0081] Lower Electrode Layer: 12 [0082] Insulation Layer: 13 [0083] Droplet: 14 [0084] Upper Electrode: 15 [0085] Switch: 1 6 [0086] Adjustable Power Supply: 17 [0087] Static Contact Angle: 0^, 0(V) 096130494 Form No. A0101 Page 19/Total 30 Page 0993373642-0

Claims (1)

1337702 099年10月19日按正替换頁 七、申請專利範圍: 1 . 一種微液滴產生器,包括一第一極板及蓋設於該第一極板 上之一第二極板,其改良在於:該第一極板與第二極板之 間形成有一液滴通道,該微液滴產生器在該液滴通道之一 端與另一端分別設有與該液滴通道相連通之一進液口與一 出液口,該第一極板上對應該液滴通道間隔設置有複數控 制電極,所述控制電極沿液滴通道由進液口向出液口間隔 排列,該第二極板上設有一參考電極層,該參考電極層與 該等控制電極藉由一控制電路電連接,藉由控制電路規律 性地對各控制電極施加電壓,自進液口進入到微液滴產生 器之液體將產生出液滴並沿翁通ir向:出滅口運動,該第 一極板包括一第一基板、一%電兔及:二^一疏水層,該等 控制電極位於該第一基板上,該介電層覆蓋於該等控制電 極之表面,該第一疏水層覆蓋於該介電層之表面,該第二 極板包括一第二基板,該參考電極層位於該第二基板之表 面上,該參考電極層上覆蓋有一層第二疏水層。 2 .如申請專利範圍第1項所述之微液滴產生器,其中該微液 滴產生器還包括一第一端蓋及一第二端蓋,該第一、第二 端蓋設於微液滴產生器相對之兩端以將該兩端密封。 3 .如申請專利範圍第2項所述之微液滴產生器,其中該第一 極板之兩端對應第一、第二端蓋分別設有第一、第二凹槽 ,該第一、第二端蓋分別收容在該第一、第二凹槽内並將 第二極板夾設於該第一、第二端蓋之間。 4.如申請專利範圍第2項所述之微液滴產生器,其中該進液 口及出液口分別設於該第一端蓋及第二端蓋上。 096130494 表單編號A0101 第20頁/共30頁 0993373642-0 1337702 099年10月19日核正替換頁 5 .如申請專利範圍第1項所述之微液滴產生器,其中該第一 極板上設有一儲液槽,該儲液槽位於進液口與液滴通道之 間且將進液口與液滴通道連通。 6 .如申請專利範圍第5項所述之微液滴產生器,其中該第一 極板上沿該液滴通道之延伸方向設有一溝槽,該溝槽之一 端與儲液槽相連通,另一端與出液口連通。 7 .如申請專利範圍第6項所述之微液滴產生器,其中該溝槽 位於該等控制電極之中部,該溝槽將每一控制電極分割成 位於該溝槽兩側之電極部分及位元於溝槽内之電極部分。 8.如申請專利範圍第1項所述之微液滴產生器,其中該第一 極板上對應每一控制電極還設有一外接電極,該控制電極 與外接電極之間藉由一引線連接,所述控制電路藉由導線 與該等外接電極電連接。 9 .如申請專利範圍第8項所述之微液滴產生器,還包括設於 第一極板與第二極板之間之兩支撐件,該兩支撐件設於該 等控制電極之兩側,該等外接電極分佈在控制電極之兩側 且位於該兩支撐件之外側。 10 . —種微型液體冷卻裝置,其改良在於:該微型液體冷卻裝 置包括一吸熱體、一散熱體、一微液滴產生器及複數傳輸 管,該等傳輸管將該吸熱體、散熱體及微液滴產生器串接 形成一回路,該回路中填充有一定量之冷卻液,冷卻液在 該微液滴產生器之作用下產生液滴並在該回路中循環流動 ,該微液滴產生器包括一第一極板及蓋設於該第一極板上 之一第二極板,該第一極板與第二極板之間形成有一液滴 通道,該微液滴產生器在該液滴通道之一端與另一端分別 設有與該液滴通道相連通之一進液口與一出液口,該第一 096130494 表單编號A0101 第21頁/共30頁 0993373642-0 1337702 099年10月19日梭正,頁 極板上對應該液滴通道間隔設置有複數控制電極,所述控 制電極沿液滴通道由進液口向出液口間隔排列,該第二極 板上設有一參考電極層,該參考電極層與該等控制電極藉 由一控制電路電連接,藉由控制電路規律性地對各控制電 極施加電壓,自進液口進入到微液滴產生器之液體將產生 出液滴並沿液滴通道向出液口運動,該第一極板包括一第 一基板、一介電層及一第一疏水層,該等控制電極位於該 第一基板上,該介電層覆蓋於該等控制電極之表面,該第 一疏水層覆蓋於該介電層之表面,該第二極板包括一第二 基板,該參考電極層位於該第二基板之表面上,該參考電 極層上覆蓋有一層第二疏水聲。 .·' · 1】·如申請專利範圍第10項所述之微型液體冷卻丨裝置,其中該 微液滴產生器還包括一第一龠蓋.及一第二‘蓋,該第一、 第一端蓋設於微液滴產生器相對之兩端以將該兩端密封。 12 .如申請專利範圍第u項所述之微型液體冷卻裝置,其中該 第一極板之兩端對應第一、第二端蓋分別設有第一、第二 凹槽,該第一、第二端蓋分別收容在該第一、第二凹槽内 並將第一極板失設於該第第二端蓋之間。 .如申請專利範圍第丨丨項所述之微型液體冷卻裝置其中該 進液口及出液口分別設於該第一端蓋及第二端蓋上。 .如申請專利範圍第1〇項所述之微型液體冷卻裝置,其中該 第—極板上設有一儲液槽,該儲液槽位於進液口與液滴通 道之間且將進液口與液滴通道連通。 096130494 W .如申請專利範圍第14項所述之微型液體冷卻裝置,其中該 第一極板上沿該液滴通道之延伸方向設有一溝槽,該溝槽 之一端與儲液槽相連通,另一端與出液口連通。 0993373642-0 表單編號Α0101 第22頁/共30頁 1337702 099年10月19日梭正替換頁 16 .如申請專利範圍第15項所述之微型液體冷卻裝置,其中該 溝槽位於該等控制電極之中部,該溝槽將每一控制電極分 割成位於該溝槽兩側之電極部分及位元於溝槽内之電極部 分。 17 .如申請專利範圍第10項所述之微型液體冷卻裝置,其中該 第一極板上對應每一控制電極還設有一外接電極,該控制 電極與外接電極之間藉由一引線連接,所述控制電路藉由 導線與該等外接電極電連接。 18 .如申請專利範圍第17項所述之微型液體冷卻裝置,其中該 微液滴產生器還包括設於第一極板與第二極板之間之兩支 撐件,該兩支撐件設於該等控制電極之兩侧,該等外接電 極分佈在控制電極之兩側且位於該兩支撐件之外側。 096130494 表單編號A0101 第23頁/共30頁 0993373642-01337702 October 19, 099, according to the replacement page VII, the scope of the patent application: 1. A micro-droplet generator comprising a first plate and a second plate covered on the first plate, The improvement is that a droplet channel is formed between the first plate and the second plate, and the microdroplet is respectively provided at one end and the other end of the droplet channel to communicate with the droplet channel. a liquid port and a liquid outlet, wherein the first electrode plate is provided with a plurality of control electrodes corresponding to the droplet passages, and the control electrodes are arranged along the droplet passage from the liquid inlet to the liquid outlet, the second plate A reference electrode layer is disposed thereon, and the reference electrode layer is electrically connected to the control electrodes by a control circuit, and a voltage is regularly applied to each control electrode by the control circuit, and enters the microdroplet generator from the liquid inlet port. The liquid will produce droplets and move along the Wengtong ir: out of the mouth, the first plate comprises a first substrate, a % electric rabbit and: a hydrophobic layer, the control electrodes are located on the first substrate The dielectric layer covers the surface of the control electrodes, The first hydrophobic layer covers the surface of the dielectric layer, the second electrode plate includes a second substrate, the reference electrode layer is located on the surface of the second substrate, and the reference electrode layer is covered with a second hydrophobic layer. 2. The microdroplet generator of claim 1, wherein the microdroplet generator further comprises a first end cap and a second end cap, the first and second end caps being disposed on the micro The droplet generator is opposite the opposite ends to seal the ends. 3. The micro-droplet generator of claim 2, wherein the first and second end caps are respectively provided with first and second recesses at the two ends of the first plate, the first The second end caps are respectively received in the first and second recesses, and the second pole plate is sandwiched between the first and second end caps. 4. The microdroplet generator of claim 2, wherein the liquid inlet and the liquid outlet are respectively disposed on the first end cover and the second end cover. 096130494 Form No. A0101, Page 20 of 30, 0993373642-0, 1337702. The micro-droplet generator of claim 1, wherein the first electrode plate A liquid storage tank is provided, the liquid storage tank being located between the liquid inlet and the liquid droplet passage and communicating the liquid inlet with the liquid droplet passage. 6. The microdroplet generator of claim 5, wherein the first plate has a groove along a direction in which the droplet channel extends, and one end of the groove communicates with the reservoir. The other end is connected to the liquid outlet. 7. The microdroplet generator of claim 6, wherein the trench is located in an intermediate portion of the control electrodes, the trench dividing each control electrode into electrode portions on both sides of the trench and The bit is in the electrode portion of the trench. 8. The micro-droplet generator of claim 1, wherein each of the control electrodes is further provided with an external electrode, and the control electrode and the external electrode are connected by a lead. The control circuit is electrically connected to the external electrodes by wires. 9. The microdroplet generator of claim 8, further comprising two support members disposed between the first plate and the second plate, the two support members being disposed on the two control electrodes On the side, the external electrodes are distributed on both sides of the control electrode and on the outer sides of the two supports. 10 . A micro liquid cooling device, wherein the micro liquid cooling device comprises a heat absorbing body, a heat sink, a micro droplet generator and a plurality of transfer tubes, the heat transfer body and the heat sink and the heat transfer body The microdroplet generator is connected in series to form a loop filled with a certain amount of coolant, and the coolant generates droplets under the action of the microdroplet generator and circulates in the loop, the microdroplet generator a first plate and a second plate disposed on the first plate, a droplet passage is formed between the first plate and the second plate, and the liquid droplet generator is in the liquid One end and the other end of the drip channel are respectively provided with a liquid inlet and a liquid outlet connected to the droplet passage, the first 096130494 Form No. A0101 Page 21 / Total 30 Page 0993373642-0 1337702 099 10 On the 19th of the day, the shuttle plate is provided with a plurality of control electrodes corresponding to the droplet channel spacing, and the control electrodes are arranged along the droplet channel from the liquid inlet to the liquid outlet, and the second electrode plate is provided with a reference. Electrode layer, the reference electrode layer and The control electrodes are electrically connected by a control circuit, and the control circuit regularly applies voltage to each of the control electrodes, and the liquid that enters the microdroplet generator from the liquid inlet port will generate droplets and flow out along the droplet channel. The first plate includes a first substrate, a dielectric layer and a first hydrophobic layer. The control electrodes are located on the first substrate, and the dielectric layer covers the surface of the control electrodes. The first hydrophobic layer covers a surface of the dielectric layer, the second electrode plate includes a second substrate, the reference electrode layer is located on a surface of the second substrate, and the reference electrode layer is covered with a second hydrophobic sound . The micro liquid droplet cooling device of claim 10, wherein the micro droplet generator further comprises a first lid and a second lid, the first and the first One end is disposed at opposite ends of the microdroplet generator to seal the both ends. 12. The micro-liquid cooling device of claim 5, wherein the first and second ends of the first plate are respectively provided with first and second grooves, the first and the second The two end caps are respectively received in the first and second recesses and the first pole plate is lost between the second end caps. The micro liquid cooling device of claim 2, wherein the liquid inlet and the liquid outlet are respectively disposed on the first end cover and the second end cover. The micro liquid cooling device according to claim 1, wherein the first plate is provided with a liquid storage tank, and the liquid storage tank is located between the liquid inlet and the liquid droplet passage and the liquid inlet is The droplet channels are connected. 096130494 W. The micro-liquid cooling device of claim 14, wherein the first plate is provided with a groove along a direction in which the droplet channel extends, and one end of the groove is connected to the liquid storage tank. The other end is connected to the liquid outlet. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; In the middle portion, the trench divides each of the control electrodes into electrode portions on both sides of the trench and electrode portions in the trenches. The micro-liquid cooling device of claim 10, wherein the first electrode plate is further provided with an external electrode corresponding to each control electrode, and the control electrode and the external electrode are connected by a lead wire. The control circuit is electrically connected to the external electrodes by wires. 18. The micro-liquid cooling device of claim 17, wherein the micro-droplet generator further comprises two support members disposed between the first plate and the second plate, the two supports being disposed on On both sides of the control electrodes, the external electrodes are distributed on both sides of the control electrode and on the outer sides of the two supports. 096130494 Form No. A0101 Page 23 of 30 0993373642-0
TW96130494A 2007-08-17 2007-08-17 Micro liquid cooling device and droplet generator thereof TWI337702B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96130494A TWI337702B (en) 2007-08-17 2007-08-17 Micro liquid cooling device and droplet generator thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96130494A TWI337702B (en) 2007-08-17 2007-08-17 Micro liquid cooling device and droplet generator thereof

Publications (2)

Publication Number Publication Date
TW200910065A TW200910065A (en) 2009-03-01
TWI337702B true TWI337702B (en) 2011-02-21

Family

ID=44724243

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96130494A TWI337702B (en) 2007-08-17 2007-08-17 Micro liquid cooling device and droplet generator thereof

Country Status (1)

Country Link
TW (1) TWI337702B (en)

Also Published As

Publication number Publication date
TW200910065A (en) 2009-03-01

Similar Documents

Publication Publication Date Title
CN101389200B (en) Miniature fluid cooling system and miniature fluid driving device
CN101360412B (en) Micro liquid cooling device and micro-liquid-drop generator adopted thereby
US7420807B2 (en) Cooling device for electronic apparatus
Cheng et al. Active thermal management of on-chip hot spots using EWOD-driven droplet microfluidics
US9557118B2 (en) Cooling technique
CN1658122A (en) Cooling system for electronic apparatus, and electronic apparatus using the same
US20140318152A1 (en) Method and apparatus for thermoelectric cooling of fluids
CN101427368A (en) Electro-osmotic pumps and micro-channels
KR20070120251A (en) Printed circuit board incorporated with heatpipe and manufacturing method thereof
CN101374397B (en) Apparatus for cooling miniature fluid and used micro liquid droplet generator thereof
US20090008064A1 (en) Cooling System for Electronic Substrates
CN110146956A (en) A kind of inside thermotransport micro-structure of optical module
WO2021018004A1 (en) Heat conduction device and terminal device
TWI506238B (en) Micro liquid cooling device
TWI337702B (en) Micro liquid cooling device and droplet generator thereof
JP5145458B2 (en) Heat transfer device capable of generating electricity
JP2005142513A (en) Cooling device and electronic equipment
TWI317416B (en) Micro liquid cooling device and droplet generator thereof
KR20200067647A (en) Thermoelectric module and apparatus for modulating a temperature including thereof
CN101742889B (en) Miniature liquid cooling device and micro-droplet generator adopted by same
TWI429035B (en) Micro liquid cooling device and droplet generator thereof
JP2000349213A (en) Cooling device for heating element
JP2005353887A (en) Flat pump
TW200914361A (en) Miniaturized liquid cooling system and miniaturized liquid driving device thereof
JP2007043013A (en) Sheet-like fluid cooling device and electronic device cooling structure using same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees