TWI336976B - - Google Patents

Download PDF

Info

Publication number
TWI336976B
TWI336976B TW96117588A TW96117588A TWI336976B TW I336976 B TWI336976 B TW I336976B TW 96117588 A TW96117588 A TW 96117588A TW 96117588 A TW96117588 A TW 96117588A TW I336976 B TWI336976 B TW I336976B
Authority
TW
Taiwan
Prior art keywords
wide
metal
slot
rectangular slot
wlan
Prior art date
Application number
TW96117588A
Other languages
Chinese (zh)
Other versions
TW200847527A (en
Inventor
Wen Shan Chen
Bao Hung Kao
Original Assignee
Univ Southern Taiwan Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Southern Taiwan Tech filed Critical Univ Southern Taiwan Tech
Priority to TW96117588A priority Critical patent/TW200847527A/en
Publication of TW200847527A publication Critical patent/TW200847527A/en
Application granted granted Critical
Publication of TWI336976B publication Critical patent/TWI336976B/zh

Links

Landscapes

  • Waveguide Aerials (AREA)

Description

1336976 99年8 I;) 16日修正替換Π 九、發明說明: 【發明所屬之技術領域】 本發明係—種支援WLAN/WiMM技術協定之雙頻印刷 々寬^孔天線’可以廣為應用在各種不同通訊產品之上,並 符合現在新興無線通訊技術WiMAX ( Worldwide1336976 99 years 8 I;) 16th revision replacement 九 IX, invention description: [Technical field of the invention] The present invention is a dual-frequency printing 々 wide hole antenna supporting WLAN/WiMM technology agreement can be widely used in A variety of different communication products, and in line with the current emerging wireless communication technology WiMAX ( Worldwide

Interoperability f〇r Microwave Access;全球互通的 微波存取)及傳統固網WLAN之頻段操作。 【先前技術】 由於消費性電子、無線通訊裝置及行動運算技術的流 行,具有輕、薄、短、小和無線通訊的電子產品將成為主 、;”L P刷式槽孔天線疋重要發展技術之一,相關的研究亦 不少,大部份係採用微帶天線設計理念,但微帶天線往往 文限於窄頻寬之特性。部份之微帶天線雖有寬頻或雙頻效 果,但因為其結構複雜,且天線之增益又無法達到室外傳 送接收之標準,故不利於實際應用。印刷寬槽孔天線 (printed wide slot antenna )具有低姿勢(1〇w profile)、重量輕(light weight)、容易製造與頻寬大等 優點’利用其印刷槽孔結構來設計寬頻操作的天線是非常 適合無線行動通訊的應用。 【發明内容】 本發明係提供一種支援WLAN/W i MAX技術協定之雙頻印 刷見槽孔天線’包含有微波基板 '接地金屬面、矩形样孔、 金屬微帶線及細長金屬;其中’微波基板,其具有相互平 1^36976 99年8月β F1修丨Η替換頁 行之第-表面及第二表面;接地金屬面,係設置於微波基 板之第-表面;矩型槽孔’係_製作於接地金屬面上, 以暴露出微波基板;金屬微帶線,自矩形槽孔一側寬邊, 平行矩型槽孔長邊,平貼於微波基板第二表面,往矩型槽 孔垂直映射於第二表面之區域範圍内,筆直饋入一預定長 度;細長金屬,位於矩形槽孔中,設有—長邊平行矩型槽 孔之寬邊,其長邊一端係延伸至矩形槽孔邊緣,與接地金 屬面具有電性連結。 此一設計用以產生本發明案相對高頻良好匹配頻段 操作的結構在於矩形槽孔,其係採寬槽孔天線設計,能較 一般槽孔天線發揮出更大之操作頻段。選擇一個適當的矩 形槽孔尺寸,將會激發-個寬頻頻段之共振模態,再經由 調整50歐姆的金屬微帶線饋入長度即可達到良好的阻抗 匹配,可形成一個適合寬頻操作的天線。 上述的細長金屬係一體連接於接地金屬面或該細長 金屬係個別成型再另連接於接地金屬面。 綜上所述,於矩形槽孔中加了一細長金屬,接地金屬 面細長金屬及其與金屬微帶線饋入方向同側之矩形槽孔 寬邊間距,合併出電磁耦合效應,產生出本發明相對低頻 良好匹配頻段操作’當間距越大,其阻抗匹配就往低頻移 動,且高頻戴止頻率也往更低的頻段移動,當間距調整至 一適當距離時,則可匹配出一相對低頻共振頻率,與適當 矩形槽孔所匹配之相對高頻共振頻率兩相配合,達成一雙 1336976 的年8 jj】6曰修正替換Η 頻天線,並可產生出適用WLAN/W丨ΜΑχ技術之應用頻段。 本發明之優點在於:具有印刷寬槽孔天線低姿勢、重 量輕、容易製造與頻寬大之優點,設計結構也相當簡單, 利用槽孔中加入-細長金屬即可輕易達成一雙頻天線,並 滿足WLAN/Wi MAX技術所需高增益(此雙頻天線有最大增益 值’分別為4. 7及6. 16dBi )。 【實施方式】 請參閱第一圖,本發明係提供一種支援WLAN/WiMAX技 術協定之雙頻印刷寬槽孔天線設計,包含有微波基板 (11)、接地金屬面(12)、矩形槽孔(13)、金屬微帶線(14) 及細長金屬(15);其中,微波基板(11),其具有相互平 行之第一表面(111 )及第二表面(112);接地金屬面(12), 係δ又置於微波基板(π)之第一表面(Η〗);矩型槽孔(a), 係触刻製作於接地金屬面(丨2)上,以暴露出微波基板 (11 ),金屬微帶線(14),自矩形槽孔(13) —側寬邊(13b), 平行矩型槽孔(13)長邊(13a),平貼於微波基板(U ) 第二表面(112),往矩型槽孔(13)垂直映射於第二表面 (112)之區域範圍内,筆直饋入一預定長度;細長金屬 (15),位於矩形槽孔(13)中,設有一長邊(15a)平行 矩型槽孔(13)之寬邊(13b)’其長邊(15a) —端係延伸 至矩形槽孔(13)邊緣,與接地金屬面(12)具有電性連 蛙。 如上述’本發明主要係利用細長金屬(15 ),及其與 7 1336976 99年8月16日修I.K替換頁 金屬微帶線(14)饋入方向之接地金屬面(12)間之間距 (16 ),匹配以致產生耦合效應,當間距(16)愈大,阻 抗匹配就愈往低頻移動,間距(16)大小為1mm時,匹配 出本發明案之較佳實施例工作頻段。 在本實施例中,微波基板(11 )之介電常數(ε r)=4. 4、損耗正切(loss tangent) =0· 0245、長度(11a) 為 700mm、寬度(1 lb)為 60mm、厚度(1 lc)為 1. 6mm 之 雙面感光電路板(FR4板);而矩型槽孔(13)之長邊(13a) 為45mm ’寬邊(13b)為32mm ;另金屬微帶線(14)寬度 (14b)為3mm、長度(14a)為26mm,具有50歐姆之阻 抗;另細長金屬(15)之寬邊(15b)為3. 8mm,長邊(15a) 為44mm,細長金屬(15)之長邊(i5a)與金屬微帶線(14) 饋入方向同側之矩形槽孔(13)寬邊(13b)之間的間距 (16)為lmm。惟上述參數僅為本發明較佳實施例之一, 其他等效變換匹配之參數,亦屬本發明之範圍。 量測,此雙頻段(2. 425〜2,7了5,毛4乃 如第一圖所示’係'為此發日月—較佳實施例之返回損失Interoperability f〇r Microwave Access; global interoperability for microwave access) and traditional fixed-line WLAN band operation. [Prior Art] Due to the popularity of consumer electronics, wireless communication devices and mobile computing technologies, electronic products with light, thin, short, small and wireless communication will become the main; "LP brush slot antenna" is an important development technology. First, there are many related researches. Most of them use microstrip antenna design concepts, but microstrip antennas are often limited to narrow bandwidth characteristics. Some microstrip antennas have broadband or dual-frequency effects, but because of their The structure is complicated, and the gain of the antenna cannot meet the standard of outdoor transmission and reception, so it is not suitable for practical applications. The printed wide slot antenna has a low profile (1〇w profile) and a light weight. It is easy to manufacture and has a large bandwidth. The antenna designed to design broadband operation by using its printed slot structure is very suitable for wireless mobile communication applications. SUMMARY OF THE INVENTION The present invention provides a dual-frequency printing supporting WLAN/W i MAX technology protocol. See slot antenna 'contains microwave substrate' grounded metal surface, rectangular hole, metal microstrip line and elongated metal; among them 'microwave substrate, Mutual flat 1^36976 August 1999 β F1 repair replaces the first-surface and second surface of the page; the grounded metal surface is placed on the first surface of the microwave substrate; the rectangular slot 'system _ is made at ground a metal surface to expose the microwave substrate; a metal microstrip line from a wide side of the rectangular slot, a long side of the parallel rectangular slot, flatly attached to the second surface of the microwave substrate, and vertically mapped to the rectangular slot The area of the two surfaces is fed straight into a predetermined length; the elongated metal is located in the rectangular slot, and is provided with a wide side of the long side parallel rectangular slot, and one end of the long side extends to the edge of the rectangular slot, and The grounded metal surface has an electrical connection. The structure designed to produce the relatively high frequency well-matched frequency band of the present invention is a rectangular slot, which is designed with a wide slot antenna and can be made larger than a general slot antenna. Operating frequency band. Choosing an appropriate rectangular slot size will excite a resonant mode of a wide frequency band, and then adjust the 50 ohm metal microstrip line feed length to achieve good impedance matching, which can form a suitable Frequency-operated antenna The above-mentioned elongated metal is integrally connected to the grounded metal surface or the elongated metal is separately formed and then connected to the grounded metal surface. In summary, an elongated metal is added to the rectangular slot, and the grounded metal surface is added. The elongated metal and its rectangular slot width on the same side as the feeding direction of the metal microstrip line combine to produce an electromagnetic coupling effect, resulting in a relatively low frequency good matching frequency band operation of the present invention. 'When the pitch is larger, the impedance matching is to the low frequency. Moving, and the high frequency wear frequency also moves to a lower frequency band. When the pitch is adjusted to an appropriate distance, a relatively low frequency resonant frequency can be matched, and the relative high frequency resonant frequency matched with the appropriate rectangular slot is two-phase. Cooperate to achieve a pair of 1336976 years 8 jj] 6 曰 modified replacement Η frequency antenna, and can produce application frequency bands for WLAN / W 丨ΜΑχ technology. The invention has the advantages that the printed wide slot antenna has the advantages of low posture, light weight, easy manufacture and large bandwidth, and the design structure is also quite simple, and a dual-frequency antenna can be easily realized by adding the elongated metal in the slot, and The high gain required for the WLAN/Wi MAX technology (the maximum gain value of the dual-frequency antennas is 4.7 and 6.16dBi, respectively). [Embodiment] Referring to the first figure, the present invention provides a dual-frequency printed wide-slot antenna design supporting a WLAN/WiMAX technology protocol, including a microwave substrate (11), a grounded metal surface (12), and a rectangular slot ( 13) a metal microstrip line (14) and an elongated metal (15); wherein the microwave substrate (11) has a first surface (111) and a second surface (112) that are parallel to each other; and a grounded metal surface (12) , the δ is placed on the first surface of the microwave substrate (π) (Η); the rectangular slot (a) is formed by contact on the grounded metal surface (丨2) to expose the microwave substrate (11) , metal microstrip line (14), from rectangular slot (13) - side wide side (13b), parallel rectangular slot (13) long side (13a), flat on the second surface of the microwave substrate (U) ( 112), the rectangular slot (13) is vertically mapped to the area of the second surface (112), and is fed straight into a predetermined length; the elongated metal (15) is located in the rectangular slot (13) and has a length The side (15a) of the parallel rectangular slot (13) has a long side (15b) whose end extends to the edge of the rectangular slot (13) and the grounded metal surface (1) 2) It has an electrical frog. As described above, the present invention mainly utilizes an elongated metal (15) and its distance from the grounded metal surface (12) of the feed direction of the metal microstrip line (14) of the IK replacement page on August 16, 1999. 16), matching so as to produce a coupling effect. When the pitch (16) is larger, the impedance matching moves to a lower frequency, and when the pitch (16) is 1 mm, the working frequency band of the preferred embodiment of the present invention is matched. In the present embodiment, the dielectric constant (ε r) of the microwave substrate (11) is 4.4, the loss tangent is =0. 0245, the length (11a) is 700 mm, and the width (1 lb) is 60 mm. The thickness (1 lc) is a double-sided photosensitive circuit board (FR4 board) of 1. 6 mm; and the long side (13a) of the rectangular slot (13) is 45 mm 'the wide side (13b) is 32 mm; another metal microstrip line (14) The width (14b) is 3 mm, the length (14a) is 26 mm, and has an impedance of 50 ohms; the other side of the elongated metal (15) (3b) is 3. 8 mm, and the long side (15a) is 44 mm, elongated metal The distance (16) between the long side (i5a) of the (15) and the wide side (13b) of the rectangular slot (13) on the same side as the feeding direction of the metal microstrip line (14) is 1 mm. However, the above parameters are only one of the preferred embodiments of the present invention, and other equivalent conversion matching parameters are also within the scope of the present invention. Measurement, this dual frequency band (2. 425~2, 7 out of 5, hair 4 is as shown in the first figure 'system' for this month and month - the return loss of the preferred embodiment

,為本發明一較佳 、,yz平面上的輻射場形實驗量測與 如第七圖及第八圖所示,為太 8 1336976 . 99年8月16日修正替換Π 實施例操作於低頻及高頻之天線增益測量結果,由圖中可 知,本發明實施例之天線有最大增益值分別為4. 7dBi及 6. 16dBi,增益變化量小於1. 91dBi。 【圖式簡單說明】 , 第一圖係為本發明一較佳實施例之幾何結構圖。 ^ 第二圖係為本發明一較佳實施例之返回損失量測。 第三圖係為本發明一較佳實施例工作於2. 45GHz在 xz-plane上的輻射場型圖;其中,實線代表實驗量測結果, 虛線代表模擬分析結果。 第四圖係為本發明一較佳實施例工作於5. 75GHz在 xz-plane上的輻射場型圖;其中,實線代表實驗量測結果, 虛線代表模擬分析結果。 第五圖係為本發明一較佳實施例工作於2. 45GHz在 yz-plane上的輻射場型圖;其中,實線代表實驗量測結果, 虛線代表模擬分析結果。 第六圖係為本發明一較佳實施例工作於5. 75GHz在 yz-plane上的輻射場型圖;其中,實線代表實驗量測結果, 虛線代表模擬分析結果。 第七圖係為本發明一較佳實施例工作於相對低頻頻段 之天線增益測量結果。 第八圖係為本發明一較佳實施例工作於相對高頻頻段 之天線增益測量結果。 【主要元件符號說明】 9 1336976 99年8月16 Η修iH替換頁 (11) 微波基板 (111) 第一表面 (112) 第二表面 (11a) 長度 (lib) 寬度 (11c) 厚度 (12) 接地金屬面 (13) 矩形槽孔 (13a) 長邊 (13b) 寬邊 (14) 金屬微帶線 (14a) 長度 (14b) 寬度 (15) 細長金屬 (15a) 長邊 (15b) 寬邊 (16) 間距For the purpose of the present invention, the experimental measurement of the radiation field shape on the yz plane is as shown in the seventh and eighth figures, which is too 8 1336976. The correction is replaced on August 16, 1999. The embodiment operates at a low frequency. And the gain variation is less than 1.91dBi. The maximum gain value of the antenna of the embodiment of the present invention is 4. 7dBi and 6.16dBi, respectively. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a geometrical diagram of a preferred embodiment of the present invention. The second figure is a return loss measurement according to a preferred embodiment of the present invention. The third figure is a radiation pattern diagram of the 2.45 GHz on the xz-plane according to a preferred embodiment of the present invention; wherein the solid line represents the experimental measurement result and the broken line represents the simulation analysis result. The fourth figure is a radiation pattern diagram of the 5.75 GHz on the xz-plane according to a preferred embodiment of the present invention; wherein the solid line represents the experimental measurement result and the broken line represents the simulation analysis result. The fifth figure is a radiation pattern diagram of the 2.45 GHz yz-plane according to a preferred embodiment of the present invention; wherein the solid line represents the experimental measurement result and the broken line represents the simulation analysis result. Figure 6 is a radiation pattern diagram of a 5.75 GHz yz-plane in accordance with a preferred embodiment of the present invention; wherein the solid line represents the experimental measurement result and the broken line represents the simulation analysis result. The seventh figure is an antenna gain measurement result operating in a relatively low frequency band according to a preferred embodiment of the present invention. The eighth figure is an antenna gain measurement result for a relatively high frequency band in accordance with a preferred embodiment of the present invention. [Main component symbol description] 9 1336976 August 16, 2014 i修 iH replacement page (11) Microwave substrate (111) First surface (112) Second surface (11a) Length (lib) Width (11c) Thickness (12) Grounded metal surface (13) Rectangular slot (13a) Long side (13b) Wide side (14) Metal microstrip line (14a) Length (14b) Width (15) Slim metal (15a) Long side (15b) Wide side ( 16) Spacing

Claims (1)

1336976 . |T9年8¾ 16 rT修正替換Η 十、申請專利範圍: 1. 一種支援WLAN/Wi MAX技術協定之雙頻印刷寬槽孔天 線,包括: 一微波基板,其具有相互平行之第一表面及第'一表面, 一接地金屬面,係設置於微波基板之第一表面; 一矩型槽孔,係#刻製作於接地金屬面上,以暴露出 微波基板; 一金屬微帶線,自矩形槽孔一側寬邊,平行矩型槽孔 長邊,平貼於微波基板第二表面,往矩型槽孔垂直映射於 第二表面之區域範圍内,筆直饋入一預定長度; 一細長金屬,位於矩形槽孔中,設有一長邊平行矩型 槽孔之寬邊,其長邊一端係延伸至矩形槽孔邊緣,與金屬 微帶線饋入方向之接地金屬面間具有一間距,並與接地金 屬面具有電性連結。 2. 如申請範圍第1項所述支援WLAN/WiMAX技術協定之 雙頻印刷寬槽孔天線,其中,該微波基板為介電常數(ε r)=4. 4、損耗正切([〇ss tangent) =〇. 0245、長度=70mm、 寬度= 60mm、厚度=16_之雙面感光電路板(FR4板)。 3. 如申請範圍第1項所述支援WLAN/WiMAX技術協定之 雙頻印刷寬槽孔天線,其中,該矩型槽孔係一寬槽孔,其 長邊為45mm,寬邊為32mm。 4. 如申請範圍第1項所述支援WLAN/WiMAX技術協定之 雙頻印刷寬槽孔天線,其中,該金屬微帶線寬度為3mfll、長 1336976 ‘_ 99年8月βϋ修正替換頁 度為26mm,具有50歐姆之阻抗。 5. 如申請範圍第1項所述支援WLAN/WiMAX技術協定之 雙頻印刷寬槽孔天線,其中,有一間距為1則1介於該細長金 屬之長邊與金屬微帶線饋入方向同側之矩形槽孔寬邊。 6. 如申請範圍第1項所述支援WLAN/WiMAX技術協定之 雙頻印刷寬槽孔天線,其中,細長金屬之寬邊為3. 8mm,長 邊為44mm。 7. 如申請範圍第1項所述支援WLAN/WiMAX技術協定之 雙頻印刷寬槽孔天線,其中,該細長金屬係一體連接於接 地金屬面。 8. 如申請範圍第1項所述支援WLAN/WiMAX技術協定之 雙頻印刷寬槽孔天線,其中,該細長金屬係個別成型再電 性連接於接地金屬面。 1336976 _ 99年8jj 1〗U修正替換頁 七、指定代表圖: (一) 本案指定代表圖為:第(一)圖 (二) 本代表圖之元件符號簡單說明: (11) 微波基板 (111) 第一表面 (112) 第二表面 (11a) 長度 (lib) 寬度 (11c) 厚度 (12) 接地金屬面 (13) 矩形槽孔 (13a) 長邊 (13b) 寬邊 (14) 金屬微帶線 (14a) 長度 (14b) 寬度 (15) 細長金屬 (15a) 長邊 (15b) 寬邊 (16) 間距 八、本案若有化學式時,請揭示最能顯示發明特徵的化學1336976 . | T9 year 83⁄4 16 rT correction replacement Η 10. Patent application scope: 1. A dual-frequency printed wide-slot antenna supporting WLAN/Wi MAX technology protocol, comprising: a microwave substrate having first surfaces parallel to each other And a 'one surface, a grounded metal surface, is disposed on the first surface of the microwave substrate; a rectangular slot is made on the grounded metal surface to expose the microwave substrate; a metal microstrip line, a wide side of the rectangular slot, the long side of the parallel rectangular slot, flatly attached to the second surface of the microwave substrate, and the rectangular slot is vertically mapped to the area of the second surface, and is fed straight into a predetermined length; The metal, located in the rectangular slot, has a wide side of a long-edge parallel rectangular slot, and one end of the long side extends to the edge of the rectangular slot, and has a spacing from the grounded metal surface of the metal microstrip line feeding direction. And electrically connected to the grounded metal surface. 2. The dual-frequency printed wide-slot antenna supporting the WLAN/WiMAX technology protocol as described in item 1 of the application scope, wherein the microwave substrate has a dielectric constant (ε r)=4.4, loss tangent ([〇ss tangent ) = 〇. 0245, length = 70mm, width = 60mm, thickness = 16_ double-sided photosensitive circuit board (FR4 board). 3. The dual-frequency printed wide-slot antenna supporting the WLAN/WiMAX technology protocol as described in item 1 of the application scope, wherein the rectangular slot is a wide slot with a long side of 45 mm and a wide side of 32 mm. 4. The dual-frequency printed wide-slot antenna supporting the WLAN/WiMAX technology protocol as described in the first item of the application scope, wherein the metal microstrip line width is 3mfll and the length is 1336976 '_99. 26mm with an impedance of 50 ohms. 5. The dual-frequency printed wide-slot antenna supporting the WLAN/WiMAX technology protocol as described in item 1 of the application scope, wherein a distance of 1 is 1 between the long side of the elongated metal and the feeding direction of the metal microstrip line The side of the rectangular slot is wide. 6. The double-frequency printed wide-slot antenna supporting the WLAN/WiMAX technology protocol as described in item 1 of the application scope, wherein the elongated metal has a wide side of 3. 8 mm and a long side of 44 mm. 7. The dual-frequency printed wide-slot antenna supporting the WLAN/WiMAX technology protocol as described in the scope of claim 1, wherein the elongated metal is integrally connected to the grounded metal surface. 8. The dual-frequency printed wide-slot antenna supporting the WLAN/WiMAX technology protocol as described in the scope of claim 1, wherein the elongated metal is separately molded and electrically connected to the grounded metal surface. 1336976 _ 99 years 8jj 1〗 U correction replacement page VII, designated representative map: (1) The representative representative figure of this case is: (1) Figure (2) The symbol of the representative figure is simple: (11) Microwave substrate (111) ) First surface (112) Second surface (11a) Length (lib) Width (11c) Thickness (12) Grounded metal surface (13) Rectangular slot (13a) Long side (13b) Wide side (14) Metal microstrip Line (14a) Length (14b) Width (15) Slender metal (15a) Long side (15b) Wide side (16) Pitch 8. If there is a chemical formula in this case, please reveal the chemistry that best shows the characteristics of the invention.
TW96117588A 2007-05-17 2007-05-17 A dual-frequency printed wide-slot antenna supporting WLAN/WiMAX technology protocol TW200847527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96117588A TW200847527A (en) 2007-05-17 2007-05-17 A dual-frequency printed wide-slot antenna supporting WLAN/WiMAX technology protocol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96117588A TW200847527A (en) 2007-05-17 2007-05-17 A dual-frequency printed wide-slot antenna supporting WLAN/WiMAX technology protocol

Publications (2)

Publication Number Publication Date
TW200847527A TW200847527A (en) 2008-12-01
TWI336976B true TWI336976B (en) 2011-02-01

Family

ID=44823548

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96117588A TW200847527A (en) 2007-05-17 2007-05-17 A dual-frequency printed wide-slot antenna supporting WLAN/WiMAX technology protocol

Country Status (1)

Country Link
TW (1) TW200847527A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594779A (en) * 2013-11-22 2014-02-19 电子科技大学 Substrate integrated antenna for millimeter wave frequency band and array antenna thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407631B (en) * 2009-07-21 2013-09-01 Univ Nat Taiwan Antenna

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594779A (en) * 2013-11-22 2014-02-19 电子科技大学 Substrate integrated antenna for millimeter wave frequency band and array antenna thereof
CN103594779B (en) * 2013-11-22 2015-07-29 电子科技大学 Antenna integrated and the array antenna of substrate for millimeter wave frequency band

Also Published As

Publication number Publication date
TW200847527A (en) 2008-12-01

Similar Documents

Publication Publication Date Title
US7095374B2 (en) Low-profile embedded ultra-wideband antenna architectures for wireless devices
TWI338973B (en) Small-sized wide band antenna and wireless communication apparatus
US8059055B2 (en) Ultra-wideband antenna
TW201232924A (en) Surface-mount type multiple-band antenna module
TW200537740A (en) Dielectric antenna and communication device incorporating the same
TW201023430A (en) Multiband antenna
JP2009182786A (en) Laminated antenna
TWI331824B (en) Three-dimensional multi-frequency antenna
US7619566B2 (en) Impedance transformation type wide band antenna
CN103794868B (en) Antenna module
TWI336976B (en)
TWI357689B (en) Multi-band antenna
JP2009147424A (en) Antenna device
TW200935657A (en) Multi-frequency antenna
TW200952264A (en) A multiband mobile communication device antenna
US20060176221A1 (en) Low-profile embedded ultra-wideband antenna architectures for wireless devices
TWI324415B (en) A printed polygonal slot antenna fed by a microstrip line for three-band operation
TW200901562A (en) Ultra wideband antenna
CN209592314U (en) A kind of dual-frequency P IFA plug-in unit antenna
TW201417395A (en) Antenna assembly
CN104143687A (en) WLAN dual-frequency antenna device and communication device
CN102760945A (en) Direct feed omnidirectional printed antenna with radiation load
TWM397043U (en) Improved multi-band antenna structure
WO2013000210A1 (en) Antenna and wireless communication device
TWI520443B (en) Monopole antenna