TWI336385B - Light source apparatus - Google Patents
Light source apparatus Download PDFInfo
- Publication number
- TWI336385B TWI336385B TW97101352A TW97101352A TWI336385B TW I336385 B TWI336385 B TW I336385B TW 97101352 A TW97101352 A TW 97101352A TW 97101352 A TW97101352 A TW 97101352A TW I336385 B TWI336385 B TW I336385B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- light source
- source device
- guide column
- source module
- Prior art date
Links
Landscapes
- Planar Illumination Modules (AREA)
Description
25482twf.doc/n 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種光源裝置,且特別是有關於一種 採用導光柱的光源裝置。 【先前技術】 隨著半導體技術的進步,發光二極體(light-emitting diode,LED)所能達到的功率越來越大,且所發出的光之 強度越來越高,再加上發光二極體具有省電、使用壽命長、 環保、啟動快速、體積小…等多種優點,使得發光二極體 的應用層面越來越廣。此應用層面包括照明、交通號誌、 顯示器、光學滑鼠…等。 ~ ~ 然而,由於發光二極體是點光源,隨著發光強度越來 越高’會使得強度極高的光都集中在一點上。當這樣的點 光源用於一般照明用途時,容易使得直視此點光源的人眼 感到不舒服,亦即產生眩光’而使視覺舒適性下降。由於 發光二極體的功率與壳度有越來越大的發展趨勢,因此視 覺舒適性的提升便越顯得重要。 一般而言,欲提升視覺舒適性可將擴散板或其他導光 元件放置於發光一極體前,以產生亮度較為分散的光源。 然而,在利用擴散板或導光元件來使亮度分散的同時,會 使部分的光損失’而浪費了能源。因此,提升視覺舒適性 的最佳方式不但要考慮到亮度的分散程度,亦要考慮到光 的利用率’而使得光損失盡可能減少,進而節約能源。 25482twf. doc/n 【發明内容】 本發明鮝供一種光源裝置么 光源,且兼具較高的光利科/錯較為分散的 光和ίΓ實施例提出—種光源裝置’ 1包括至少- π光柱具有-第-端面、-第二端面u 弟一表面以及一第-矣;吐 出尤面、一 光面連接於第一端面與第:dm面相對。出 -端面’並與出光面相對::第-表面連接至第 小於⑽於或等於90度且 面在導光柱内的夾角==傾斜。第-表面與第二表 件配置;^ = 小於180度。第一發光元 仵配置於弟-端面旁’並適於發出一第一光束 會由面進人導光柱,並經由出絲傳触導光柱外。 本發明之—實施射,導紐更具有多個光學微結 /、位於第—端面,而第一光束會通過這些光學微結構。 在本發明之一實施例中,導光柱更具有多個同心環狀 凹紋,其位於第—端面,而第—光束會通過這些同心環狀 凹紋。 在本發明之一實施例中,導光柱更具有至少一容置凹 面,其位於第一端面,以容置第一發光元件。 在本發明之一實施例中,導光柱更具有多個光學微結 構’其位於容置凹面,而第一光束會通過這些光學微結構。 1336385 25482twf.doc/n 在本發明之一實施例中,導光柱更具肴多個同軸環狀 凹紋,其位於容置凹面,而第一光束會通過這些同軸環狀 凹紋。 在本發明之一實施例中,導光柱更具有一第一圖案化 光學微結構’其位於第一表面及/或第二表面。 在本發明之一實施例中,光源模組更包括一第—擴散 層’其配置於第一表面及/或第二表面上。BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a light source device, and more particularly to a light source device using a light guide column. [Prior Art] With the advancement of semiconductor technology, the power that light-emitting diodes (LEDs) can achieve is getting larger and larger, and the intensity of light emitted is getting higher and higher, plus two light-emitting The pole body has various advantages such as power saving, long service life, environmental protection, quick start-up, small volume, etc., and the application level of the light-emitting diode is wider and wider. This application level includes lighting, traffic signs, displays, optical mice...etc. ~ ~ However, since the light-emitting diode is a point source, the higher the luminous intensity is, the more intense the light will be concentrated at one point. When such a point light source is used for general lighting purposes, it is easy to make the human eye directly looking at the point light source uncomfortable, i.e., glare is generated, and the visual comfort is lowered. As the power and shell of the LEDs are more and more developed, the improvement of visual comfort is more important. In general, to enhance visual comfort, a diffuser or other light directing element can be placed in front of the light emitting body to produce a light source that is more dispersed. However, while the diffusing plate or the light guiding member is used to disperse the luminance, part of the optical loss is wasted, and energy is wasted. Therefore, the best way to improve visual comfort is to take into account not only the degree of dispersion of brightness, but also the light utilization rate, which minimizes light loss and thus saves energy. 25482 twf. doc/n SUMMARY OF THE INVENTION The present invention provides a source of light source devices, and has a relatively high optical/integrally dispersed light and an embodiment. The light source device '1 includes at least a π beam. The surface has a first end surface, a second end surface, and a first surface, and a first surface, and a light surface is connected to the first end surface and opposite to the first:dm surface. The end face is opposite to the light exit face: the first surface is connected to an angle less than (10) at or equal to 90 degrees and the face is in the light guide column == tilt. The first surface and the second surface are configured; ^ = less than 180 degrees. The first illuminating element is disposed at the side of the front end and is adapted to emit a first light beam which is introduced into the light guiding column by the surface and is transmitted outside the light guiding column via the outgoing wire. In the present invention, the guide has a plurality of optical micro-junctions, which are located at the first end face, and the first light beam passes through the optical microstructures. In one embodiment of the invention, the light guide post further has a plurality of concentric annular indentations located at the first end face, and the first beam passes through the concentric annular indentations. In an embodiment of the invention, the light guiding column further has at least one accommodating concave surface located at the first end surface for accommodating the first illuminating element. In one embodiment of the invention, the light guide column has a plurality of optical microstructures that are located in the receiving concave surface through which the first light beam passes. 1336385 25482twf.doc/n In one embodiment of the invention, the light guide column is more versatile with a plurality of coaxial annular indentations that are positioned to receive the concave surface and the first beam of light passes through the coaxial annular indentations. In one embodiment of the invention, the light guide post further has a first patterned optical microstructure' that is located on the first surface and/or the second surface. In an embodiment of the invention, the light source module further includes a first diffusion layer disposed on the first surface and/or the second surface.
在本發明之一實施例中,光源模組更包括一第一反射 單元’其配置於第一表面上。 在本發明之一實施例中,光源模組更包括一第二反射 單元’其配置於第二表面上。 在本發明之一實施例中,導光柱更更具有一第三表 其連接於第一端面與出光面之間,並與第—表面相對。 第二表面與第—端面在導光柱内的夾角大於90度且小於 180 度。In an embodiment of the invention, the light source module further includes a first reflecting unit disposed on the first surface. In an embodiment of the invention, the light source module further includes a second reflecting unit disposed on the second surface. In an embodiment of the invention, the light guide column further has a third surface connected between the first end surface and the light exit surface and opposite to the first surface. The angle between the second surface and the first end surface in the light guide column is greater than 90 degrees and less than 180 degrees.
在本發明之一實施例中,導光柱可更具有一第二圖案 化光學微結構’其位於第三表面。 光源模組更包括一第二擴散 光源模組更包括一第三反射 導光柱更具有一第四表面以 在本發明之一實施例中 層,其配置於第三表面上。 在本發明之一實施例中 單元,其配置於第三表面上 在本發明之一實施例中 及-第五表面。第四表面連接至第二表面’並與 對’且相對出光面傾斜。第二表面與第四表面在導光柱内 8 1336385 25482twf.doc/n 的夾角大於180度且小於360度。第五表面連崔於第四 面與第二端面之間,並與出光面相對,且相對出光面傾^ 或平行。第四表面與第五表面在導光柱内的夾角大於〇户 且小於18〇度。第五表面與第二端面在導光柱内的夹角= 於或#於90度且小於180度。光源模組可更包括至少— 二發光7G件,其配置於第二端面旁,並適於發出一第二光 束。第二光束會由第二端面進入導光柱,並經 播至導光柱外。 曲得 光源模組更包括一第四反射 ’光源裝置更包括一電連接 在本發明之一實施例中 單元’其配置於第二端面上c 在本發明之一實施例中 器’其電性連接至光源模組。 ,本發明之-實施例中,上述至少—光源模組為多個 光源核組,每光源模_導光柱沿著-第-方向延伸’ 且這些光__這些導光㈣著—鄕 二方向排列。 J土且叼弟 二本”之一實施例中,上述至少一光源模組為多個 先:原桓組,母—光源模組的導光柱沿著—第—方向延伸, 且廷些光源模組的這些導光柱沿著第—方向排列。 $發明之一實施射,第二端面的法向量與出光面 的法向夏之失角大於或等於9G度則、於18〇度。 - 發,之—實施例更提出—種光源裝i广其包括至少 包括一導光柱以及至少一第一發光 V先柱具有一第一端面、一第二端面、一環狀表面、 9 1336385 25482twf.doc/n 一出光面以及一第二夹面。 狀表面連接至第—端面。出光與第1面相對。環 面之間,其中至少部分環狀表面狀表面與第二端 二表面連接於環狀表面與第二面之間有段差。第 對,其中至少部分環狀表面 ^間’並與出光面相 發光元件配置於第—端面旁之間有段差。第一 中第-光束會由第一端面進入‘柱:::J-光束,其 至導光柱外。 並、、呈由出光面傳播 在本發明之一實施例中,莫本 結構於第二表面上。圖案化先學微 弟—方向延伸 紋。每-凹紋沿著-與第結構可包括多個凹 迫些凹紋沿著第一方向排列。 在本發明之一實施例中,第二端面包括多個子 夹自t端面為曲面或平面’且補兩子端面在導光柱内的 爽角大於〇度且小於18〇度。 刃 I合在本發明一實施例之光源裝置中,發光元件所發出的 二經過導光柱而轉換為亮度較為分散的條狀光源。此 面。以較大角度偏離發光元件的光軸之光線能夠被第一表 ^%狀表面反射’所以偏離光軸的光線仍能夠被有效地 用,進而提升光源裝置的光利用率。 兴夕為讓本發明之上述特徵和優點能更明顯易懂,下文特 牛夕個實施例,並配合所附圖式,作詳細說明如下。 1336385 25482twfdoc/n 【實施方式】 在本說明書中,一物體之一表面的法向量定義為由該 物體内部指向該物體外部讀該表面垂直之向量。 第一實施例 圖1A林發明第一實施例之光源裝置的剖面示意 圖’而圖1B為圖1A之光源裝置的光賴組沿著I-Ι線之 剖面示意圖。請參照圖1A與圖1β,本實施例之光源裝置 1〇〇包括一光源模、板200。統模組2〇〇包括一導光柱 210。導光柱210具有-第一端面训、一第二端面32〇、 一出光面330、一第一表面34〇以及一第二表面35〇。第二 端面320與第一端面310相對。出光面33〇連接於第一端 面310與第二端面320之間。第一表面34〇連接至第一端 面310 ’並與出光面330相對。在本實施例中,第一表面 340相對出光面330傾斜。此外,第一表面34〇與第一端 面310在導光柱210内的夾角01大於9〇度且於18〇 度。第二表面350連接於第一表面34〇與第二端面32〇之 間,並與出光面330相對,且相對出光面33〇傾斜。第一 表面340與第二表面350在導光柱21〇内的夹角02大於〇 度且小於180度。 光源模組200更包括一第一發光元件22〇,其配置於 第一端面310旁,並適於發出一第一光束222。在本實施 例中,第一發光元件220例如為發光二極體。然而,在其 他實施例中,第一發光元件亦可以是其他適當的發光元 件。第一光束222會由苐一端面進入導光柱21〇,並 1336385 25482twf.doc/n 經由出光面330傳播至導光柱21〇外。具體而言,在本實 施例中,第一表面340上配置有一第一反射單元230。此 外,第二表面350上亦可配置有一第二反射單元24〇。第 一反射單元230與第二反射單元24〇例如為反射片或反射 膜’其可為一體成型或各自成型。以較大角度偏離發光元 件220的光轴A之光束222a可被第一反射單元230反射 至出光面330,而以較小角度偏離光軸a之光束222b會被 第二反射單元240反射至出光面330。 在本實施例之光源裝置100中,由於以較大角度偏離 發光元件220的光軸A之光束222a可被第一反射單元230 反射而得以被利用,因此光源裝置1〇〇具有較高的光利用 率。此外’由於發光元件22〇所發出的點光源在通過導光 柱210後’會轉變為亮度較為分散的條狀光源,因此光源 裝置100能夠有效提升視覺的舒適性。此外,第一端面31〇 與第一表面340的交界線至第一表面34〇與第二表面35〇 的交界線的距離為L1,而第一表面340與第二表面350的 父界線至第二表面350與第二端面320的交界線的距離為 L2。為了進一步提升光源裝置1〇〇的光利用率,在本實施 例中,可使L1與L2符合下列關係式: 〇 < L1/L2 $ 3。 m在本實施例中,第二端面320上亦可配置有一第四反 射單7L 250,以反來自第一端面31〇的光,進而提升光源 裝置1〇〇的光利用率。此外,導光柱21〇在第一表面34〇 上可具有圖案化光學微結構342。導光柱210在第二表面 12 1336385 25482twf-doc/n 35〇j亦可具有圖案化光學微結構352。再者,導光柱2i〇 在第一端面320上亦可具有圖案化光學微結構322。圖案 、化光學微結構如、352、322可以使光集中或擴散,進而 ' 使第一光束222較為均勻地經由出光面330傳播至外界。 在本實施例中,圖案化光學微結構342、352、322包括多 個光學微結構’光學微結構例如為在導光柱21〇表面上的 圖案化凹點。在本實施例中,每一光學微結構的寬度L3 • 例如_為小於或等於10毫米,而深度L4例如為小於或等於 β毫米。然而,在其他實施例中,圖案化光學微結構亦可 以是在導光柱表面上呈任何幾何形狀的凹紋、凸點、凸紋 或其他形式的不平滑表面結構。 ★在本實施例中,導光柱21〇更具有一第八表面36〇與 第六表面370 (如圖1Β所繪示)。第八表面360連接第 一端面310與第二端面320,且連接第一表面34〇與出光 面330 ’並連接第二表面35〇與出光面33〇。第六表面37〇 _ 連接第一端面310與第二端面320,且連接第一表面340 與出光面330,並連接第二表面350與出光面330。此外, 第八表面360與第六表面370彼此相對。再者,第八表面 360上可配置有第五反射單元26〇與圖案化光學微結構 • 362。另外,第六表面37〇上亦可配置有第六反射單元27〇 . 與圖案化光學微結構372。第五反射單元260、第六反射單 元270與第二反射單元240可為一體成型或各自成型。 在本實施例中,光源裝置100更包括一電連接器110, 其電性連接至光源模組200。具體而言,電連接器11()是 13 25482tw£d〇c/n 電性連接至第一發光元件220。電連接器1.10可連接至一 燈座(未繪示),燈座所提供之電源可經由電連接器110 傳遞至第一發光元件220,而驅使第一發光元件22〇發光。 在本實她例中,電連接器110、第一發光元件22〇與導光 柱210可藉由任何形式的固定架(未繪示)固定在二起。 此外,在本實施例中,電連接器11〇可為一般曰光燈管常 用的電連接器。舉例而言,電連接器11G的規格例如為 GX-10q或GY-l〇q。如此一來,便可以用本實施例之光源 裝置100直接置入傳統燈座中來取代傳統日光燈管,而不 需將傳統燈座更換為專為發光二極體設計的新型燈座。 值得注意的是,本發明並不限定配置於第一端面31〇 旁的第一發光元件220之數量僅為一個。在其他實施例 中,配置於第一端面旁的第一發光元件亦可以有多個。此 外,本發明並不限定第一表面34〇上必須配置有第一反射 單元230與圖案化光學微結構342,且不限定第二表面350 上必須配置有第二反射單元240與圖案化光學微結構 352。在其他實施例中,第一表面與第二表面上可以不配置 有反射單元’也可以不具有圖案化光學微結構,而第一發 光元件所發出的第一光束則在第一表面與第二表面上產生 全反射,並被全反射至出光面。 第二實施例 圖2為本發明第二實施例之光源裝置的剖面示意圖。 請參照圖2’本實施例之光源裝置10加與上述光源裝置100 1336385 25482twf.doc/n (如圖1A所繪示)類似,兩者的差異如卞所遠。在光源 裝置100a中,光源模組2〇〇a之導光柱21〇a的第一表面 34〇a相對出光面33〇平行,且第一表面340a與第一端面 310在導光柱2i〇a内的夾角β〗,等於卯度。光源裝置1〇〇a 具有與光源裝置100類似的功效,在此不再重述。 第三實%^ 圖3A為本發明第三實施例之光源裝置的光源模組之 剖=示意圖,而圖3B繪示圖3A中之導光柱以其第一端面 朝=的側視示意圖。請參照圖3A與圖3B,本實施例之光 源杈組200b與上述光源模組2〇〇(如圖1A所繪示)類似, 兩,的差異如下所述。在光源模組2〇〇b中,導光柱21〇b 在第一端面310b上具有多個光學微結構312,而第一光束 f22 _通過這些光學微結構Μ】。在本實施例中,這些光學 微、、。構312包括圓錐形凹陷312,、橢圓錐形凹陷312”以及 夕角錐形凹陷312’’’。多角錐形凹陷312”,例如是N角錐形 凹陷,其中N大於或等於3。這些光學微結構312可以有 效降低分第一光束222被第-端面3i〇b反射或全反射的 機ri,以使較多比例的第一光束222能夠順利進入導光柱 ^10b中,進而提升光源裝置的光利用率。在本實施例中, 每一光學微結構312的寬度L3,例如為小於或等於10毫 米’而深度L4,例如為小於或等於1〇毫米。 _值得注意的是,本發明並不限定光學微結構312必須 同時包括圓錐形凹陷312,、橢圓錐形凹陷312”與多角錐形 15 1336385 25482twf.doc/n 凹陷312”’。在其他實施例中,光學微結構亦可以是包括 上述各種類凹陷的其中一種以上,或者光學微結構亦可以 是其他形狀的凹陷,例如多面體凹陷、半球狀凹陷、各種 形式的曲面所形成的凹陷…等。另外,在光源模組2〇〇b 中,各光學微結構312是彼此相間隔配置。然而,在豆他 實施例中,各光學微結構亦可以是彼此相靠而不間隔^配 置。 第四實施例 圖4A為本發明第四實施例之光源裝置的光源模組之 剖面不意圖’而圖4B繪不圖4A中之導光柱以其第一端面 朝前的側視示意圖。请參照圖4 A與圖4B,本實施例之光 源模組200c與上述光源模組200(如圖ία所繪示)類似, 兩者的差異如下所述。在光源模組200c中,導光柱21 〇c 在第一端面310c上具有多個同心環狀凹紋312c,而第一 光束222會通過這些同心環狀凹紋312c。在本實施例中, 這些同心環狀凹紋312c所形成的表面例如為類似菲涅耳 透鏡(Fresnel lens)的表面,而每一同心環狀凹紋312c即 落在一菲涅耳區(Fresnel zone)的表面上。然而,在其他 實施例中,同心環狀凹紋312c所形成的表面亦可以是呈其 他形式的表面。同心環狀凹紋312c具有類似上述光學微結 構312 (如圖3A所繪示)的功效’亦能夠有效降低第—光 束222在第一端面310c上發生反射或全反射的機會。在本 實施例中,每一同心環狀凹紋312c的寬度L3”例如為小於 1336385 25482twf.doc/n 或等於10亳米,而深度L4”例如為小於或等於·1〇毫米。 • 第五實施例 . 圖5為本發明第五實施例之光源裝置的光源模組之剖 面示意圖。請參照圖5,本實施例之光源模組2〇〇d與上述 光源模組200 (如圖1A所繪示)類似,兩者的差異如下所 述。在光源模組200d中,導光柱210d在第一端面3l〇d φ 上具有一容置凹面312d,以容置第一發光元件220。在本 實施例中,容置凹面312d例如為一曲面。容置凹面312d 的設計能夠使以較大角度偏離第一發光元件2 2 〇之光軸A 的光束222a亦能夠儘量保持接近垂直地入射容置凹面 312d’因此可以有效降低第一光束222在第一端面3i〇d 發生反射或全反射的機會’進而有效提升光源裝置的光利 用率。 在其他未繪示的實施例中,容置凹面312d上亦可以 設有多個上述光學微結構312(如圖3A所繪示),而第— ® 光束會通過這些光學微結構312,以進一步提升光源裝置 的光利用率。此外’本發明並不限定第一端面310d上的容 置凹面312d之數量只有一個。在其他實施例中,第一端面 . 上亦可以設有多個容置凹面,以容置多個第一發光元件。 « 第六實施例 圖6A為本發明第六實施例之光源裝置的光源模組之 剖面示意圖,而圖6B繪示圖6A中之導光柱以其第一端面 17 1336385 25482twf.doc/n 朝月ij的侧視不意圖。清參照圖6A與圖6B,本實施例之光 源模組200e與上述光源模組200d (如圖5所綠示)類似, 兩者的差異如下所述。在光源模組200e中,導光柱21〇e 在第一端面310e的容置凹面312e上可具有多個同轴環狀 凹紋312e’,而第一光束222會通過這些同軸環狀凹紋 312e’,以進一步提升光源裝置的光利用率。在本實施例 中’這些同轴環狀凹紋312e’所形成的表面例如為淫菲耳 透鏡的表面。然而,在其他實施例中,這些同軸環狀凹紋 312e’所形成的表面亦可以是呈其他適當形式的表面。 值付/主思的疋’本發明並不限定容置凹面為曲面。在 其他實施例中,其亦可以呈其他適當形狀。以下將舉一實 施例詳加說明。 ' 第七實施例 圖7為本發明第七實施例之光源裝置的光源模組之剖 面示意圖。請參照圖7,本實施例之光源模組2〇〇f與上述 光源模組200d (如圖5所纷示)類似,兩者的差異如下所 述。在光源模組200f中,導光柱21沉之第一端面31〇f上 的谷置凹面312f包括一底面313a及至少一側面313b,而 側面313b連接至底面313a。在本實施例中,底面313a上 可β史有多個上述光學微結構312。然而,在其他實施例中, 容置凹面的底面亦可以是一平滑面,而其上不設置光學微 結構。 18 1336385 25482twf.doc/n 第八實施例 圖8為本發明第八實施例之光源裝置的光源模組之剖 面示意圖。請參照圖8,本實施例之光源模組200g與上述 光源模組200 (如圖1A所繪示)類似,兩者的差異如下所 述。在光源模組200g中,導光柱210g在第一表面34〇g、 第二表面350g及第二端面320g上沒有圖案化光學微結 構,取而代之的是,導光柱210g在第一表面340g、第二 表面350g及第二端面320g上分別配置有擴散層342g、 352g及322g。擴散層342g、352g及322g亦具有光擴散的 功效。 弟九實施例 圖9為本發明第九實施例之光源裝置的光源模組之剖 面示意圖。請參照圖9,本實施例之光源模組200h與上述 光源模組200 (如圖1A所繪示)類似,兩者的差異如下所 述。在光源模組200h中,導光柱210h更具有—第三表面 38〇 ’其連接於第一端面310與出光面330之間,並與第一 表面340相對。第三表面380與第一端面31〇在導光柱以他 内的夾角0 3大於90度且小於180度。在本實施例中,導 光柱210h在第三表面38〇上可具有圖案化光學微結構 382圖案化光學微結構382可類似於上述圖案化光學微会士 構342。然而,在其他實施例中,亦可以用擴散層來取代 圖案化光學微結構382。此外,在本實施例中,第三表面 380上可配置有第三反射單元280。 19 1336385 25482twf.d〇c/n 在光源模組200h中,相對光束222a以相反方向偏離 光軸Α之光束222c可在第三表面380上產生反射,且接 著傳遞至第二表面350並產生反射,最後經由出光面33〇 傳播至導光柱210h外。因此,光源模組2〇〇h可以進一步 善加利用光束222c ’而使光源裝置具有更好的光利用率。 第十實施例 Φ 圖1〇為本發明第十實施例之光源裝置的光源模組之 剖面示意圖。請參照圖10,本實施例之光源模組2〇〇i與 上述光源模組200 (凊參照圖1A)部分類似,兩者的差異 處如下所述。在光源模組200i中,導光柱2i〇i更具有_ 第四表面390以及一第五表面410。第四表面39〇連接至 第二表面350,並與出光面330相對,且相對出光面33〇 傾斜。第二表面350與第四表面39〇在導光柱内的夾角 大於180度且小於360度。第五表面41〇連接於第四表面 390與第二端面320i之間,並與出光面33〇相對。第四表 籲面390與第五表面410在導光柱210i内的夾角大於^ 度且小於180度。在本實施例中,第五表面41〇相對出 面330傾斜,且第五表面410與第二端面32〇i在導光 • 麗内的夾角Θ 6大於90度且小於18〇度。然而在其他 未繪示的實施例中,第五表面410亦可相對出光面33〇 行,且第五表面410與第二端面伽在導光柱 夾角(96等於90度。 町 光源模組21〇i可更包括至少一第二發光元件別其 20 1336385 25482twf.doc/n 配置於第二端面320i旁,並適於發出一第二光東512。第 二光束512會由第二端面320i進入導光柱21〇i,並經由出 , 光面330傳播至導光柱210i外。在本實施例中,第四表面 ^ 390、第五表面41〇與第二端面32〇i可分別對稱於第二表 面350弟表面340與第一端面310。如此之設計可以使 導光柱210i延長,並同時兼具光源裝置所提供的光束之均 勻性。此外,由於本實施例之光源模組2〇〇i具有兩個發光 • 元件(即第一發光元件220與第二發光元件51〇),因此 可乂升光源裝置的免度。然而,在其他實施例中,第四表 面、第五表面與第二端面亦可不對稱於第二表面、第一表 面與第一端面。 在本實施例中,第四表面390與第五表面41〇上亦可 分別設有圖案化光學微結構392及412,且可分別設有第 七反射單元290與苐八反射单元520。然而,在其他實施 例中’第四表面與第五表面上亦可不配置有圖案化光學微 結構與反射單元,且第四表面與第五表面可以是以全反射 • 的方式將第二光束反射。 第十一實施例 圖11為本發明第十一實施例之光源裝置的光源模組 之刹面不意圖。清參照圖11 ’本實施例之光源模組2〇〇j 與上述光源模組200i (如圖10所繪示)類似,兩者的差 異如下所述。在光源模組200j中’導光柱21〇』更包括一 第七表面420’其連接於弟一端面320i與出光面mo之間, 1336385 25482twf.doc/n 並與第五表面410相對。第七表面420與第二端面320i 在導光柱210j内的失角Θ 7大於90度且小於180度。在 本實施例中,第七表面420與第四表面380對稱。但在其 他實施例中,第七表面420亦可以不對稱於第四表面380。 此外,在本實施例中,第七表面420上可設有圖案化光學 微結構422與第九反射單元530。 第十二實施例 請參照圖1B,本發明並不限定第二表面350、第八表 面360、第六表面370與出光面330為平面。在其他實施 例中,第二表面、第八表面、第六表面與出光面亦可以是 皆為曲面,或者亦可以是部分為曲面,部分為平面。以下 將舉一實施例詳加說明。 圖12為本發明第十二實施例之光源裝置的光源模組 之剖面示意圖。請參照圖12,本實施例之光源模組200k 與上述光源模組200 (如圖1B所繪示)類似,兩者的差異 如下所述。在光源模組200k中,導光柱210k的第二表面 350k、第八表面360k與第六表面370k皆為曲面,而出光 面330為平面。此外’第二反射單元240k、第五反射單元 260k與第六反射單元270k的形狀可分別隨著第二表面 350k、第八表面360k與第六表面370k的形狀彎曲。再者, 光源模組200k在沿著導光柱21 Ok之縱長方向上的一剖面 與圖1A所繪示者形狀相同。 22 1336385 25482twf.doc/n 第十三實施例 圖13為本發明第十三實施例之光源裝置的剖面示意 圖。請參照圖1A與圖13,本實施例之光源裝置與上 述光源裝置100類似,兩者的差異如下所述。在光源裝置 100中’第二端面320的法向量N1與出光面33〇的法向量 N2可互相垂直。然而,在光源裝置1〇〇1的光源模組2001 之導光柱2101中,第二端面3201之法向量ΝΓ與出光面 330之法向量N2的夾角0 8大於90度且小於180度。 第十四實施例 圖14A為本發明第十四實施例之光源裝置的光源模 組之剖面示意圖,而圖14B為圖14A中之導光柱的立體示 意圖。請參照圖14A與圖14B,本實施例之光源模組200m 與上述光源模組200e (請參照圖6A)類似,兩者的差異 如下所述。在光源模組200m中,導光柱210m具有一環 狀表面340m以取代圖6A中的導光柱210e之第一表面 340。環狀表面340m連接至第一端面310m,出光面330 連接於環狀表面340m與第二端面320m之間,而第二表 面350m連接於環狀表面340m與第二端面320m之間。在 本實施例中,環狀表面340m與第二表面350m之間有段 差’且ί衣狀表面340m與出光面330之間有段差。環狀表 面340m的功效類似於圖9的第一表面340與第三表面 380,環狀表面340m可將以較大角度偏離第一發光元件 220的光軸A之第一光束222反射,而使其能夠被利用。 23 1336385 25482twf.doc/n 在其他實施例中,亦可以是壤狀表面的一部分與第二表面 之間有段差,而另一部分沒有段差。此外,在其他實施例 中,亦可以是環狀表面的一部分與出光面之間有段差,而 另一部分沒有段差。再者,在本實施例中,環狀表面34〇m 上可配置有弟一反射單元230m,以反射第一光束222。然 而,在其他實施例中,環狀表面上亦可以不配置有反射單 元,而環狀表面是以全反射的方式將第一光束反射。 在本只把例中’弟一表面350m是平行於出光面330。 然而,在其他實施例中,第二表面亦可以相對出光面傾斜。 此外,在本實施例中,導光柱210m在第二表面35〇m上 具有一圖案化光學微結構352m。具體而言,圖案化光學微 結構352m包括多個凹紋353m。導光柱21〇m是沿著一第 一方向D1由第一端面31〇m往第二端面320m延伸。每一 凹紋353m沿著一與第一方向D1垂直的第二方向D2延 伸,且這些凹紋353m沿著第一方向D1排列。在本實施例 中,每一凹紋353m可由一微傾斜面355m與一微垂直面 357m所形成’其中微傾斜面355m相對出光面330傾斜, 而微垂直面357m則垂直於出光面330。在本實施例中,每 一凹紋353m的寬度L3”’例如為小於或等於1〇毫米,而深 度L4”’例如為小於或等於毫米。 在本實施例中,第一端面310m具有一容置凹面 312m’以容置第一發光元件22〇。具體而言,容置凹面312m 可由多個同軸環狀子表面313m所構成,而相鄰兩子表面 313m之間有一夹角。在其他實施例中,容置凹面亦可以是 24 1336385 25482twf.doc/n 球面、非球面、其他曲面、多面體狀凹面或其他形式的凹 面。In one embodiment of the invention, the light guide post may have a second patterned optical microstructure' that is located on the third surface. The light source module further includes a second diffusing light source module further comprising a third reflective light guiding column and a fourth surface to be disposed on the third surface in an embodiment of the invention. In one embodiment of the invention, the unit is disposed on the third surface in an embodiment of the invention and a fifth surface. The fourth surface is coupled to the second surface & is inclined to the pair and opposite the exit surface. The angle between the second surface and the fourth surface in the light guide column 8 1336385 25482twf.doc/n is greater than 180 degrees and less than 360 degrees. The fifth surface is connected between the fourth surface and the second end surface, and is opposite to the light-emitting surface, and is opposite to or parallel to the light-emitting surface. The angle between the fourth surface and the fifth surface in the light guiding column is greater than the tenant and less than 18 degrees. The angle between the fifth surface and the second end surface in the light guiding column = or #90 degrees and less than 180 degrees. The light source module may further comprise at least two light-emitting 7G members disposed adjacent to the second end surface and adapted to emit a second light beam. The second beam enters the light guide from the second end face and is broadcasted outside the light guide. The curved light source module further includes a fourth reflective 'light source device and further includes an electrical connection. In an embodiment of the invention, the unit is disposed on the second end surface c. In an embodiment of the invention, the electrical property is Connect to the light source module. In the embodiment of the present invention, the at least one light source module is a plurality of light source core groups, and each light source mode _ light guide column extends along the -first direction and the light __ these light guides (four) are - 鄕 two directions arrangement. In one embodiment of the invention, the at least one light source module is a plurality of first: the original group, the light guiding column of the mother-light source module extends along the first direction, and the light source modules are The light guide columns of the group are arranged along the first direction. One of the inventions implements the shot, and the normal vector of the second end face and the normal summer of the light exit surface are greater than or equal to 9G degrees, and are at 18 degrees. The embodiment further provides that the light source includes at least one light guiding column and at least one first light emitting V first column having a first end surface, a second end surface, and an annular surface, 9 1336385 25482twf.doc/ n a light emitting surface and a second clamping surface. The surface is connected to the first end surface. The light is opposite to the first surface. Between the annular surfaces, at least part of the annular surface surface and the second end surface are connected to the annular surface There is a step difference from the second surface. The pair, wherein at least part of the annular surface is in between and the light-emitting surface-emitting element is disposed at a side of the first end surface, and there is a step difference. The first middle first beam enters from the first end surface. 'Column:::J-beam, which is outside the light guide column. Propagating from the illuminating surface In one embodiment of the invention, the moben structure is on the second surface. The patterning first learns the micro-different-directional stretching pattern. Each-concave--the first structure may include a plurality of depressions. The concave lines are arranged along the first direction. In an embodiment of the invention, the second end surface includes a plurality of sub-clips from the end surface of the t surface to a curved surface or a plane 'and the refreshing angle of the two end faces in the light guiding column is greater than the twist In the light source device according to an embodiment of the present invention, the light emitted from the light-emitting element is converted into a strip-shaped light source having a relatively dispersed brightness through the light guide column. This surface is offset from the light-emitting element by a large angle. The light of the optical axis can be reflected by the surface of the first surface. Therefore, the light that deviates from the optical axis can still be effectively used, thereby improving the light utilization efficiency of the light source device. The above features and advantages of the present invention can be further improved. It is obvious and easy to understand. The following examples are described in detail with reference to the drawings. 1336385 25482twfdoc/n [Embodiment] In the present specification, a normal vector of a surface of an object is defined as the object A portion of the light source device of the first embodiment of the invention is shown in FIG. 1A, and FIG. 1B is a schematic view of the light source device of the light source device of FIG. 1A along the I-Ι line. Referring to FIG. 1A and FIG. 1β, the light source device 1〇〇 of the embodiment includes a light source module and a plate 200. The system module 2 includes a light guide column 210. The light guide column 210 has a first end face training. a second end face 32〇, a light exiting surface 330, a first surface 34〇, and a second surface 35〇. The second end surface 320 is opposite to the first end surface 310. The light emitting surface 33〇 is connected to the first end surface 310 and the first surface The first surface 34 is connected to the first end surface 310' and opposite to the light exit surface 330. In the present embodiment, the first surface 340 is inclined with respect to the light exit surface 330. In addition, the angle 01 between the first surface 34A and the first end surface 310 in the light guiding rod 210 is greater than 9 degrees and 18 degrees. The second surface 350 is connected between the first surface 34 〇 and the second end surface 32 , and is opposite to the light exit surface 330 and inclined with respect to the light exit surface 33 。. The angle 02 between the first surface 340 and the second surface 350 in the light guiding column 21A is greater than a degree and less than 180 degrees. The light source module 200 further includes a first light emitting element 22〇 disposed adjacent to the first end surface 310 and adapted to emit a first light beam 222. In the present embodiment, the first light-emitting element 220 is, for example, a light-emitting diode. However, in other embodiments, the first illuminating element can also be other suitable illuminating elements. The first light beam 222 enters the light guide column 21〇 from the first end surface, and 1336385 25482twf.doc/n propagates to the light guide column 21 through the light exit surface 330. Specifically, in the embodiment, a first reflecting unit 230 is disposed on the first surface 340. In addition, a second reflecting unit 24A can also be disposed on the second surface 350. The first reflecting unit 230 and the second reflecting unit 24 are, for example, reflective sheets or reflective films, which may be integrally formed or formed separately. The light beam 222a that is offset from the optical axis A of the light-emitting element 220 at a larger angle can be reflected by the first reflection unit 230 to the light-emitting surface 330, and the light beam 222b that is offset from the optical axis a at a smaller angle is reflected by the second reflection unit 240 to the light-emitting surface. Face 330. In the light source device 100 of the present embodiment, since the light beam 222a which is deviated from the optical axis A of the light-emitting element 220 at a large angle can be utilized by being reflected by the first reflection unit 230, the light source device 1 has a high light. Utilization rate. Further, since the point light source emitted from the light-emitting element 22 is converted into a strip light source having a relatively dispersed brightness after passing through the light guide column 210, the light source device 100 can effectively improve visual comfort. In addition, the distance between the boundary line of the first end surface 31〇 and the first surface 340 to the boundary line of the first surface 34〇 and the second surface 35〇 is L1, and the parent boundary of the first surface 340 and the second surface 350 is to The distance between the boundary surface of the second surface 350 and the second end surface 320 is L2. In order to further improve the light utilization efficiency of the light source device 1 ,, in the present embodiment, L1 and L2 can be made to conform to the following relationship: 〇 < L1/L2 $ 3. In this embodiment, a fourth reflective sheet 7L 250 may be disposed on the second end surface 320 to counter the light from the first end surface 31〇, thereby improving the light utilization efficiency of the light source device 1〇〇. Additionally, the light guide post 21 can have a patterned optical microstructure 342 on the first surface 34A. The light guide 210 may also have a patterned optical microstructure 352 on the second surface 12 1336385 25482twf-doc/n 35〇j. Furthermore, the light guide post 2i can also have a patterned optical microstructure 322 on the first end face 320. The patterned, optical micro-structures 352, 322 can concentrate or diffuse the light, thereby 'transmitting the first beam 222 more uniformly through the exit surface 330 to the outside. In the present embodiment, the patterned optical microstructures 342, 352, 322 comprise a plurality of optical microstructures. The optical microstructures are, for example, patterned pits on the surface of the light guiding column 21(R). In the present embodiment, the width L3 of each optical microstructure is, for example, _ less than or equal to 10 mm, and the depth L4 is, for example, less than or equal to β mm. However, in other embodiments, the patterned optical microstructures can also be indentations, bumps, ridges, or other forms of uneven surface structures of any geometric shape on the surface of the light guide. In the present embodiment, the light guide post 21A further has an eighth surface 36A and a sixth surface 370 (as shown in FIG. 1A). The eighth surface 360 connects the first end surface 310 and the second end surface 320, and connects the first surface 34 〇 with the light exit surface 330 ′ and connects the second surface 35 〇 with the light exit surface 33 〇. The sixth surface 37〇 _ connects the first end surface 310 and the second end surface 320, and connects the first surface 340 and the light exit surface 330, and connects the second surface 350 and the light exit surface 330. Further, the eighth surface 360 and the sixth surface 370 are opposed to each other. Furthermore, the eighth surface 360 can be provided with a fifth reflecting unit 26 and a patterned optical microstructure 362. In addition, a sixth reflecting unit 27A and a patterned optical microstructure 372 may be disposed on the sixth surface 37A. The fifth reflecting unit 260, the sixth reflecting unit 270, and the second reflecting unit 240 may be integrally formed or formed separately. In the embodiment, the light source device 100 further includes an electrical connector 110 electrically connected to the light source module 200. Specifically, the electrical connector 11() is electrically connected to the first light-emitting element 220 by 13 25482 twd. The electrical connector 1.10 can be connected to a socket (not shown), and the power provided by the socket can be transmitted to the first illuminating element 220 via the electrical connector 110 to drive the first illuminating element 22 to emit light. In the present example, the electrical connector 110, the first illuminating element 22, and the light guide post 210 can be fixed in two by any type of fixing frame (not shown). Further, in the present embodiment, the electrical connector 11A can be an electrical connector commonly used in general xenon lamps. For example, the specification of the electrical connector 11G is, for example, GX-10q or GY-1q. In this way, the light source device 100 of the present embodiment can be directly placed in a conventional lamp holder instead of the conventional fluorescent tube, without replacing the conventional lamp holder with a new lamp holder designed for the light emitting diode. It should be noted that the present invention does not limit the number of the first light-emitting elements 220 disposed beside the first end surface 31A to only one. In other embodiments, there may be more than one first light emitting element disposed beside the first end surface. In addition, the present invention does not limit that the first reflective unit 230 and the patterned optical microstructure 342 must be disposed on the first surface 34, and the second reflective unit 240 and the patterned optical micro must be disposed on the second surface 350. Structure 352. In other embodiments, the first surface and the second surface may not be provided with a reflective unit or may not have a patterned optical microstructure, and the first light emitted by the first light-emitting element is on the first surface and the second surface. Total reflection occurs on the surface and is totally reflected to the exit surface. Second Embodiment Fig. 2 is a cross-sectional view showing a light source device according to a second embodiment of the present invention. Referring to FIG. 2', the light source device 10 of the present embodiment is similar to the light source device 100 1336385 25482twf.doc/n (shown in FIG. 1A), and the difference between the two is as far as possible. In the light source device 100a, the first surface 34〇a of the light guiding column 21〇a of the light source module 2〇〇a is parallel to the light emitting surface 33〇, and the first surface 340a and the first end surface 310 are in the light guiding column 2i〇a. The angle β is equal to the twist. The light source device 1A has similar effects as the light source device 100 and will not be repeated here. 3A is a schematic cross-sectional view of a light source module of a light source device according to a third embodiment of the present invention, and FIG. 3B is a side view of the light guide column of FIG. 3A with its first end face facing =. Referring to FIG. 3A and FIG. 3B, the light source group 200b of the present embodiment is similar to the light source module 2 (shown in FIG. 1A), and the difference between the two is as follows. In the light source module 2'b, the light guide column 21b has a plurality of optical microstructures 312 on the first end face 310b, and the first light beam f22_ passes through the optical microstructures. In this embodiment, these optics are micro. The structure 312 includes a conical depression 312, an elliptical conical depression 312", and an equilateral conical depression 312''. The polygonal conical depression 312", for example, an N-corner concavation, wherein N is greater than or equal to three. The optical microstructures 312 can effectively reduce the ri of the first light beam 222 reflected or totally reflected by the first end face 3i 〇 b, so that a larger proportion of the first light beam 222 can smoothly enter the light guide column 10b, thereby improving the light source. Light utilization of the device. In the present embodiment, the width L3 of each of the optical microstructures 312 is, for example, less than or equal to 10 mm' and the depth L4 is, for example, less than or equal to 1 mm. It is noted that the present invention does not limit that the optical microstructure 312 must include both conical depressions 312, elliptical conical depressions 312" and polygonal conical 15 1336385 25482 twf.doc/n depressions 312"'. In other embodiments, the optical microstructure may also be one or more of the various types of recesses described above, or the optical microstructure may be other shapes, such as polyhedral depressions, hemispherical depressions, depressions formed by various forms of curved surfaces. …Wait. Further, in the light source module 2B, the optical microstructures 312 are arranged to be spaced apart from each other. However, in the embodiment of the bean, the optical microstructures may also be placed adjacent to one another without spacing. Fourth Embodiment Fig. 4A is a side elevational view showing a light source module of a light source device according to a fourth embodiment of the present invention, and Fig. 4B is a front side view of the light guide column of Fig. 4A with its first end face facing forward. Referring to FIG. 4A and FIG. 4B, the light source module 200c of the present embodiment is similar to the light source module 200 (shown in FIG. ία), and the difference between the two is as follows. In the light source module 200c, the light guiding rod 21 〇c has a plurality of concentric annular indentations 312c on the first end surface 310c, and the first light beam 222 passes through the concentric annular concave lines 312c. In this embodiment, the surfaces formed by the concentric annular indentations 312c are, for example, surfaces similar to a Fresnel lens, and each concentric annular indentation 312c falls in a Fresnel region (Fresnel). On the surface of the zone). However, in other embodiments, the surface formed by the concentric annular indentations 312c may also be a surface in other forms. The concentric annular indentation 312c having an effect similar to that of the optical microstructure 312 described above (as shown in Fig. 3A) can also effectively reduce the chance of the first beam 310 being reflected or totally reflected on the first end face 310c. In the present embodiment, the width L3" of each concentric annular indentation 312c is, for example, less than 1336385 25482twf.doc/n or equal to 10 mm, and the depth L4" is, for example, less than or equal to 1 mm. Fig. 5 is a cross-sectional view showing a light source module of a light source device according to a fifth embodiment of the present invention. Referring to FIG. 5, the light source module 2〇〇d of the embodiment is similar to the light source module 200 (shown in FIG. 1A), and the differences between the two are as follows. In the light source module 200d, the light guiding rod 210d has a receiving concave surface 312d on the first end surface 31d φ φ to accommodate the first light emitting element 220. In the present embodiment, the accommodating concave surface 312d is, for example, a curved surface. The accommodating concave surface 312d is designed such that the light beam 222a which is offset from the optical axis A of the first light-emitting element 2 2 较大 at a large angle can also be kept as close as possible to the vertical accommodating concave surface 312d′. Therefore, the first light beam 222 can be effectively reduced. The opportunity for reflection or total reflection of one end face 3i〇d further enhances the light utilization efficiency of the light source device. In other embodiments not shown, the plurality of optical microstructures 312 (shown in FIG. 3A) may be disposed on the receiving concave surface 312d, and the first light beam passes through the optical microstructures 312 to further Improve the light utilization rate of the light source device. Further, the present invention does not limit the number of the accommodation concave surfaces 312d on the first end surface 310d to only one. In other embodiments, the first end surface may also be provided with a plurality of receiving concave surfaces for accommodating the plurality of first light emitting elements. 6 is a cross-sectional view of a light source module of a light source device according to a sixth embodiment of the present invention, and FIG. 6B is a view showing the light guide column of FIG. 6A with its first end face 17 1336385 25482twf.doc/n toward the moon The side view of ij is not intended. Referring to FIG. 6A and FIG. 6B, the light source module 200e of the present embodiment is similar to the light source module 200d (shown in green in FIG. 5), and the difference between the two is as follows. In the light source module 200e, the light guiding rod 21〇e may have a plurality of coaxial annular concave shapes 312e′ on the receiving concave surface 312e of the first end surface 310e, and the first light beam 222 passes through the coaxial annular concave lines 312e. 'to further enhance the light utilization of the light source device. The surface formed by these coaxial annular indentations 312e' in this embodiment is, for example, the surface of a sinister lens. However, in other embodiments, the surfaces formed by the coaxial annular indentations 312e' may also be surfaces in other suitable forms. The value of the pay/consideration 疋' The present invention does not limit the concave surface to a curved surface. In other embodiments, it may be in other suitable shapes. A detailed description of the embodiment will be given below. Seventh Embodiment FIG. 7 is a cross-sectional view showing a light source module of a light source device according to a seventh embodiment of the present invention. Referring to FIG. 7, the light source module 2〇〇f of the present embodiment is similar to the light source module 200d (shown in FIG. 5), and the difference between the two is as follows. In the light source module 200f, the valley concave surface 312f on the first end surface 31〇 of the light guide column 21 includes a bottom surface 313a and at least one side surface 313b, and the side surface 313b is connected to the bottom surface 313a. In the present embodiment, the bottom surface 313a has a plurality of optical microstructures 312 as described above. However, in other embodiments, the bottom surface of the receiving concave surface may also be a smooth surface without optical microstructures disposed thereon. 18 1336385 25482 twf.doc/n Eighth Embodiment FIG. 8 is a cross-sectional view showing a light source module of a light source device according to an eighth embodiment of the present invention. Referring to FIG. 8, the light source module 200g of the present embodiment is similar to the light source module 200 (shown in FIG. 1A), and the differences between the two are as follows. In the light source module 200g, the light guiding column 210g has no patterned optical microstructure on the first surface 34〇g, the second surface 350g and the second end surface 320g, and instead, the light guiding column 210g is on the first surface 340g, the second Diffusion layers 342g, 352g, and 322g are disposed on the surface 350g and the second end surface 320g, respectively. The diffusion layers 342g, 352g, and 322g also have the effect of light diffusion. Embodiment 9 FIG. 9 is a cross-sectional view showing a light source module of a light source device according to a ninth embodiment of the present invention. Referring to FIG. 9, the light source module 200h of the present embodiment is similar to the light source module 200 (shown in FIG. 1A), and the differences between the two are as follows. In the light source module 200h, the light guiding column 210h further has a third surface 38〇' connected between the first end surface 310 and the light emitting surface 330 and opposite to the first surface 340. The third surface 380 and the first end surface 31 are greater than 90 degrees and less than 180 degrees at an angle 0 3 within the light guide. In this embodiment, the light guide post 210h can have a patterned optical microstructure on the third surface 38A. The patterned optical microstructure 382 can be similar to the patterned optical micro-discipline 342 described above. However, in other embodiments, a patterned diffusion optical microstructure 382 can also be replaced with a diffusion layer. Further, in the present embodiment, the third reflecting unit 280 may be disposed on the third surface 380. 19 1336385 25482twf.d〇c/n In the light source module 200h, the light beam 222c that is opposite to the optical axis 相对 in the opposite direction from the light beam 222a can be reflected on the third surface 380 and then transmitted to the second surface 350 and produce a reflection Finally, it propagates to the outside of the light guide column 210h via the light exit surface 33〇. Therefore, the light source module 2〇〇h can further utilize the light beam 222c' to make the light source device have better light utilization efficiency. Tenth Embodiment Fig. 1 is a cross-sectional view showing a light source module of a light source device according to a tenth embodiment of the present invention. Referring to FIG. 10, the light source module 2〇〇i of the present embodiment is similar to the light source module 200 (see FIG. 1A), and the difference between the two is as follows. In the light source module 200i, the light guide column 2i〇i further has a fourth surface 390 and a fifth surface 410. The fourth surface 39 is coupled to the second surface 350 and opposed to the light exit surface 330 and inclined with respect to the light exit surface 33〇. The angle between the second surface 350 and the fourth surface 39〇 in the light guide column is greater than 180 degrees and less than 360 degrees. The fifth surface 41 is connected between the fourth surface 390 and the second end surface 320i and opposed to the light exit surface 33A. The angle between the fourth surface 390 and the fifth surface 410 in the light guiding column 210i is greater than ^ degrees and less than 180 degrees. In the present embodiment, the fifth surface 41 is inclined with respect to the exit surface 330, and the angle Θ 6 between the fifth surface 410 and the second end surface 32〇i in the light guide is greater than 90 degrees and less than 18 degrees. However, in other embodiments not shown, the fifth surface 410 may also be traversed relative to the light exit surface 33, and the fifth surface 410 and the second end surface are angulated at an angle of the light guide column (96 is equal to 90 degrees. i may further include at least one second illuminating element, 20 1336385 25482 twf.doc/n disposed beside the second end face 320i, and adapted to emit a second illuminator 512. The second beam 512 is guided by the second end face 320i The light beam 21〇i is transmitted to the outside of the light guiding column 210i via the light emitting surface 330. In the embodiment, the fourth surface 390, the fifth surface 41〇 and the second end surface 32〇i are respectively symmetrical to the second surface The light surface of the light source module 2i has two The illuminating elements (ie, the first illuminating element 220 and the second illuminating element 51 〇) can thus increase the degree of freedom of the light source device. However, in other embodiments, the fourth surface, the fifth surface, and the second end surface are also Asymmetric to the second surface, the first surface and the In this embodiment, the fourth surface 390 and the fifth surface 41 are respectively provided with patterned optical microstructures 392 and 412, and the seventh reflecting unit 290 and the eight reflecting unit 520 are respectively disposed. However, in other embodiments, the patterned optical microstructure and the reflective unit may not be disposed on the fourth surface and the fifth surface, and the fourth surface and the fifth surface may be the second light beam in a manner of total reflection. Eleventh Embodiment FIG. 11 is a schematic view of a light source module of a light source device according to an eleventh embodiment of the present invention. Referring to FIG. 11 'the light source module 2 〇〇j of the present embodiment and the above light source module The group 200i (shown in FIG. 10) is similar, and the difference between the two is as follows. In the light source module 200j, the 'light guide column 21' further includes a seventh surface 420' connected to the front end 320i and the light exit surface. Between mo, 1336385 25482twf.doc/n is opposite to the fifth surface 410. The corner angle Θ 7 of the seventh surface 420 and the second end surface 320i in the light guiding column 210j is greater than 90 degrees and less than 180 degrees. In this embodiment The seventh surface 420 is symmetric with the fourth surface 380. In other embodiments, the seventh surface 420 may also be asymmetric with respect to the fourth surface 380. Further, in the embodiment, the patterned optical microstructure 422 and the ninth reflection unit 530 may be disposed on the seventh surface 420. Second Embodiment Referring to FIG. 1B, the present invention does not limit the second surface 350, the eighth surface 360, the sixth surface 370, and the light-emitting surface 330 to be planar. In other embodiments, the second surface, the eighth surface, and the sixth The surface and the light-emitting surface may also be curved surfaces, or may be partially curved and partially planar. Hereinafter, an embodiment will be described in detail. Figure 12 is a cross-sectional view showing a light source module of a light source device according to a twelfth embodiment of the present invention. Referring to FIG. 12, the light source module 200k of the present embodiment is similar to the light source module 200 (shown in FIG. 1B), and the difference between the two is as follows. In the light source module 200k, the second surface 350k, the eighth surface 360k and the sixth surface 370k of the light guiding rod 210k are curved surfaces, and the light emitting surface 330 is a flat surface. Further, the shapes of the second reflecting unit 240k, the fifth reflecting unit 260k, and the sixth reflecting unit 270k may be curved in accordance with the shapes of the second surface 350k, the eighth surface 360k, and the sixth surface 370k, respectively. Further, a section of the light source module 200k in the longitudinal direction of the light guide column 21 Ok is the same as that depicted in Fig. 1A. [Thirteenth embodiment] Fig. 13 is a cross-sectional view showing a light source device according to a thirteenth embodiment of the invention. Referring to Figures 1A and 13, the light source device of the present embodiment is similar to the above-described light source device 100, and the differences between the two are as follows. In the light source device 100, the normal vector N1 of the second end face 320 and the normal vector N2 of the light exiting surface 33〇 may be perpendicular to each other. However, in the light guide column 2101 of the light source module 2001 of the light source device 101, the angle 0 of the normal vector 第二 of the second end face 3201 and the normal vector N2 of the light exit surface 330 is greater than 90 degrees and less than 180 degrees. [Fourteenth embodiment] Fig. 14A is a schematic sectional view showing a light source module of a light source device according to a fourteenth embodiment of the present invention, and Fig. 14B is a perspective view of the light guiding column of Fig. 14A. Referring to FIG. 14A and FIG. 14B, the light source module 200m of the present embodiment is similar to the light source module 200e (please refer to FIG. 6A), and the difference between the two is as follows. In the light source module 200m, the light guiding rod 210m has a ring-shaped surface 340m instead of the first surface 340 of the light guiding rod 210e in Fig. 6A. The annular surface 340m is coupled to the first end surface 310m, the light exit surface 330 is coupled between the annular surface 340m and the second end surface 320m, and the second surface 350m is coupled between the annular surface 340m and the second end surface 320m. In the present embodiment, there is a step difference between the annular surface 340m and the second surface 350m and a step difference between the jersey surface 340m and the light exit surface 330. The effect of the annular surface 340m is similar to the first surface 340 and the third surface 380 of FIG. 9, and the annular surface 340m can reflect the first beam 222 that is offset from the optical axis A of the first illuminating element 220 by a larger angle, thereby It can be utilized. 23 1336385 25482twf.doc/n In other embodiments, it is also possible that there is a step difference between a portion of the land surface and the second surface, and the other portion has no step. Further, in other embodiments, it may be that there is a step difference between a portion of the annular surface and the light exiting surface, and the other portion has no step. Furthermore, in the present embodiment, the ring-shaped surface 34〇m may be disposed with a reflection unit 230m to reflect the first light beam 222. However, in other embodiments, the annular surface may not be provided with a reflective unit, and the annular surface reflects the first light beam in a totally reflective manner. In this example, the surface of a younger brother 350m is parallel to the light exiting surface 330. However, in other embodiments, the second surface may also be inclined relative to the exit surface. Further, in the present embodiment, the light guiding rod 210m has a patterned optical microstructure 352m on the second surface 35?m. In particular, patterned optical microstructure 352m includes a plurality of indentations 353m. The light guiding rod 21〇m extends from the first end surface 31〇m to the second end surface 320m along a first direction D1. Each of the indentations 353m extends along a second direction D2 perpendicular to the first direction D1, and the indentations 353m are arranged along the first direction D1. In the present embodiment, each of the indentations 353m may be formed by a micro-inclined surface 355m and a micro-vertical surface 357m, wherein the micro-inclined surface 355m is inclined with respect to the light-emitting surface 330, and the micro-vertical surface 357m is perpendicular to the light-emitting surface 330. In the present embodiment, the width L3"' of each of the indentations 353m is, for example, less than or equal to 1 mm, and the depth L4"' is, for example, less than or equal to mm. In the present embodiment, the first end surface 310m has a receiving concave surface 312m' to accommodate the first light emitting element 22A. Specifically, the accommodating concave surface 312m may be formed by a plurality of coaxial annular sub-surfaces 313m with an angle between adjacent two sub-surfaces 313m. In other embodiments, the receiving concave surface may also be a 24 1336385 25482 twf.doc/n spherical surface, an aspheric surface, other curved surfaces, a polyhedral concave surface, or other forms of concave surface.
在本實施例中,環狀表面34Gm呈圓環狀1而,在 其他實施射’環狀表面亦可以〇邊形環狀或其他形式 的環狀。此外’在本實施例中,環狀表面·m為平滑表 面。然而,在其他實施例中,環狀表面亦可以是類似淫菲 耳透鏡的表面,亦即包括多個涅菲耳區的表面。或者,環 狀表面上亦可以有上述圖案化光學微結構。 义 在本實施例中,第二端面32〇m之法向量1^1,,與出光 面330之法向量N2的夾角0 8,大於9〇度且小於18〇度。 當導光柱210m是以射出成型製成時,為了便於成型,導 光柱210m可更具有一連接面43〇m,連接於第二端面32〇瓜 與出光面330之間。此外,在本實施例中,第二端面32〇m 為—平面。然而,在其他實施例中,第二端面上亦可以有 上述圖案化光學微結構,或者第二端面亦可為一曲面。In the present embodiment, the annular surface 34Gm has an annular shape 1 and may be formed in a ring-shaped or other form of ring shape in other embodiments. Further, in the present embodiment, the annular surface·m is a smooth surface. However, in other embodiments, the annular surface may also be a surface similar to a sinister lens, i.e., a surface comprising a plurality of Nefert regions. Alternatively, the patterned optical microstructures described above may also be present on the annular surface. In this embodiment, the normal vector 1^1 of the second end face 32〇m, and the normal vector N2 of the light exit surface 330 are greater than 9 degrees and less than 18 degrees. When the light guide post 210m is formed by injection molding, the light guide post 210m may further have a connecting surface 43〇m connected between the second end surface 32 and the light emitting surface 330 for facilitating molding. Further, in the present embodiment, the second end face 32〇m is a plane. However, in other embodiments, the patterned optical microstructure may also be present on the second end surface, or the second end surface may be a curved surface.
弟+五貫施例 圖15為本發明第十五實施例之光源裝置的剖面示意 圖。請參照圖15,本實施例之光源裝置l〇〇n與上述光源 裝置1001 (如圖13所繪示)類似,兩者的差異如下所述。 在光源裝置100η中,光源模组200η之導光柱21〇n不具有 圖13中之第一表面34〇,而第二表面350直接連接至第一 端面310。 25 1336385 25482twf.doc/n 第+六實施例 圖16為本發明第十六實施例之光源裝置中的導光柱 之立體示意圖。請參照圖16,本實施例之導光柱21〇0與 上述導光柱210m (如圖14A所繪示)類似,兩者的差異 如下所述。在導光柱210〇中,第二端面320〇包括多個子 端面324a、324b。在本實施例中,每一子端面324a、324b 為平面’且相鄰兩子端面324a、324b在導光柱210〇内的 夾角大於0度且小於180度。此外,連接面430〇連接於子 端面324a與出光面330之間,並連接於子端面324b與出 光面330之間。然而,在其他實施例中,第二端面的子端 面亦可以是曲面。 本發明並不限定一光源裝置僅能具有一光源模組。在 其他實施例中,一光源裝置亦可以具有多個光源模組。以 下將舉兩個實施例詳加說明。 复士七實施例 圖17為本發明第十七實施例之光源裝置以其導光柱 的出光面朝前的正視示意圖。請參照圖17,本實施例之光 源裝置100p包括多個上述光源模組2〇〇。每一光源模組2〇〇 的‘光柱210沿著一第一方向D1延伸,且這些光源模組 200之這些導光柱21〇沿著一與第一方向D1垂直的第二方 向D2排列。在本實施例中,每一光源模組2〇〇電性連接 至$連接器uo。此外,各光源模組200與電連接器11〇 可藉由固定架(未繪示)固定為一體。 26 1336385 25482twf.doc/n 篇十八實施你!_ 圖18為本發明第十八實施例之光源裝置以其導光柱 的出光面朝前的正視示意圖。請參照圖18本實施例之光 源裝置100q與上述光源裝i100p(如冑17崎示)類似, 兩者的差異如下所述。在光源裝置咖q中,這些光源模組Fig. 15 is a schematic cross-sectional view showing a light source device according to a fifteenth embodiment of the present invention. Referring to Fig. 15, the light source device 100n of the present embodiment is similar to the light source device 1001 (shown in Fig. 13), and the difference between the two is as follows. In the light source device 100n, the light guiding column 21〇n of the light source module 200n does not have the first surface 34A in Fig. 13, and the second surface 350 is directly connected to the first end surface 310. 25 1336385 25482 twf.doc/n -6th Embodiment FIG. 16 is a perspective view showing a light guiding column in a light source device according to a sixteenth embodiment of the present invention. Referring to Fig. 16, the light guide column 21〇0 of the present embodiment is similar to the light guide column 210m (shown in Fig. 14A), and the difference between the two is as follows. In the light guide bar 210, the second end face 320A includes a plurality of sub-end faces 324a, 324b. In the present embodiment, each of the sub-end faces 324a, 324b is a plane ' and the angle between the adjacent two sub-end faces 324a, 324b in the light guide bar 210 is greater than 0 degrees and less than 180 degrees. Further, the connecting surface 430 is connected between the sub-end surface 324a and the light-emitting surface 330, and is connected between the sub-end surface 324b and the light-emitting surface 330. However, in other embodiments, the sub-end faces of the second end face may also be curved. The invention does not limit a light source device to only have a light source module. In other embodiments, a light source device can also have a plurality of light source modules. The following two embodiments will be described in detail. Fig. 17 is a front elevational view showing the light-emitting device of the seventeenth embodiment of the present invention with the light-emitting surface of the light guiding rod facing forward. Referring to Figure 17, the light source device 100p of the present embodiment includes a plurality of the light source modules 2''. The light columns 210 of each light source module 2A extend along a first direction D1, and the light guide columns 21 of the light source modules 200 are arranged along a second direction D2 perpendicular to the first direction D1. In this embodiment, each light source module 2 is electrically connected to the connector uo. In addition, each of the light source modules 200 and the electrical connector 11 can be integrally fixed by a fixing frame (not shown). 26 1336385 25482twf.doc/n Chapter 18 Implementation of You! Figure 18 is a front elevational view of the light source device of the eighteenth embodiment of the present invention with the light exiting surface of the light guiding rod facing forward. Referring to Fig. 18, the light source device 100q of the present embodiment is similar to the above-described light source device i100p (as shown by 胄17), and the difference between the two is as follows. In the light source device, these light source modules
2〇〇的這些導光柱210是沿著第一方向D1 (即每一導光柱 210的延伸方向)排列。 值得注意的是,本發明並不限定各光源模組的排列方 式。在其他實施例中,各光源模組亦可以以不同於上述兩 種方式的排列方式排列。此外,光源裝置1〇〇p與光源裝置 l〇〇q中的光源模組200亦可以用上述其他實施例之光源模 組取代’以形成多種不同的光源裝置。 、These light guides 210 of 2 turns are arranged along the first direction D1 (i.e., the direction in which each light guide 210 extends). It should be noted that the present invention does not limit the arrangement of the light source modules. In other embodiments, the light source modules may also be arranged in an arrangement different from the above two modes. Further, the light source device 1 〇〇p and the light source module 200 in the light source device 100 can be replaced with the light source module of the other embodiments described above to form a plurality of different light source devices. ,
綜上所述,在本發明一實施例之光源裝置中,發光元 件所發出的光會經過導光柱而轉換為亮度較為分散的條狀 光源’進而增加視覺的舒適性。此外,以較大角度偏離發 光元件的光軸之光線能夠被第一表面或環狀表面全反射或 被配置於第一表面或環狀表面上的反射單元反射,所以偏 離光軸的光線仍能夠被有效地利用,進而提升光源裝置的 光利用率。在本發明一實施例之光源裝置中,導光柱的第 一端面上可配置有光學微結構、環狀凹紋或容置凹面,以 提升發光元件所發出的光進入導光柱的比例,進而提升光 源裝置的光利用率。 雖然本發明已以多個實施例揭露如上,然其並非用以 27 11336385 25482twf.doc/n 限定本發明,任何所屬技術領域中具有通常知議者, 脫離本發明之精神和範圍内,當可作些許之更動與潤不 因此本發明之保護範圍當視後附之申請專利範圍所界定 為準。As described above, in the light source device according to the embodiment of the present invention, the light emitted from the light-emitting element is converted into a strip-shaped light source having a relatively dispersed brightness through the light guide column, thereby increasing visual comfort. In addition, light rays that are deviated from the optical axis of the light-emitting element at a large angle can be totally reflected by the first surface or the annular surface or reflected by the reflecting unit disposed on the first surface or the annular surface, so that the light that is off-axis can still It is effectively utilized to improve the light utilization efficiency of the light source device. In a light source device according to an embodiment of the invention, an optical microstructure, an annular concave shape or a concave surface may be disposed on the first end surface of the light guiding column to enhance the proportion of light emitted by the light emitting element into the light guiding column, thereby improving Light utilization rate of the light source device. Although the present invention has been disclosed in various embodiments as described above, it is not intended to limit the invention, and any one of ordinary skill in the art, without departing from the spirit and scope of the invention, The scope of the invention is defined by the scope of the appended claims.
圖 圖式簡單說明] 圖1A為本發明第一實施例之光源襞置的剖面示音 圖1B為圖1A之光源裝置的光源模組沿著Η線之 面示意圖。 ' 圖2為本發明第二實施例之光源裝置的剖面示意圖。 圖3Α為本發明第三實施例之光源裝置的光源^ 剖面示意圖。 '' 圖3Β繪示圖3Α中之導光柱以其第一端面朝前的 示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a cross-sectional view of a light source device according to a first embodiment of the present invention. Fig. 1B is a schematic view of a light source module of the light source device of Fig. 1A along a rifling line. Figure 2 is a cross-sectional view showing a light source device according to a second embodiment of the present invention. Fig. 3 is a cross-sectional view showing a light source of a light source device according to a third embodiment of the present invention. Figure 3 is a schematic view of the light guide column of Figure 3 with its first end face facing forward.
圖4Α為本發明第四實施例之光源裝置的光源模組 剖面示意圖。 ^ _圖4Β繪示圖4Α中之導光柱以其第一端面朝前的側視 示意圖。 一圖5為本發明第五實施例之光源裝置的光源模組之剖 面示意圖。 ° 圖6Α為本發明第六實施例之光源裝置的光源模組之 剖面示意圖。 圖6Β繪示圖6Α中之導光枉以其第一端面朝前的側視 28 1336385 25482twf.doc/n 示意圖。 圖7為本發明第七實施例之光源裝置的光源模組之剖 面示意圖。 圖8為本發明第八實施例之光源裝置的光源模組之剖 面示意圖。 圖9為本發明第九實施例之光源裝置的光源模組之剖 面示意圖。 圖10為本發明第十實施例之光源裝置的光源模組之 剖面示意圖。 圖11為本發明第十一實施例之光源裝置的光源模組 之剖面示意圖。 圖12為本發明第十二實施例之光源裝置的光源模組 之剖面示意圖。 圖13為本發明第十三實施例之光源裝置的剖面示意 圖。 圖14A為本發明第十四實施例之光源裝置的光源模 組之剖面示意圖。 圖14B為圖14A中之導光柱的立體示意圖。 圖15為本發明第十五實施例之光源裝置的剖面示意 圖。 圖16為本發明第十六實施例之光源裝置中的導光柱 之立體示意圖。 圖17為本發明第十七實施例之光源裝置以其導光枉 的出光面朝前的正視示意圖。 29 1336385 25482twf.doc/n 圖18為本發明第十八實施例之光源裝置以其導光柱 的出光面朝前的正視示意圖。 . 【主要元件符號說明】 100、100a、100卜 100n、100p、100q :光源裝置 110 :電連接器 200、200a、200b、200c、200d、200e、200f、200g、 200h、200i、200j、200k、200卜 200m、200n :光源模組 210、210a、210b、210c、210d、210e、210f、210g、 210h、210i、210j、210k、210卜 210m、210n、210o :導 光柱 220 :第一發光元件 222 :第一光束 222a、222b、222c :光束 230、230m :第一反射單元 240、240k ··第二反射單元 • 250 :第四反射單元 260、260k :第五反射單元 270、270k :第六反射單元 280 :第三反射單元 ’ 290:第七反射單元 * 310、310b、310c、310d、310e、310f、310m :第一 端面 312 :光學微結構 30 1336385 25482twf.doc/n 312’ :圓錐形凹陷 312” :橢圓錐形凹陷 . 312”’:多角錐形凹陷 312c :同心環狀凹紋 碡 312d、312e、312f、312m :容置凹面 312e’ :同軸環狀凹紋 313a :底面 ^ 313b:側面 313m :子表面 320、320g、320i、320卜 320m、320〇 :第二端面 322、342、352、352m、362、372、382、392、412、 422 :圖案化光學微結構 322g、342g、352g :擴散層 324a、324b :子端面 330 :出光面 340、340a、340g :第一表面 # 340m:環狀表面 350、350g、350k、350m :第二表面 353m :凹紋 355m :微傾斜面 357m :微垂直面 • 360、360k :第八表面 370、370k :第六表面 380 :第三表面 31 1336385 25482twf.doc/n 390 :第四表面 410 :第五表面 420 :第七表面 430m、430〇 :連接面 510 :第二發光元件 512 :第二光束 520 :第八反射單元 530 :第九反射單元 A :光軸 D1 :第一方向 D2 :第二方向 LI、L2 :距離 L3、L3,、L3,,、L3,,,:寬度 L4、L4,、L4,,、L4,,,:深度 N1、ΝΓ、Nl”、N2 :法向量 0卜 Θ1,、02、03、04、05、06、07、08、 08’ :夾角 32Fig. 4 is a cross-sectional view showing a light source module of a light source device according to a fourth embodiment of the present invention. ^ _ Figure 4 is a side elevational view of the light guide column of Figure 4 with its first end face facing forward. Fig. 5 is a cross-sectional view showing a light source module of a light source device according to a fifth embodiment of the present invention. Figure 6 is a cross-sectional view showing a light source module of a light source device according to a sixth embodiment of the present invention. Figure 6A is a schematic view of the side view of the light guide of Figure 6 with its first end face facing forward 28 1336385 25482 twf.doc/n. Fig. 7 is a cross-sectional view showing a light source module of a light source device according to a seventh embodiment of the present invention. Figure 8 is a cross-sectional view showing a light source module of a light source device according to an eighth embodiment of the present invention. Figure 9 is a cross-sectional view showing a light source module of a light source device according to a ninth embodiment of the present invention. Figure 10 is a cross-sectional view showing a light source module of a light source device according to a tenth embodiment of the present invention. Figure 11 is a cross-sectional view showing a light source module of a light source device according to an eleventh embodiment of the present invention. Figure 12 is a cross-sectional view showing a light source module of a light source device according to a twelfth embodiment of the present invention. Figure 13 is a cross-sectional view showing a light source device according to a thirteenth embodiment of the present invention. Fig. 14A is a schematic cross-sectional view showing a light source module of a light source device according to a fourteenth embodiment of the present invention. 14B is a perspective view of the light guide column of FIG. 14A. Figure 15 is a cross-sectional view showing a light source device according to a fifteenth embodiment of the present invention. Figure 16 is a perspective view showing a light guiding rod in a light source device according to a sixteenth embodiment of the present invention. Fig. 17 is a front elevational view showing the light-emitting device of the seventeenth embodiment of the present invention with the light-emitting surface of the light guide facing forward. 29 1336385 25482 twf.doc/n FIG. 18 is a front elevational view showing the light-emitting device of the eighteenth embodiment of the present invention with the light-emitting surface of the light guiding rod facing forward. [Description of main component symbols] 100, 100a, 100b 100n, 100p, 100q: light source device 110: electrical connectors 200, 200a, 200b, 200c, 200d, 200e, 200f, 200g, 200h, 200i, 200j, 200k, 200b 200m, 200n: light source module 210, 210a, 210b, 210c, 210d, 210e, 210f, 210g, 210h, 210i, 210j, 210k, 210, 210m, 210n, 210o: light guide bar 220: first light-emitting element 222 : first light beam 222a, 222b, 222c: light beam 230, 230m: first reflection unit 240, 240k · second reflection unit • 250: fourth reflection unit 260, 260k: fifth reflection unit 270, 270k: sixth reflection Unit 280: third reflection unit '290: seventh reflection unit* 310, 310b, 310c, 310d, 310e, 310f, 310m: first end face 312: optical microstructure 30 1336385 25482twf.doc/n 312': conical depression 312": elliptical conical depression. 312"': polygonal conical depression 312c: concentric annular concave ridge 312d, 312e, 312f, 312m: accommodating concave surface 312e': coaxial annular concave 313a: bottom surface ^ 313b: side 313m: sub-surfaces 320, 320g, 320i, 320, 320m, 320〇: Second end faces 322, 342, 352, 352m, 362, 372, 382, 392, 412, 422: patterned optical microstructures 322g, 342g, 352g: diffusion layers 324a, 324b: sub-end faces 330: light-emitting surfaces 340, 340a, 340g: first surface #340m: annular surface 350, 350g, 350k, 350m: second surface 353m: concave 355m: micro-inclined surface 357m: micro-vertical surface • 360, 360k: eighth surface 370, 370k: sixth Surface 380: third surface 31 1336385 25482twf.doc/n 390: fourth surface 410: fifth surface 420: seventh surface 430m, 430〇: connection surface 510: second light-emitting element 512: second light beam 520: eighth Reflection unit 530: ninth reflection unit A: optical axis D1: first direction D2: second direction LI, L2: distance L3, L3, L3,, L3,,,: width L4, L4, L4, , L4,,,: depth N1, ΝΓ, Nl", N2: normal vector 0 Θ 1, 02, 03, 04, 05, 06, 07, 08, 08': angle 32
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97101352A TWI336385B (en) | 2008-01-14 | 2008-01-14 | Light source apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97101352A TWI336385B (en) | 2008-01-14 | 2008-01-14 | Light source apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200930944A TW200930944A (en) | 2009-07-16 |
TWI336385B true TWI336385B (en) | 2011-01-21 |
Family
ID=44865122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97101352A TWI336385B (en) | 2008-01-14 | 2008-01-14 | Light source apparatus |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI336385B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI399510B (en) * | 2009-10-09 | 2013-06-21 | Led illumination device and module for generating uniform stripped light source | |
CN102927524B (en) * | 2012-10-29 | 2014-09-17 | 京东方科技集团股份有限公司 | Light mixing component, light guide plate, backlight module and display device |
-
2008
- 2008-01-14 TW TW97101352A patent/TWI336385B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200930944A (en) | 2009-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7901125B2 (en) | Wedge-shaped lighting device | |
TWI356888B (en) | Illumination system | |
TWI391748B (en) | Illumination system | |
JP4814221B2 (en) | Light guide member, planar illumination device using the same, and bar illumination device | |
WO2008010593A1 (en) | Unit light guide plate, light guide plate unit, planar illuminating device and liquid crystal display device | |
CN101495801B (en) | Surface area illumination device | |
JP4951286B2 (en) | Unit light guide plate, light guide plate unit, and planar illumination device | |
TW201723378A (en) | Large area light source and large area luminaire | |
US20080043490A1 (en) | Enhanced Light Guide | |
WO2016190719A1 (en) | Backlight unit led lens | |
WO2007145248A1 (en) | Light guide plate, light guide plate assembly, and surface illuminating device and liquid crystal display device using these | |
JP2008192598A (en) | Backlight of lcd display using expansion illuminating apparatus | |
JP2007335323A (en) | Light guide plate assembly and planar lighting system using the same | |
TW201115079A (en) | Light source apparatus | |
TWI331666B (en) | Light source apparatus | |
US8926158B2 (en) | Array illumination system | |
TWI336385B (en) | Light source apparatus | |
WO2013168838A1 (en) | Light guide plate structure controlling uniformity from central portion to edge, and lighting lamp using same | |
TW200900808A (en) | Lighting device | |
US20110188265A1 (en) | Illumination device | |
TWI338110B (en) | Light source apparatus | |
US8480276B2 (en) | Elongated lighting system | |
TWI671561B (en) | Curved light guide plate structure | |
TWI424210B (en) | Light source module and light source apparatus | |
CN101532641A (en) | Light source device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |