TWI335237B - A method of collecting metal nanoparticles or organic molecules with ionic liquids - Google Patents

A method of collecting metal nanoparticles or organic molecules with ionic liquids Download PDF

Info

Publication number
TWI335237B
TWI335237B TW95140851A TW95140851A TWI335237B TW I335237 B TWI335237 B TW I335237B TW 95140851 A TW95140851 A TW 95140851A TW 95140851 A TW95140851 A TW 95140851A TW I335237 B TWI335237 B TW I335237B
Authority
TW
Taiwan
Prior art keywords
ionic liquid
phase
liquid
metal
organic
Prior art date
Application number
TW95140851A
Other languages
Chinese (zh)
Other versions
TW200821025A (en
Inventor
Guor Tzo Wei
Chia Ying Lee
yu huan Chen
Original Assignee
Guor Tzo Wei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guor Tzo Wei filed Critical Guor Tzo Wei
Priority to TW95140851A priority Critical patent/TWI335237B/en
Publication of TW200821025A publication Critical patent/TW200821025A/en
Application granted granted Critical
Publication of TWI335237B publication Critical patent/TWI335237B/en

Links

Description

丄功237丄功237

NCCU-06004-TWI 七、指定代表圓: (―)本案指定代表圖為:第(5 )圖。 (二代表圖之元件符號簡單說明: .二氧化>5夕顆粒; 2:離子液體; 3 :管柱; 4.含有微量金屬奈米粒子之水溶液; 5·有機溶劑;以及 6:洗下的溶液。 本案若有化學式時,請揭示最能顯示發_徵的化學式: 【發明所屬之技術領域】 本發明是有關於一 術,特別是有關;^ ^ 子液體(Iomc Liquids 分子的方法與種彻離子賴轉金屬奈米粒和 【先前技術】 近來環保議題逐漸被社會 而不破壞環境生態的化學曰 大眾重視,尋找可以取代有機溶劑 綠色姆重要的研究 至溫離子是1包含陰 _ %離子,且於室溫下呈溶液狀 1335237NCCU-06004-TWI VII. Designated representative circle: (―) The representative representative figure of this case is: (5). (Second represents the symbol of the symbol of the diagram is simple: .2 oxidation > 5 granules; 2: ionic liquid; 3: column; 4. aqueous solution containing traces of metal nanoparticles; 5 · organic solvent; and 6: wash If there is a chemical formula in this case, please disclose the chemical formula that best shows the hair mark: [Technical Field of the Invention] The present invention relates to a technique, particularly related to; ^ ^ Sub-liquid (Iomc Liquids molecular method and A variety of ion-reducing metal nanoparticles and [prior art] Recently, environmental issues have gradually been taken care of by the society without damaging the environmental ecology of the public, looking for an important alternative to the organic solvent green to the temperature of the ion is 1 contains Yin_% ion And in solution at room temperature 1335237

NCCU-06004-TWI 態的鹽類,亦稱為室溫熔融鹽類。其有具低蒸氣壓、不可燃性' 高熱穩定性等雜,可絲取代傳統揮舰有觀劑(ν〇1· Organic Compounds, VOCs) ’以降低傳統揮發性有機溶劑使用上潛 在的危險及魏雜,故有些人射為“魏_”〔^.細 J· B. Zimmerman,五·>〇«·免/· 2003,37, 94A〕〇 又因離子The NCCU-06004-TWI state salts are also known as room temperature molten salts. It has low vapor pressure, non-flammability, high thermal stability, etc., which can replace the traditional volatilizers (VOCs) to reduce the potential danger of the use of traditional volatile organic solvents. Wei Mis, so some people shot as "Wei _" [^. Fine J · B. Zimmerman, Wu · gt; 〇 «· Free / · 2003, 37, 94A] 〇 and ion

液體的結構為陰、陽離子所構成,其性質會隨陰、陽離子的不同 而改變。因此’藉由調控陰、陽離子可改變離子液體的性質,如 C K. R. Seddon, A. Stark, M,J. Torres, Pure Appl Chem., 2〇叭Q 2275〕及酸鹼性〔γ㈤咖,H術___, (:腦棚1995,Z5, 26〕等,因此離子液體又被稱為“設計型溶 d離子液體特性多元化,且具多方面應用性’可謂—正蓬勃發 展的領域。 在移除水溶液_料及其前濃縮中,液相—液鱗取為一簡 便且有效的方法〔Z. S. F咖,c. p㈣c M s咖⑽,;j s _nguez,,23,⑽〕。但傳統液相·液相 卒取法使轉雜有機_,純溶·使用㈣财及人體造 成,害’因此使用綠色溶劑—離子液體取代揮發性有機溶劑應用 ;萃取上+僅可保有液相__液相萃取的優點亦可排除揮發性 溶劑使用上的困擾。 在不米粒子的合成方法巾,以在水相巾製備最為簡便,現今 許多控制奈綠子大小、觀的·皆是基於此法U. D. Aiken,R. 1335237 NCCU-06004-TW1 G Pinke’ ·/ ϋ Qjfto/·冼1999, /45, 1〕。然而有些金屬奈米粒子的 應用必須在有機介質下進行’雜亦可直接在有機相巾合成金屬 奈米粒子來得到有機相的金屬奈米粒子,但若能將水相中的奈米 粒子直接補紅有機相t,對域本能術上而言是較明智的。 將水相奈米粒子相轉移至有機溶劑中的方法大致上可分為兩 大類’其-是利用金屬奈米粒子與具疏水性的硫或氮化物形成鍵 結’藉此疏水基將金屬奈米粒子攜至有機相〔Ν·㈣,s p上㈣, S. D. Adyanthaya, M Sastry, Langmuir, 2001,17, 3766 ; J. Yang, J. Y. ,Deivaraj, Η. P. Too, J. Colloid Interface Sci., 2004, 277, K. Naka, Y. Chujo, J. Am. Chem. Soc., 2004, 126, 〕,其—疋细奈米粒子表面的穩補與相轉移試劑形成疏 水的離子對,使奈米粒子較具疏水性而達到相轉移目的〔D· G Li, S. H. Chen, S. Y Zhao, X. M. Hou, Η. Y. Ma, X. Q Yang, APPl Surf. S〇i, 2002,62 ; s. γ Zha〇> s H Chenj 〇 〇 l. z 〇 γ %The structure of the liquid is composed of anion and a cation, and its properties change depending on the anion and cation. Therefore, 'regulating the anion and cation can change the properties of the ionic liquid, such as C KR Seddon, A. Stark, M, J. Torres, Pure Appl Chem., 2 QQ 2275] and acid-base [γ(五)咖, H ___, (: cerebral shed 1995, Z5, 26), etc., so the ionic liquid is also known as "designed type of ionic liquids with diversified characteristics, and has many applications" can be described as - a field that is booming. In the removal of the aqueous solution and its preconcentration, the liquid-liquid scale is taken as a simple and effective method [ZS F coffee, c. p (4) c M s coffee (10),; js _nguez,, 23, (10)]. ·The liquid phase draw method makes the organic compound _, pure soluble · use (four) wealth and human body damage, so use green solvent - ionic liquid instead of volatile organic solvent application; extract + only retain liquid phase __ liquid extraction The advantages can also be ruled out by the use of volatile solvents. In the synthetic method of non-rice particles, it is the easiest to prepare in the water phase towel. Many of the current control macron size and view are based on this method UD Aiken, R. 1335237 NCCU-06004-TW1 G Pinke' ·/ ϋ Qjfto/·冼1999, /45, 1 However, the application of some metal nanoparticles must be carried out under organic medium. The metal nanoparticles can be synthesized directly in the organic phase towel to obtain the organic phase of the metal nanoparticles, but if the nano phase in the aqueous phase can be obtained, Particles directly reddening the organic phase t are more sensible for domain instinct. The method of transferring the aqueous phase nanoparticle phase to an organic solvent can be roughly divided into two categories: - it is the use of metal nanoparticles Bonding with hydrophobic sulfur or nitride 'by this hydrophobic group carries metal nanoparticles to the organic phase [Ν·(4), sp (4), SD Adyanthaya, M Sastry, Langmuir, 2001, 17, 3766; J Yang, JY, Deivaraj, Η. P. Too, J. Colloid Interface Sci., 2004, 277, K. Naka, Y. Chujo, J. Am. Chem. Soc., 2004, 126, 〕, The surface of the fine nanoparticle particles and the phase transfer reagent form a hydrophobic ion pair, which makes the nanoparticles more hydrophobic and achieve phase transfer purposes [D·G Li, SH Chen, S. Y Zhao, XM Hou, Η. Y. Ma, X. Q Yang, APPl Surf. S〇i, 2002,62 ; s. γ Zha〇> s H Chenj 〇〇l. z 〇γ %

Ma,瓦 2004,23, 92〕。 難愈ΙΓΓί鍵結的方式達成相轉移,須克服疏水性硫或氮化物 難與水财奈米粒子接觸關題,邮賴 粒子表面活性點減少,不適用於欲做為催化劑使用的奈== 而:見==齡試翁奈綠子姆敍核財的方法子則 有化費時間長、相轉移效率低等缺點。 為滿足上述所提將奈米粒子轉移至有機相及綠色化學的需 6 ⑴ 5237Ma, Wat 2004, 23, 92]. Difficulty ΙΓΓ 键 键 键 达成 达成 达成 达成 达成 达成 达成 键 键 键 键 键 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水 疏水And: see == age test Weng Nai Luzi Mu Xuan nuclear money method has the disadvantages of long time spent, low phase transfer efficiency. In order to meet the above requirements, the transfer of nanoparticles to organic phase and green chemistry is required 6 (1) 5237

. NCCU-06004-TWI 發明人基衫年從事研究與諸多實務經驗,經多方研 遂於本發明提出一種利用離子液體收集金屬奈 未粒子的綠’以作為前錢望能有效實現方拉依 本發 【發明内容】 子的明H的為提供—種利用離子液體收集金屬奈米粒 粒=的:行運用相轉移方式,取得有機相的金屬奈米 =明之另-目的為提供一種_離子液體收集有機分 ,屬不桃子的方法,可有效的回收有機分子或金屬奈米粒子成 並可回收檢測水中微量的有機分子或金屬奈米粒子。 ,,上述目的’本發明乃—種利用離子液體收集金屬 的方法’至少包含使用離子液體以相轉移的方式 =相(pha咐的金屬奈綠子或有齡子收_此離子液體^ 依照本發明實補所述之糊離子液齡集金輕米 有機分子的方法,其愤集的形式例如萃取、韻、 盆 他化學性的收集方法。 义具 依照本發明實補所述之離子液體收集金屬奈米粒子 ί子的方法,其中所使㈣離子㈣之組成包括有機陽離子 與無機陰離子的鹽類化合物。 于 本發明所提出的之方法可有效濃縮金屬奈米粒子或有 子’或疋魏奈米污染’更可以濃縮檢财巾微量的金屬奈米二 7NCCU-06004-TWI Inventor Keithian engaged in research and many practical experiences. After many researches, the present invention proposes a green 'collecting metal nai particles using ionic liquids to be able to effectively realize Fang Laiyi's hair. SUMMARY OF THE INVENTION The sub-H of the H is to provide a kind of ionic liquid to collect metal nanoparticles granules =: using phase transfer method to obtain the organic phase of the metal nanometer = Mingzhi - the purpose is to provide a _ ionic liquid collection organic It is a non-peach method, which can effectively recover organic molecules or metal nanoparticles and recover trace amounts of organic molecules or metal nanoparticles in water. The above object 'the present invention is a method for collecting metal by using an ionic liquid' includes at least a method of phase transfer using an ionic liquid = phase (pha 咐 metal neon green or aged _ _ ionic liquid ^ according to this The invention relates to a method for collecting the organic molecules of the ionic liquid age of the paste, and the form of the anger is collected, for example, the method of extracting, rhyme, and potting chemical. The ionic liquid collecting metal according to the invention The method of the nanoparticle, wherein the composition of the (tetra) ion (four) comprises a salt compound of an organic cation and an inorganic anion. The method proposed by the invention can effectively concentrate the metal nanoparticle or have a sub- or 疋 奈Rice pollution 'more can concentrate the inspection of the financial towel traces of metal nano 2

NCCU-06004-TWI 子或有機分子。 本發=離子㈣收集金屬奈練子的 會使金屬奈米粒子表面活性點減少,這此被固Si 屬奈米粒子適用於做為金屬奈米催化劑使用。^疋的金 功效ίϊί—Γί委員對本發明之技術特徵及所達成之 二丄ϊ二與認識’下文謹提供較佳之實施例及 :關圖式以為輔佐之用,說明依本發 子液體收集金屬奈餘子或有機分1 :關之棚離 明如後’其中相同的树將以相同的參照符號加以說 【實施方式】 本發明乃利用離子液體收集金屬奈米粒子或有機分子的方 法’包含使用離子液體以相轉移的方式使他相⑽㈣中的金屬夺 米粒子或有機分子收集到此離子液體的相中。 〃 上述之離子液體之組成包括有機陽離子與無機陰離子的鹽 類化合物。械_子例如有料型、贼型、四級銨型或四 磷型的有機陽離子。而無機陰離子例如有α-、N〇3-、CH3C〇/、 =f3co2、BF4、CF3S03-、PF6·、(cf3so2)2n_或 RS03-。這些有機 陽離子與無機陰離子的鹽類化合物所組成之離子液體例如為1_ 丁 基-3-曱基咪唑六氟磷酸鹽 (l-butyl-3-methylimidazohexafluorophosphate , [BMIM][PF6])、1_ 丁基-3-甲基咪唑四氟硼酸鹽 (l-butyl-3-methylimidazotetrafluoroborate,[BMM][BF4])、1_辛基 1335237NCCU-06004-TWI Sub or organic molecule. The present invention is the use of a solid nanoparticle to be used as a metal nanocatalyst for the reduction of the surface active sites of the metal nanoparticles. ^The golden effect of 疋 Γ Γ 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员 委员奈子子或有机分1: The shed of the shed is as follows: 'The same tree will be said with the same reference symbol. [Embodiment] The present invention is a method for collecting metal nanoparticles or organic molecules by using an ionic liquid. The metal rice particles or organic molecules in the phase (10) (iv) are collected into the phase of the ionic liquid by phase transfer using an ionic liquid. 〃 The composition of the above ionic liquid includes a salt compound of an organic cation and an inorganic anion. The mechanical substance is, for example, a organic cation of a material type, a thief type, a quaternary ammonium type or a tetraphosphorus type. The inorganic anions are, for example, α-, N〇3-, CH3C〇/, =f3co2, BF4, CF3S03-, PF6·, (cf3so2)2n_ or RS03-. The ionic liquid composed of these organic cations and inorganic anion salt compounds is, for example, 1-butyl-3-methylimidazohexafluorophosphate ([BMIM][PF6]), 1-butylene -3-methylimidazolium tetrafluoroborate (l-butyl-3-methylimidazotetrafluoroborate, [BMM][BF4]), 1_octyl 1335237

NCCU-06004-TWI -3- 甲基咪 唑六氟 磷酸鹽 (1-octyl-3-methylimidazohexafluorophosphate,[OMIM][PF6])、1-辛基 -3- 甲基咪 唑四氟 硼酸鹽 (l-octyl-3-methylimidazotetrafluoroborate,[0MIM][BF4])、1-十燒 基 -3- 甲基咪 °坐六氟 墙酸鹽 (l-decyl-3-methylimidazohexafluorophosphate » [DMIM][PF6]) > 1- 十烷基 -3-甲基咪唑四氟硼酸鹽 (l_decyl-3-methylimidazotetrafluoroborate,[DMIM][BF4])、1-乙基 -3- 甲 基 ϋ米唾 六氟 填酸鹽NCCU-06004-TWI -3-methylimidazolium hexafluorophosphate (1-octyl-3-methylimidazohexafluorophosphate, [OMIM][PF6]), 1-octyl-3-methylimidazolium tetrafluoroborate (l-octyl -3-methylimidazotetrafluoroborate, [0MIM][BF4]), 1-decenyl-3-methylmethane sulphate (l-decyl-3-methylimidazohexafluorophosphate » [DMIM][PF6]) > 1 - Deca-3-methylimidazolium tetrafluoroborate (l_decyl-3-methylimidazotetrafluoroborate, [DMIM][BF4]), 1-ethyl-3-methylindole salivary hexafluoroate

(l-ethyl-3-methylimidazohexafluorophosphate > [EMIM][PF6]) ' 1-丁基-3-甲基味唾三氟續酸氮鹽(l-butyl-3-methylimidazium bis(trifluoromethylsulfonyl)imide,[BMIM][N(CF3S02)2])或上述群 組所組合之室温熔融鹽類。 上述之使用離子液體收集金屬奈米粒子或有機分子的形式 例如為萃取、吸附、固定或其他化學性的收集方法。此些金屬奈 米粒子例如為水相或有機相的金屬奈米粒子。有機分子則例如為 水溶性或非水溶性的中性紅、亞甲基藍、曱基紅、甲基撥、(l-ethyl-3-methylimidazohexafluorophosphate > [EMIM][PF6]) '1-butyl-3-methyl-salt trifluoromethylsulfonyl imide,[1-butyl-3-methylimidazium bis(trifluoromethylsulfonyl)imide,[ BMIM][N(CF3S02)2]) or a room temperature molten salt combined with the above group. The above-described forms in which metal nanoparticles or organic molecules are collected using an ionic liquid are, for example, extraction, adsorption, immobilization or other chemical collection methods. Such metal nanoparticles are, for example, metal nanoparticles of an aqueous phase or an organic phase. The organic molecule is, for example, water-soluble or water-insoluble, neutral red, methylene blue, fluorenyl red, methyl dial,

2’,7’-Dichlorofluorescein、l-(2-pyridylazo)-2_naphtho卜 Acid Orange 7、Bromothymol blue 或 Calmagite、Eriochrome Black T 染料。 其中在使用離子液體固定金屬奈米粒子時,是藉由金屬奈米 粒子與離子液體的高作用力來將其固定於載體的表面。可使 載_如為Si02、Α1203、Si02-A1203、鶴土、活性碳或其他 “而使用離子液體萃取的方式例如液相_液相萃取或液相-固相 目ΐ取為使用固定式的離子液體來萃取並濃縮 金屬不未粒子及有機分子,而蚊式的離子液體所使用的載體例 9 丄3352372',7'-Dichlorofluorescein, l-(2-pyridylazo)-2_naphthob Acid Orange 7, Bromothymol blue or Calmagite, Eriochrome Black T dye. When the metal nanoparticle is fixed by using an ionic liquid, it is fixed to the surface of the carrier by the high force of the metal nanoparticle and the ionic liquid. The carrier can be used as a SiO2, Α1203, SiO2-A1203, crane soil, activated carbon or other "extraction method using ionic liquid such as liquid phase liquid phase extraction or liquid phase solid phase observation to use fixed type Ionic liquid to extract and concentrate metal without particles and organic molecules, and carrier used for mosquito ionic liquids Example 9 丄335237

NCCU-06004-TWI 如為Si〇2、Al2〇3、残土或其他適合之載體。 以下詳細地列出各實驗例及其試驗值 ’以便S兄明本發明之功 效’但本發明的專利範圍則非由這些實驗例所完全代表。 實方c*例1金奈米粒子的相轉移 步驟1提供-水相金奈米粒子溶液; 步驟2加入非水溶性的離子液體如陣闕既]進行萃取。 由於金屬奈練子具有表面電料振現象’因此在吸收光譜 中會有-被稱為表面電漿共振波帶的特性吸收峰,而水相金奈米 粒子在波長約52〇nm處有—吸收峰,此時溶液水層呈紫紅色,、第 1圖為水相金奈米粒子之紫外_可見光(UVVis)吸收圖譜,其紫外_ 可見光(UV-Vis)吸收圖譜如第i圖之a曲線所示。當加入非水溶性 的田聰]陶離子液體萃取後,水層呈無色透明,且其紫外-可見光,Vis)吸收圖譜中52〇nm(奈米)處之吸收峰消失如第】圖 之b曲線所示,且離子液體喃色由淡黃色變為紫色,第2圖為 萃取後之離子液體層之紫外·可見光(uv_vis)吸收圖譜,偵測離子 液體層之魏_可魏於52GM處出現—吸收譜帶如第2圖所 示,這意味著水層中的金奈錄子已補移至離子液體層中。為 觀察相轉移前後之奈餘子的形狀、大小是否發生變化,更進— 步使用穿透式電子顯微鏡檢_轉移前之水層與相轉移後離子液 體層的金奈米粒子。觀測結果顯示#金奈綠子分散於水中時其 粒徑大小約為48.11±謂nm ;而相轉移至離子液體層後其粒搜約NCCU-06004-TWI is Si〇2, Al2〇3, residual soil or other suitable carrier. Each of the experimental examples and the test values thereof will be listed in detail below so that the effect of the present invention can be exemplified, but the scope of the invention is not fully represented by these experimental examples. Solid c* Example 1 Phase Transfer of Gold Nanoparticles Step 1 provides an aqueous phase of the nanoparticle solution; Step 2 adds a water-insoluble ionic liquid such as a clump. Since the metal natrix has a surface electric material vibration phenomenon, there is a characteristic absorption peak in the absorption spectrum called the surface plasma resonance wave band, and the aqueous phase gold nanoparticle has a wavelength of about 52 〇 nm. The absorption peak is at this time, the aqueous layer of the solution is purple-red, and the first picture is the ultraviolet-visible (UVVis) absorption spectrum of the aqueous phase of the nano-nano particles, and the ultraviolet-visible (UV-Vis) absorption spectrum is as shown in the first figure. The curve is shown. When the non-water-soluble Tian Cong] pottery ionic liquid is added, the water layer is colorless and transparent, and the absorption peak at 52 〇 nm (nano) in the ultraviolet-visible, Vis absorption spectrum disappears as shown in Fig. b As shown in the curve, the ionic liquid color changes from light yellow to purple, and the second picture shows the ultraviolet/visible (uv_vis) absorption spectrum of the extracted ionic liquid layer. The detection of the ionic liquid layer is detected at 52GM. - The absorption band is shown in Figure 2, which means that the Chennai in the water layer has been replenished into the ionic liquid layer. In order to observe whether the shape and size of the navel are changed before and after the phase transition, the penetrating electron microscopy was used to examine the water layer before transfer and the gold nanoparticles of the ionic liquid layer after phase transfer. The observation results show that the size of the #金奈绿子 is about 48.11±nm when it is dispersed in water, and the grain is searched after the phase is transferred to the ionic liquid layer.

NCCU-06004-TWI 為49.86±9·31 nm ’以、统計學觀點而言其粒徑並未發生太大改 變。 實施例2銀奈米粒子的相轉移 使用水相銀奈錄子重複實施例丨之實驗步驟,亦可得到相 同的實驗、”。果。第3 ®為水相銀奈米粒子之紫外·可見光 吸收圖譜,萃取前水溶液在·細處有一特性吸收,而萃取後之 水層的吸收峰消失’如第3圖之e曲線所示為萃取前水層之紫外_ 可見光(UV-Vis)吸收圖譜;帛3圖之d曲線為萃取後水層之紫外_ 可見光(UV-Vis)吸收圖譜。由此可推測,離子液體亦可相轉移銀奈 米粒子。且由f透錢子舰鏡的細結果得知,纽奈米粒子 刀政於水相中時其粒棱約$ 16 98土3 % nm ;而相轉移至離子液體 層後其粒㈣為17.98±3.G3 nm,以統計學觀點而言其粒徑亦無 明顯變化。 實施例3有機相鈀奈米粒子的相轉移 在二甲苯(xylene)中合成鈀奈米粒子,取此有機相奈米溶液重 複實施例1之實驗步驟,第4圖為相轉移前後二甲苯層中之把含 里的照片圖,實驗結果如第4圖之e所示為相轉移前,上層二曱 苯溶液因含有鈀奈米粒子而呈黑褐色,下層為離子液體;第4圖 之f為相轉移後’鈀奈米粒子轉移至離子液體層而使下層溶液呈黑 1335237NCCU-06004-TWI is 49.86±9·31 nm', and its particle size has not changed much from a statistical point of view. Example 2 Phase Transfer of Silver Nanoparticles The same experiment was carried out by repeating the experimental procedure of Example 使用 using aqueous phase Yinnae. The third ® is the ultraviolet/visible light of the aqueous phase silver nanoparticles. Absorption spectrum, before the extraction, the aqueous solution has a characteristic absorption at the fine point, and the absorption peak of the extracted aqueous layer disappears. As shown in the graph of Fig. 3, the ultraviolet-visible (UV-Vis) absorption spectrum of the aqueous layer before extraction is shown. The d curve of 帛3 is the ultraviolet-visible (UV-Vis) absorption spectrum of the water layer after extraction. It can be speculated that the ionic liquid can also phase transfer silver nanoparticles. As a result, it was found that the granules of the Nunea particles were about $16 98 3% 3 nm when they were in the aqueous phase, and the particles (4) were 17.98±3.G3 nm after the phase was transferred to the ionic liquid layer. There is no significant change in the particle size. Example 3 Phase Transfer of Organic Phase Palladium Nanoparticles Palladium nanoparticles were synthesized in xylene, and the experimental procedure of Example 1 was repeated using the organic phase nanosolution. Figure 4 is a photo of the lining in the xylene layer before and after phase transfer. The experimental results are as follows. 4 The e of the figure shows that before the phase transfer, the upper diphenylbenzene solution is dark brown due to the inclusion of palladium nanoparticles, and the lower layer is ionic liquid; the f of Figure 4 is the transfer of palladium nanoparticles to the ionic liquid after phase transfer. Layer and lower layer solution black 1335237

NCCU-06004-TWI 未產生變化 褐色’-甲苯層變為無色。由此得知,使_子液體可將有機溶 劑中德奈米粒子完全_移至其卜其後更進—步比較相轉移 刖後-曱苯層與鮮_層巾之絲綠子大小,證實其粒經並 由實施例1、2、3實驗結果顯示’離子液體能完全相轉移水相 及有機相巾之金屬奈綠子;且岭透式電子顯微鏡的觀測結果 镅示,相轉移過程並不影響金屬奈米的形狀、大小。 實施例4料液體及其他有機溶騎水相金屬奈綠子相轉移 效率 在水相金奈米粒子巾,加人非水溶性有機溶·行相轉移 後’可由水溶液的吸收光譜圖推測其相轉移效率。在本實施例中, 比較離子液體陶)及傳統有機溶劑(be_e、he.、 chloroform)的萃取效率,實驗結果如表χ、2所示,離子液體可完 全相轉移水相金屬奈米粒子,其相轉移效果遠高於其他有機溶齊= 表1水相金奈米粒子以不同相轉移試劑試驗的比較結 果 萃 取 劑 Benzene Hexane Chloform p-- l〇-undecen -l-ol [BMIM][PF6] 萃 取 7.0 % 10.4 % 14.6 % 43.6 % 100 % 12 1335237NCCU-06004-TWI No change The brown '-toluene layer became colorless. It is known that the _ sub-liquid can completely remove the dexamethasone particles in the organic solvent, and then compare the phase-transfer enthalpy- benzene layer with the fresh _ layered silk green size. It was confirmed that the granules and the results of the experiments of Examples 1, 2 and 3 showed that the ionic liquid could completely phase transfer the aqueous phase and the metal phase of the organic phase towel; and the observation results of the ridge electron microscope showed that the phase transfer process Does not affect the shape and size of the metal nano. Example 4 The liquid phase and other organic dissolved water phase metal natriuretic phase transfer efficiency can be inferred from the absorption spectrum of the aqueous solution after the water phase of the gold nanoparticle towel, adding the water-insoluble organic solvent and phase transfer. Transfer efficiency. In this embodiment, the extraction efficiency of the ionic liquid ceramics and the conventional organic solvents (be_e, he., chloroform) are compared. The experimental results are shown in Table χ, 2, and the ionic liquid can completely phase transfer the aqueous phase metal nanoparticles. The phase transfer effect is much higher than other organic solvents. Table 1 Comparison of aqueous phase gold nanoparticles with different phase transfer reagents. Extractant Benzene Hexane Chloform p-- l〇-undecen -l-ol [BMIM][PF6 ] Extraction 7.0 % 10.4 % 14.6 % 43.6 % 100 % 12 1335237

NCCU-06004-TWI 率 表2 水相銀奈米粒子以不同相轉移試劑試驗的比較結 — 果 萃取劑 Benzene Chloform Hexanol [BMIM][PF6] 萃取率 9.8 % 11.4 % 16.2 % 100 % 實施例5水中微量染料的檢測 配置300、500、700、1000 ppb之染料〔亞曱基藍、甲基紅、 中性紅〕水溶液,取10 mL染料水溶液以1 mL[BMIM][PF6]離子 液體萃取,意即進行十倍濃縮,計算其回收率。實驗結果如表3 所示’離子液體對不同染料的萃取率皆不同,因此回收率亦有所 差異。但對於同一染料而言,在不同濃度下,其回收率相近,表 示非水溶性離子液體為一適用於前濃縮技術之萃取劑。NCCU-06004-TWI Rate Table 2 Comparative comparison of aqueous phase silver nanoparticles with different phase transfer reagents - Fruit extractant Benzene Chloform Hexanol [BMIM][PF6] Extraction rate 9.8 % 11.4 % 16.2 % 100 % Example 5 water Detection of trace dyes 300, 500, 700, 1000 ppb dye [arsinyl blue, methyl red, neutral red] aqueous solution, take 10 mL of dye aqueous solution with 1 mL [BMIM] [PF6] ionic liquid extraction, meaning That is, ten times concentration is performed, and the recovery rate is calculated. The experimental results are shown in Table 3. The extraction rates of the ionic liquids for different dyes are different, so the recovery rates are also different. However, for the same dye, the recovery rate is similar at different concentrations, indicating that the water-insoluble ionic liquid is an extractant suitable for the pre-concentration technique.

實施例6水中微量金屬奈米粒子的檢測 利用前述實驗結果:離子㈣對水相金屬奈餘子具有高萃取 ’本實驗巾將離子㈣於水巾微量鎖奈綠子的檢測 上。實驗結果顯示’若將水相金、銀奈餘子稀釋三十倍後其濃 13 1335237Example 6 Detection of Trace Metal Nanoparticles in Water Using the foregoing experimental results: Ions (4) have a high extraction of the aqueous phase metal naphtha. This experimental towel is used to detect ions (4) in the water towel. The experimental results show that if the water phase gold and Yinnao are diluted thirty times, the concentration is 13 1333537

NCCU-06004-TWI 度便會低於UV_VlS光賴伽彳極限*無法齡】糊非水溶性 離子液體[BMIM][PF6]對此水樣品進行萃取後確實可達到濃縮效 果,濃縮三十倍後其光譜偵測結果與稀釋前相近。 實施例5、6兩實驗結果顯示離子液體在檢測微量有機分子及 奈米粒子上的實用性。 實施例7固定式離子液體的應用—水中微量染料的回收及檢測 首先’將载體(silica,Si〇2)依序以〇1Μ 、去離子水、 0.1MHC1 /月洗’烘乾。將[BMIM][pF6]離子液體溶於⑶必中 ([BMIM][PF6]/S1hea= uo VGl %),加人適量之載體㈣⑹,別〇2), 以旋轉濃縮法除去溶劑,即可將離子液體固定於说以表面。 、將上述實驗步驟所得塗覆離子㈣之韻粉末填人管住中, o’1 ppm之亞曱基藍染料水溶液,測量通過管柱後之 水溶液’得知水巾L全被絲上之離子鍾所吸附。之後 通入可溶解離子液體之有機溶劑(ACN,Me0H)將載體表面之離子 液體=_分付下’藉由控獅人之溶舰可達到濃縮效 果*曰由此去不僅可回收水溶液中之有機分子,更可同時達到濃 縮偵測的目的。 實J 口疋式離子液體的應用-水中微量金屬奈米粒子的檢 1335237NCCU-06004-TWI will be lower than UV_VlS light gamma ray limit * can not be aged] paste water-insoluble ionic liquid [BMIM] [PF6] can really achieve the concentration effect after extracting this water sample, after concentrating thirty times The spectral detection results are similar to those before dilution. The experimental results of Examples 5 and 6 show the utility of ionic liquids in the detection of trace amounts of organic molecules and nanoparticles. Example 7 Application of Stationary Ionic Liquids - Recovery and Detection of Trace Dyes in Water First, the carrier (silica, Si〇2) was sequentially dried in 〇1Μ, deionized water, 0.1MHC1/month. Dissolve [BMIM][pF6] ionic liquid in (3) must ([BMIM][PF6]/S1hea= uo VGl %), add appropriate amount of carrier (4) (6), do not 〇 2), remove the solvent by rotary concentration, then The ionic liquid is fixed to the surface. Fill the tube with the coated ion (4) rhyme powder obtained in the above experimental procedure, o'1 ppm of the aqueous solution of the sulfhydryl blue dye, and measure the aqueous solution after passing through the column to know that the water towel L is completely ionized on the wire. The bell is absorbed. After that, an organic solvent (ACN, Me0H) capable of dissolving the ionic liquid is introduced to disperse the ionic liquid on the surface of the carrier, and the concentration of the ionic liquid on the surface of the carrier can be achieved by the lion's solution. Organic molecules can simultaneously achieve the purpose of concentration detection. Application of J-type ionic liquids - inspection of trace metal nanoparticles in water 1335237

由實施例6可得知,刺用齙2 NCCU-06004-TWI 移效率,可濃縮水溶液二的高相轉 柱中’利用液相-固相萃取法對 二=真It can be known from Example 6 that the puncturing NC2 NCCU-06004-TWI shifting efficiency can be concentrated in the high-phase rotating column of the aqueous solution 2 by liquid-solid phase extraction versus two = true

前濃縮,第5圖為實施例8之實驗流程圖,如第5=粒=: =覆於二氧化擊雜1上,再將其填二t =有微量金屬奈米粒子之水溶液4使其相轉移至離子液趙 5將siliea⑪之離子㈣相金屬奈米粒子 香彻原子吸收光譜儀定量此洗下的溶液6中之金屬含量。 實驗結果顯示利用表面塗覆離子液體的silica確實可完 =屬:米粒子的濃縮,且依據定量結果顯示,在低濃度的 金屬不未粒子溶液中,離子液體仍能達到近娜的萃取率。 由上述實施例7、8結果得知,將離子液體固定化於載體上、 填充於管柱中可進行連續式萃取動作,不僅保留了高萃取率優 勢’亦可提高操作便利性,便於處理更大量的樣品。 實施例9金屬奈米粒子的固定化 首先利用離子液體作為相轉移試劑,將水相中的金屬奈米粒子 相轉移至有機相伽叫中。將M〇v〇1 %[腹關陶離子液體 加入CH2C12中,再加人水相金奈雜子,可觀察到不互溶的兩相, 其中上層水溶液呈紫紅色;下層有機溶劑呈無色,_超音波震 15 1335237Pre-concentration, Figure 5 is the experimental flow chart of Example 8, such as the fifth = grain =: = over the dioxide doping 1, and then filled with two t = aqueous solution 4 with trace metal nanoparticles The phase is transferred to the ionic liquid Zhao 5 to quantify the metal content of the washed solution 6 by the ionic (four) phase metal nanoparticle sulphur atomic absorption spectrometer of siliea11. The experimental results show that the silica coated with the surface of the ionic liquid can indeed be finished: the concentration of the rice particles, and according to the quantitative results, the ionic liquid can still reach the extraction rate of the near-nano in the low concentration of the metal non-particle solution. From the results of the above Examples 7 and 8, it is known that the ionic liquid is immobilized on the carrier and filled in the column to perform a continuous extraction operation, which not only retains the advantage of high extraction rate, but also improves the convenience of operation and facilitates handling. A large number of samples. Example 9 Immobilization of Metal Nanoparticles First, the metal nanoparticles in the aqueous phase were phase-transferred into the organic phase gamma by using an ionic liquid as a phase transfer reagent. Adding M〇v〇1%[Abone Guantao ionic liquid to CH2C12, and adding human water phase Jinnazi, two phases which are immiscible can be observed, wherein the upper aqueous solution is purple-red; the lower organic solvent is colorless, _ Ultrasonic shock 15 1335237

NCCU-06004-TWI 盤10分鐘後即可發現紫紅色金奈米粒子相轉移至有機相中,利用 UV-Vis光譜儀結示’隨著萃㈣間上升,水相中金奈米 粒子的吸收值·下降’而有機相巾的金奈練子吸收值則隨萃 取時間而上升水相銀及絲綠子重複以上試驗,亦可得 到相同的結果。 實施例10 ©定式離子液體之絲米粒子催化劑進行取洗反應催 化應用 將固定式離子液體之把奈米粒子催化劑放入反應瓶中,於反 應瓶中加入反應物 4-Iodoanisole 與 2-Ethylhexyl acrylate,以及 膽3 ’莫耳比例則為丨:u : u。在迴流系統中進行Heck反應(如 下列反應式1所示),溫度固定在8〇〇c,反應時間6小時。反應完 成後,將產物以乙醚萃取出,稀釋後進行定量分析。將殘餘物過 濾、後以少量去軒水清洗,所狀m贿錢進行相同的Heck反 應,结果如表4所示’其中產率(%)=產物莫耳數/反應物莫耳數 (%)’ TON (turnover number)=產物莫耳數/催化劑莫耳數,T〇F (turnover freqUency) = ton/反應時間(小時)=產物莫耳數/(催化劑 莫耳數*反應時間)。 反應式1 1335237After 10 minutes of NCCU-06004-TWI disk, the phase of the purple-red gold nanoparticles was transferred to the organic phase, and the absorption value of the gold nanoparticles in the aqueous phase was shown by the UV-Vis spectrometer. · Decrease' and the absorption value of the Chennai practitioner of the organic phase towel increases with the extraction time, and the same results are obtained by repeating the above tests of the aqueous phase silver and the silk green. Example 10: The ionic liquid-filamented rice particle catalyst was subjected to a washing reaction. Catalytic application A nanoparticle catalyst of a fixed ionic liquid was placed in a reaction flask, and a reactant 4-Iodoanisole and 2-Ethylhexyl acrylate were added to the reaction flask. And the gallbladder 3 'mole ratio is 丨: u : u. The Heck reaction was carried out in a reflux system (as shown in the following Reaction Scheme 1), the temperature was fixed at 8 ° C, and the reaction time was 6 hours. After completion of the reaction, the product was extracted with diethyl ether and diluted for quantitative analysis. The residue was filtered, and then washed with a small amount of water, and the same Heck reaction was carried out. The results are shown in Table 4, where the yield (%) = product mole number / reactant mole number (%) ) TON (turnover number) = product mole number / catalyst mole number, T〇F (turnover freqUency) = ton / reaction time (hours) = product mole number / (catalyst mole number * reaction time). Reaction formula 1 1335237

+ base 2-ethylhexyl acrylate 4-Iocloanisole NCCU-06004-TWI Pd(OAc)2 or nano-Pd+ base 2-ethylhexyl acrylate 4-Iocloanisole NCCU-06004-TWI Pd(OAc)2 or nano-Pd

表4 實驗例 產率(Yield,%) TON TOF 1 58.0 18000 3000 2 94.5 29400 4900 3 89.4 27800 4600 4 82.8 25800 4300 5 89.1 27700 4600 6 96.0 29900 5000 實施例11固定式離子液體之鈀奈米粒子催化劑進行氫化反應催 化應用 將固定式離子液體之鈀奈米粒子催化劑放入反應瓶中,以曱 苯(toluene)為溶劑並加入反應物phenylacetylene 10 %,與5 %正 癸燒(decane)為内標準’在1 atm氫氣條件下進行反應(如反應式2 所不)。實驗結果顯示,利用固定式離子液體之鈀奈米粒子催化劑 在室溫下祕4小輕其轉鱗為69.5 %,其妓遠優於未將離 子液體固定之biphase催化反應(轉化率32.9 %)。實驗中除了改變 反應之時間、溫度軸素外(如表5、6所示)’並探賴媒之離子 17 1335237Table 4 Experimental example yield (Yield, %) TON TOF 1 58.0 18000 3000 2 94.5 29400 4900 3 89.4 27800 4600 4 82.8 25800 4300 5 89.1 27700 4600 6 96.0 29900 5000 Example 11 immobilized ionic liquid palladium nanoparticle catalyst Catalytic application of hydrogenation reaction Palladium nanoparticle catalyst of fixed ionic liquid was placed in a reaction flask, with toluene as solvent and reactant phenylacetylene 10%, and 5% decane as internal standard. 'The reaction is carried out under 1 atm hydrogen (if not in Equation 2). The experimental results show that the palladium nanoparticle catalyst using fixed ionic liquid has a small scale of 69.5 % at room temperature, which is far superior to the biphase catalytic reaction without immobilization of ionic liquid (conversion rate 32.9 %). . In addition to changing the reaction time and temperature axis (as shown in Tables 5 and 6), the experiment also explored the ion of the medium 17 1335237

NCCU-06004-TWI 液體含量、種類及鈀奈米粒子含量對反應之影響,其實驗結果如 表 7、8、9。 反應式2NCCU-06004-TWI The effect of liquid content, type and palladium nanoparticle content on the reaction. The experimental results are shown in Tables 7, 8, and 9. Reaction formula 2

h2 PdH2 Pd

ethylbenzeneEthylbenzene

表5 時間(min) 轉化率(%) 選擇性(%) TON TOF 30 11.5 100 222.4 444.8 60 19.6 100 380.3 380.3 90 23.0 99.7 580.1 386.8 120 38.5 99.0 744.6 372.3 150 46.7 99.0 903.3 361.3 180 54.5 98.9 1054.8 351.6 210 61.0 98.6 1180.4 337.3 240 69.5 96.9 1345.4 336.3Table 5 Time (min) Conversion (%) Selectivity (%) TON TOF 30 11.5 100 222.4 444.8 60 19.6 100 380.3 380.3 90 23.0 99.7 580.1 386.8 120 38.5 99.0 744.6 372.3 150 46.7 99.0 903.3 361.3 180 54.5 98.9 1054.8 351.6 210 61.0 98.6 1180.4 337.3 240 69.5 96.9 1345.4 336.3

18 133523718 1335237

NCCU-06004-TWI 30 11.5 23.4 26.3 60 19.6 40.9 47.2 90 30.0 56.4 63.8 120 38.5 68.6 77.0 150 46.7 78.8 87.0 180 54.5 86.5 95.5 210 61.0 93.0 99.3 240 69.5 97.8 99.4 表7 子液體含量 時間(min) 4% 40% 非固定式離子 液體催化劑 (biphase) 30 11.5 7.2 2.5 60 19.6 17.1 9.7 90 30.0 24.5 14.2 120 38.5 32.4 19.3 150 46.7 36.8 23.6 180 54.5 42.1 27.4 210 61.0 47.4 30.0 240 69.5 52.1 32.9 19 1335237NCCU-06004-TWI 30 11.5 23.4 26.3 60 19.6 40.9 47.2 90 30.0 56.4 63.8 120 38.5 68.6 77.0 150 46.7 78.8 87.0 180 54.5 86.5 95.5 210 61.0 93.0 99.3 240 69.5 97.8 99.4 Table 7 Sub-liquid content time (min) 4% 40% Non-fixed ionic liquid catalyst (biphase) 30 11.5 7.2 2.5 60 19.6 17.1 9.7 90 30.0 24.5 14.2 120 38.5 32.4 19.3 150 46.7 36.8 23.6 180 54.5 42.1 27.4 210 61.0 47.4 30.0 240 69.5 52.1 32.9 19 1335237

NCCU-06004-TWI 表8 \\^子液體種類 [C4MIM] [C4MIM] [C4MIM] [C4MIM] 時間(min) [Cl] [bf4] [PF6] [N(Tf)2] 30 5.9 14.6 11.5 20.9 60 15.1 30.6 19.6 42.3 120 30.1 52.1 38.5 80.9 150 37.6 60.2 46.7 95.0 180 42.9 69.8 54.5 98.3 210 44.0 77.0 61.0 98.6 240 48.6 83.6 69.5 98.8 表9NCCU-06004-TWI Table 8 \\^Sub-liquid type [C4MIM] [C4MIM] [C4MIM] [C4MIM] Time (min) [Cl] [bf4] [PF6] [N(Tf)2] 30 5.9 14.6 11.5 20.9 60 15.1 30.6 19.6 42.3 120 30.1 52.1 38.5 80.9 150 37.6 60.2 46.7 95.0 180 42.9 69.8 54.5 98.3 210 44.0 77.0 61.0 98.6 240 48.6 83.6 69.5 98.8 Table 9

Pd含量 1 % 2% 3% 時間(min) 30 11.5 22.0 17.2 60 19.6 44.8 70.0 90 30.0 63.5 96.4 120 38.5 89.2 100 150 46.7 99.8 100Pd content 1 % 2% 3% Time (min) 30 11.5 22.0 17.2 60 19.6 44.8 70.0 90 30.0 63.5 96.4 120 38.5 89.2 100 150 46.7 99.8 100

由上述實施例9、10、u結果得知,轉子液體独奈米粒子 固疋在紐卿成的催倾在氣化反麟Heek反應有很好的催 化性質。 藉由上述方法可藉由離子液體將水相金屬奈米粒子相轉移至 合離子液體有機相中。將載體〔Al2〇3〕加人此有機相金屬奈米溶 液’利用旋轉濃縮法除去有機溶劑,以固態uv_vis光譜儀測量殘 留的固體’發現其最大吸收波峰位置與水相金屬奈米溶液、有機 相金屬奈総_近,财得知金屬奈米粒子已藉由離子液體穩 定分散於載面。由此證實,藉由離子可將水相金屬奈2 粒子相轉移至有機相’並可藉由其巾_子液_低揮發性將金 屬奈米粒子固定於載體表面。 離子液體(Ionic Liquid)是-種有機陽離子的鹽類與一些無機 陰離子的化合物,由於它不_普通_化點,通常離子液 體的炫化點會餘1G0°C,甚錄更讓人特观興趣的是其炫化 點比至溫還低馨子紐’由於離子雜雜揮發及良好的溶解 度的特性,所以它將會漸漸的取代有機溶劑。 離子㈣與-般有機溶船目較之下的優點在於:在化學製程 =取實驗可以用來取代揮發性有機物(v〇c)、物性及化性可夢 改變不同陰陽離子組成而改變'可以在觸媒作用下回收及容』 处理可以增加反應速率'選擇性及產率、酵素及蛋白質在離子From the results of the above-mentioned Examples 9, 10, and u, it is found that the rotor liquid DN particles are solidified in New Zealand and have good catalytic properties in the gasification anti-Neek Heek reaction. The aqueous phase metal nanoparticles can be phase transferred to the ionic liquid organic phase by the ionic liquid by the above method. The carrier [Al2〇3] was added to the organic phase metal nano solution. The organic solvent was removed by spin concentration, and the residual solid was measured by a solid uv_vis spectrometer. The maximum absorption peak position and the aqueous phase metal nano solution and organic phase were found. Metal Neon 近 Near, it is known that the metal nanoparticles have been stably dispersed on the carrier surface by the ionic liquid. It was thus confirmed that the phase of the aqueous phase metal naphthalene particles can be transferred to the organic phase by ions' and the metal nanoparticles can be immobilized on the surface of the support by its low liquid volatility. Ionic Liquid is a kind of organic cation salt and some inorganic anion compounds. Because it is not ordinary, the ionic liquid will usually have a sleek point of 1G0 °C, which is even more impressive. The interest is that its sleek point is lower than the temperature and the temperature is low. Since it is characterized by ionic impurities and good solubility, it will gradually replace the organic solvent. The advantages of ion (4) and general organic solution are: in the chemical process = the experiment can be used to replace volatile organic compounds (v〇c), physical properties and chemical properties can change the composition of different anions and cations and change 'may Recycling and handling under the action of catalyst can increase the reaction rate 'selectivity and yield, enzymes and proteins in the ion

NCCU-06004-TWI =中t、對蛋白質實驗有良好的混溶性、不破壞環境生態的 、適&的親水性、高極性溶劑、熱穩定、不易燃、不揮發。 · 由於本發明在化學製程或實驗使用離子液體來取代揮發性 - 有機物’因此本發明之方法除了具有離子液體的優點之外更具 有可有效的回收金屬奈雜子或有機分子,在不同濃度下,其回 ,率相近,表示非水溶性離子液體為一適用於前濃縮技術之萃取 . 劑j可以應驗濃騎測水愤量的金屬奈絲子或有機分子, 或是吸附絲污染’以應奈米污染防治與檢測。 本發明之利用離子液體收集金屬奈米粒子的方法能有效相轉 _ 移水相及有機相中之金屬奈米粒子,且相轉移過程不影響金屬奈 来的形狀、大小。 ^本發明之利用離子液體收集金屬奈米粒子的方法來固定金 屬奈米分子時,金屬奈綠子為㈣離子液體均句分散於載體的 表面’因此不會使金屬奈綠子表面活性點減少,可做為催化劑 使用。 以上所述僅為舉例性,而非為限制性者。任何未脫離本鲁 發明之精神與範疇,而對其進行之等效修改或變更,均應包 含於後附之申請專利範圍中。 【圖式簡單說明】 第1圖為水相金奈米粒子之紫外_可見光吸收圖譜; 第2圖為萃取後之離子液體層之紫外-可見光(uv_Vis)吸收圖 ‘ 譜; 22 1335237NCCU-06004-TWI = medium t, good miscibility for protein experiments, non-destructive environmental ecology, suitable & hydrophilic, highly polar solvent, heat stable, non-flammable, non-volatile. · Since the present invention uses an ionic liquid instead of a volatile organic substance in a chemical process or experiment, the method of the present invention has an advantage of having an ionic liquid to effectively recover metal nemesis or organic molecules at different concentrations. The return rate is similar, indicating that the water-insoluble ionic liquid is an extraction suitable for the pre-concentration technology. The agent j can be used to test the metal anesthesia or organic molecules, or the adsorption silk contamination. Nano pollution prevention and detection. The method for collecting metal nanoparticles by using the ionic liquid of the invention can effectively phase-transfer the metal nanoparticles in the aqueous phase and the organic phase, and the phase transfer process does not affect the shape and size of the metal. When the metal nanoparticle is collected by using the ionic liquid to collect the metal nanoparticle, the metal natriuretic is (4) the ionic liquid is uniformly dispersed on the surface of the carrier, so that the surface active point of the metal natriuretic layer is not reduced. Can be used as a catalyst. The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of this invention should be included in the scope of the appended claims. [Simple diagram of the diagram] Figure 1 is the UV-visible absorption spectrum of the aqueous phase of the nano-particles; Figure 2 is the ultraviolet-visible (uv_Vis) absorption diagram of the extracted ionic liquid layer ‘ spectrum; 22 1335237

NCCU-06004-TWI 第3圖為水相銀奈米粒子之紫外-可見光(UV-Vis)吸收圖譜; 第4圖為相轉移前後xylene層中之把含量的照片圖;以及 第5圖為實施例8之實驗流程圖。 【主要元件符號說明】 1 :二氧化矽顆粒; 2:離子液體; 3 :管柱; 4:含有微量金屬奈米粒子之水溶液; 5:有機溶劑;以及 6:洗下的溶液。NCCU-06004-TWI Figure 3 is the UV-Vis absorption spectrum of the aqueous phase silver nanoparticles; Figure 4 is a photo of the content of the xylene layer before and after the phase transfer; and Figure 5 is the implementation The experimental flow chart of Example 8. [Main component symbol description] 1 : cerium oxide particles; 2: ionic liquid; 3: column; 4: aqueous solution containing trace metal nanoparticles; 5: organic solvent; and 6: washed solution.

23twenty three

Claims (1)

厶:> I 公告f NCCU-06004-TWI 申請專利範圍: —種利用離子液體收集奈米粒子的方法,其包括: 提供包括複數個金屬奈米粒子之一溶液; 將與該溶液不互溶之一離子液體與該溶液混合接觸,而 使該溶液巾之金屬奈米粒子以相轉移的方式收集到該 離子液體的相中; 其中該金屬奈米粒子係為金、銀或把金屬奈米粒子該 離子液體係為室溫咖坐鹽離子液體,其係於室溫下以液體形 式存在之咪唾型(imidazolium)離子液體。 2 如申請專利範圍第1項所述之利用離子液體收集奈米粒子 的方法’其中使用該離子液體收集他相該些奈米粒子的形 式包括萃取、吸附、固定、濃縮或其他化學性的收集方法。 ’、如申料利範圍第2項所述之_離子液體收集金屬奈米 粒子的方法’其中使用該離子液體萃取該些金屬奈米粒子 的方式包括-液相制目萃取或—軸删目萃取該些金屬 奈米粒子。 4 、如申請專利翻第3項所述之離子液體收集金屬奈米 粒子的方法’其♦该液相-固相萃取為使用一固定式的該離 子液體來萃取該些金屬奈米粒子。 、如申凊專纖_ 4項所述之_離子㈣收集奈米粒子 的方法,其中使用該離子液體固定該些奈米粒子時,乃藉 由該一金屬不米粒子均勻分散於該離子液體而固定於一載 體的表面。 24 1335237 6、 如申請專利翻第5顧叙_離讀體 的方法,其中該載體包括為Si〇2、Al2〇3、Si〇2_AiA、石夕 藻土或活性碳。 7、 如申料纖斯狀離子液體㈣奈米粒子 的方法,其巾該些金屬奈餘子包翻撕金屬奈米的催 化反應應S,而郷化反應包域化反應(hyd啡⑽㈣或 黑克反應(Heck Reaction)。 8、 如帽料細第i補叙·離子㈣轉奈米粒子 的方法,其中包括該些金屬奈米粒子之該溶液包括為水相 或有機相。 9、 一種利用離子液體收集有機分子的方法,其包括: 提供包括複數個有機分子之一溶液; 將與該溶液不互溶之_離子㈣與該驗混合接觸,而 使該溶液中之該些有機分子以相轉移的方式收集到該離子 液體的相中; 其中》玄些有機分子係為水溶性或非水溶性的染料或染 料的汙染物,該離子液體係為室溫咪唑鹽離子液體,其係於 室溫下以液體形式存在之味嗤型(imidaz〇lium)離子液體。 10、 、如申請專利範圍第9項所述之利用離子液體收集有機 分子的方法,其中使用該離子液體收集該些有機分子的形 式包括萃取、吸附、固定或其他化學性的收集方法。 1卜如申請專利範圍第10項所述之利用離子液體收集有機 分子的方法,其中使用該離子液體萃取該些有機分子的方 25 1335237 式包括一液相-潘如贫说七 _ , NCCU-06004-TW] !2、細1解取麵有機分子。 如申h專利範圍第U項所述之利用離子液體收集有機 分子的方法,其中該液相-固相萃取為使用—固定 子液體萃取該些有機分子。 6" 13、 如申請專利範圍第12項所述之利用離子液體收集有機 分子的方法,其中該固定式的該離子液體所使用的戴體包 括為Si02、Al2〇3、Si02-Al203、矽藻土或活性碳。厶: > I Announcement f NCCU-06004-TWI Patent Application: - A method of collecting nanoparticle using an ionic liquid, comprising: providing a solution comprising one of a plurality of metal nanoparticles; not being miscible with the solution An ionic liquid is mixed with the solution, and the metal nanoparticles of the solution towel are collected in a phase transfer manner into the phase of the ionic liquid; wherein the metal nanoparticle is gold, silver or metal nanoparticles The ionic liquid system is a room temperature sitting salt ionic liquid which is an imidazolium ionic liquid which exists in liquid form at room temperature. 2 A method for collecting nanoparticles by using an ionic liquid as described in claim 1, wherein the ionic liquid is used to collect other forms of the nanoparticles including extraction, adsorption, fixation, concentration or other chemical collection. method. 'A method for collecting metal nanoparticles according to the ionic liquid described in the second item of claim 2, wherein the method of extracting the metal nanoparticles using the ionic liquid comprises - liquid phase extraction or - axis removal The metal nanoparticles are extracted. 4. A method of collecting metal nanoparticles by the ionic liquid of claim 3, wherein the liquid phase-solid phase extraction uses a fixed ion liquid to extract the metal nanoparticles. The method for collecting nano particles according to the _ ion (4), wherein the ionic liquid is used to fix the nano particles by uniformly dispersing the metal particles in the ionic liquid And fixed to the surface of a carrier. 24 1335237 6. The method of claiming a patent, wherein the carrier comprises Si〇2, Al2〇3, Si〇2_AiA, Shixia or activated carbon. 7. For example, a method for applying a fiber ionic liquid (four) nanoparticle, the catalytic reaction of the metal naphtha package tearing metal nanometer should be S, and the deuteration reaction domainization reaction (hyd brown (10) (four) or Heck Reaction 8. A method for transferring a nanoparticle to an ion (four) to a nanoparticle, wherein the solution comprising the metal nanoparticle comprises an aqueous phase or an organic phase. A method for collecting organic molecules by using an ionic liquid, comprising: providing a solution comprising one of a plurality of organic molecules; and mixing the ions (4) immiscible with the solution with the test, and causing the organic molecules in the solution to be phased The method of transferring is collected into the phase of the ionic liquid; wherein the organic layer is a water-soluble or water-insoluble dye or dye contaminant, and the ionic liquid system is a room temperature imidazolium salt ionic liquid, which is attached to the chamber. The method of collecting an organic molecule by using an ionic liquid according to the invention of claim 9, wherein the ionic liquid is collected by using the ionic liquid. The form of the organic molecules includes extraction, adsorption, immobilization, or other chemical collection methods. The method of collecting organic molecules by using an ionic liquid according to claim 10, wherein the organic liquid is used to extract the organic molecules. The molecular side of the 25 1335237 formula includes a liquid phase - Pan Ru poor said seven _, NCCU-06004-TW]! 2, fine 1 solution to take the surface of organic molecules. As described in the application of the scope of the U patent ionic liquid collection A method of extracting organic molecules by using an ionic liquid, as described in claim 12, wherein the liquid-solid phase extraction is to extract the organic molecules using a susceptor liquid. The wearer used for the stationary ionic liquid includes SiO 2 , Al 2 〇 3 , SiO 2 - Al 203 , diatomaceous earth or activated carbon. 2626
TW95140851A 2006-11-03 2006-11-03 A method of collecting metal nanoparticles or organic molecules with ionic liquids TWI335237B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95140851A TWI335237B (en) 2006-11-03 2006-11-03 A method of collecting metal nanoparticles or organic molecules with ionic liquids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95140851A TWI335237B (en) 2006-11-03 2006-11-03 A method of collecting metal nanoparticles or organic molecules with ionic liquids

Publications (2)

Publication Number Publication Date
TW200821025A TW200821025A (en) 2008-05-16
TWI335237B true TWI335237B (en) 2011-01-01

Family

ID=44770355

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95140851A TWI335237B (en) 2006-11-03 2006-11-03 A method of collecting metal nanoparticles or organic molecules with ionic liquids

Country Status (1)

Country Link
TW (1) TWI335237B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8784663B2 (en) * 2009-11-20 2014-07-22 Nokia Corporation Trapping nanostructures

Also Published As

Publication number Publication date
TW200821025A (en) 2008-05-16

Similar Documents

Publication Publication Date Title
Ghanei-Motlagh et al. Novel imprinted polymeric nanoparticles prepared by sol–gel technique for electrochemical detection of toxic cadmium (II) ions
Lu et al. Carbide cluster metallofullerenes: Structure, properties, and possible origin
Hao et al. Ratiometric fluorescent detection of Cu2+ with carbon dots chelated Eu-based metal-organic frameworks
Yu et al. Double-color lanthanide metal–organic framework based logic device and visual ratiometric fluorescence water microsensor for solid pharmaceuticals
Firouzabadi et al. Preconcentration and speciation of thallium by ferrofluid based dispersive solid phase extraction and flame atomic absorption spectrometry
Ramandi et al. Selective ionic liquid ferrofluid based dispersive-solid phase extraction for simultaneous preconcentration/separation of lead and cadmium in milk and biological samples
Tarigh et al. Magnetic multi-wall carbon nanotube nanocomposite as an adsorbent for preconcentration and determination of lead (II) and manganese (II) in various matrices
Gu et al. Preparation of chlorogenic acid surface-imprinted magnetic nanoparticles and their usage in separation of traditional Chinese medicine
Wang et al. Polydiacetylene liposome-encapsulated alginate hydrogel beads for Pb 2+ detection with enhanced sensitivity
Huang et al. Study and comparison of polydopamine and its derived carbon decorated nanoparticles in the magnetic solid-phase extraction of estrogens
Shahat et al. Colorimetric determination of some toxic metal ions in post-mortem biological samples
Arán‐Ais et al. Electrochemical characterization of clean shape‐controlled Pt nanoparticles prepared in presence of oleylamine/oleic acid
CN103154716B (en) Analyte sensor
Nekouei et al. Mixed cloud point/solid phase extraction of lead (II) and cadmium (II) in water samples using modified-ZnO nanopowders
Yang et al. Twenty‐one years of microemulsion electrokinetic chromatography (1991–2012): A powerful analytical tool
Kazemi et al. Development of a novel mixed hemimicelles dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene for the separation and preconcentration of fluoxetine in different matrices before its determination by fiber optic linear array spectrophotometry and mode-mismatched thermal lens spectroscopy
Wei et al. A general chiral selector immobilized on silica magnetic microspheres for direct separation of racemates
Lin et al. D-penicillamine-templated copper nanoparticles via ascorbic acid reduction as a mercury ion sensor
Bahar et al. An innovative method for analysis of Pb (II) in rice, milk and water samples based on TiO2 reinforced caprylic acid hollow fiber solid/liquid phase microextraction
Niu et al. Cetyltrimethylammonium bromide-coated titanate nanotubes for solid-phase extraction of phthalate esters from natural waters prior to high-performance liquid chromatography analysis
Takano et al. Anisotropic magnetic behavior of anionic Ce@ C82 carbene adducts
Sotolongo et al. Hybrid ionic liquid-3D graphene-Ni foam for on-line preconcentration and separation of Hg species in water with atomic fluorescence spectrometry detection
CN105738341A (en) Heavy metal mercury ion detection method
Liu et al. Ultra-trace determination of gold nanoparticles in environmental water by surfactant assisted dispersive liquid liquid microextraction coupled with electrothermal vaporization-inductively coupled plasma-mass spectrometry
CN104777081B (en) A kind of method for separating and detecting of nanoparticles

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees