TWI335088B - Light-emitting diode and method for fabrication thereof - Google Patents

Light-emitting diode and method for fabrication thereof Download PDF

Info

Publication number
TWI335088B
TWI335088B TW95148554A TW95148554A TWI335088B TW I335088 B TWI335088 B TW I335088B TW 95148554 A TW95148554 A TW 95148554A TW 95148554 A TW95148554 A TW 95148554A TW I335088 B TWI335088 B TW I335088B
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
emitting
electrode
layer
Prior art date
Application number
TW95148554A
Other languages
Chinese (zh)
Other versions
TW200742123A (en
Inventor
Wataru Nabekura
Ryouichi Takeuchi
Original Assignee
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005369620A external-priority patent/JP2007173551A/en
Priority claimed from JP2005369334A external-priority patent/JP4942996B2/en
Priority claimed from JP2005369996A external-priority patent/JP2007173575A/en
Application filed by Showa Denko Kk filed Critical Showa Denko Kk
Publication of TW200742123A publication Critical patent/TW200742123A/en
Application granted granted Critical
Publication of TWI335088B publication Critical patent/TWI335088B/en

Links

Landscapes

  • Led Devices (AREA)

Description

1335088 Ο) 九、發明說明 【發明所屬之技術領域】 本發明係有關一種以化合物半導體製成的發光層提供 且裝備彼上面形成第一電極及極性與該第一電極不同的第 一電極之出光面(light-extracting surface)的透明基材發 ^光二極體。更特別是’本發明係有關放能性質優異且顯示 高亮度的發光二極體及彼之製法。 【先前技術】 隨著賦予發光二極體高亮度的目的,至今已使用仰賴 裝置外形來增進出光效率的方法。在具有各自形成在半導 體發光二極體第一面及背面上的電極之裝置結構中,舉例 來說’藉由側面外形來賦予高亮度的方法已經被提出(舉 例來說,對照 JP-B SHO 63-28508、美國專利案號 6,229,160 及 JP-A HEI 3-227078 )。 φ 有關能放射紅、橙、黃或黃綠色可見光的發光二極體 (LED),至今已知道以磷化鋁-鎵-銦((AlxGai-X)YIn丨·ΥΡ ; 其中0SXS1及0&lt;Υ^1)所製成的發光層提供的化合物半導 體 LED。在此種 LED 中,以(AlxGai.x)YIni-YP (其中 0SXS1及0&lt;YS1)製成的發光層提供的發光部分一般對該 發光層放射的光都不透光且機械地形成在毫無強度可言的 基材,例如砷化鎵(GaAs )上。 最近,爲了獲得能顯示儘可能高亮度的可見光LED 之目的及隨著進一步增進裝置機械強度的目的,因此,藉 -5- Λ (2) 1335088 由移除不透光基材,例如Ga As,之後藉由革新方式接合 能透射發光且機械強度比以前更優異的透明材料所製成的 背板之構成接面型LED的技術已被揭示(舉例來說,對 照日本專利編號 3230638、JP-A HEI 6-302857、 JP-A 2002-246640、日本專利編號 2588849 及 ^ JP-A SHO 58-34985 )。 ' 然後,爲達獲得高亮度的可見光LED之目的,已採 行藉由裝置外形來增進發光效率的方法。有一個例子,在 具有各自形成在半導體發光二極體第一面及背面上的電極 之裝置結構中,仰賴側面結構來增進高亮度的技術已經被 揭示(舉例來說,對照上述的美國專利案號6,229,1 60及 JP-A SHO 5 8 -3 498 5 )。 傳統技術已提出數種經建構而具有各自形成在半導體 發光二極體第一面及背面上的電極之裝置外形,但是未硏 究當此裝置配合大量電流使用時此裝置所顯示的放能性 質。特別是,含有在彼之出光面上提供二電極之AlGalnP-及氮化鎵爲底的發光層之發光二極體的放能性質比背面上 設置電極的裝置結構差,因爲其沒有設置在背面上的電 極。已知放能性質不足將造成發光層溫度提高,降低發光 效率且降低亮度。 使用透明基材AlGalnP發光層且出光面上形成二電極 的裝置結構將伴隨如外形複雜,無法最適化電極配置,發 光層及裝置的側面條件及背面無法獲得高亮度及足夠放能 性(exoergic property)的問題。</ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; A transparent substrate of a light-extracting surface emits a light-emitting diode. More specifically, the present invention relates to a light-emitting diode which is excellent in energy-releasing properties and exhibits high luminance and a method for producing the same. [Prior Art] With the object of giving high brightness to the light-emitting diode, a method of increasing the light-emitting efficiency depending on the shape of the device has been used up to now. In a device structure having electrodes each formed on the first side and the back surface of the semiconductor light-emitting diode, for example, a method of imparting high brightness by a side profile has been proposed (for example, in contrast to JP-B SHO) 63-28508, U.S. Patent No. 6,229,160 and JP-A HEI 3-227078). φ A light-emitting diode (LED) capable of emitting red, orange, yellow or yellow-green visible light, which has been known so far as aluminum phosphide-gallium-indium ((AlxGai-X)YIn丨·ΥΡ; where 0SXS1 and 0 &lt; ^1) A compound semiconductor LED provided by the resulting light-emitting layer. In such an LED, the light-emitting portion provided by the light-emitting layer made of (AlxGai.x)YIni-YP (where 0SXS1 and 0_YS1) is generally opaque to the light emitted from the light-emitting layer and mechanically formed at A substrate without strength, such as gallium arsenide (GaAs). Recently, in order to obtain the visible light LED capable of displaying the highest possible brightness and to further enhance the mechanical strength of the device, the removal of the opaque substrate, such as Ga As, by -5-Λ (2) 1335088, A technique of forming a junction type LED of a back sheet which is made of a transparent material which is transmissive and has a mechanical strength superior to that of the prior art by an innovative means has been disclosed (for example, Japanese Patent No. 3230638, JP-A) HEI 6-302857, JP-A 2002-246640, Japanese Patent No. 2588849 and ^ JP-A SHO 58-34985). Then, for the purpose of obtaining a high-intensity visible light LED, a method of improving the luminous efficiency by the shape of the device has been adopted. As an example, in a device structure having electrodes each formed on a first side and a back side of a semiconductor light-emitting diode, a technique of relying on a side structure to enhance high brightness has been disclosed (for example, in comparison with the above-mentioned US patent case) No. 6,229,1 60 and JP-A SHO 5 8 -3 498 5 ). Conventional techniques have proposed several device configurations that have electrodes each formed on the first side and the back side of the semiconductor light-emitting diode, but have not investigated the discharge properties exhibited by the device when used with a large amount of current. . In particular, the light-emitting diode of the light-emitting diode containing the AlGalnP- and gallium nitride-based light-emitting layers which provide the two electrodes on the light-emitting surface of the light-emitting surface is inferior in structure to the device on which the electrode is disposed on the back surface because it is not disposed on the back surface. The upper electrode. It is known that insufficient release properties will result in an increase in the temperature of the luminescent layer, a decrease in luminescent efficiency and a decrease in brightness. The device structure using the transparent substrate AlGalnP light-emitting layer and forming the two electrodes on the light-emitting surface will be accompanied by a complicated shape, and the electrode arrangement cannot be optimized, and the side conditions and the back surface of the light-emitting layer and the device cannot obtain high brightness and sufficient energy dissipation (exoergic property) )The problem.

-6- &lt; S (3) (3)-6- &lt; S (3) (3)

1335088 儘管接面型LED已能提供高亮度LED,但是 在對於顯示又更高亮度的led之需求。本發明有 述的問題而提出。在出光面上具有二電極的發光 中,本發明的目的在於提供優於放能性,顯示高發 且具有高亮度的發光二極體。 即使從傳統技術也清楚知道發光二極體的側面 該二極體出光有關。在上部具有發光面的結構中, 供顯著側面外形效果的目的而提高傾斜角時,傾斜 將造成背面面積滅小,降低放能性及降底大量電流 度性質。爲達增進放能性而將發光層做得的更小且 積做得更大時,繼昂貴發光層而發生的成本問題將 損失。當該發光層接近背面時,一表面上具有二電 構將無法藉由普通線接合製程來組裝。 發明人,由於追縱發光二極體的外形及背面之 硏究的結果,發現該背面的結構及面積、該發光 積、該側面的外形及該背面的粗糙化必需做重大的 最後由於發現最適化裝置結構及安定製法而貫徹本 明確地說,爲了完成上述目標的目的,而完成本發I 【發明內容】 本發明第一個方面在於一種發光二極體,其具 基材及由化合物半導體製成的發光層,其中彼上面 一電極及極性與該第一電極不同的第二電極之出光 積(A)、接近該出光面形成之發光層的面積(B) 仍然存 鑑於上 二極體 光效率 外形與 爲達提 角提高 區的亮 背面面 招致大 極的結 全面性 層的面 檢討且 發明。 有透明 形成第 面的面 及落在 (4) 1335088 該第一電極和該第二電極形成側的相反側上之發光二極體 背面的面積(C)的關係滿足式(1)的關係。1335088 Although junction LEDs already provide high-brightness LEDs, there is a need for LEDs that display higher brightness. The problems of the present invention have been raised. In the case of illuminating light having two electrodes on the light-emitting surface, it is an object of the present invention to provide a light-emitting diode which is superior in energy absorbing property and which exhibits high incidence and high luminance. Even from the conventional technology, it is clear that the side of the light-emitting diode is related to the light output of the diode. In the structure having the light-emitting surface on the upper side, when the inclination angle is increased for the purpose of the significant side shape effect, the inclination causes the back surface area to be small, and the energy dissipation property and the large-scale current property of the bottom are lowered. In order to make the light-emitting layer smaller and larger in order to improve the energy dissipation, the cost problem incurred in the case of the expensive light-emitting layer will be lost. When the luminescent layer is close to the back side, having two structures on one surface will not be assembled by a conventional wire bonding process. The inventor found that the structure and area of the back surface, the illuminating product, the shape of the side surface, and the roughening of the back surface must be made significant due to the results of the investigation of the shape and the back surface of the light-emitting diode. In order to accomplish the above object, the present invention is completed in accordance with the present invention. The first aspect of the present invention is a light-emitting diode having a substrate and a compound semiconductor. a light-emitting layer formed, wherein an optical product (A) of an upper electrode and a second electrode having a polarity different from the first electrode, and an area (B) of the light-emitting layer formed adjacent to the light-emitting surface are still present in view of the upper diode The light-efficiency profile and the surface of the knot-up of the large-thickness of the bright back surface of the raised angle of the Dart's angle are reviewed and invented. The relationship between the area (C) of the back surface of the light-emitting diode on the opposite side of the first electrode and the side on which the second electrode is formed on the surface which is transparent to the first surface and the surface of the light-emitting diode which is on the opposite side of the first electrode and the second electrode formation side satisfies the relationship of the formula (1).

A&gt;C&gt;B 本發明第二個方面包括第一個方面的外廓,其中該發 光層具有式(AlxGa^jOYlm.YP的組成;其中 Osxsi, 〇&lt;Υ&lt;1 ’而且該透明基材具有100W/m‘k或更大的熱傳導 係數。 本發明第三個方面包括第一或第二個方面的外廓,其 中該透明基材具有包含接近該發光層的第一側面及接近該 透明基材背面的第二側面,及其中該第一側面具有小於該 第二側面的傾斜角之傾斜角。 本發明第四個方面包括第三個方面的外廓,其中該第 一側面係垂直的且該第二側面係歪斜的。 本發明第五個方面在於一種發光二極體,其包含裝備 發光部分的化合物半導體層,該發光部分含具有式 (AlxGai.x)YIni-YP的組成之發光層;其中 OsXsi及 0&lt;Y&lt;1、具有接到彼的化合物半導體層之透明基材,及上 面形成第一電極和極性與該第一電極不同的第二電極之主 要出光層’其中該第二電極係形成在暴露於該第一電極相 反側的化合物半導體層上且該透明基材具有一側面,該側 面包含大致垂直於該發光層臨近側上之發光層發光表面的 第一側面及向該發光層遠離側上之發光表面傾斜的第二側 -8 - (· £ (5) (5)1335088 面。 本發明第六個方面在於一種發光二極體,其包含裝備 發光部分的化合物半導體層,該發光部分含具有式 (AlxGauhlm-YP 的組成之發光層;其中 0SXS1 及 0&lt;YS1、具有接到彼的化合物半導體層之透明基材,及上 面形成第一電極和極性與該第一電極不同的第二電極之主 要出光層’其中該第二電極係形成在暴露於該第一電極相 反側的化合物半導體層上的角落位置且該透明基材具有一 側面’該側面包含大致垂直於該發光層臨近側上之發光層 發光表面的第一側面及向該發光層遠離側上之發光表面傾 斜的第二側面。 本發明第七個方面包括第三或第四個方面的外廓,其 中該第二側面的傾斜角係1 〇度或更大及3 〇度或更小。 本發明第八個方面包括第三或第四個方面的外廓,其 中該第二側面的傾斜角係1 〇度或更大及2 〇度或更小。 本發明第九個方面包括第五或第六個方面的外廓,其 中該第二側面與平行該發光表面的表面之間形成介於55 度至80度的角度。 本發明第十個方面包括第三或第四個方面的外廓,其 中該第一側面具有50μιη或更大及ΙΟΟμπι或更小的長度且 該第—側面具有ΙΟΟμπι或更大及250μιη或更小的長度。 本發明第十一個方面包括第五或第六個方面的外廓, 其中該第一側面具有介於30 μιη至ΙΟΟμπι的長度。 本發明第十二個方面包括第一、第五或第六個方面的 -9- (6) (6)1335088 外廓,其中該透明基材係由磷化鎵(GaP )製成。 本發明第十三個方面包括第五或第六個方面的外廓, 其中該透明基材實質上爲η-型GaP單晶且具有(100)或 (111)的表面取向。 本發明第十四個方面包括上述第五或第六個方面的外 廓,其中該透明基材具有介於50 μιη至300 μπι的厚度。 本發明第十五個方面包括第五或第六個方面的外廓, 其中該透明基材係由碳化矽(SiC )製成。 本發明第十六個方面包括第一個方面的外廓,其中該 透明基材具有能散光的粗糙表面之背面。 本發明第十七個方面包括第一個方面的外廓,其中該 透明基材具有彼上面形成金屬膜的背面。 本發明第十八個方面包括第十七個方面的外廓,其中 該透明基材背面上的金屬膜含具有400 T:或更低的熔點之 金屬。 本發明第十九個方面包括第十七個方面的外廓,其中 該金屬膜係由AuSn合金製成。 本發明第二十個方面包括第一個方面的外廓,其中該 發光二極體係配合1.5 W或更大的電力使用且其背面面積 係0.6 mm2或更大。 本發明第二十一個方面包括第十六個方面的外廓,其 中該透明基材係GaP基材,且其背面利用氫氯酸處理該 GaP基材而得到。 本發明第二十二個方面包括第三個方面的外廓,其中 -10- (7) 1335088 該透明基材的第一及第二側面係藉由切 method)形成者。 本發明第二十三個方面包括第五個方面 該第一電極的周圍環繞半導體層。 本發明第二十四個方面包括第六個方面 該第二電極係位在該第二側面的傾斜結構上: 本發明第二十五個方面包括第五個方面 該第一電極具有晶格的形狀。 本發明第二十六個方面包括第五或第 廓,其中該第一電極包含衰減電極(pad el 有1 0 μιη或更小的寬度之線性電極。 本發明第二十七個方面包括第五或第 廓,其中該發光部分含有GaP層且該第二電 GaP層上。 本發明第二十八個方面包括第五或第 廓,其中該第一電極具有η-型極性且該第二 極性。 本發明第二十九個方面包括第五或第 廓,其中該透明基材之傾斜的第二面具有粗) 本發明第三十個方面在於一種發光二極 包含下列步驟:形成含具有式(AlxGai_x)YIn 發光層的發光部分;其中O^X^l及〇&lt;Υ^1, 發光部分的化合物半導體層被接到透明基材 透明基材相反側上之主要發光表面的第一電 割法(dicing 的外廓,其中 的外廓,其中 方。 的外廓,其中 六個方面的外 ectrode)及具 六個方面的外 極係形成於該 六個方面的外 電極具有p-型 六個方面的外 隆度。 體之製法,其 ι-γΡ的組成之 後繼地使含有 ,使附接於該 極和極性與該 -11 - (8) (8)1335088 第一電極不同的第二電極被形成在該化合物半導體層的暴 露部分上使得該第二電極可配置在該第一電極的相反側, 及藉由切割法令該透明基材的側面形成大致垂直於該發光 層臨近側上之發光層發光表面的第一側面及向該發光層遠 離側上之發光表面傾斜的第二側面。 本發明第三十一個方面在於一種發光二極體之製法, 其包含下列步驟:形成含具有式(AlxGai_x)YIni_YP的組成 之發光層的發光部分:其中0SXS1及0&lt;Υ&lt;1,後繼地使含 有發光部分的化合物半導體層被接到透明基材,使附接於 該透明基材相反側上之主要發光表面的第一電極和極性與 該第一電極不同的第二電極被形成在該化合物半導體層暴 露部分上的角落位置使得該第二電極可配置在該第一電極 的相反側,及藉由切割法令該透明基材的側面形成大致垂 直於該發光層臨近側上之發光層發光表面的第一側面及向 該發光層遠離側上之發光表面傾斜的第二側面。 本發明第三十二個方面包括第三十或第三十一個方面 的外廓,其中該第一側面係經由劃線折斷法(scribe and break method)形成。 本發明第三十三個方面包括第三十或第三十一個方面 的外廓’其中該第一側面係經由切割法形成。 根據上述的發明,因爲具有化合物半導體製的發光層 之透明基材發光二極體具有經最佳化之發光層面積與透明 基材背面面積關係及透明基材的側面條件,所以可提供具 有至今從未達到的高亮度,顯示高放能性且適合使用大量 -12- (9) (9)1335088 電流之發光二極體。 再者,根據本發明,具有化合物半導體製的發光層之 透明基材發光二極體變得具有經最佳化的電極沈積及晶片 外形。本發明,至今,能提供發光部分的出光效率已增強 至至今無法達到的程度,顯示高亮度,抑制操作電壓且具 有高可靠度之發光二極體。 本發明各種不同的目的、特徵特性及優點從下文所提 供的說明對照附圖對熟於此藝之士而言將變得顯而易見。 【實施方式】 本發明的發光二極體具有化合物半導體製成的發光 層。儘管習知的發光層,例如GaAlAs爲底、InGaN爲底 及AlInGaP爲底的發光層,可當作上述的發光層,但是特 別是具有薄磊晶層之InGaN爲底及AlInGaP爲底的發光層 係易於製造。這些發光部分對於紫外線延伸至紅外線波帶 的寬廣範圍中的波長係有效的。 本發明的發光二極體除了發光層之外較佳爲包含堆疊 包被層及接觸層等所得到的發光部分。 本發明預期的發光部分較佳爲由含有(AlxGai-X)YIni.Yp (0SXS1,〇&lt;Υ&lt;1 )製成的發光層之化合物半導體堆疊結 構組成。在此情況中,該發光層可由傳導型、η-型及ρ-型 任一者的(AlxGa 卜 χΚΙΐΜ-γΡ (0SXS1,〇&lt;YSl)形成。儘管 該發光層可爲任一結構,即單量子井(SQW)結構及多量 子井(MQW)結構,較佳爲具有用於獲得優於單色品的發A&gt;C&gt;B A second aspect of the invention includes the outline of the first aspect, wherein the luminescent layer has a composition of the formula (AlxGa^jOYlm.YP; wherein Osxsi, 〇&lt;Υ&lt;1' and the transparent substrate Having a heat transfer coefficient of 100 W/m'k or greater. A third aspect of the invention includes the outer profile of the first or second aspect, wherein the transparent substrate has a first side adjacent to the luminescent layer and is adjacent to the transparent a second side of the back side of the substrate, and wherein the first side has an angle of inclination that is less than an angle of inclination of the second side. A fourth aspect of the invention includes the outline of the third aspect, wherein the first side is vertical And the second aspect is skewed. A fifth aspect of the invention is a light emitting diode comprising a compound semiconductor layer equipped with a light emitting portion, the light emitting portion comprising a light having a composition of the formula (AlxGai.x) YIni-YP a layer; wherein OsXsi and 0 &lt;Y&lt;1, a transparent substrate having a compound semiconductor layer attached thereto, and a main light-emitting layer on which a first electrode and a second electrode having a polarity different from the first electrode are formed, wherein the Two electrode Forming on a compound semiconductor layer exposed on the opposite side of the first electrode and having a side surface including a first side substantially perpendicular to a light emitting layer emitting surface on an adjacent side of the light emitting layer and toward the light emitting The second side of the layer -8 - (· £ (5) (5) 1335088 is inclined away from the light-emitting surface on the side. The sixth aspect of the invention is a light-emitting diode comprising a compound semiconductor layer equipped with a light-emitting portion, The light-emitting portion contains a light-emitting layer having a composition of the formula (AlxGauhlm-YP; wherein 0SXS1 and 00&1; YS1, a transparent substrate having a compound semiconductor layer attached thereto, and a first electrode formed thereon and a polarity different from that of the first electrode a main light-emitting layer of the second electrode, wherein the second electrode is formed at a corner position on the compound semiconductor layer exposed on the opposite side of the first electrode and the transparent substrate has a side surface that includes substantially perpendicular to the light emission a first side surface of the light emitting layer light emitting surface on the adjacent side of the layer and a second side surface inclined to the light emitting surface on the far side of the light emitting layer. The seventh aspect of the present invention A profile of the third or fourth aspect, wherein the angle of inclination of the second side is 1 or more and 3 degrees or less. The eighth aspect of the invention includes the third or fourth aspect a profile in which the angle of inclination of the second side is 1 or more and 2 degrees or less. The ninth aspect of the invention includes the profile of the fifth or sixth aspect, wherein the second side is parallel An angle of between 55 and 80 degrees is formed between the surfaces of the light emitting surface. A tenth aspect of the invention includes the outer contour of the third or fourth aspect, wherein the first side has 50 μm or more and ΙΟΟμπι or more The length is small and the first side has a length of ΙΟΟμπι or more and 250 μm or less. An eleventh aspect of the invention includes the outer aspect of the fifth or sixth aspect, wherein the first side has a length of from 30 μm to ΙΟΟμπι. A twelfth aspect of the invention includes the -9-(6)(6) 1335088 profile of the first, fifth or sixth aspect, wherein the transparent substrate is made of gallium phosphide (GaP). A thirteenth aspect of the invention includes the outer aspect of the fifth or sixth aspect, wherein the transparent substrate is substantially an ?-type GaP single crystal and has a surface orientation of (100) or (111). A fourteenth aspect of the invention includes the above aspect of the fifth or sixth aspect, wherein the transparent substrate has a thickness of from 50 μm to 300 μm. A fifteenth aspect of the invention includes the outer aspect of the fifth or sixth aspect, wherein the transparent substrate is made of tantalum carbide (SiC). A sixteenth aspect of the invention includes the outer aspect of the first aspect, wherein the transparent substrate has a back surface of a rough surface that can astigmatize. A seventeenth aspect of the invention includes the outer aspect of the first aspect, wherein the transparent substrate has a back surface on which a metal film is formed. The eighteenth aspect of the invention includes the outline of the seventeenth aspect, wherein the metal film on the back surface of the transparent substrate contains a metal having a melting point of 400 T: or lower. A nineteenth aspect of the invention includes the outline of the seventeenth aspect, wherein the metal film is made of an AuSn alloy. A twentieth aspect of the invention includes the outline of the first aspect, wherein the light-emitting diode system is used with a power of 1.5 W or more and has a back surface area of 0.6 mm 2 or more. A twenty-first aspect of the invention includes the outline of the sixteenth aspect, wherein the transparent substrate is a GaP substrate, and the back surface thereof is obtained by treating the GaP substrate with hydrochloric acid. A twenty-second aspect of the invention includes the outline of the third aspect, wherein -10 (7) 1335088 the first and second sides of the transparent substrate are formed by a cutting method. A twenty-third aspect of the invention includes the fifth aspect, wherein the first electrode surrounds the semiconductor layer. A twenty-fourth aspect of the invention includes the sixth aspect, wherein the second electrode is on the inclined structure of the second side: The twenty-fifth aspect of the invention includes the fifth aspect, the first electrode has a lattice shape. A twenty-sixth aspect of the invention includes the fifth or fifth aspect, wherein the first electrode comprises an attenuating electrode (the pad el has a linear electrode having a width of 10 μm or less. The twenty-seventh aspect of the invention includes the fifth Or a profile, wherein the light-emitting portion comprises a GaP layer and the second electrical GaP layer. The twenty-eighth aspect of the invention includes a fifth or a fifth aspect, wherein the first electrode has an n-type polarity and the second polarity A twenty-ninth aspect of the invention includes the fifth or fifth aspect, wherein the inclined second side of the transparent substrate has a thick shape. The thirtieth aspect of the invention is that the light-emitting diode comprises the steps of: forming a (AlxGai_x) a light-emitting portion of the light-emitting layer of YIn; wherein the compound semiconductor layer of the light-emitting portion is connected to the first light-emitting surface of the transparent light-emitting substrate on the opposite side of the transparent substrate The cutting method (the outer contour of the dicing, the outer contour, the outer contour of the square, the outer ectrode of which six aspects) and the outer pole of the six aspects are formed on the outer electrode of the six aspects with p-type Six aspects of outreach. In the method of forming a body, the composition of the ι-γΡ is subsequently contained so that a second electrode attached to the pole and the polarity different from the first electrode of the -11 - (8) (8) 1335088 is formed in the compound semiconductor The exposed portion of the layer is such that the second electrode can be disposed on the opposite side of the first electrode, and the side of the transparent substrate is formed by a cutting process to form a first surface substantially perpendicular to the light emitting layer emitting surface on the adjacent side of the light emitting layer a side surface and a second side inclined to the light emitting surface on the side away from the light emitting layer. A thirtieth aspect of the invention resides in a method of producing a light-emitting diode comprising the steps of: forming a light-emitting portion comprising a light-emitting layer having a composition of the formula (AlxGai_x) YIni_YP: wherein 0SXS1 and 0 &lt; Υ &lt;1, The compound semiconductor layer containing the light-emitting portion is attached to the transparent substrate, the first electrode having the main light-emitting surface attached to the opposite side of the transparent substrate, and the second electrode having a polarity different from the first electrode are formed a corner position on the exposed portion of the compound semiconductor layer such that the second electrode is disposed on an opposite side of the first electrode, and a side surface of the transparent substrate is formed by a dicing method to form a light emitting layer substantially perpendicular to an adjacent side of the light emitting layer a first side of the surface and a second side that is inclined toward the light emitting surface on the side away from the light emitting layer. A thirty-second aspect of the invention includes the outer aspect of the thirtieth or thirty-first aspect, wherein the first side is formed by a scribe and break method. The thirtieth aspect of the invention includes the outer aspect of the thirtieth or thirty-first aspect, wherein the first side is formed by a cutting method. According to the above invention, since the transparent substrate light-emitting diode having the light-emitting layer made of the compound semiconductor has an optimized light-emitting layer area relationship with the back surface area of the transparent substrate and the side surface condition of the transparent substrate, it can be provided up to now. High brightness never achieved, showing high discharge performance and suitable for a large number of -12-(9) (9) 1335088 current LEDs. Further, according to the present invention, the transparent substrate light-emitting diode having the light-emitting layer of the compound semiconductor becomes optimized electrode deposition and wafer shape. According to the present invention, it has been possible to provide a light-emitting diode which has a light-emitting efficiency of a light-emitting portion which has been enhanced to the extent that it has not been hitherto, and which exhibits high luminance, suppresses operating voltage, and has high reliability. Various objects, features, and advantages of the invention will be apparent from the description of the appended claims. [Embodiment] The light-emitting diode of the present invention has a light-emitting layer made of a compound semiconductor. Although a conventional light-emitting layer, such as a GaAlAs-based, InGaN-based, and AlInGaP-based light-emitting layer, can be used as the above-mentioned light-emitting layer, in particular, an InGaN-based and AlInGaP-based light-emitting layer having a thin epitaxial layer. It is easy to manufacture. These light-emitting portions are effective for wavelengths in which the ultraviolet light extends to a wide range of the infrared wave band. The light-emitting diode of the present invention preferably has a light-emitting portion obtained by stacking a coating layer, a contact layer or the like in addition to the light-emitting layer. The light-emitting portion contemplated by the present invention is preferably composed of a compound semiconductor stacked structure containing a light-emitting layer made of (AlxGai-X)YIni.Yp (0SXS1, 〇&lt;Υ&lt;1). In this case, the light-emitting layer may be formed of any of a conductive type, an η-type, and a ρ-type (AlxGa χΚΙΐΜ-γΡ (0SXS1, 〇 &lt; YSl). Although the luminescent layer may be of any structure, Single quantum well (SQW) structure and multi-quantum well (MQW) structure, preferably having a function for obtaining superior to monochromatic products

-13- (10) (10)-13- (10) (10)

1335088 光目的之 MQW結構。由彼來形成阻障層及 (QW )結構的井層之(AlxGai_x)YIni-Yp 0&lt;Y&lt;1 )組成係被決定使該井層內可形成註定 的發光波長的量子階。 爲求確保高強度發光最有利的是,爲了 g 預定帶來輻射再結合的光放射「夾帶」在該蜀 的,該發光部分較佳爲具有包含彼此相對配濯 相反側的發光層及包被層之所謂的雙異質( 該包被層較佳爲由具有比該發光層由彼來形成 (AlxGa1.x)YIn1.YP ( 0&lt;X&lt;1 &gt; 0&lt;Y&lt;1 )組成寬的 高的折射率之半導體材料形成 (AlQ4Ga〇.6)Q.5In〇.5P形成且能放射具有約570 黃綠色之發光層,舉例來說,該包 (Al〇.7Ga〇.3)〇.5Inc).5P 形成(Y· Hosokawa 等 長,22 1 (2000), 652-656 )。可在該發光層與 間插入適於適度改變二層間的帶不連續性的牛 情況中,該中間層較佳爲由具有禁制能帶寬虔 層與該包被層之間的半導體材料形成。 有關形成該發光部分的成分層的方法,β 機化學氣相沈積(MOCVD )法、分子束磊晶 及液相晶晶(LPE)法。 本發明的發光二極體爲所謂的透明基材發 其在出光面的相反側上提供透明基材。因此, 將透明基材加至裝備發光層的發光部分。該透 具有量子井 (0&lt;Χ&lt;1 , :要形成預期 i到將載子及 t光層中的目 [在該發光層 DH )結構。 的 ί禁制能帶及 。 有關由 奈米波長的 被層係由 人,晶體生 丨該包被層之 1間層。在此 :居於該發光 「引用金屬有 (ΜΒΕ )法 :光二極體, 本發明必須 丨明基材係由 -14- (11) (11)1335088 具有足以機械地支撐該發光部分的強度,賦予大寬度給能 透射該發光部分的放射光之禁制能帶,且顯示對光波的透 明性之材料形成。舉例來說,其可由III-V族化合物半導 體晶體,例如磷化鎵(GaP)、砷化鋁-鎵(AlGaAs)或氮 化鎵(GaN ) ,II-VI族化合物半導體晶體,例如硫化鋅 (ZnS )或硒化鋅(ZnSe) ,IV族半導體晶體,例如六方 或立方碳化矽(SiC)、氧化鋅、藍寶石或氧化鋁形成。 特別是,在上述各種不同材料中較佳可使用GaP及SiC。 GaP係以單晶的形成量產且優於加工性。GaP的熱傳導係 數爲1 l〇W/rn‘k。儘管爲達加工目的,GaP能以任何普通 表面取向,例如(111)面及(100)面,當作其主平面, 但是較佳爲將易於粗糙化的(1 1 1 )面當作主平面。SiC, 儘管纖弱而將招致加工的困難,係以單晶形式量產且顯示 1 67 W/m‘k的熱傳導係數且,因此,證實就熱輻射來看爲 最適合的材料。 該透明基材較佳爲具有將近50微米或更大的厚度以 便以足夠強度來支撐該發光部分。進一步較佳爲使該厚度 保持超過約300微米以便使後來接合的透明基材可輕易進 行機械加工。在裝備(AlxGai-xhlnuP (0SXS1,0&lt;YS1) 製成的發光層之化合物半導體LED中,最適合形成具有 50微米或更大且約300微米或更小的厚度之η-型GaP單 晶透明基材。 在將砷化鎵(GaP)製成的透明基材接合至該發光部 分最上表面層的情況中,舉例來說,選擇以晶格係數與該 -15- (12) (12)1335088 The MQW structure of the light source. The (AlxGai_x)YIni-Yp 0&lt;Y&lt;1&gt;1 composition of the well layer forming the barrier layer and the (QW) structure is determined to form a quantum order of the intent of the illuminating wavelength in the well layer. In order to ensure high-intensity illumination, it is most advantageous for the light-emitting portion to be "entrained" in order to provide a radiation recombination, and the light-emitting portion preferably has a light-emitting layer and a coating comprising opposite sides of the opposite side of the pair. a so-called double heterogeneity of the layer (the cladding layer is preferably made of a higher width than the light-emitting layer formed by (AlxGa1.x) YIn1.YP (0&lt;X&lt;1&gt;0&lt;Y&lt;1) The refractive index of the semiconductor material is formed (AlQ4Ga〇.6) Q.5In〇.5P and can emit a light-emitting layer having about 570 yellow-green color, for example, the package (Al〇.7Ga〇.3)〇.5Inc ) .5P formation (Y· Hosokawa isometric, 22 1 (2000), 652-656). In the case of a cow adapted to moderately change the discontinuity between the two layers, the intermediate layer is preferably formed of a semiconductor material having a band gap between the barrier layer and the cladding layer. A method of forming a constituent layer of the light-emitting portion, a chemical vapor deposition (MOCVD) method, a molecular beam epitaxy, and a liquid crystal crystal (LPE) method. The light-emitting diode of the present invention is a so-called transparent substrate which provides a transparent substrate on the opposite side of the light-emitting surface. Therefore, a transparent substrate is applied to the light-emitting portion equipped with the light-emitting layer. The transparent quantum well (0&lt;Χ&lt;1, : is to form the desired i to the target [in the luminescent layer DH] structure in the carrier and the t-light layer. The ί ban can bring. Regarding the layer of the nanometer wavelength, the crystal is used to produce a layer of the coating layer. Herein: in the illuminating "reference metal" method: photodiode, the invention must demonstrate that the substrate is composed of -14-(11) (11) 1335088 having sufficient strength to mechanically support the illuminating portion, giving a large The width is given to a forbidden band of the emitted light that transmits the illuminating portion, and a material exhibiting transparency to the light wave is formed. For example, it may be a group III-V compound semiconductor crystal such as gallium phosphide (GaP), arsenic. Aluminum-gallium (AlGaAs) or gallium nitride (GaN), II-VI compound semiconductor crystals, such as zinc sulfide (ZnS) or zinc selenide (ZnSe), Group IV semiconductor crystals, such as hexagonal or cubic niobium carbide (SiC) In particular, it is preferable to use GaP and SiC among the various materials described above. GaP is produced in a single crystal form and is superior to workability. The heat transfer coefficient of GaP is 1 l〇. W/rn'k. Although GaP can be used as a principal plane for any general surface orientation, such as (111) plane and (100) plane, for the purpose of processing, it is preferred to be easily roughened (1 1 1 ) as the main plane. SiC, although weak The difficulty in processing is mass-produced in a single crystal form and shows a heat transfer coefficient of 1 67 W/m'k and, therefore, it is confirmed that it is the most suitable material in terms of heat radiation. The transparent substrate preferably has nearly 50 Micron or greater in thickness to support the illuminating portion with sufficient strength. It is further preferred to maintain the thickness above about 300 microns so that the subsequently bonded transparent substrate can be easily machined. In equipment (AlxGai-xhlnuP (0SXS1) , 0 &lt; YS1) The compound semiconductor LED of the light-emitting layer produced is most suitable for forming an η-type GaP single crystal transparent substrate having a thickness of 50 μm or more and about 300 μm or less. In the case where a transparent substrate made of (GaP) is bonded to the uppermost surface layer of the light-emitting portion, for example, a lattice factor is selected with the -15-(12) (12)

1335088 發光部分其他III-V族化合物半導體成分層 族化合物半導體材料來形成該發光部分最上 大消除該透明基材接合至彼時施於該發光部 功能。此材料的運用將導致防止該發光層在: 舉例來說,能放射預期波長的光之化合物半 穩定提供的期間遭受損壞。爲達充分消除該: 至彼時施於該發光部分上的應力之目的,該: 表面層較佳爲具有0.5微米或更大的厚度。 層給的是不當的厚度,由於晶格係數與該發光 分層不同,所以過度將造成形成最上表面層的 免地施加應力在該發光層上。爲避免此不幸, 米或更小厚度的最上表面層係適當的。 特別是,就將(AlxGai.x)Ylni.yP ( 0SXS1, 成的發光層放射的光發射至外部的目的而言方 材而選擇磷化鎵(GaP )時,以含有當作組 (Ga)和磷(P)且含有Ga比P多的半導儀 該發光部分最上表面層時將能形成強力接合。 成 GaxP^x ( 〇·5&lt; X &lt;0.7 ),非化學計量組 層。 打算要被接合的透明基材表面及該發光部 面爲由單晶形成的表面且這些表面較佳爲具有 取向。該表面較佳爲必定具有(100)面或(】 達獲得表面具有(100)面或(111)面的發光 之目的,使用具有(100)面或(111)面的基 F同的III-V :面層將能放 •上的應力之 合與促成, 善體LED的 :明基材接合 光部分最上 :該最上表面 部分其他成 期間無可避 提供20微 0&lt;Y&lt;1)製 便的透明基 成元素的鎵 :材料來製造 特別適於形 成,的最上 分最上層表 一致的表面 :1 1 )面。爲 部分最上層 材將使其表 -16- (13) (13)1335088 Light-emitting portion of the other III-V compound semiconductor composition layer compound semiconductor material to form the light-emitting portion at the highest position eliminates the function of the transparent substrate to be bonded to the light-emitting portion. The use of this material will result in the prevention of the luminescent layer being damaged by, for example, a period during which the compound that emits light of the desired wavelength is semi-stable. To achieve the purpose of sufficiently eliminating the stress applied to the illuminating portion at that time, the surface layer preferably has a thickness of 0.5 μm or more. The layer gives an improper thickness, and since the lattice coefficient is different from the luminescent layering, excessively exerting the ground-free stress on the uppermost surface layer on the luminescent layer. To avoid this unfortunate, the topmost layer of meters or less is suitable. In particular, when phosphide (GaP) is selected by (AlxGai.x) Ylni.yP (0SXS1, the light emitted from the luminescent layer emitted to the outside is selected as a square material, it is included as a group (Ga). A semiconducting device with phosphorus (P) and containing more Ga than P will form a strong bond when the uppermost surface layer of the light-emitting portion is formed. GaxP^x (〇·5&lt;X &lt;0.7), non-stoichiometric layer. The surface of the transparent substrate to be joined and the surface of the light emitting portion are surfaces formed of single crystals and the surfaces preferably have an orientation. The surface preferably has a (100) plane or (ie) a surface having (100) For the purpose of illuminating the surface or the (111) plane, the use of the III-V: surface layer with the base of the (100) or (111) plane will combine the stresses of the upper and lower layers. The upper surface of the bright substrate is bonded to the uppermost portion: the uppermost surface portion is inevitably provided with 20 micro 0&lt;1&lt;1) transparent base-forming elemental gallium: material to be specially formed, and the uppermost topmost table is identical Surface: 1 1) face. For some of the topmost layers will make it a table -16- (13) (13)

1335088 面足以在基材上形成該發光部分最上層。以具有當ί1 面的(100 )面之砷化鎵(GaAs )單晶當作基材時, 來說,將可形成具有當作其表面的(100)面之發光 最上層。 當該透明基材或該基材所接合的發光部分最上層 面平到藉由均方根値(rms )表示爲0.3奈米或更/J 完成特別強力的接合。此平坦度的表面可,舉例來Ιί 由使用含有碳化矽(SiC)爲底的細粉或铈(Ce)細 硏磨劑之化學機械硏磨(CMP )法而獲得。當化學機 磨得到的表面進一步利用酸溶液或鹼溶液來處理時, 理將能進一步增進表面平坦度且促成移除硏磨期間黏 表面的外來物質及污染物的結果而獲得清潔表面。 該透明基材或該發光部分的最上層在lxlCT2帕或 的真空度下接合且更佳爲Ixl0_3帕或更小。特別是藉 互接合如上所述之經硏磨的平面,將可形成強力接合 相互接合此二表面時,要被接合的表面必須藉由具; 電子伏特或更高能量的原子束或離子束照射而予以活 措辭「活化」表示由移除含有氧化物膜及碳且存在被 的表面上之雜質層及污染層而導致清潔狀態的表面產 當此照射在該透明基材或該發光部分成分層任一者表 執行時,此二表面將被強力且萬無一失地接合。當此 在該二表面上執行時,彼等將可以更大的強度接合。 有關證實能有效帶來強力接合的照射物種,可引 (H)原子、氫分子(H2)或氫離子(質子:H+)束 其表 舉例 部分 的表 時將 ,藉 粉的 械硏 此處 至該 更小 由相 。在 ί 50 化。 接合 生。 面上 照射 用氫 。藉 -17- (14) (14)1335088 由使用含有存在於要被接合的表面區中的元素之照射束, 將可獲得優於強度的接合》當具有外加鋅(Zn)的磷化鎵 (GaP )用於透明基材時,舉例來說,該接合將可以含有 鎵(Ga)、磷(P)或鋅(Zn)的原子或離子束照射要被 接合的表面而強力形成。當該透明基材或該發光部分最上 層的表面具有高電阻時,以主要含有的離子之束照射表面 將導致表面帶電。因爲當表面帶電引發電排斥時此接合將 無法強力形成,所以活化優於導電性的表面較佳爲利用離 子束對照來活化表面。 在透明基材或發光部分組成層的表面區中,使用不會 使其組成發生顯著變化的鈍氣束,例如氦(He )、氖 (Ne)、氬(Α〇或氪(K〇 ,將導致安定完成表面的活 化。特別是,氬(Ar)原子(單原子分子)束的使用證實 有益於使表面被迅速且便利地活化。氦(He)具有比氬 (Ar)小的原子量,因此,該氦束具有在活化要被接合的 表面期間浪費時間來夾帶的缺點。其間,使用具有比氬大 的原子量之氪(Kr)束具有可能使表面受到衝擊的損害。 當該等表面以相對狀態重疊之下接合該透明基材表面 與該發光部分最上層表面時,努力使機械壓力遍佈整個接 合表面證實將有利於強力接合彼等。明確地說,依正交於 彼(垂直)方向在該接合表面上施加5克/平方公分至100 克/平方公分範圍內的壓力。即使是該透明基材及該發光 部分最上層中任一或二者翹曲時,此方法也能成功消除翹 曲且以均勻強度引起接合。 -18- (15) (15)Ι335Ό88 當該透明基材及該發光部分最上層的任一或二表面保 持在低於l〇〇°C且較佳爲低於50°c且更佳爲在室溫時就在 上述的較佳真空程度的真空中接合該透明基材及該發光部 分。若彼等在超過約500°c的高溫環境中接合,過高的溫 度將具有熱改變由(AlxGa丨·χ)γΙη丨·ΥΡ (0SXS1,〇&lt;Υ&lt;1)形 成且倂入該發光部分的發光層特質及因此將瓦解能放射預 期波長的光之化合物半導體LED的穩定製造之缺點。 本發明將透明基材接合至發光部分的最上層以便將該 發光部分調整成機械可支撐的狀態,且後繼地移除用於形 成該發光部分的基材以便增進將放射光放出外部的效率, 因此完成高亮度的化合物半導體LED結構。特別是當不 可避免地吸收(AlxGa丨-X)YIn丨-YP(0&lt;X&lt;1,0&lt;YS1)發光層 放射的光之不透光的材料係用作基材時,以上述方式移除 基材的方法可促成高亮度LED的穩定製造。當吸收發光 層放射的光之材料製成的層,例如,舉例來說,緩衝層, 插入該基材與該發光部分之間時,移除結合基材的插入層 證實將有利於賦予LED高亮度。該基材可藉由機械切 削、硏磨或物理乾式或化學溼式蝕刻或藉由結合這些操作 而予以移除。特別是藉由利用不同品質的材料之間的蝕刻 差異而選擇性蝕刻的方法,將可達到該基材單獨的選擇性 移除且能以適當的再現性及均勻性來移除該基材。 本發明的特徵爲具有形成在發光二極體主要出光面上 的第一電極(η-型,舉例來說)及第二電極(p-型,舉例 來說)。如在此使用的措辭「主要出光面」表示座落在發 -19- (16) (16)1335088 光部分中相對於透明基材裝設在彼上的表面之表面。本發 明以此方式建構電極的理由在於賦予高亮度。經由採用此 結構,將可避免將電流饋入裝設當中的透明基材之需求。 因此,高亮度的賦予將由於可裝設透射率很高的基材而完 成。 根據本發明的第一個具體例的發光二極體及其製法將 對照第1圖至第5圖而在下文中詳細說明。 有關電極,如第2圖例示的在出光面上形成第一電極 及極性與彼不同的第二電極。這些電極都具有能接收配線 作業的結構。第二電極係藉由使一部分堆疊體被從彼之表 面蝕刻至低於發光層而形成且接觸到半導體層或導電性透 明基材。 將此透明基材接合至第4圖的圖號14標示的半導體 層135上。 根據第一個具體例的發光二極體的特徵爲出光面的面 積(A)、發光層的面積(B)及發光二極體背面(在透明 基材電極形成側的相反側上的表面)的面積(C )具有指 定的關係。該發光二極體一般具有覆蓋透明樹脂的發光區 周圍。然而,因爲透明樹脂,例如環氧樹脂,具有不良的 熱傳導性,所以將無法預該發光二極體的發光區能接受熱 輻射。該發光二極體中產生的大部分熱,因此,係經由緊 鄰該發光二極體背面的封裝件基材放射。背面的面積 (C)當作放能面,發光層的面積(B)構成熱產生面且該 裝置上表面的面積(A)作爲出光面將具有亮度與熱輻射The 1335088 face is sufficient to form the uppermost layer of the light-emitting portion on the substrate. When a gallium arsenide (GaAs) single crystal having a (100) plane as a surface is used as a substrate, an uppermost layer of light having a (100) plane as a surface thereof can be formed. When the transparent substrate or the light-emitting portion to which the substrate is bonded is at the uppermost level, a particularly strong bonding is achieved by a root mean square 値 (rms) of 0.3 nm or more. The surface of this flatness can be obtained, for example, by a chemical mechanical honing (CMP) method using a fine powder containing cerium carbide (SiC) or a fine cerium (Ce) honing agent. When the chemically ground surface is further treated with an acid solution or an alkali solution, it will further improve the surface flatness and contribute to the removal of foreign matter and contaminants on the sticky surface during honing to obtain a clean surface. The transparent substrate or the uppermost layer of the light-emitting portion is joined at a vacuum of 1 x 1 CT 2 or more preferably 1 x 10 3 Pa or less. In particular, by interfacing the honed plane as described above, when a strong bond can be formed to bond the two surfaces to each other, the surface to be joined must be irradiated by an atomic beam or ion beam having electron volts or higher energy. And the wording "activation" means that the surface which is cleaned by removing the impurity layer and the contaminated layer on the surface containing the oxide film and carbon and is present on the transparent substrate or the light-emitting portion constituent layer. When either table is executed, the two surfaces will be joined in a strong and foolproof manner. When this is performed on the two surfaces, they will be able to engage with greater strength. For the irradiated species that prove to be effective in bringing strong joints, the (H) atom, the hydrogen molecule (H2) or the hydrogen ion (proton: H+) bundle may be cited as an example of the surface of the table. The smaller is by phase. In ί 50. Engaged. The surface is illuminated with hydrogen. By using -17-(14) (14) 1335088, by using an irradiation beam containing elements present in the surface region to be joined, a bond superior to strength can be obtained when gallium phosphide with zinc (Zn) is added ( GaP) When used for a transparent substrate, for example, the bonding is strongly formed by irradiating an atom or an ion beam which may contain gallium (Ga), phosphorus (P) or zinc (Zn) to a surface to be bonded. When the surface of the transparent substrate or the uppermost layer of the light-emitting portion has a high electrical resistance, illuminating the surface with a bundle of ions mainly contained will cause the surface to be charged. Since the joint will not be strongly formed when the surface is charged to cause electrical repulsion, it is preferred to activate the surface by utilizing the ion beam control to activate the surface superior to the conductivity. In the surface region of the transparent substrate or the light-emitting portion constituent layer, a blunt gas beam which does not cause a significant change in its composition, such as helium (He), neon (Ne), argon (Α〇 or 氪 (K〇, will be used) This leads to the stabilization of the activation of the surface. In particular, the use of an argon (Ar) atom (monoatomic molecule) beam proves to be beneficial for the surface to be activated quickly and conveniently. Helium (He) has a smaller atomic weight than argon (Ar), thus The bundle has the disadvantage of wasting time entraining during activation of the surface to be joined. Meanwhile, the use of a krypton (Kr) beam having an atomic mass greater than argon has damage that may cause the surface to be impacted. When the state overlaps the surface of the transparent substrate and the uppermost surface of the light-emitting portion, efforts to make mechanical pressure throughout the joint surface prove to be advantageous for strong bonding. Specifically, in the orthogonal (vertical) direction Applying a pressure in the range of 5 g/cm 2 to 100 g/cm 2 on the joint surface. This method can be used even if either or both of the transparent substrate and the uppermost layer of the light-emitting portion are warped The work eliminates warpage and causes bonding with uniform strength. -18- (15) (15) Ι 335Ό88 When the transparent substrate and any one or both surfaces of the uppermost layer of the light-emitting portion are kept below 1 ° C and preferably The transparent substrate and the light-emitting portion are bonded in a vacuum of less than 50 ° C and more preferably at room temperature in the above-mentioned preferred degree of vacuum. If they are joined in a high temperature environment exceeding about 500 ° C, An excessively high temperature will have a change in the characteristics of the luminescent layer formed by (AlxGa丨·χ)γΙη··(0SXS1, 〇&lt;Υ&lt;1) and which is incorporated into the luminescent portion and thus will disintegrate to emit light of a desired wavelength. Disadvantages of stable manufacture of a compound semiconductor LED. The present invention bonds a transparent substrate to an uppermost layer of a light-emitting portion to adjust the light-emitting portion to a mechanically supportable state, and subsequently removes a substrate for forming the light-emitting portion In order to improve the efficiency of emitting the emitted light to the outside, a high-brightness compound semiconductor LED structure is completed, particularly when the (AlxGa丨-X)YIn丨-YP (0&lt;X&lt;1,0&lt;YS1) light-emitting layer is inevitably absorbed. Light opaque material When used as a substrate, the method of removing the substrate in the above manner can promote stable fabrication of high-brightness LEDs. When a layer made of a material that absorbs light emitted from the luminescent layer, for example, a buffer layer, is inserted into the substrate. When the material is between the light-emitting portion, removal of the intervening layer of the bonded substrate proves to be advantageous for imparting high brightness to the LED. The substrate can be mechanically cut, honed or physically dry or chemically wet etched or by combining these It is removed by operation, especially by selective etching using etching differences between materials of different qualities, which can achieve selective removal of the substrate individually and with appropriate reproducibility and uniformity. The substrate is removed. The invention features a first electrode (n-type, for example) and a second electrode (p-type, for example) formed on the primary exit surface of the light-emitting diode. As used herein, the phrase "primary illuminating surface" means a surface that is seated on a surface of a light portion of the hair -19-(16) (16) 1335088 that is attached to the transparent substrate. The reason why the electrode of the present invention is constructed in this way is to impart high brightness. By adopting this structure, the need to feed current into the transparent substrate in the installation can be avoided. Therefore, the high brightness imparting is accomplished by the ability to mount a substrate having a high transmittance. The light-emitting diode according to the first specific example of the present invention and its preparation method will be described in detail below with reference to Figs. 1 to 5. Regarding the electrode, as shown in Fig. 2, a first electrode and a second electrode having a polarity different from that are formed on the light-emitting surface. These electrodes have a structure capable of receiving wiring work. The second electrode is formed by etching a portion of the stacked body from the surface to below the light-emitting layer and contacting the semiconductor layer or the conductive transparent substrate. This transparent substrate is bonded to the semiconductor layer 135 indicated by Fig. 14 of Fig. 4. The light-emitting diode according to the first specific example is characterized by the area (A) of the light-emitting surface, the area (B) of the light-emitting layer, and the back surface of the light-emitting diode (the surface on the opposite side to the side on which the transparent substrate electrode is formed) The area (C) has a specified relationship. The light-emitting diode generally has a periphery around the light-emitting region covering the transparent resin. However, since a transparent resin such as an epoxy resin has poor thermal conductivity, it is impossible to predict that the light-emitting region of the light-emitting diode can receive heat radiation. Most of the heat generated in the light-emitting diode is radiated via a package substrate adjacent to the back side of the light-emitting diode. The area of the back surface (C) is used as the energy dissipating surface, and the area (B) of the luminescent layer constitutes the heat generating surface and the area (A) of the upper surface of the device as the illuminating surface will have brightness and heat radiation.

-20- (17) (17)1335088 的最適關係。 儘管單獨考慮放能面時C&gt;A&gt;B的關係證實爲有利 的,但是當出光面與發光層都具有小面積時將無法達到高 亮度的賦予。再者,被移除的昂貴磊晶層面積提高將會增 加成本。爲了獲得高亮度,將發光層的面積(B)及出光 面的面積(A)製成最大,而該透明基材的側面形成爲傾 斜面。該發光層位在該發光面附近。發光層所產生的熱係 藉由擴散釋放至出光面的最大面積(Α)中以排出發光層 的熱,沿著該發光二極體結構的內部平順地傳導,最後輻 射至當作放能面的背面。 因爲必須藉由傾斜該透明基材的側面來促進高亮度的 賦予及增進熱輻射,所以爲了達到放大出光面面積(Α) 的目的有利的是避免將傾斜面設在接近該發光層的透明基 材側面。爲達使熱能輕易擴散的目的,接近發光層的半導 體較佳爲具有儘可能大的體積。由此,將該傾斜面形成在 遠離發光層的背面附近的透明基材側面上。因爲該背面附 近的傾斜面觸及具有優異放能性的材料,所以即使發光二 極體背面的面積(C)比出光面的面積(α)稍小時熱也能 充裕逸散且非由速率決定熱輻射程度。有利於維持面積平 衡的條件係示於下文。-20- (17) (17) 1335088 The most appropriate relationship. Although the relationship of C &gt; A &gt; B has been confirmed to be advantageous when considering the energy dissipating surface alone, high brightness imparting cannot be achieved when both the light-emitting surface and the light-emitting layer have a small area. Furthermore, the increased area of the expensive epitaxial layer that is removed will increase the cost. In order to obtain high luminance, the area (B) of the light-emitting layer and the area (A) of the light-emitting surface are maximized, and the side surface of the transparent substrate is formed as a sloped surface. The luminescent layer is located adjacent to the luminescent surface. The heat generated by the luminescent layer is released into the maximum area (Α) of the illuminating surface by diffusion to discharge the heat of the luminescent layer, smoothly conducts along the inside of the illuminating diode structure, and finally radiates to the surface as the emitting surface. back. Since it is necessary to promote the imparting of high brightness and enhance the heat radiation by tilting the side surface of the transparent substrate, it is advantageous to avoid setting the inclined surface to a transparent base close to the light emitting layer for the purpose of enlarging the light exit area (Α). Side of the material. The semiconductor close to the luminescent layer preferably has as large a volume as possible for the purpose of allowing thermal energy to diffuse easily. Thereby, the inclined surface is formed on the side of the transparent substrate near the back surface of the light-emitting layer. Since the inclined surface near the back surface touches the material having excellent energy dissipation property, even if the area (C) of the back surface of the light-emitting diode is slightly smaller than the area (α) of the light-emitting surface, the heat can be sufficiently dissipated and the heat is not determined by the rate. The degree of radiation. Conditions that are conducive to maintaining an area balance are shown below.

0.95xA&gt;C&gt;0.6xA0.95xA&gt;C&gt;0.6xA

0.9xA&gt;B&gt;0.7xA0.9xA&gt;B&gt;0.7xA

C&lt;B&gt;0.8xC .·. A &gt; C &gt; B -21 - (18) (18)1335088 以〇·5瓦或更大電力操作的發光二極體必需具有高放 能性且以1.5瓦或更大的大電力操作的發光二極體必需具 有又更高的放能性。在以像此的大電力使用的發光二極體 中,背面較佳爲具有0.6平方毫米或更大的面積。隨著此 二極體的尺寸增加,該發光二極體所顯示的放能效應將顯 著增加。 當該透明基材係由GaP形成時,較佳爲具有以氫氯酸 處理的背面。特別是,此處理利用表面取向(111)面的 方法證實爲有利的。 根據第一個具體例的發光二極體的特徵還有該側面外 形。也就是說,在普通的情況中,其特徵爲事實上該透明 基材之至少一側面係傾斜的》該透明基材較佳爲具有如第 2圖及第5圖中例示的第一側面21及第二側面22。然 後’第一側面2 1的傾斜角比第二側面22的傾斜角小。在 此情況中,第一側面21較佳爲不具(零)傾斜角,即垂 直該透明基材。第二側面22的傾斜角,在第2圖及第5 圖中,係由相對於該透明基材的垂直線的傾斜角20來表 示。第二側面22的傾斜角較佳爲在10度或更大且30度 或更小的範圍且更佳爲在10度或更大且20度或更小的範 圍。第二側面22可爲具有固定傾斜角的傾斜面、有許多 傾斜角的多邊形所形成的傾斜面或傾斜曲面。當第二側面 22係由許多傾斜角的多邊形形成時,第二側面22的角度 係由所有傾斜角的算術平均値表示。在曲面的情況中,第 二側面22的角度係由連結該曲面起點與終點的直線角度 -22- (19) 1335088 表示。 該透明基材的側面角度將亮度及放能性納入考慮 透明基材的傾面如上所述的方式成形之第一個具體例 光二極體特別優於高電流區所顯示的性質。儘管該透 材的側面角度大就出光來看係有利的,但是上述範圍 度係最有利的,因爲考量該發光二極體背面的面積( 的降低比例時增加此角度傾向於增高熱阻抗。附帶地 由傾斜發光二極體的側面來增進出光效率的想法在前 文件說明的公開內容中就已經知道。 在第一個具體例的發光二極體中,藉由該透明基 形成而具有如上所述的第一側面2 1及第二側面22且 步使第一側面2 1需要比第二側面22小的傾斜角,而 來放大該發光層附近區域的效應且促進熱輻射且令第 面22增高亮度。 有關該側面的長度,第一側面21的長度(L)較 50微米或更大且100微米或更小,且第二側面22的 (M)較佳爲100微米或更大且250微米或更小。且 比例較佳爲1至5。 該發光二極體透明基材的第一側面21及第二側隹 可藉由切割法(dicing method)形成。或者,該透明 的側面可藉由使用例如溼式蝕刻、乾式蝕刻、刻劃及 加工結合等的方法形成。儘管如此,優於形狀控制性 產力的切割法證實最適合。 該發光二極體透明基材的背面23可形成在能散: 。在 的發 明基 的角 C ) ,藉 述的 材被 進一 可帶 二側 佳爲 長度 M/L 5 22 基材 雷射 及生 射光 -23- (20) (20)1335088 的粗糙面中。發光二極體的背面23係連至裝配所得的封 裝件之表面。該連接面一般藉由使用具有有高反射力的銀 糊接合在該封裝件上或利用能見到發光二極體亮度增高的 透明黏著劑固定在例如銀或鋁等具有高反射力的金屬上。 由能散射光的粗糙面形成的背面23將促成亮度增強,因 爲該側面不易出光或上面可在能出光的反射角度下散射。 再者,因爲由能散射光的粗糙面所形成的背面23必需加 至表面面積,所以其亦將顯示據稱能促進熱朝封裝側逸散 的放能面效應。 除了上述結構之外,發光二極體的透明基材背面23 使金屬膜能形成在彼上。該金屬膜能賦予反射光的功能及 增高對發光二極體側的熱傳導度且增寬封裝材料的選擇範 圍之功能。該金屬膜較佳爲含有具有不超過4 00 °C的熔點 之金屬。有關將該發光二極體透明基材連至該封裝件的方 法’可採用焊接或使用共鎔接合的技術。此方法就放能性 來看最適合,因爲該發光二極體及該封裝件可使用此方法 經由金屬連接。接著,藉由添加金屬以求連至該發光二極 體的背面23,可促成該發光二極體燈的裝配。考量一般用 於該封裝件的材料,在不超過400 °C的溫度下引起連接的 條件證實係有利的。 有關該金屬膜’使用AuSn合金證實爲有利的。該 AuSn合金係以共鎔金屬的方式使用且,因爲在共鎔點時 具有20重量%錫含量的AuSn合金具有約283。(:的熔點, 證實爲能在低溫下連接最適合的材料。 -24- (21) 1335088 除了上述方法之外有關用於製造發光二極體 任何可用於發光二極體之製造的習知技術都可利 由例如歐姆電極形成、分離及檢査與評估等的步 方法將可製造出發光二極體。再者,藉由將發光 入該封裝件可製造例如燈等的照明設備。 根據本發明第二個具體例的發光二極體的特 基材具有近乎垂直發光層的發光面接近該發光層 分之第一側面及相對於該發光面遠離該發光層側 傾斜的第二側面。 本發明的發光二極體較佳爲具有此結構,因 能使光能從發光層朝透明基材側輻射而有效地放 明確地說,從發光層朝透明基材側輻射的光部分 側面反射且從第二側面放出。該第一側面及第二 同效應將導致增加出光的機率。 第二個具體例的發光二極體較佳爲將第二側 發光面的表面所形成的角度a限制在55度至80 (對照第11圖)。使該角度落在此範圍中,可 透明基材底部反射的光有效放出外部。 第二個具體例的發光二極體較佳爲具有落在 至1〇〇微米範圍的第一側面長度D (厚度方向) 側面的長度限制在此範圍,可增高本發明的發光 發光效率,因爲該透明基材底部反射的光將有效 側面部分的發光面且經由主要出光面輻射。 在本發明的結構中,第一側面較佳爲採取 的方法, 用。透過 驟組成的 二極體倂 徵爲透明 側的一部 的一部分 爲此結構 至外部。 可被第一 側面的協 面與平行 度的範圍 達到將該 3〇微米 。將第一 二極體的 返回第一 晶格的形 -25- &lt; S' (22) (22)Ι335Ό88 狀。藉由提供此晶格形狀的第一側面,可增進本發明的發 光二極體的可靠度,因爲該形狀能將電流均勻注入該發光 層。 接著,第二個具體例的發光二極體使第一電極能由衰 減電極(pad electrode)及具有不超過1〇微米寬度的線性 電極形成。由於結構朝減少上述電極寬度的方向,可達到 賦予高亮度給本發明的發光二極體,因爲出光面的開口面 積將可因此增加。 再者,藉著將第一電極形成晶格的形狀,可增進本發 明的發光二極體的可靠度,因爲該晶格能將電流均勻注入 該發光層。 第二個具體例的發光二極體較佳爲該第二電極的周圍 以半導體層圍起來。朝向採用上述第一電極環繞第二電極 四側的方向,可降低操作電壓,因爲電流能輕易向四方流 通。 第二個具體例的發光二極體令該發光部分具有倂入 GaP層的結構且將該第二電極形成於該GaP層上。採用此 結構使操作電壓降低的效應得以實現。藉由使第二電極形 成於該GaP層上,使理想歐姆接觸與較低操作電壓的製造 變得可能。 第二個具體例的發光二極體較佳使第一電極具有型 極性,第二電極具有Ρ-型極性。採用此結構將帶來增進亮 度的效果。第一電極形成Ρ-型極性將造成電流擴散變差且 降低亮度。儘管如此,第一電極形成η-型極性將造成電流 -26- (23) 1335088 擴散增強且實現賦予該發光二極體高亮度。 第二個具體例的發光二極體較佳爲該透明基材之傾斜 面被形成爲粗糙面。賦予該傾斜面粗糙面將造成抑制該傾 斜面的總反射力。該粗糙面可藉由,舉例來說’以磷酸+ 氫氯酸化學蝕刻而獲得。 第二個具體例的發光二極體,除了上述結構且類似於 •第一個具體例的發光二極體之外,令金屬膜形成在該發光 二極體透明基材的背面23上。 第二個具體例的發光二極體可利用製造第一個具體例 的發光二極體可用的方法來製造。 在本發明中,該第一側面較佳爲經由劃線折斷法或切 割法形成。藉由採用在前的製法,可降低製造成本。明確 地說,該製法能製造大量發光二極體且令製造成本降低, 因爲其將避免晶片分離之後還留下切割屑片的必然性。在 後的方法將帶來增高亮度的效果。藉由採用此製法,可經 由第一側面來增加出光效率且達到提高亮度之賦予。 同樣的記號,第二側面較佳爲藉由切割法形成。藉由 採用此製法,可帶來增加產量的效果。第一側面及第二側 面可使用例如溼式蝕刻、乾式蝕刻、劃線及雷射加工結合 等的方法而形成。儘管如此,優於形狀控制性及生產力的 切割法證實最適合。 除了上述方法之外,有關發光二極體的製法,任何製 造發光二極體可用的習知技術都可使用。透過由例如歐姆 電極形成、分離及檢查與評估等的步驟組成的方法將可製 -27- (24) (24)1335088 造出發光二極體。再者’藉由將發光二極體倂入該封裝件 可製造例如燈等的照明設備。 根據本發明第三個具體例的發光二極體具有整個與本 發明第二個具體例相同的結構且可藉由使用第二個具體例 的發光二極體製法而製造。 明確地說,第三個具體例係使透明基材形成近乎垂直 發光層的發光面接近該發光層側的一部分之第一側面及相 對於該發光面遠離該發光層側的一部分傾斜的第二側面。 第三個具體例的發光二極體,在上述第二個具體例的 結構中,進一步的特徵爲藉由具有形成在第一電極相反側 上的化合物半導體層角落位置的第二電極。在此所用的措 辭「化合物半導體層角落位置」表示舉例來說,在四面體 化合物半導體平面上的四個部分之角落部分。本發明令該 第二電極可被形成在位於四個部分的角落之至少一者。藉 由具有形成在上述位置的第二電極,可賦予本發明的發光 二極體增高的亮度,因爲從發光層輻射至出光面的光部分 可經由接近該第二側面的化合物半導體層側面放出。 第二電極可形成在第二側面傾斜結構上方的位置。藉 由具有形成在此位置的第二電極,可實現增高亮度的賦 予,因爲本發明的發光二極體能獲得該傾斜面出光效率的 增力口。 現在,本發明具體實現的發光二極體將對照附圖描述 於下文。在下列說明中,出現在不同圖式且履行相同或等 效功能的部分將以類似的圖號表示且其說明將不再重複。 -28- (25) (25)1335088 在下列說明中的實施例1及實施例2爲更明確例示根 據第一個具體例的發光二極體結構。實施例3及實施例4 將分別更明確例示根據第二個具體例及第三個具體例的發 光二極體結構。 實施例1 : 第1圖及第2圖槪要地例示實施例1製成的半導體發 光二極體10。第1圖爲平面圖且第2圖爲第1圖沿直線 II-II取得的斷面圖。第3圖係用於實施例1的半導體發光 二極體10之半導體磊晶堆疊結構的層結構槪要斷面圖且 第4圖係例示將基材14接合至實施例3的半導體磊晶堆 疊結構所得結構之槪要斷面圖。 實施例1製成的半導體發光二極體10爲具有 AlGalnP發光部分12的紅色發光二極體(LED)。其係藉 由將所形成的磊晶堆疊結構接合至GaAs製的半導體基材 1 1及GaP基材14上而製成。 發光二極體10係藉由使用裝備磊晶生長層13的磊晶 晶圓而製成,該磊晶生長層13係由依序疊在具有從 (100 )面傾斜15°的面之摻矽η-型GaAs單晶所形成的半 導體基材11上的半導體層構成。該聶晶生長層13係由依 序堆疊成分半導體層*即慘较11_型(八1〇.5〇3〇.5)0.5111〇.5?形 成的蝕刻阻擋層130A、摻矽η-型GaAs形成的接觸層 131、摻矽11-型(八1().7〇3〇.3)(».5111〇.5?形成的下包被層132、 20對未摻砂的(八1〇.2〇3〇.8)0.5111。.5?及(八1〇.7〇3。.3)〇.5111〇.5? -29- (26) (26)1335088 形成的發光層1 33、摻鎂p-型(Al〇.7Ga().3)Q 5InQ 5p形成的 上包被層134及摻鎂ρ·型GaP層135,而建構。 在實施例1中’該半導體層130A至135係使用三甲 基鋁((CH3)3A1 )、三甲基鎵((CH3)3Ga )及三甲基銦 ((CH3)3In)當作III族成分元素,藉由低壓金屬有機化 學氣相沈積法(MOCVD法)個別堆疊在該半導體基材η 上以生長磊晶晶圓。有關用於摻雜錶的原料,使用雙環戊 二烯基鎂(bis-(C5H5)2Mg )。有關用於摻雜矽的原料,使 用二矽烷(Si2H6)。有關V族成分元素的原料,使用膦 (PH3 )或胂(AsH3)。在750°c下生長GaP層135且在 730 °C下生長形成磊晶生長層13的成分化合物半導體層 13 0A 至 134。 該蝕刻阻擋層130A具有約2xl018個/立方公分的載子 濃度及約0.2微米的層厚度。該接觸層131具有約2χ1018 個/立方公分的載子濃度及約0.2微米的層厚度。該η-型 下包被層132具有約8χ1017個/立方公分的載子濃度及約 2微米的層厚度。該未摻雜的發光層133具有0.8微米的 層厚度。該Ρ-型上包被層134具有約2xl〇17個/立方公分 的載子濃度及約1微米的層厚度。該GaP層135具有約 3xl018個/立方公分的載子濃度及約9微米的層厚度。 該ρ-型GaP層135藉由對其一區域進行硏磨達到離 表面約1微米深度而鏡面磨光。藉此鏡面磨光’該ρ-型 GaP層135將得到均方根(rms)値0.18奈米的粗糙度。 在此期間,製備出要被施加在該P-型GaP層135的 1 4b· kb -30- (27) (27)1335088 鏡面磨光表面上的η-型GaP基材14。對於此供應用的 GaP基材14,加入矽直到載子濃度達到約1 xlO17個/立方 公分爲止。使用具有(111)表面取向的單晶。此供應用 的GaP基材14具有50毫米直徑及250微米厚度。此GaP 基材14在接合至該p-型GaP層135之前係藉由硏磨且以 rms値0.12奈米粗糙度磨光而得到反射鏡。 該GaP基材1 4及磊晶晶圓係運入普通半導體材料應 用裝置中且該裝置係抽空直到3 X 1(Γ5的真空度爲止。接 著,該GaP基材14及磊晶晶圓的表面係藉由在接合之前 處理的方式經由暴露於加速氬束而去除黏附的污染物。之 後,使彼等在室溫下在真空中接合。 接下來,從經此接合的磊晶晶圓,以氨爲底的蝕刻劑 選擇性地移除該半導體基材11。之後,以氫氯酸移除該蝕 刻阻擋層130A。 藉由真空蒸鍍法在該接觸面131上沈積AuGeNi合金 直到0.2微米的厚度爲止以在該接觸面131表面上形成n-型歐姆電極。該η-型歐姆電極係藉由使用普通光微影術進 行圖案化而形成第一電極15。之後,移除該電極形成部分 以外的接觸面131部分。 接下來,選擇性地移除用於形成Ρ-電極的區域中包括 該發光層133的半導體層132至134以暴露出該GaP層 135。在該GaP層135表面上,藉由真空蒸鍍法沈積金屬 材料AuBe及Au直到AuBe達到0.2微米的厚度且Au達 到〗微米的厚度以形成ρ-型歐姆電極。此時,該發光層 -31 - (28) (28)1335088 133具有0.72平方毫米的面積。在450 °C下進一步對該金 屬材料進行熱處理10分鐘,藉以將彼等合金化,形成低 阻抗η -型歐姆電極形式的第一電極15及ρ -型歐姆電極形 式的第二電極1 6。 之後,在第一電極及第二電極表面上藉由真空蒸鍍法 沈積金直到1微米的厚度以在該等歐姆電極上形成焊墊 (bonding pad ) 17。再者,以厚度0.3微米Si02膜形成 的保護膜來覆蓋焊墊17以外的部分。 從該GaP基材14的背面23’藉由使用鑽石輪劃片機 安插V-形溝槽直到傾斜面角度20達到1 5度且第二側面 22的長度達到約180微米爲止。接著利用氫氯酸對該GaP 基材1 4的背面23進行粗糙化處理。 接下來,藉由使用鑽石輪劃片機從第一表面側以1毫 米間隔切入該幕晶晶圓內以製造晶片。該第一側面12係 近乎垂直於該發光層133而形成約80微米的長度。 折斷層及切割產生的污染物利用硫酸與過氧化氫的混 合液移除以製造半導體發光二極體10。該半導體發光二極 體10的背面23具有0.8平方毫米的面積。 上述製成的半導體發光二極體10係當作LED晶片42 且如第8圖及第9圖中槪要例示的方式裝配半導體發光二 極體燈(LED燈)1。該LED燈1係以銀糊固定且裝設在 安裝基材45上,以金線分別將LED晶片42的η-型歐姆 電極15線接合至設立在該安裝基材45第一表面上的η-電 極端子43且將ρ-型歐姆電極16線接合至,然後以普通環 -32 - - 1335088 氧樹脂41密封接合部分。附帶地,以具有良好放能性的 氮化鋁用於該安裝基材45的基礎本體。 當電流經由設立在安裝基材45第一表面上的η-電極 端子43及ρ-電極端子44通過該η-型及ρ-型歐姆電極15 及16之間時,該LED燈1將放射具有620奈米主要波長 的紅色光。正向500毫安培電流流通期間的正向電壓 (Vf)達到約2.4伏特,此値反映該歐姆電極15及16之 優異歐姆性質。將正向電流設在500毫安培時放射的光強 度能達到5 500 mcd的高亮度,此値反映出事實上高發光 效率的發光部分結構及該磊晶晶圓切成晶片期間進行折斷 層的移除將增進至外部的出光效率。 實施例2 : 製造如第5圖所示具有與實施例1相同結構且具有形 成在背面上的AuSn共熔(熔點283 °C )金屬層24。 依循使用實施例1的半導體發光二極體1〇之相同程 序同時使用實施例2的半導體發光二極體10當作LED晶 片42且使用AuSn代替銀糊裝配具有第8圖及第9圖中槪 要例示的結構之半導體發光二極體燈(LED燈)1。 以實施例1的相同方式來評估使用實施例2的半導體 發光二極體10製造的半導體發光二極體燈1。結果示於下 文表1中。正向500毫安培電流流通期間的正向電壓 (Vf)爲2.4伏特。光放射強度會g達至!J 6430 mcd的高亮 度’反映出事實上進一步增進了放能性且消除掉銀糊的光C&lt;B&gt;0.8xC .·. A &gt; C &gt; B -21 - (18) (18) 1335088 Luminous diodes operating at 〇·5 watts or more must have high energy dissipation and 1.5 A tile or larger large power operated light-emitting diode must have a higher level of energy dissipation. In the light-emitting diode used in such a large electric power as the above, the back surface preferably has an area of 0.6 mm 2 or more. As the size of the diode increases, the discharge effect exhibited by the LED will increase significantly. When the transparent substrate is formed of GaP, it is preferred to have a back surface treated with hydrochloric acid. In particular, this treatment proves to be advantageous by the method of surface orientation (111) plane. The feature of the light-emitting diode according to the first specific example is also the side profile. That is, in the ordinary case, it is characterized in that at least one side of the transparent substrate is inclined. The transparent substrate preferably has the first side 21 as illustrated in FIGS. 2 and 5. And the second side 22 . Then, the inclination angle of the first side surface 2 1 is smaller than the inclination angle of the second side surface 22. In this case, the first side 21 preferably has no (zero) tilt angle, i.e., the transparent substrate. The inclination angle of the second side surface 22 is represented by the inclination angle 20 with respect to the vertical line of the transparent substrate in Figs. 2 and 5. The inclination angle of the second side 22 is preferably in the range of 10 degrees or more and 30 degrees or less and more preferably in the range of 10 degrees or more and 20 degrees or less. The second side 22 may be an inclined surface having a fixed inclination angle, an inclined surface formed by a polygon having a plurality of inclination angles, or an inclined curved surface. When the second side 22 is formed of a plurality of polygonal angles, the angle of the second side 22 is represented by the arithmetic mean 所有 of all the inclination angles. In the case of a curved surface, the angle of the second side 22 is represented by a straight line angle -22-(19) 1335088 that joins the start and end points of the curved surface. The side angle of the transparent substrate takes into consideration the brightness and the extensibility. The first specific example of the formation of the transparent substrate is as described above. The photodiode is particularly superior to the properties exhibited by the high current region. Although the side angle of the through-material is advantageous in terms of light, the above range is most advantageous because the area of the back surface of the light-emitting diode is considered to increase the angle, which tends to increase the thermal impedance. The idea of enhancing the light extraction efficiency from the side of the oblique light-emitting diode is known in the disclosure of the previous document. In the light-emitting diode of the first specific example, the transparent base is formed as described above. The first side surface 2 1 and the second side surface 22 are arranged such that the first side surface 2 1 needs a smaller inclination angle than the second side surface 22 to enlarge the effect of the vicinity of the light-emitting layer and promote heat radiation and the first surface 22 Increasing the brightness. Regarding the length of the side, the length (L) of the first side 21 is more than 50 microns or more and 100 microns or less, and (M) of the second side 22 is preferably 100 microns or more and 250. Micron or less, and the ratio is preferably from 1 to 5. The first side 21 and the second side of the light-emitting diode transparent substrate may be formed by a dicing method. Alternatively, the transparent side may be By using, for example, wet etching The method of dry etching, scribing, and processing is formed. However, the cutting method superior to the shape control productivity proves to be most suitable. The back surface 23 of the transparent substrate of the light emitting diode can be formed in the energy dispersion: The corner of the invention base C), the material to be described is taken into a rough surface of the length of the M/L 5 22 substrate laser and the raw light -23-(20) (20) 1335088. The back side 23 of the light-emitting diode is attached to the surface of the assembled package. The connecting face is typically bonded to the package by using a silver paste having a high reflective force or is fixed to a highly reflective metal such as silver or aluminum by a transparent adhesive which can be seen to have an increased brightness of the light-emitting diode. The back side 23 formed by the rough surface that can scatter light will contribute to enhanced brightness because the side is less likely to emit light or can be scattered above the angle of reflection from which light can be emitted. Moreover, since the back side 23 formed by the rough surface capable of scattering light must be added to the surface area, it will also exhibit an energy dissipating surface effect which is said to promote heat dissipation toward the package side. In addition to the above structure, the transparent substrate back surface 23 of the light-emitting diode enables the metal film to be formed on the other. The metal film can impart a function of reflecting light and a function of increasing the thermal conductivity to the side of the light-emitting diode and widening the selection range of the package material. The metal film preferably contains a metal having a melting point of not more than 400 °C. The method of attaching the light-emitting diode transparent substrate to the package can employ soldering or a technique using conjugate bonding. This method is most suitable in terms of energy dissipation because the light-emitting diode and the package can be connected via metal using this method. Next, by attaching a metal to connect to the back surface 23 of the light-emitting diode, assembly of the light-emitting diode lamp can be facilitated. Considerations are generally made for the material of the package, and conditions that cause the connection to occur at temperatures not exceeding 400 °C prove to be advantageous. It has proven to be advantageous to use the AuSn alloy for the metal film '. The AuSn alloy was used in the form of a ruthenium metal because the AuSn alloy having a tin content of 20% by weight at the co-defect point had about 283. The melting point of (: is confirmed to be the most suitable material to be connected at a low temperature. -24- (21) 1335088 In addition to the above methods, any conventional technique for manufacturing a light-emitting diode for use in the manufacture of a light-emitting diode A light-emitting diode can be manufactured by a step method such as ohmic electrode formation, separation, inspection and evaluation, etc. Further, an illumination device such as a lamp can be manufactured by emitting light into the package. The specific substrate of the two embodiments of the light-emitting diode has a light-emitting surface of the nearly vertical light-emitting layer close to the first side of the light-emitting layer and a second side that is inclined away from the light-emitting layer side with respect to the light-emitting surface. Preferably, the light-emitting diode has such a structure that the light can be efficiently radiated from the light-emitting layer toward the transparent substrate side, and the light portion radiated from the light-emitting layer toward the transparent substrate side is reflected sideways and from the first The two sides are released. The first side and the second side effect will increase the probability of light emission. The second embodiment of the light emitting diode preferably limits the angle a formed by the surface of the second side light emitting surface to 55 degrees to 80 (cf. Fig. 11). When the angle falls within this range, the light reflected from the bottom of the transparent substrate is effectively released to the outside. The second embodiment of the light-emitting diode preferably has a falling to 1 The first side length D (thickness direction) of the 〇〇 micron range is limited to this range, which can increase the luminescent luminous efficiency of the present invention because the light reflected from the bottom of the transparent substrate will effectively illuminate the side surface portion and pass through the main The illuminating surface radiation. In the structure of the present invention, the first side is preferably a method for taking a part of the transparent portion of the dipole to be a part of the transparent side to the outside of the structure. The coplanar and parallelism of the side reaches the range of 3 μm. The shape of the first diode returned to the first lattice is -25- &lt; S' (22) (22) Ι 335 Ό 88. By providing this The first side of the lattice shape can improve the reliability of the light-emitting diode of the present invention because the shape can uniformly inject a current into the light-emitting layer. Next, the light-emitting diode of the second specific example enables the first electrode to Attenuated electrode Pad electrode) and a linear electrode having a width of not more than 1 μm. Since the structure is oriented to reduce the width of the electrode, a light-emitting diode of the present invention can be given high brightness, since the opening area of the light-emitting surface can be increased. Furthermore, by forming the shape of the first electrode into a crystal lattice, the reliability of the light-emitting diode of the present invention can be improved because the crystal lattice can uniformly inject a current into the light-emitting layer. The second specific example of the light-emitting diode Preferably, the electrode body is surrounded by a semiconductor layer around the second electrode, and the operating voltage is reduced in a direction in which the first electrode surrounds the four sides of the second electrode, because the current can easily flow to the four sides. The light emitting diode has the light emitting portion having a structure in which the GaP layer is broken and the second electrode is formed on the GaP layer. With this structure, the effect of lowering the operating voltage is achieved. By forming the second electrode on the GaP layer, fabrication of the desired ohmic contact and lower operating voltage is made possible. The second embodiment of the light-emitting diode preferably has a first electrode having a polarity and a second electrode having a Ρ-type polarity. Adopting this structure will result in enhanced brightness. Forming the first electrode with a Ρ-type polarity will cause current diffusion to deteriorate and reduce brightness. Nonetheless, the formation of the η-type polarity of the first electrode will result in a diffusion enhancement of the current -26-(23) 1335088 and achieve a high brightness imparted to the light-emitting diode. The light-emitting diode of the second specific example is preferably such that the inclined surface of the transparent substrate is formed into a rough surface. Applying the rough surface of the inclined surface will result in suppression of the total reflection force of the inclined surface. The rough surface can be obtained, for example, by chemical etching with phosphoric acid + hydrochloric acid. In the light-emitting diode of the second specific example, in addition to the above structure and similar to the light-emitting diode of the first specific example, a metal film is formed on the back surface 23 of the light-emitting diode transparent substrate. The light-emitting diode of the second specific example can be produced by a method which can be used to manufacture the light-emitting diode of the first specific example. In the present invention, the first side surface is preferably formed by a scribing method or a cutting method. By adopting the prior manufacturing method, the manufacturing cost can be reduced. Specifically, the process can produce a large number of light-emitting diodes and reduce manufacturing costs because it will avoid the necessity of leaving cutting chips after wafer separation. The latter method will bring an effect of increasing brightness. By adopting this method, the light-emitting efficiency can be increased by the first side surface and the brightness can be increased. The same mark, the second side is preferably formed by a cutting method. By adopting this method, the effect of increasing the yield can be brought about. The first side surface and the second side surface can be formed by a method such as wet etching, dry etching, scribing, and laser processing. Despite this, cutting methods superior to shape control and productivity have proven to be the most suitable. In addition to the above methods, any conventional technique for manufacturing a light-emitting diode can be used with respect to the method of manufacturing the light-emitting diode. The light-emitting diode can be fabricated by a method consisting of, for example, ohmic electrode formation, separation, inspection and evaluation, etc., -27-(24)(24)1335088. Furthermore, an illumination device such as a lamp can be manufactured by squeezing the light-emitting diode into the package. The light-emitting diode according to the third specific example of the present invention has the same structure as the second specific example of the present invention and can be manufactured by using the light-emitting diode method of the second specific example. Specifically, the third specific example is such that the transparent substrate forms a first side of the light-emitting surface of the nearly vertical light-emitting layer that is close to a portion of the light-emitting layer side and a second side that is inclined with respect to a portion of the light-emitting surface that is away from the light-emitting layer side. side. The light-emitting diode of the third specific example is further characterized by the second electrode having a corner portion of the compound semiconductor layer formed on the opposite side of the first electrode in the structure of the second specific example. The phrase "corner position of the compound semiconductor layer" used herein means, for example, a corner portion of four portions on the plane of the tetrahedral compound semiconductor. The present invention allows the second electrode to be formed at at least one of the corners of the four portions. By having the second electrode formed at the above position, the luminance of the light-emitting diode of the present invention can be imparted, because the portion of the light radiated from the light-emitting layer to the light-emitting surface can be emitted through the side surface of the compound semiconductor layer close to the second side. The second electrode may be formed at a position above the second side inclined structure. By having the second electrode formed at this position, the enhancement of brightness can be achieved because the light-emitting diode of the present invention can obtain the boosting port of the light-emitting efficiency of the inclined surface. Now, the light-emitting diodes specifically implemented by the present invention will be described below with reference to the accompanying drawings. In the following description, portions that appear in different figures and perform the same or equivalent functions will be denoted by like reference numerals and their description will not be repeated. -28-(25) (25) 1335088 In the following description, Example 1 and Example 2 are more clearly exemplifying the structure of the light-emitting diode according to the first specific example. The third embodiment and the fourth embodiment will more clearly exemplify the light-emitting diode structures according to the second specific example and the third specific example, respectively. Embodiment 1 : FIGS. 1 and 2 schematically illustrate a semiconductor light-emitting diode 10 manufactured in Embodiment 1. Fig. 1 is a plan view and Fig. 2 is a cross-sectional view taken along line II-II of Fig. 1. 3 is a cross-sectional view showing a layer structure of a semiconductor epitaxial stacked structure of the semiconductor light emitting diode 10 of Embodiment 1, and FIG. 4 is a view showing bonding of the substrate 14 to the semiconductor epitaxial stack of Embodiment 3. A cross-sectional view of the structure obtained from the structure. The semiconductor light-emitting diode 10 fabricated in Example 1 is a red light-emitting diode (LED) having an AlGalnP light-emitting portion 12. This is produced by bonding the formed epitaxial stacked structure to the GaAs semiconductor substrate 11 and the GaP substrate 14. The light-emitting diode 10 is fabricated by using an epitaxial wafer equipped with an epitaxial growth layer 13 which is sequentially stacked on a surface having a face inclined by 15° from the (100) plane. A semiconductor layer formed on a semiconductor substrate 11 formed of a -type GaAs single crystal. The Nie crystal growth layer 13 is an etch barrier layer 130A and an erbium-doped η-type GaAs formed by sequentially stacking a constituent semiconductor layer*, that is, a type 11_type (8 〇.5〇3〇.5) 0.5111 〇.5? The formed contact layer 131, the doped eleven 11-type (eight 1 ().7〇3〇.3) (».5111〇.5? formed by the lower cladding layer 132, 20 pairs of undoped sand (eight 1 〇 .2〇3〇.8)0.5111..5? and (8:1.7〇3..3)〇.5111〇.5? -29- (26) (26) 1335088 Forming the luminescent layer 1 33, The upper cladding layer 134 and the magnesium-doped ρ-type GaP layer 135 formed by doping magnesium p-type (Al〇.7Ga().3) Q 5InQ 5p are constructed. In the embodiment 1, the semiconductor layers 130A to 135 Using trimethylaluminum ((CH3)3A1), trimethylgallium ((CH3)3Ga) and trimethylindium ((CH3)3In) as a group III element, by low pressure metal organic chemical vapor deposition The method (MOCVD method) is individually stacked on the semiconductor substrate η to grow an epitaxial wafer. Regarding the raw material used for the doping table, biscyclopentadienyl magnesium (bis-(C5H5)2Mg) is used. The raw material of the hydrazine is dioxane (Si2H6). For the raw material of the group V component, phosphine (PH3) or hydrazine (AsH3) is used. The GaP layer 135 is grown under c and grown at 730 ° C to form the constituent compound semiconductor layers 13 0A to 134 of the epitaxial growth layer 13. The etch barrier layer 130A has a carrier concentration of about 2 x 1018 /cm ^ 3 and a concentration of about 0.2 μm The contact layer 131 has a carrier concentration of about 2 χ 10 18 /cm 3 and a layer thickness of about 0.2 μm. The η-type lower cladding layer 132 has a carrier concentration of about 8 χ 10 17 /cm 3 and about 2 μm. The layer thickness of the undoped light-emitting layer 133 has a layer thickness of 0.8 μm. The Ρ-type upper cladding layer 134 has a carrier concentration of about 2 x 1 〇 17 / cubic centimeter and a layer thickness of about 1 μm. The GaP layer 135 has a carrier concentration of about 3 x 10 1 /cm 3 and a layer thickness of about 9 μm. The p-type GaP layer 135 is mirror-polished by honing a region thereof to a depth of about 1 μm from the surface. Thereby, the mirror-polished 'the ρ-type GaP layer 135 will have a roughness of root mean square (rms) 値 0.18 nm. During this period, 14 b· to be applied to the P-type GaP layer 135 is prepared. Kb -30- (27) (27) 1335088 η-type GaP substrate 14 on a mirror-finished surface. For this supply The GaP substrate 14 was used, and ruthenium was added until the carrier concentration reached about 1 x 10 17 /cm 3 . A single crystal having a (111) surface orientation was used. This supply GaP substrate 14 has a diameter of 50 mm and a thickness of 250 microns. This GaP substrate 14 was obtained by honing and buffing with an rms 値 0.12 nm roughness before bonding to the p-type GaP layer 135. The GaP substrate 14 and the epitaxial wafer are transported into a common semiconductor material application device and the device is evacuated until a vacuum of 3 X 1 (Γ5). Next, the surface of the GaP substrate 14 and the epitaxial wafer The adhered contaminants are removed by exposure to an accelerated argon beam by treatment prior to bonding. Thereafter, they are bonded in a vacuum at room temperature. Next, from the bonded epitaxial wafer, An ammonia-based etchant selectively removes the semiconductor substrate 11. Thereafter, the etch stop layer 130A is removed with hydrochloric acid. The AuGeNi alloy is deposited on the contact surface 131 by vacuum evaporation until 0.2 micron. The thickness is formed to form an n-type ohmic electrode on the surface of the contact surface 131. The n-type ohmic electrode is formed by patterning using ordinary photolithography to form the first electrode 15. Thereafter, the electrode forming portion is removed The portion of the contact surface 131 is not. Next, the semiconductor layers 132 to 134 including the light-emitting layer 133 in the region for forming the germanium-electrode are selectively removed to expose the GaP layer 135. On the surface of the GaP layer 135 Deposited by vacuum evaporation The genus materials AuBe and Au until AuBe reaches a thickness of 0.2 μm and Au reaches a thickness of 〖micron to form a p-type ohmic electrode. At this time, the luminescent layer -31 - (28) (28) 1335088 133 has an area of 0.72 mm 2 . The metal material is further heat-treated at 450 ° C for 10 minutes to alloy them to form a first electrode 15 in the form of a low-impedance η-type ohmic electrode and a second electrode 16 in the form of a ρ-type ohmic electrode. Thereafter, gold is deposited on the surfaces of the first electrode and the second electrode by vacuum evaporation to a thickness of 1 μm to form a bonding pad 17 on the ohmic electrodes. Further, a thickness of 0.3 μm Si02 is formed. A protective film formed by the film covers a portion other than the pad 17. From the back surface 23' of the GaP substrate 14, a V-shaped groove is inserted by using a diamond wheel dicing machine until the inclined surface angle 20 reaches 15 degrees and the second The length of the side surface 22 is about 180 μm. The back surface 23 of the GaP substrate 14 is then roughened by hydrochloric acid. Next, by using a diamond wheel dicing machine at a distance of 1 mm from the first surface side. Cut into the crystal wafer to make The first side 12 is formed to be approximately perpendicular to the light-emitting layer 133 to form a length of about 80 μm. The contaminant layer and the contaminant generated by the cutting are removed by a mixture of sulfuric acid and hydrogen peroxide to manufacture a semiconductor light-emitting diode. 10. The back surface 23 of the semiconductor light-emitting diode 10 has an area of 0.8 mm 2 . The semiconductor light-emitting diode 10 thus fabricated is used as the LED chip 42 and as exemplified in FIGS. 8 and 9 A semiconductor light-emitting diode lamp (LED lamp) 1 is mounted. The LED lamp 1 is fixed by a silver paste and mounted on a mounting substrate 45, and the n-type ohmic electrode 15 of the LED chip 42 is wire-bonded to the gold wire, respectively. The n-electrode terminal 43 is set on the first surface of the mounting substrate 45 and the p-type ohmic electrode 16 is wire-bonded to, and then the joint portion is sealed with a common ring -32 - - 1335088 oxy-resin 41. Incidentally, aluminum nitride having good energy dissipation is used for the base body of the mounting substrate 45. When an electric current passes between the n-type and p-type ohmic electrodes 15 and 16 via the n-electrode terminal 43 and the p-electrode terminal 44 which are provided on the first surface of the mounting substrate 45, the LED lamp 1 will emit radiation 620 nm of red light at the main wavelength. The forward voltage (Vf) during the forward flow of 500 mA is about 2.4 volts, which reflects the excellent ohmic properties of the ohmic electrodes 15 and 16. When the forward current is set at 500 mA, the intensity of light emitted can reach 5 500 mcd, which reflects the structure of the light-emitting portion with high luminous efficiency and the fracture layer during the cutting of the epitaxial wafer. Removal will increase the light extraction efficiency to the outside. Example 2: A metal layer 24 having the same structure as that of Example 1 and having AuSn eutectic (melting point 283 ° C) formed on the back surface was produced as shown in Fig. 5. According to the same procedure as in the semiconductor light-emitting diode 1 of the first embodiment, the semiconductor light-emitting diode 10 of the second embodiment is used as the LED wafer 42 and the AuSn is used instead of the silver paste assembly to have the eighth and ninth drawings. A semiconductor light-emitting diode lamp (LED lamp) 1 of the structure to be exemplified. The semiconductor light-emitting diode lamp 1 manufactured using the semiconductor light-emitting diode 10 of Example 2 was evaluated in the same manner as in the first embodiment. The results are shown in Table 1 below. The forward voltage (Vf) during the forward flow of 500 mA is 2.4 volts. The light emission intensity will reach g! The brightness of J 6430 mcd reflects the fact that the light-emitting property is further enhanced and the silver paste is removed.

-33- (30) (30)1335088 吸收作用。 比較實施例1 : 藉由下列程序使用類似實施例1的鑽石輪劃片機同時 改變該GaP基材1 4側面的外形而製成第6圖所例示的比 較實施例1之半導體發光二極體10A。該第一側面12係 近乎垂直且具有10微米的長度且該第二側面具有30度的 角度及300微米的長度。背面現出0.5平方毫米的面積。 該發光層類似實施例1具有0.72平方毫米的面積。依循 使用實施例1的半導體發光二極體10之相同程序同時使 用比較實施例1的半導體發光二極體10A當作LED晶片 42來裝配具有第8圖及第9圖中槪要例示的結構之半導體 發光二極體燈(LED燈)。 對使用比較實施例1的半導體發光二極體10A的半導 體發光二極體燈進行如實施例1情況的相同評估。結果示 於下文表1中。正向500毫安培電流流通期間的正向電壓 (Vf)爲2.4伏特。比較實施例1的半導體發光二極體燈 的光放射強度僅3290 mcd的亮度,因爲比較實施例1的 半導體發光二極體10A具有小面積背面且顯露出熱輻射的 缺陷。 比較實施例2 : 藉由下列程序使用類似實施例1的鑽石輪劃片機同時 改變該GaP基材14側面的外形而製成(第7圖)沒有傾 -34- (31) 1335088 斜面之比較實施例2的半導體發光二極體1 〇B。背面具有 0.9平方毫米的面積。該發光層類似實施例1具有0.72平 方毫米的面積。依循使用實施例1的半導體發光二極體10 之相同程序同時使用比較實施例2的半導體發光二極體 10B當作LED晶片42來裝配具有第8圖及第9圖中槪要 例示的結構之半導體發光二極體燈(LED燈)。 對使用比較實施例2的半導體發光二極體10B的半導 體發光二極體燈進行如實施例1情況的相同評估。結果示 於下文表1中。正向500毫安培電流流通期間的正向電壓 (Vf)爲2.4伏特。光放射強度僅4270 mcd的亮度,因 爲沒有傾斜面造成出光效率稍低。 表1 第一側面 第二側面 面積(平方毫米) 売度&lt; :mcd) 正向電壓(V) 傾斜 長度 傾斜 長度 發光 背面 IF=100 IF=500 IF=100 IF=500 角 (微米) 角 (微米) 層 mA mA mA mA 實施例1 0 80 15 180 0.75 0.8 1150 5500 2 2.4 實施例2 0 80 15 180 0.75 0.8 1280 6430 2 2.4 比較例1 0 10 30 300 0.75 0.5 1190 3290 2 2.4 比較例2 0 250 0 - 0.75 0.9 860 4270 2 2.4-33- (30) (30) 1335088 Absorption. Comparative Example 1 : A semiconductor light-emitting diode of Comparative Example 1 illustrated in Fig. 6 was produced by using a diamond wheel dicing machine similar to that of Example 1 while changing the outer shape of the side surface of the GaP substrate 14 by the following procedure. 10A. The first side 12 is nearly vertical and has a length of 10 microns and the second side has an angle of 30 degrees and a length of 300 microns. The area on the back is 0.5 square millimeters. The luminescent layer similar to Example 1 had an area of 0.72 square millimeters. According to the same procedure as in the semiconductor light-emitting diode 10 of the first embodiment, the semiconductor light-emitting diode 10A of the comparative example 1 is used as the LED wafer 42 to assemble the structure having the structures illustrated in FIGS. 8 and 9. Semiconductor light-emitting diode lamp (LED lamp). The same evaluation as in the case of Example 1 was carried out for the semiconductor light-emitting diode lamp using the semiconductor light-emitting diode 10A of Comparative Example 1. The results are shown in Table 1 below. The forward voltage (Vf) during the forward flow of 500 mA is 2.4 volts. The light-emitting intensity of the semiconductor light-emitting diode lamp of Comparative Example 1 was only 3290 mcd, because the semiconductor light-emitting diode 10A of Comparative Example 1 had a small-area back surface and revealed a defect of heat radiation. Comparative Example 2: A diamond wheel dicing machine similar to that of Example 1 was used to simultaneously change the profile of the side of the GaP substrate 14 by the following procedure (Fig. 7). Comparison of the inclined surface without tilt-34-(31) 1335088 The semiconductor light-emitting diode 1 of Example 2 is 〇B. The back has an area of 0.9 square millimeters. The luminescent layer similarly to Example 1 had an area of 0.72 square millimeters. According to the same procedure as in the semiconductor light-emitting diode 10 of the first embodiment, the semiconductor light-emitting diode 10B of the comparative example 2 is used as the LED wafer 42 to assemble the structure having the structures illustrated in FIGS. 8 and 9. Semiconductor light-emitting diode lamp (LED lamp). The same evaluation as in the case of Example 1 was carried out for the semiconductor light-emitting diode lamp using the semiconductor light-emitting diode 10B of Comparative Example 2. The results are shown in Table 1 below. The forward voltage (Vf) during the forward flow of 500 mA is 2.4 volts. The light emission intensity is only 4270 mcd, because the light-emitting efficiency is slightly lower because there is no inclined surface. Table 1 First side second side area (mm 2 ) 売 degree &lt; : mcd) Forward voltage (V) Tilt length Tilt length Luminous back IF = 100 IF = 500 IF = 100 IF = 500 angle (μm) Angle ( Micron) Layer mA mA mA mA Example 1 0 80 15 180 0.75 0.8 1150 5500 2 2.4 Example 2 0 80 15 180 0.75 0.8 1280 6430 2 2.4 Comparative Example 1 0 10 30 300 0.75 0.5 1190 3290 2 2.4 Comparative Example 2 0 250 0 - 0.75 0.9 860 4270 2 2.4

實施例3 : 有關第二個具體例的另一個具體實施例,依據實施例 3的發光二極體將對照附圖在下文中作說明。Embodiment 3: Another embodiment relating to the second specific example, the light-emitting diode according to Embodiment 3 will be described below with reference to the drawings.

第圖及第11圖例示實施例3的半導體發光二極體 10 ’第1〇圖爲平面圖且第1 1圖爲第10圖沿直線XI-XI 取得的斷面圖。第12圖係用於實施例3的半導體發光二 -35- &lt; S: (32) 1335088 極體1〇之半導體磊晶堆疊結構的層結構槪要斷面圖且第 13圖係例示將基材14接合至實施例12的半導體磊晶堆疊 結構所得結構之槪要斷面圖。 實施例3的半導體發光二極體10爲具有AiGaInP發 光部分12的紅色發光二極體(LED )且係藉由將磊晶堆 •疊結構接合至GaAs製的半導體基材11及GaP基材14上 •而製成。 實施例3的發光二極體10係藉由使用裝備磊晶生長 層13的嘉晶晶圓而製成,該晶晶生長層13係由依序疊在 具有從(100)面傾斜15°的表面之摻矽η-型Ga As單晶所 形成的半導體基材11上的半導體層構成。該磊晶生長層 13係由依序堆疊成分半導體層,即摻矽η-型Ga As形成的 緩衝層130B、摻矽η-型(AlQ.5Ga〇.sU.sIno.5P形成的接觸層 131、摻矽11-型(八1().70&amp;().3)().5111().5?形成的下包被層132、 2 0 對未慘砂的(A1 〇. 2 G a 〇. 8)。. 51 η。. 5 P 及(A1 〇. 7 G a 〇. 3) 〇. 51 η 〇. 5 P 形成的發光層133、摻鎂ρ-型(Alo^Gao.Oo.sIno.sP形成的 上包被層134及摻鎂p-型GaP層135,而建構。 在實施例1中,該半導體層13 0B至135係依堆疊形 成實施例1的磊晶生長層13之半導體層13 0A至135的相 同方式,藉由低壓金屬有機化學氣相沈積法(MOCVD 法)個別堆疊。因此形成用於實施例3的磊晶晶圓。 該GaAs阻擋層130B具有約2xl018個/立方公分的載 子濃度及約 0.2微米的層厚度。該接觸層131具有約 2xl018個/立方公分的載子濃度及約1.5微米的層厚度。該 -36- (33) (33)1335088 η-包被層132具有約8xl017個/立方公分的載子濃度及約1 微米的層厚度。該未摻雜的發光層133具有0.8微米的層 厚度。該P-包被層134具有約2xl017個/立方公分的載子 濃度及約1微米的層厚度。該GaP層135具有約3xl018 個/立方公分的載子濃度及約9微米的層厚度。 該p-型GaP層135具有被硏磨到鏡面磨光而達到離 初始表面約1微米深度的區域。藉此鏡面磨光,該p-型 GaP層135將達到0.18奈米的粗糙度。 在此期間,製備出要被裝設在該P-型GaP層135的 鏡面磨光表面上的η -型GaP基材14»依用於製造實施例 1的發光二極體10之相同方式來製備實施例3的發光二極 體10之製造所需的安裝GaP基材14。 該GaP基材1 4及磊晶晶圓係運入普通半導體材料應 用裝置中且該裝置內部係抽空直到3 X 10_5的真空度爲 止。之後,在真空中將置於已鑑於避免碳污染而排出碳質 材料構成的組份之裝置內部的GaP基材14加熱至約800 °〇的溫度同時將該GaP基材14的表面暴露於加速至800 電子伏特能量的氬離子。結果,在該GaP基材14的表面 上形成具有非化學計量組成的接合層1 4 1。接著該接合層 141的形成,停止氬離子輻射且將該GaP基材14冷卻至 室溫。 接下來,將利用非化學計量組成構成的接合層141裝 備在表面區域中的GaP基材14及該GaP層135的第一表 面暴露於利用電子碰撞而中和的氬束歷經3分鐘時間。之 -37- (34) (34)1335088 後,在維持真空的安裝裝置內,重疊該GaP層135及GaP 基材14且提供一負載以在各表面上施加20克/平方公分 的壓力,且因此使該基材及該層在室溫下接合(對照第13 圖)。從該安裝裝置的真空室抽出接合的晶圓且分析其界 面時,發現該界面中形成具有非化學計算組成的GaQ.6P〇.4 接合層141。該接合層141具有約3奈米的厚度、7xl018 個/立方公分的氧原子濃度、普通SIMS法測到的等級及 9xl018個/立方公分的碳原子濃度。 接下來,以氨爲底的飩刻劑從經此接合的磊晶晶圓選 擇性地移除該半導體基材11及GaAs緩衝層130B。 爲達在該接觸面131上形成歐姆電極15的目的,藉 由真空蒸鍍法先沈積厚度0.5微米的AuGeNi合金,沈積 厚度0.2微米的Pt,且沈積厚度1微米的Au以製造η-型 歐姆電極。接著,該η-型歐姆電極係藉由普通光微影術進 行圖案化而形成第一電極1 5。 接下來,選擇性地移除用於形成ρ-電極的區域中的半 導體層131至134以暴露出該GaP層135。在該GaP層 135表面上,藉由對其金屬材料進行真空蒸鍍法而沈積分 別厚度0.2微米及1微米的AuBe及Au以形成ρ-型歐姆 電極。再者’藉由在450 °C下執行熱處理1〇分鐘使這些電 極合金化’形成低阻抗η -型歐姆電極形式的第一電極15 及Ρ -型歐姆電極形式的第二電極16 (對照第10圖及第11 圖)。 接下來,從該GaP基材14的背面,藉由使用鑽石輪 -38- (35) 1335088 劃片機安插V·形溝槽以提供70°的角度(由第二側面143 及平行發光面的表面所形成的角度α)給傾斜面及80微米 的尺寸給第一側面〗42。 接下來,從第_表面側,以3 50微米間隔切入以製造 晶片。折斷層及切割產生的污染物利用硫酸與過氧化氫的 混合液蝕刻且移除而完成半導體發光二極體(晶片)10 ’的製造。 藉由將上述製成的半導體發光二極體10當作LED晶 片42,如第14圖及第15圖中槪要例示的方式裝配半導體 發光二極體燈(LED燈)1。該LED燈1係以銀(Ag )糊 將該LED晶片42固定且裝設在安裝基材42上,以金線 46分別將LED晶片42的η-型歐姆電極15線接合至置於 該安裝基材45第一表面上的η-電極端子43且將ρ-型歐姆 電極16線接合至ρ-電極端子44,然後以普通環氧樹脂41 密封接合部分。附帶地,以具有良好放能性的氮化鋁當作 該安裝基材45的基底材料。該歐姆電極15包含衰減電極 15a及線性電極15b* 當電流經由設立在安裝基材45表面上的η-電極端子 43及ρ-電極端子44通過該η-型及ρ-型歐姆電極15及16 之間時,將會放射具有62 0奈米主要波長的紅色光。正向 2 〇毫安培電流流過期間產生的正向電壓(V f )達到約 1.95伏特’此値反映該歐姆電極15及16之良好歐姆性 質。將正向電流設在20毫安培時產生的發光強度達到600 racd的高亮度,此値反映出具有高發光效率的發光部分結 -39- (36) 構及因切成晶片期間進行折斷層的移除所造成之至外部的 放出效率增進。 實施例4 : 現在,有關第三個具體例的另一個具體實施例,依據 實施例4的發光二極體將對照附圖在下文中作說明。 實施例4的半導體發光二極體1〇爲裝備AlGalnP發 光部分12的紅色發光二極體(LED )且係藉由將置於 Ga As製的半導體基材11上之磊晶堆疊結構接合至該GaP 基材14而製成(對照第16圖及第17圖)。第16圖爲其 平面圖且第17圖爲第16圖沿直線XVII-XVII取得的斷面 圖。 實施例4的半導體發光二極體10係藉由使用實施例3 的發光二極體所用的半導體磊晶堆疊結携且依序實施例3 所用的製法而製造。 實施例4的發光二極體10係類似實施例3的發光二 極體10的方式建構,除了第二電極16係形成在該第一電 極15相反側上的化合物半導體層的角落位置以外,電極 1 5與1 6係以方式配置。 也就是說,實施例4的發光二極體10係建構使得當 作透明基材的GaP基材14側面形成近乎垂直發光層133 的發光面接近該發光層133側部分之第一側面142及遠離 該發光層133側的部分傾斜至該發光面的第二側面143, 且該第二側面143以角度a朝該半導體層內側傾斜。 (37) 1335088 具有第14圖及第15圖中槪要例示的結構之半導體發 光二極體燈(LED燈)1係藉由將實施例4的半導體發光 二極體10當作LED晶片42,且依循使用實施例3的半導 體發光二極體10情況中之相同程序同而製造。 當電流經由設立在安裝基材45表面上的η-電極端子 43及ρ-電極端子44通過該η-型及ρ-型歐姆電極之間時, 將會放射具有62 0奈米主要波長的紅色光。正向20毫安 培電流流過期間產生的正向電壓(Vf )達到約 2.1 0伏 特,此値反映該歐姆電極15及16之良好歐姆性質。將正 向電流設在20毫安培時產生的發光強度達到800 mcd的 高亮度,此値反映出具有高發光效率的發光部分結構及切 成晶片期間進行折斷層的移除所造成至外部的放出效率增 進。 比較實施例3 : 例示於第18圖及第19圖之比較實施例3的半導體發 光二極體10C係依照實施例3的相同製法藉由將透明基材 14接合至該半導體層而製造,除了如第19圖所示該透明 基材14的第二側面係垂直於發光部分13而形成。附帶 地,該接觸層131表面上所形成的n-型歐姆電極15c並非 形成如第18圖所示的網狀圖案且該GaP層135表面上所 形成的P -型歐姆電極16c係成形使其周圍部分覆蓋著化合 物半導體層。 比較實施例3的半導體發光二極體獲得與實施例3的 〆产· -41 - (38) (38)1335088 二極體相同尺寸的晶片。在切斷之後,折斷層及切割產生 的污染物利用硫酸與過氧化氫的混合液蝕刻並移除。 具有第14圖及第15圖中槪要例示的結構之半導體發 光二極體燈(LED燈)係依循使用實施例3的半導體發光 二極體10的程序但是使用比較實施例3的半導體發光二 極體10C來裝配。 使用比較實施例3的半導體發光二極體10C之LED 燈,當電流經由置於安裝基材45表面上的η-電極端子43 及ρ-電極端子44通過該η-型及ρ-型歐姆電極15c及16c 之間時,將放射具有620奈米主要波長的紅色光。正向20 毫安培電流流通期間的正向電壓(Vf)達到約2.30伏 特。當正向電流設在20毫安培時產生的發光強度勉強達 到200 mcd的亮度。 產業利用性 本發明的發光二極體的特徵爲優於放能性且顯示高亮 度且,由於優越的放能性,可與大電力一起使用。再者, 本發明的發光二極體能發紅色、橙色、黃色或黃綠色的 光。 【圖式簡單說明】 第1圖係實施例1的半導體發光二極體10之槪要平 面圖。 第2圖係第1圖沿線II-II取得的槪要斷面圖。 -42- (39) (39)1335088 第3圖係例示實施例1的半導體磊晶堆疊結構的斷面 結構槪要圖。 第4圖係例示具有接合至實施例3的半導體磊晶堆疊 結構之基材的結構之斷面結構槪要圖。 第5圖係實施例2的半導體發光二極體10之槪要平 面圖。 第6圖係比較實施例1的半導體發光二極體A之槪要 平面圖。 第7圖係比較實施例2的半導體發光二極體B之槪要 平面圖。 第8圖係使用實施例1的半導體發光二極體10當作 LED晶片42的半導體發光二極體燈泡1之槪要平面圖。 第9圖係第8圖沿線IX-IX取得的半導體發光二極體 燈泡1之槪要斷面圖。 第10圖係實施例3的半導體發光二極體1〇之槪要平 面圖。 第1 1圖係第10圖沿線XI-XI取得之槪要斷面圖。 第12圖係用於實施例3的半導體發光二極體10之半 導體磊晶堆疊結構的層結構槪要斷面圖。 第13圖係例示具有接合至第12圖的半導體晶晶堆畳 結構之GaP基材14的結構之斷面結構槪要圖。 第14圖係使用實施例3的半導體發光二極體當作 LED晶片42的半導體發光二極體燈泡1之槪要平面圖。 第15圖係第14圖沿線XV-XV取得之槪要斷面圖。 -43- (40) (40)1335088 第16圖係實施例4的半導體發光二極體10之槪要平 面圖。 第17圖係第16圖沿線XVII-XVII取得之槪要斷面 圖。 第18圖係比較實施例3的半導體發光二極體C之槪 要平面圖。 第19圖係第18圖沿線XIX-XIX取得之槪要斷面圖。 [主要元件符號說明】 α:第二側面與平行發光面的表面所形成的角度 D :第一側面長度 1 : LED 燈 10 :半導體發光二極體 10A:半導體發光二極體 10B:半導體發光二極體 10C:半導體發光二極體 1 1 : GaAs製的半導體基材 12 : AlGalnP發光部分 1 3 :磊晶生長層 1 4 : GaP基材 U :第一電極 15&amp; :衰減電極 1 5b :線性電極 15C : n-型歐姆電極 -44- (41)Ι335Ό88 1 6 :第二電極 16c: p -型歐姆電極 1 7 :焊墊 20 :傾斜角 21 :第一側面 22 :第二側面 23 :背面Figs. 11 and 11 illustrate a semiconductor light emitting diode 10' of the third embodiment. Fig. 1 is a plan view and Fig. 1 is a cross-sectional view taken along line XI-XI of Fig. 10. Figure 12 is a cross-sectional view showing the layer structure of the semiconductor epitaxial stacked structure of the semiconductor light-emitting diode of the semiconductor light-emitting diode of the third embodiment of the present invention, and Figure 13 is an illustration of the base layer of the semiconductor epitaxial stacked structure of the first embodiment. A cross-sectional view of the structure obtained by bonding the material 14 to the semiconductor epitaxial stacked structure of Example 12. The semiconductor light-emitting diode 10 of the third embodiment is a red light-emitting diode (LED) having an AiGaInP light-emitting portion 12 and bonded to a semiconductor substrate 11 and a GaP substrate 14 made of GaAs by an epitaxial stack structure. Made from above. The light-emitting diode 10 of Embodiment 3 is produced by using a Jia-crystal wafer equipped with an epitaxial growth layer 13 which is sequentially stacked on a surface having a slope of 15° from the (100) plane. The semiconductor layer on the semiconductor substrate 11 formed of the ytterbium-doped gamma-type Ga As single crystal is composed of a semiconductor layer. The epitaxial growth layer 13 is formed by sequentially stacking a component semiconductor layer, that is, a buffer layer 130B formed by doping η-type Ga As, and a yttrium-doped type (contact layer 131 formed by AlQ.5Ga〇.sU.sIno.5P, The underlying coating layer 132, 20 formed by erbium 11-type (eight 1 (). 70 &amp; (). 3) (). 5111 (). 5? is not miserable (A1 〇. 2 G a 〇 8). 51 η.. 5 P and (A1 〇. 7 G a 〇. 3) 〇. 51 η 〇. 5 P formed luminescent layer 133, magnesium-doped ρ-type (Alo^Gao.Oo.sIno The upper cladding layer 134 and the magnesium-doped p-type GaP layer 135 formed by .sp are constructed. In the embodiment 1, the semiconductor layers 13 0 to 135 are stacked to form the semiconductor of the epitaxial growth layer 13 of the embodiment 1. The same manner of the layers 130A to 135 is individually stacked by a low pressure metal organic chemical vapor deposition method (MOCVD method), thereby forming an epitaxial wafer for use in Example 3. The GaAs barrier layer 130B has about 2xl018/cubic The carrier concentration of the centimeters and the layer thickness of about 0.2 μm. The contact layer 131 has a carrier concentration of about 2 x 1018 /cm ^ 3 and a layer thickness of about 1.5 μm. The -36- (33) (33) 1335088 η-package The layer 132 has about 8 x 1017 / cubic centimeter Sub-concentration and layer thickness of about 1 micron. The undoped light-emitting layer 133 has a layer thickness of 0.8 micron. The P-cladding layer 134 has a carrier concentration of about 2 x 1017 / cubic centimeter and a layer thickness of about 1 micron. The GaP layer 135 has a carrier concentration of about 3 x 1018 / cubic centimeter and a layer thickness of about 9 microns. The p-type GaP layer 135 has a region that is honed to mirror finish to a depth of about 1 micrometer from the initial surface. By this mirror polishing, the p-type GaP layer 135 will have a roughness of 0.18 nm. During this period, η - to be mounted on the mirror-finished surface of the P-type GaP layer 135 is prepared. The GaP substrate 14 was prepared in the same manner as in the manufacture of the light-emitting diode 10 of Example 1. The GaP substrate 14 required for the production of the light-emitting diode 10 of Example 3 was prepared. And the epitaxial wafer system is transported into a common semiconductor material application device and the inside of the device is evacuated until a vacuum of 3 X 10_5. Thereafter, it is placed in a vacuum in a group that has been disposed of in order to avoid carbon contamination. The GaP substrate 14 inside the device is heated to a temperature of about 800 ° 同时 while the GaP is The surface of the material 14 is exposed to argon ions accelerated to an energy of 800 eV. As a result, a bonding layer 14 1 having a non-stoichiometric composition is formed on the surface of the GaP substrate 14. Then, formation of the bonding layer 141 stops argon. The ionizing radiation and cooling the GaP substrate 14 to room temperature. Next, the GaP substrate 14 and the first surface of the GaP layer 135 which are provided in the surface region by the bonding layer 141 composed of the non-stoichiometric composition are exposed to the argon beam neutralized by the electron collision for 3 minutes. After -37-(34)(34)1335088, the GaP layer 135 and the GaP substrate 14 are overlapped in a vacuum-maintaining mounting device and a load is applied to apply a pressure of 20 g/cm 2 on each surface, and The substrate and the layer were thus joined at room temperature (cf. Fig. 13). When the bonded wafer was taken out from the vacuum chamber of the mounting device and the interface was analyzed, it was found that a GaQ.6P〇.4 bonding layer 141 having a non-stoichiometric composition was formed in the interface. The bonding layer 141 has a thickness of about 3 nm, an oxygen atom concentration of 7 x 1018 /cm ^ 3 , a grade measured by a common SIMS method, and a carbon atom concentration of 9 x 1018 / cm ^ 3 . Next, an ammonia-based etchant selectively removes the semiconductor substrate 11 and the GaAs buffer layer 130B from the bonded epitaxial wafer. For the purpose of forming the ohmic electrode 15 on the contact surface 131, an AuGeNi alloy having a thickness of 0.5 μm is deposited by vacuum evaporation, Pt having a thickness of 0.2 μm is deposited, and Au having a thickness of 1 μm is deposited to fabricate n-type ohms. electrode. Next, the n-type ohmic electrode is patterned by ordinary photolithography to form the first electrode 15. Next, the semiconductor layers 131 to 134 in the region for forming the p-electrode are selectively removed to expose the GaP layer 135. On the surface of the GaP layer 135, AuBe and Au having thicknesses of 0.2 μm and 1 μm, respectively, were deposited by vacuum evaporation of the metal material to form a p-type ohmic electrode. Further, 'the electrodes are alloyed by performing heat treatment at 450 ° C for 1 minute to form a first electrode 15 in the form of a low-impedance η-type ohmic electrode and a second electrode 16 in the form of a Ρ-type ohmic electrode (Comparative Figure 10 and Figure 11). Next, from the back side of the GaP substrate 14, a V-shaped groove is inserted by using a diamond wheel-38-(35) 1335088 dicing machine to provide an angle of 70° (by the second side 143 and the parallel light-emitting surface) The angle α) formed by the surface gives the inclined surface and the size of 80 μm to the first side 42. Next, from the surface of the first surface, the wafer was cut at intervals of 3 50 μm to fabricate a wafer. The production of the semiconductor light-emitting diode (wafer) 10' is completed by etching and removing the contaminant generated by the fracture layer and the cut by a mixture of sulfuric acid and hydrogen peroxide. By using the semiconductor light-emitting diode 10 fabricated as described above as the LED wafer 42, a semiconductor light-emitting diode lamp (LED lamp) 1 is mounted as exemplified in Figs. The LED lamp 1 is fixed with a silver (Ag) paste and mounted on a mounting substrate 42, and the n-type ohmic electrode 15 of the LED wafer 42 is wire-bonded to the mounting by a gold wire 46, respectively. The n-electrode terminal 43 on the first surface of the substrate 45 and the p-type ohmic electrode 16 are wire-bonded to the p-electrode terminal 44, and then the joint portion is sealed with a common epoxy resin 41. Incidentally, aluminum nitride having good energy dissipation is used as the base material of the mounting substrate 45. The ohmic electrode 15 includes an attenuating electrode 15a and a linear electrode 15b*. The current passes through the n-type and p-type ohmic electrodes 15 and 16 via the n-electrode terminal 43 and the p-electrode terminal 44 which are provided on the surface of the mounting substrate 45. When in between, red light with a dominant wavelength of 62 nm will be emitted. The forward voltage (V f ) generated during the forward current flow of 2 mA is about 1.95 volts. This reflects the good ohmic properties of the ohmic electrodes 15 and 16. The forward current is set at 20 mA to produce a high luminance of 600 racd, which reflects the high-luminance efficiency of the light-emitting portion junction -39- (36) and the fracture layer during the dicing process. The removal efficiency is increased by the removal to the outside. Embodiment 4: Now, with respect to another specific embodiment of the third specific example, the light-emitting diode according to Embodiment 4 will be described below with reference to the drawings. The semiconductor light-emitting diode 1 of Embodiment 4 is a red light-emitting diode (LED) equipped with the AlGalnP light-emitting portion 12 and bonded to the epitaxial stacked structure on the semiconductor substrate 11 made of Ga As. The GaP substrate 14 is made (cf. Fig. 16 and Fig. 17). Fig. 16 is a plan view thereof and Fig. 17 is a sectional view taken along line XVII-XVII of Fig. 16. The semiconductor light-emitting diode 10 of Example 4 was fabricated by using the semiconductor epitaxial stack used in the light-emitting diode of Example 3 and was carried out in the same manner as in the procedure of Example 3. The light-emitting diode 10 of the fourth embodiment is constructed similarly to the light-emitting diode 10 of the third embodiment except that the second electrode 16 is formed at a corner position of the compound semiconductor layer on the opposite side of the first electrode 15, the electrode The 1 5 and 1 6 systems are configured in a manner. That is, the light-emitting diode 10 of the fourth embodiment is constructed such that the light-emitting surface of the side of the GaP substrate 14 as a transparent substrate forming the nearly vertical light-emitting layer 133 is close to the first side 142 of the side portion of the light-emitting layer 133 and away from The portion on the side of the light-emitting layer 133 is inclined to the second side surface 143 of the light-emitting surface, and the second side surface 143 is inclined toward the inner side of the semiconductor layer at an angle a. (37) 1335088 A semiconductor light-emitting diode lamp (LED lamp) 1 having a structure to be exemplified in FIGS. 14 and 15 is an LED light-emitting diode 10 as the LED chip 42 by using the semiconductor light-emitting diode 10 of the fourth embodiment. This was produced in the same manner as in the case of using the semiconductor light-emitting diode 10 of Example 3. When a current passes between the η-type and ρ-type ohmic electrodes via the η-electrode terminal 43 and the ρ-electrode terminal 44 provided on the surface of the mounting substrate 45, red light having a main wavelength of 62 nm is emitted. Light. The forward voltage (Vf) generated during the forward current flow of 20 milliamps reaches about 2.10 volts, which reflects the good ohmic properties of the ohmic electrodes 15 and 16. The forward current is set at 20 mA to produce a high luminance of 800 mcd, which reflects the structure of the light-emitting portion with high luminous efficiency and the removal of the fracture layer during cutting into the wafer to the external discharge. Increased efficiency. Comparative Example 3: The semiconductor light-emitting diode 10C of Comparative Example 3 exemplified in FIGS. 18 and 19 was fabricated by bonding a transparent substrate 14 to the semiconductor layer in the same manner as in Example 3 except The second side surface of the transparent substrate 14 is formed perpendicular to the light-emitting portion 13 as shown in Fig. 19. Incidentally, the n-type ohmic electrode 15c formed on the surface of the contact layer 131 does not form a mesh pattern as shown in Fig. 18, and the P-type ohmic electrode 16c formed on the surface of the GaP layer 135 is shaped such that it is formed. The surrounding portion is covered with a compound semiconductor layer. Comparing the semiconductor light-emitting diode of Example 3, a wafer having the same size as that of the tantalum-41-(38) (38) 1335088 diode of Example 3 was obtained. After the cutting, the fracture layer and the contaminants produced by the cutting are etched and removed using a mixture of sulfuric acid and hydrogen peroxide. The semiconductor light-emitting diode lamp (LED lamp) having the structure to be exemplified in FIGS. 14 and 15 follows the procedure of using the semiconductor light-emitting diode 10 of the third embodiment but uses the semiconductor light-emitting diode of the comparative example 3. The pole body 10C is assembled. Using the LED lamp of the semiconductor light-emitting diode 10C of Comparative Example 3, when the current passes through the η-electrode terminal 43 and the ρ-electrode terminal 44 placed on the surface of the mounting substrate 45, the η-type and p-type ohmic electrodes are passed. When between 15c and 16c, red light having a dominant wavelength of 620 nm will be emitted. The forward voltage (Vf) during the forward current flow of 20 milliamps reaches approximately 2.30 volts. When the forward current is set at 20 mA, the luminescence intensity generated is barely up to 200 mcd. Industrial Applicability The light-emitting diode of the present invention is characterized by being superior in energy dissipating property and exhibiting high brightness, and can be used together with large electric power due to superior energy dissipation. Further, the light-emitting diode of the present invention can emit light of red, orange, yellow or yellow-green. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view showing a semiconductor light emitting diode 10 of the first embodiment. Figure 2 is a cross-sectional view taken along line II-II of Figure 1. -42- (39) (39) 1335088 Fig. 3 is a schematic cross-sectional view showing the structure of the semiconductor epitaxial stacked structure of Example 1. Fig. 4 is a schematic cross-sectional view showing the structure of a substrate bonded to the semiconductor epitaxial stacked structure of Example 3. Fig. 5 is a plan view showing a semiconductor light emitting diode 10 of the second embodiment. Fig. 6 is a plan view showing a comparison of the semiconductor light-emitting diode A of Comparative Example 1. Fig. 7 is a plan view showing a comparison of the semiconductor light-emitting diode B of Comparative Example 2. Fig. 8 is a plan view showing a semiconductor light-emitting diode bulb 1 using the semiconductor light-emitting diode 10 of the first embodiment as the LED wafer 42. Figure 9 is a cross-sectional view of the semiconductor light-emitting diode bulb 1 taken along line IX-IX of Figure 8. Fig. 10 is a plan view showing the semiconductor light-emitting diode of Example 3; Figure 11 is a cross-sectional view taken along line XI-XI of Figure 10. Fig. 12 is a cross-sectional view showing the layer structure of the semiconductor epitaxial stacked structure of the semiconductor light-emitting diode 10 of the third embodiment. Fig. 13 is a schematic cross-sectional view showing the structure of a GaP substrate 14 having a semiconductor crystal stacked structure bonded to Fig. 12. Fig. 14 is a plan view showing a semiconductor light-emitting diode bulb 1 using the semiconductor light-emitting diode of the third embodiment as the LED wafer 42. Figure 15 is a cross-sectional view taken along line XV-XV of Figure 14. -43- (40) (40) 1335088 Fig. 16 is a plan view showing the semiconductor light-emitting diode 10 of the fourth embodiment. Figure 17 is a cross-sectional view taken along line XVII-XVII of Figure 16. Fig. 18 is a plan view showing a comparison of the semiconductor light-emitting diode C of Comparative Example 3. Figure 19 is a cross-sectional view taken along line XIX-XIX of Figure 18. [Description of main component symbols] α: Angle formed by the surface of the second side and the parallel light-emitting surface D: First side length 1 : LED lamp 10 : Semiconductor light-emitting diode 10A: Semiconductor light-emitting diode 10B: Semiconductor light-emitting diode 2 Polar body 10C: semiconductor light-emitting diode 1 1 : semiconductor substrate 12 made of GaAs: AlGalnP light-emitting portion 13: epitaxial growth layer 1 4 : GaP substrate U: first electrode 15 &amp;: attenuating electrode 1 5b: linear Electrode 15C: n-type ohmic electrode - 44 - (41) Ι 335 Ό 88 1 6 : second electrode 16c: p - type ohmic electrode 1 7 : pad 20 : inclination angle 21 : first side 22 : second side 23 : back

4 1 :環氧樹脂 42 : LED晶片 43 : η-電極端子 44 : ρ-電極端子 45 :安裝基材 4 6·金線 130Α :蝕刻阻擋層 1 3 0 Β :緩衝層4 1 : Epoxy 42 : LED wafer 43 : η-electrode terminal 44 : ρ-electrode terminal 45 : mounting substrate 4 6 · gold wire 130 Α : etching barrier 1 3 0 Β : buffer layer

1 3 1 :接觸層 1 32 :下包被層 133 :發光層 1 34 :上包被層 1 35 :摻鎂ρ-型GaP層 141 :接合層 142 :第一側面 143 :第二側面 -45-1 3 1 : contact layer 1 32 : lower cladding layer 133 : light-emitting layer 1 34 : upper cladding layer 1 35 : magnesium-doped p-type GaP layer 141 : bonding layer 142 : first side surface 143 : second side surface - 45 -

Claims (1)

13350881335088 十、申請專利範圍 第95148554號專利申請案 中文申請專利範圍修正本 民國99年9月21日修正 1. 一種發光二極體,其具有透明基材及由化合物半導 體製成的發光層,其中彼上面形成第一電極及極性與該第 —電極不同的第二電極之出光面 (light-extracting surface)的面積(A)、接近該出光面形成之發光層的面 積(B )及落在該第一電極和該第二電極形成側的相反側 上之發光二極體背面的面積(C)的關係滿足式A&gt;C&gt;B的 關係。 2 .如申請專利範圍第1項之發光二極體,其中該發光 層具有式(AlxGauhlm-YP 的組成;其中 0SXS1 , 0&lt;YS1,而且該透明基材具有l〇〇W/m.k或更大的熱傳導 係數。 3 .如申請專利範圍第1或2項之發光二極體,其中該 透明基材具有包含接近該發光層的第一側面及接近該透明 基材背面的第二側面,及其中該第一側面具有小於該第二 側面的傾斜角之傾斜角。 4.如申請專利範圍第3項之發光二極體,其中該第一 側面係垂直的且該第二側面係歪斜的。 5_ —種發光二極體’其包含裝備發光部分的化合物半 導體層’該發光部分含具有式(AlxGa^jOYlnuP的組成之 發光層;其中0SXS1及〇&lt;YU、具有接到彼的化合物半導 1335088 體層之透明基材,及上面形成第一電極和極性與該第一電 極不同的第二電極之主要出光面,其中該第二電極係形成 在暴露於該第一電極相反側的化合物半導體層上的角落位 置且該透明基材具有一側面,該側面包含大致垂直於該發 光層臨近側上之發光層發光表面的第一側面及向該發光層 遠離側上之發光表面傾斜的第二側面。 6.如申請專利範圍第3項之發光二極體,其中該第二 側面的傾斜角係1 0度或更大及3 0度或更小。 7·如申請專利範圍第3項之發光二極體,其中該第二 側面的傾斜角係1 0度或更大及2 0度或更小。 8 .如申請專利範圍第5項之發光二極體,其中該第二 側面與平行該發光表面的表面之間形成介於5 5度至8 0度 的角度。 9 ·如申請專利範圍第3項之發光二極體,其中該第一 側面具有5〇μηι或更大及ΙΟΟμιη或更小的長度且該第二側 面具有ΙΟΟμηι或更大及250μηι或更小的長度。 10. 如申請專利範圍第 5項之發光二極體,其中該第 —側面具有介於30μιτι至ΙΟΟμηι的長度。 11. 如申請專利範圍第1或5項之發光二極體,其中 該透明基材係由磷化鎵(GaP )製成。 I2·如申請專利範圍第5項之發光二極體,其中該透 明基材實質上爲η-型GaP單晶且具有(100 )或(1 1 1 ) 的表面取向。 1 3 ·如申請專利範圍第5項之發光二極體,其中該透 -2- 1335088 明基材具有介於50μηι至300μηι的厚度。 14·如申請專利範圍第5項之發光二極體,其中該透 明基材係由碳化矽(SiC )製成。 15. 如申請專利範圍第1項之發光二極體,其中該透 明基材具有能散光的粗糙表面之背面。 16. 如申請專利範圍第1項之發光二極體,其中該透 明基材具有彼上面形成金屬膜的背面。 17. 如申請專利範圍第16項之發光二極體,其中該透 明基材背面上的金屬膜含具有4〇〇t或更低的熔點之金 屬。 1 8 .如申請專利範圍第1 6項之發光二極體,其中該金 屬膜係由A u S η合金製成。 I9.如申請專利範圍第1項之發光二極體,其中該發 光二極體係配合1.5 W或更大的電力使用且其背面面積係 0·6 mm2或更大。 2〇·如申請專利範圍第15項之發光二極體,其中該透 明基材係GaP基材,其背面利用氫氯酸處理該GaP基材 而得到。 21. 如申請專利範圍第3項之發光二極體,其中該透 明基材的第一及第二側面係藉由切割法(dicing method) 形成者。 22. 如申請專利範圍第5項之發光二極體,其中該第 二電極係位在該第二側面的傾斜結構上方。 23. 如申請專利範圍第5項之發光二極體,其中該第 -3- 1335088 一電極具有晶格的形狀。 24. 如申請專利範圍第5項之發光二極體,其中該第 —電極包含衰減電極(pad electrode)及具有ΙΟμηι或更 小的寬度之線性電極。 25. 如申請專利範圍第5項之發光二極體,其中該發 光部分含有GaP層且該第二電極係形成於該GaP層上。 26. 如申請專利範圍第5項之發光二極體,其中該第 一電極具有η -型極性且該第二電極具有p -型極性。 27. 如申請專利範圍第5項之發光二極體,其中該透 明基材之傾斜的第二面具有粗糙度。 28. —種發光二極體之製法,其包含下列步驟: 形成含具有式(AlxGa|_x)YIni-YP的組成之發光層的發 光部分;其中0SXS1及0&lt;Yfl ; 後繼地使含有發光部分的化合物半導體層被接到透明 基材; 使附接於該透明基材相反側上之主要發光表面的第一 電極和極性與該第一電極不同的第二電極被形成在該化合 物半導體層暴露部分上的角落位置使得該第二電極可配置 在該第一電極的相反側;及 藉由切割法令該透明基材的側面形成大致垂直於該發 光層臨近側上之發光層發光表面的第一側面及向該發光層 遠離側上之發光表面傾斜的第二側面。 29. 如申請專利範圍第28項之發光二極體之製法,其 中該第一側面係經由劃線折斷法形成。 -4 - 1335088 3 0.如申請專利範圍第28項之發光二極體之製法,其 中該第一側面係經由切割法形成。 -5-X. Patent Application No. 95148554 Patent Application Revision of Chinese Patent Application Revision Amendment of September 21, 1999. 1. A light-emitting diode having a transparent substrate and a light-emitting layer made of a compound semiconductor, wherein The area (A) of the light-extracting surface of the first electrode and the second electrode having a polarity different from the first electrode, the area (B) of the light-emitting layer formed close to the light-emitting surface, and the The relationship between the area (C) of the back surface of the light-emitting diode on the opposite side of the one electrode and the second electrode forming side satisfies the relationship of Formula A &gt; C &gt; B. 2. The light-emitting diode according to claim 1, wherein the light-emitting layer has a composition of the formula (AlxGauhlm-YP; wherein 0SXS1, 0 &lt; YS1, and the transparent substrate has l〇〇W/mk or more The light-emitting diode of claim 1 or 2, wherein the transparent substrate has a first side surface adjacent to the light-emitting layer and a second side surface adjacent to the back surface of the transparent substrate, and wherein The first side has a tilt angle that is smaller than the tilt angle of the second side. 4. The light emitting diode of claim 3, wherein the first side is vertical and the second side is skewed. a light-emitting diode comprising a compound semiconductor layer equipped with a light-emitting portion. The light-emitting portion contains a light-emitting layer having a composition of the formula (AlxGa^jOYlnuP; wherein 0SXS1 and 〇&lt;YU, having a compound semiconductive 1335088 a transparent substrate of the bulk layer, and a main light-emitting surface on which the first electrode and the second electrode having a polarity different from the first electrode are formed, wherein the second electrode is formed on a side exposed on the opposite side of the first electrode a corner position on the semiconductor layer and the transparent substrate has a side surface including a first side surface substantially perpendicular to a light emitting layer emitting surface on an adjacent side of the light emitting layer and a first tilting surface toward a light emitting surface on a far side of the light emitting layer 6. The light-emitting diode according to item 3 of the patent application, wherein the inclination angle of the second side is 10 degrees or more and 30 degrees or less. 7. If the patent application scope is the third item The light emitting diode, wherein the second side has a tilt angle of 10 degrees or more and 20 degrees or less. 8. The light emitting diode according to claim 5, wherein the second side is An angle of between 5 5 and 80 degrees is formed between the surfaces of the light-emitting surface. 9 · The light-emitting diode of claim 3, wherein the first side has 5 〇 μηι or more and ΙΟΟμιη Or a length of the second side having a length of ΙΟΟμηι or more and 250 μηι or less. 10. The light-emitting diode of claim 5, wherein the first side has a range of 30 μm τι to ΙΟΟμηι Length. The light-emitting diode of the first or fifth aspect, wherein the transparent substrate is made of gallium phosphide (GaP). The light-emitting diode of claim 5, wherein the transparent substrate is substantially Is a η-type GaP single crystal and has a surface orientation of (100) or (1 1 1 ). 1 3 · A light-emitting diode according to item 5 of the patent application, wherein the transparent -2- 1335088 substrate has a The thickness of 50 μηι to 300 μηι. The light-emitting diode of claim 5, wherein the transparent substrate is made of tantalum carbide (SiC). 15. The light-emitting diode of claim 1, wherein the transparent substrate has a back surface of a rough surface that is astigmatizable. 16. The light-emitting diode of claim 1, wherein the transparent substrate has a back surface on which a metal film is formed. 17. The light-emitting diode of claim 16, wherein the metal film on the back surface of the transparent substrate contains a metal having a melting point of 4 〇〇 or lower. 18. The light-emitting diode of claim 16 wherein the metal film is made of an alloy. I9. The light-emitting diode of claim 1, wherein the light-emitting diode system is used with a power of 1.5 W or more and the back surface area is 0·6 mm 2 or more. The light-emitting diode of claim 15, wherein the transparent substrate is a GaP substrate, and the back surface thereof is obtained by treating the GaP substrate with hydrochloric acid. 21. The light-emitting diode of claim 3, wherein the first and second sides of the transparent substrate are formed by a dicing method. 22. The light-emitting diode of claim 5, wherein the second electrode is positioned above the inclined structure of the second side. 23. The light-emitting diode of claim 5, wherein the electrode of the -3- 1335088 has a lattice shape. 24. The light-emitting diode of claim 5, wherein the first electrode comprises a pad electrode and a linear electrode having a width of ΙΟμηι or less. 25. The light-emitting diode of claim 5, wherein the light-emitting portion comprises a GaP layer and the second electrode is formed on the GaP layer. 26. The light-emitting diode of claim 5, wherein the first electrode has an η-type polarity and the second electrode has a p-type polarity. 27. The light-emitting diode of claim 5, wherein the inclined second side of the transparent substrate has a roughness. 28. A method of producing a light-emitting diode comprising the steps of: forming a light-emitting portion comprising a light-emitting layer having a composition of the formula (AlxGa|_x) YIni-YP; wherein 0SXS1 and 00&lt;Yfl; subsequently containing the light-emitting portion a compound semiconductor layer is attached to the transparent substrate; a first electrode having a main light emitting surface attached to an opposite side of the transparent substrate and a second electrode having a polarity different from the first electrode are formed to be exposed on the compound semiconductor layer a corner position on a portion such that the second electrode is disposed on an opposite side of the first electrode; and a side of the transparent substrate is formed by a cutting process to form a first surface substantially perpendicular to a light emitting layer light emitting surface on an adjacent side of the light emitting layer a side surface and a second side inclined to the light emitting surface on the side away from the light emitting layer. 29. The method of producing a light-emitting diode according to claim 28, wherein the first side is formed by a scribe line breaking method. -4 - 1335088 3 0. The method of producing a light-emitting diode according to claim 28, wherein the first side is formed by a cutting method. -5-
TW95148554A 2005-12-22 2006-12-22 Light-emitting diode and method for fabrication thereof TWI335088B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005369620A JP2007173551A (en) 2005-12-22 2005-12-22 Light-emitting diode and manufacturing method thereof
JP2005369334A JP4942996B2 (en) 2005-12-22 2005-12-22 Light emitting diode
JP2005369996A JP2007173575A (en) 2005-12-22 2005-12-22 Light-emitting diode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200742123A TW200742123A (en) 2007-11-01
TWI335088B true TWI335088B (en) 2010-12-21

Family

ID=44217502

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95148554A TWI335088B (en) 2005-12-22 2006-12-22 Light-emitting diode and method for fabrication thereof

Country Status (1)

Country Link
TW (1) TWI335088B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9735312B2 (en) 2012-11-12 2017-08-15 Epistar Corporation Semiconductor light emitting device and method of fabricating the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5586371B2 (en) * 2009-09-15 2014-09-10 昭和電工株式会社 Light emitting diode, light emitting diode lamp, and lighting device
TW201613068A (en) * 2014-09-17 2016-04-01 Cheering Sun Applied Materials Co Ltd Multi-die substrate-less LED device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9735312B2 (en) 2012-11-12 2017-08-15 Epistar Corporation Semiconductor light emitting device and method of fabricating the same
US10283669B2 (en) 2012-11-12 2019-05-07 Epistar Corporation Semiconductor light emitting device and method of fabricating the same
US10651335B2 (en) 2012-11-12 2020-05-12 Epistar Corporation Semiconductor light emitting device and method of fabricating the same
US11251328B2 (en) 2012-11-12 2022-02-15 Epistar Corporation Semiconductor light emitting device and method of fabricating the same
US11791436B2 (en) 2012-11-12 2023-10-17 Epistar Corporation Semiconductor light emitting device and method of fabricating the same

Also Published As

Publication number Publication date
TW200742123A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
US8158987B2 (en) Light-emitting diode and method for fabrication thereof
US8362502B2 (en) Solid-state light source
KR100992497B1 (en) Light-emitting diode and method for fabrication thereof
JP4942996B2 (en) Light emitting diode
US20110012147A1 (en) Wavelength-converted semiconductor light emitting device including a filter and a scattering structure
JP5019755B2 (en) Light emitting diode and manufacturing method thereof
JP5343018B2 (en) LIGHT EMITTING DIODE, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DIODE LAMP
KR100992496B1 (en) Light-emitting diode
KR20120041173A (en) Light emitting diode, light emitting diode lamp, and lighting apparatus
JP2007173551A (en) Light-emitting diode and manufacturing method thereof
JP2011171695A (en) Light-emitting diode, light-emitting diode lamp, and lighting device
WO2012020789A1 (en) Light-emitting diode, light-emitting diode lamp, and illumination device
JP5586371B2 (en) Light emitting diode, light emitting diode lamp, and lighting device
TWI335088B (en) Light-emitting diode and method for fabrication thereof
JP5234219B1 (en) Light emitting diode element and light emitting device
JP5019756B2 (en) Light emitting diode and manufacturing method thereof
JP5801542B2 (en) Light emitting diode and light emitting diode lamp
JP4918245B2 (en) Light emitting diode and manufacturing method thereof
WO2010092741A1 (en) Light-emitting diode, and light-emitting diode lamp
JP2007173575A (en) Light-emitting diode and manufacturing method thereof
TWI373863B (en) Method for the production of light-emitting diode
JP2011176268A (en) Light emitting diode, light emitting diode lamp, and lighting system
JP2014167948A (en) Light-emitting diode element, process of manufacturing the same, and light-emitting apparatus
JP2011176269A (en) Light emitting diode, light emitting diode lamp, and lighting system
JP2011086917A (en) Light emitting diode, light emitting diode lamp, and lighting system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees