TWI333600B - - Google Patents
Download PDFInfo
- Publication number
- TWI333600B TWI333600B TW96104685A TW96104685A TWI333600B TW I333600 B TWI333600 B TW I333600B TW 96104685 A TW96104685 A TW 96104685A TW 96104685 A TW96104685 A TW 96104685A TW I333600 B TWI333600 B TW I333600B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- multiplier
- error
- unit
- output
- Prior art date
Links
Landscapes
- Amplifiers (AREA)
- Error Detection And Correction (AREA)
- Mobile Radio Communication Systems (AREA)
- Electric Clocks (AREA)
Description
1333600 其中該創作之乘除法單元中產生之一充電信號VCHG需藉由一第一乘 數信號VE與一鋸齒波信號VSAW產生,而該鋸齒波信號VSAW係由一 除數信號VAC產生’又該鋸齒波信號VSAW係由該除數信號VAC產生一 • 電流11所轉變而來,但該除數信號VAC產生電流II之電流源中具有電阻 (前案圖中標號122) ’由於不同製程之積體電路兩者之間會產生誤差,因 此該電流源之電阻(122)與外部之電阻值比較係相對的具有誤差,而導 致該電流II之產生經過該電阻(122)會產生一製程變異量,該除數信號 VAC係由該電流11所產生,因而該除數信號VAC亦包含著該製程變異所 造成之誤差,該誤差與除數信號VAC成比例,因而該創作產生之輸出會 φ ®溫^與製程變異量而產生⑽2之誤差,具有誤差之乘除法器使用於連 續電流模式之主動式功因校正電路將造成調整電流相位時無法提高效率至 設計之理想值,有待改良。 【發明内容】 、有鑑於習知技術並未將溫度與製程變異量產生之誤差排除,本發明之 首要目的即在於提出-可執行乘除法之乘除法器,並該乘除法器具有抵消 上述誤差達到降低誤差影響之目的,使其計算之結果更加接近理想值。 ,發明係-種具誤差減功能之乘除法^,其巾包括—緩衝器、一電 阻、。三組差動轉換器、兩除法器、兩乘法器以及一脈波產生器;其中該乘 φ 、、器係由峰值檢波器以及一週期受控於該除法器之電壓積分器所構成; =„由_形產生器組成,該等波形產生器在功能上形成獨立之 將其結構透過戰方式傳遞至下—級之乘法器卜又該脈波 器中「有兩_單元以及—絲區隔波職重置該_單元之方波產 性關係上述之^組成本發明之實施電路,·電容11之電壓與電荷之線1333600, wherein one of the charging signal VCHG generated in the multiplication and division unit of the creation is generated by a first multiplier signal VE and a sawtooth wave signal VSAW, and the sawtooth wave signal VSAW is generated by a divisor signal VAC. The sawtooth signal VSAW is converted from the divisor signal VAC by a current 11 , but the divisor signal VAC generates a current II having a resistance (reference numeral 122 in the previous figure) 'due to the product of different processes There is an error between the body circuit, so the resistance of the current source (122) is relatively opposite to the external resistance value, and the generation of the current II through the resistor (122) produces a process variation. The divisor signal VAC is generated by the current 11. Therefore, the divisor signal VAC also contains an error caused by the process variation, and the error is proportional to the divisor signal VAC, so the output generated by the creation is φ ® The error between the temperature and the process variation produces (10)2, and the multiplier with error is used in the continuous current mode. The active power factor correction circuit will cause the efficiency to be adjusted when the current phase is adjusted. The ideal value needs to be improved. SUMMARY OF THE INVENTION In view of the fact that the prior art does not eliminate the error caused by temperature and process variation, the primary object of the present invention is to propose a multiplier that can perform multiplication and division, and the multiplier has the above-mentioned error To reduce the impact of the error, the result of the calculation is closer to the ideal value. , the invention department - a multiplication and division method with error reduction function, the towel includes - a buffer, a resistor, . Three sets of differential converters, two dividers, two multipliers, and a pulse generator; wherein the multiplication φ, the device is composed of a peak detector and a voltage integrator controlled by the divider for one cycle; „Composed of _ shape generators, these waveform generators are functionally independent and pass their structures through the warfare mode to the lower-level multipliers. In the pulse waver, there are two _units and a silk segment. The wave device resets the square wave production relationship of the unit _ the above-mentioned composition circuit of the present invention, the voltage and electric charge line of the capacitor 11
Pc=M 並以該式推導出 1333600 之計算式’藉兩基本計算式而利用丨 VC,又該咖卿%與!軸入而得到 電Γ電流與之娜形縣除法計算之目^ 乘Pc=M and use this formula to derive the calculation formula of 1333600 'Using two basic calculation formulas to use 丨VC, and the cum% and! The axis current is obtained by the electric current and the division of the Nagata County
數輸圖第!路方塊圖’該電路包括——乘 三除數輸入端子丄雜第輸;=v-第二除數輸入端子。與-第 二除數訊號Vr與一第三除數訊號Ve,::第-號-、-第 中該乘數輸入端子η與該第一差動轉換之^’其 緩衝器2之輸出端與該第—除數輸人端子12 , Π數輸入端子12連接-電容,藉該第-乘數訊號電= =rr=,減少取樣之』==2 Π7__31 H爾二差轉換器32餘得第-紐職%並^: ^數=節ac,該脈波產生器4係接收其一除數轉換訊號Iav並藉以 產生第脈波訊號CLK1與-第二脈波訊號CLK2分 出端及-第二脈波輸出端輸出,而該第—除法單元51係、接收^除=3 訊號lav、第二除數訊號Vr與第一脈波訊號clki而執行除法輸出一第一、 商數訊號SMP1,該第-乘法單元61接收該第一商數訊號議,並接收 該第二差動轉換器32輸出之乘數轉換訊號Iae與該第 計算該第-商數訊號瞻與乘數轉換訊號Iac之乘積輪出j一乘積訊 號Va,該第三差動轉換器33接故該第一乘積訊號%轉換輪出一乘積轉換 訊號la ;該第二除法單元52接收該除數轉換訊號^ 與該第二脈波訊號CLK2運算輸出-第二商數訊號瓣2,一該第二二單 元62再接收該帛三差動轉換器33輸出之乘積無訊號^、該第二商數訊 號SMP2與該第二脈波訊號CLK2以形成該乘積轉換訊號以與第二絲訊 7 1333600 ' 號SMP2相乘之一輸出訊號Vo ;上述之第-差動轉換器3卜第二差動轉 換益32與第三差動轉換器33係具有將電壓依一定比例轉換為電流之功 能’由於該第一差動轉換器3卜第二差動轉換器32與第三差動轉換器33 係由同-製程巾產生,因此具有相同之誤差絲:在產生輸出訊號v〇之 過程中該第-差動轉換器31產生之除數轉換訊號⑹經過了該第一除法單 το 51與該第二除法單元52之兩讀法運算而累除了兩次誤差係數形成一 除法誤差;而該第二差動轉換器32產生之乘數轉換訊號如經過該第一乘 法單7G 61產生該第一乘積訊號Va,該第一乘積訊號…再經過該第三差動 轉換器33轉換為乘積轉換訊號Ia,如此該第一乘數訊號Vac亦經過了該 φ 第一差動轉換器32與第三差動轉換器33累乘了兩次誤差係數形成-乘法 誤差,因而在第二乘法單元62中該乘積轉換訊號Ia與該第二商數訊號 SMP2相乘可將g除兩奴誤差錄及帛乘兩次之誤差係數兩相抵銷,使 其輸出訊號Vo中無誤差係數之影響。 本發明之實施電路與各節點波形請參閱第2圖與第3圖,該第一乘數 訊號Vac經過一緩衝器2連接該第二差動_器32形成該乘數轉換訊號 lac,而該緩衝器2後端跨接一電阻21與該第一除數輸入端子π連接,並 該第一除數輸入端子12連接一電容以形成該第一除數訊號Vav,該第一除 數訊號Vav輸入該第一差動轉換器31形成一除數轉換訊號Iav,該除數轉 鲁 換訊號lav與該第一除數訊號Vr輸入該第一除法單元51 ,該第一除法單 元51包括-開關元件S2與一電容C3所組成之線性充電電路以及一比較 器U7所組成之一方波產生器,藉由該除數轉換訊號丨狀於該開關元件幻 斷開之期間對該電;g^C3充電’該比較S U7之兩輸人端連接該電容C3與 該第二除數訊號Vr,透過該線性充電電路形成一鋸齒波電壓輸入該第一除 法單70 51之方波產生器與該第二除數訊號Vr比較,該比較器U7於該電 容C3之峰值電壓超過該第二除數訊號Vr時輸出高準位,該第一除法單元 51之輸出形同該第二除數訊號γΓ與該除數轉換訊號Iav進行除法運算所 得到之一時間週期;該第二除法單元52係由一或閘(〇R gate) uu、一 及閉(AND gate) U4與一比較器υΐ0所構成,該比較器υιο取得該除數 轉換訊號lav之分流與該第三除數訊號Ve,同樣藉由比較該除數轉換訊號 8 1333600 lav與該第三除數訊號Ve之大小進行除法運算得到—時間週期,經過該或 閘(OR gate) U11與及閘(AND gate)说輸入至該第二乘法單元& ;該 脈波產生器4包括-第1閘單元41與-第二閃閘單元42,該第一閃問 單元41與第二閃閘單元42可使用兩SR型正反器(SR_flip fl〇p)形成, 該第-閃閘單元41與該第二閃閘單元42之輸入與輸出關係為所屬技術領 域之技術人員所熟知的,在此不多加說明’該第一除法單元51與第二除 法單元52之輸出分別連接於該第一閃閘單元μ與第二閃問單元42之一 輸入’而配合該第-除法單元51與第二除法單元52之輸出,該第一閃閉 單元41與第二閃閘單元42之-輸出端輸出該第一脈波訊號clki與第二 φ 脈波訊號CLK2 ’該第一閃閘單元41與第二閃閘單元42之間更包括一週 舰制電路,該週期限制電路包括-開關元件S6與一電容C4形成之線性 充電電路及-比較器U8和-定電壓源,該週期限制電路之輸出連接至該 第-閃閘單元41與第二問閘單元42之另一輸入端,該週期限制電路之充 電時間由該第-脈波訊號CLK1㈣,當該勒關電路之電容以電壓 超過該定電壓源時輸出-脈波使該第一脈波訊號CLK1與第二脈波訊號 CLK2變為低準位;該第-脈波訊號CLK1經過一反閉(Ν〇τ 仍控 制,第-除法單元51中線性充電電路之開關元件S2,藉此控制該第一除 法單元51之動作時序’該第一脈波訊號CLK1經過該反閉(n〇t • U5後再經過一反或閘⑽R gate)说連接至該第一乘法單元ό1 ;該第一 乘法單元61係、由-峰值檢波器與—電壓積分器所構成,其_該電壓積分 器係由H關元件S5與-電容C5組成,制關元件%之導通與斷開受 控於該第-脈波訊號CLK卜該電容C5與該第二差動轉換器32連接,該 電容C5於鮮-Μ減CLK1為鲜_齡絲讎峨以充電, 而鱗值檢波器係由一取樣開關S7、一電容C6與一比較器χ3形成,當 該第-除法單兀51輸出之第一商數訊號SMpi為高準位時使該峰值檢波 器之取樣開關S7導通’該第一商數訊號SMpi對該第一乘法單元&而言 形同-用於與職絲之時間獅,該峰值檢波^觸電壓積分器所積分 之電,取樣,令該電容C6充電至與該電容^相同電壓準位,同時該第一 閃閘單το 41亦輸出該第-脈波訊號CLK1,經過該反間(n〇t g⑽u5 9 1333600 TCLRI = ^Digital transmission diagram! Road block diagram 'This circuit includes - multiply three divisor input terminals noisy first input; = v - second divisor input terminal. And the second divisor signal Vr and a third divisor signal Ve,:: the first number -, - the middle of the multiplier input terminal η and the first differential conversion of the output of the buffer 2 Connected to the first divisor input terminal 12, the number of input terminals 12 - capacitor, by the first - multiplier signal == rr =, reduce the sampling of 』 == 2 Π 7__31 H Er diconverter 32 The first-new job % and ^: ^ number = section ac, the pulse generator 4 receives a divisor conversion signal Iav and generates a pulse signal CLK1 and a second pulse signal CLK2. The second pulse output terminal outputs, and the first dividing unit 51 receives, divides the =3 signal lav, the second divisor signal Vr and the first pulse signal clki to perform a division output, a first, quotient signal SMP1 The first multiplication unit 61 receives the first quotient signal and receives the multiplier conversion signal Iae output by the second differential converter 32 and the first calculation of the first quotient signal and the multiplier conversion signal Iac The product of the product multiplies the j-product signal Va, and the third differential converter 33 receives the first product signal % conversion wheel to output a product conversion signal la; the second dividing unit 5 2 receiving the divisor conversion signal ^ and the second pulse signal CLK2 to calculate an output - the second quotient signal valve 2, and the second two unit 62 receives the product of the output of the third differential converter 33 without a signal ^ The second quotient signal SMP2 and the second pulse signal CLK2 form the product conversion signal to be multiplied by the second line signal 7 1333600 'SMP2 to output the signal Vo; the first-differential converter 3 The second differential conversion benefit 32 and the third differential converter 33 have a function of converting the voltage into a current according to a certain ratio 'Because the first differential converter 3 and the second differential converter 32 are the third difference The dynamic converter 33 is generated by the same-process towel, and thus has the same error wire: the divisor conversion signal (6) generated by the first-differential converter 31 passes through the first division table in the process of generating the output signal v〇 Το 51 and the second division unit 52 perform two reading operations to eliminate two error coefficients to form a division error; and the second differential converter 32 generates a multiplier conversion signal as the first multiplication list 7G 61 Generating the first product signal Va, the first product signal... The third differential converter 33 is converted into a product conversion signal Ia, such that the first multiplier signal Vac also passes through the φ first differential converter 32 and the third differential converter 33 to multiply the error coefficient twice. Forming a multiplication error, so that the product multiplication signal Ia is multiplied by the second quotient signal SMP2 in the second multiplication unit 62, and the error coefficient of the two slave error records and the 帛 multiplication is offset by two. There is no error coefficient in the output signal Vo. For the implementation circuit of the present invention and the waveforms of the respective nodes, please refer to FIG. 2 and FIG. 3 , the first multiplier signal Vac is connected to the second differential _ 32 via a buffer 2 to form the multiplier conversion signal lac. The back end of the buffer 2 is connected to the first divisor input terminal π via a resistor 21, and the first divisor input terminal 12 is connected to a capacitor to form the first divisor signal Vav. The first divisor signal Vav Inputting the first differential converter 31 to form a divisor conversion signal Iav, the divisor switching signal lav and the first divisor signal Vr are input to the first dividing unit 51, and the first dividing unit 51 comprises a switch a square wave generator composed of a component S2 and a capacitor C3 and a square wave generator formed by a comparator U7, wherein the divisor conversion signal is shaped during the magical disconnection of the switching element; g^C3 Charging 'the two input terminals of the comparison S U7 are connected to the capacitor C3 and the second divisor signal Vr, and a sawtooth wave voltage is input through the linear charging circuit to input the square wave generator of the first dividing unit 70 51 and the first Comparing the two divisor signals Vr, the comparator U7 is at the peak of the capacitor C3 And outputting a high level when the voltage exceeds the second divisor signal Vr, and the output of the first dividing unit 51 is formed by dividing the second divisor signal γΓ with the divisor conversion signal Iav for one time period; The second dividing unit 52 is composed of a 闸R gate uu, an AND gate U4 and a comparator υΐ0, and the comparator υιο obtains the divisor of the divisor conversion signal lav and the third The divisor signal Ve is also divided by comparing the magnitude of the divisor conversion signal 8 1333600 lav and the third divisor signal Ve to obtain a time period through which the OR gate U11 and the AND gate are connected. The input to the second multiplication unit & the pulse generator 4 includes a first gate unit 41 and a second flash gate unit 42, and the first flash unit 41 and the second flash unit 42 can be used. The two SR type flip-flops (SR_flip fl〇p) are formed, and the input and output relationship between the first-flash gate unit 41 and the second flash gate unit 42 are well known to those skilled in the art, and are not described here. 'The output of the first dividing unit 51 and the second dividing unit 52 are respectively connected And inputting one of the first flashing unit μ and the second flashing unit 42 to match the outputs of the first dividing unit 51 and the second dividing unit 52, the first flashing unit 41 and the second flashing unit 42 The output terminal outputs the first pulse signal clki and the second φ pulse signal CLK2 ′. The first flash unit 41 and the second flash unit 42 further comprise a one-day ship circuit, and the cycle limiting circuit includes- a switching circuit S6 and a capacitor C4 form a linear charging circuit and a comparator U8 and a constant voltage source. The output of the period limiting circuit is connected to the other input terminals of the first-thrush gate unit 41 and the second gate unit 42. The charging time of the period limiting circuit is caused by the first pulse signal CLK1 (four), and when the capacitance of the circuit is higher than the constant voltage source, the output pulse sends the first pulse signal CLK1 and the second pulse signal. CLK2 becomes a low level; the first pulse signal CLK1 is controlled by a reverse blocking (Ν〇τ is still controlled, the switching element S2 of the linear charging circuit in the first dividing unit 51, thereby controlling the action of the first dividing unit 51 Timing 'the first pulse signal CLK1 passes the reverse closing (n〇t • U5 is then connected to the first multiplication unit ό1 via a reverse gate (10) R gate; the first multiplication unit 61 is composed of a -peak detector and a voltage integrator, and the voltage integrator is It is composed of an H-off element S5 and a -capacitor C5. The turn-on and turn-off of the gate element % is controlled by the first pulse signal CLK. The capacitor C5 is connected to the second differential converter 32. The capacitor C5 is fresh. - Μ CLK CLK1 is fresh _ 雠峨 silk to charge, and the scale detector is formed by a sampling switch S7, a capacitor C6 and a comparator χ 3, when the first quotient of the first division 兀 51 output When the signal SMpi is at a high level, the sampling switch S7 of the peak detector is turned on. The first quotient signal SMpi is the same for the first multiplication unit & the time lion used for the ray, the peak detection ^The integrated power of the voltage integrator, sampling, so that the capacitor C6 is charged to the same voltage level as the capacitor ^, and the first flash gate το 41 also outputs the first pulse signal CLK1, after the reverse (n〇t g(10)u5 9 1333600 TCLRI = ^
Va 而 _ IacxTcLRi C5^ (4) (5)Va and _ IacxTcLRi C5^ (4) (5)
其中TCLRI為lac對C5充電之時間,將(4)代入(5)得到Where TCLRI is the time when lac charges C5, and (4) is substituted into (5)
VaVa
IacxVrxC3 C5IacxVrxC3 C5
Vn - IaxTCLRl Cl~~ .(6) .(7) •(8) 其中TCLR2為la對Cl充電之時間,將第(3)、(6)、(7)式代入第 (8)式可得到 V〇 = M3xM2xC3^ χ VrxVacxVeVn - IaxTCLRl Cl~~ .(6) .(7) •(8) where TCLR2 is the time for la to charge Cl, and substituting equations (3), (6), and (7) into equation (8) V〇= M3xM2xC3^ χ VrxVacxVe
ClxC5xMl2 Vav^ ......(9)ClxC5xMl2 Vav^ ......(9)
又 M2=M3 = 1X Ml = 係數,且將 Vav= (2>/^/π) x Vac之均方根值,整理得到: (π/2) X其中X為差動轉換器之誤差 Vrms代入,其中Vrms為該第一乘數訊號 y〇 - 0.5xVrxVexVac Vrms) v〇之計算式中因第二差動轉換器32與第三差動轉換器%之轉換係數 M2與M3位於分子,¾分母為第一差動轉換器31之轉換係數吣之平 方’因而Μ卜M2與M3巾之誤差係數X被抵銷,因此與製程或溫度有關 的變數Μ卜M2、NO、(:卜C3與C5全部互相抵消,達到溫度係數與 程造成之誤差抵消之目的。 雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任 何熟習此技藝者,在不脫離本發明之精神和範圍内,而所作之些許更動與 1333600 =所她顺謝麵之申請專利 综上所述,本發明較習用之電路増進上 ,^ 及進步性之法纖專利要件,輪效新穎性 明專利巾請案,以勵創作,至感德便。 ‘胃局核准本件發 【圖式簡單說明】 第1圖係本㈣之電路方塊圖。 第2圖係本發明之實施電路圖。 第3圖係該實魏鱗.點之波形圖。 【主要元件符號說明】 12 13 14 15 2 21 31 32 33 4 41 42 51 52 61 62 11 · · · · 乘數輪入端子 第一除數輸入端子 第二除數輸入端子 第三除數輸入端子 輪出端子 緩衝器 電阻 第一差動轉換器 第二差動轉換器 第三差動轉換器 脈波產生器 第一閂閘單元 第二閂閘單元 第一除法單元 第二除法單元 第一乘法單元 第二乘法單元 12M2=M3 = 1X Ml = coefficient, and the root mean square value of Vav= (2>/^/π) x Vac is obtained: (π/2) X where X is the error of the differential converter Vrms Where Vrms is the first multiplier signal y〇-0.5xVrxVexVac Vrms) v〇 in the calculation formula because the conversion coefficients M2 and M3 of the second differential converter 32 and the third differential converter are located in the numerator, 3⁄4 denominator It is the square of the conversion coefficient 吣 of the first differential converter 31. Therefore, the error coefficient X of the M2 and the M3 towel is offset, so the variables related to the process or temperature are M2, NO, (: Bu C3 and C5) All of them cancel each other out to achieve the purpose of offsetting the error caused by the temperature coefficient and the process. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention, and those skilled in the art can not deviate from the spirit of the present invention. And within the scope, and some of the changes made with 1333600 = her application for the application of the patent, in summary, the circuit of the present invention is more conventional, and the progressive patent of the French patent, the patent of the wheel effect novelty Ask for a case, to encourage creation, to the sense of virtue. 'Stomach Bureau approved this piece BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram of the circuit of the present invention. Fig. 2 is a circuit diagram of the implementation of the present invention. Fig. 3 is a waveform diagram of the real Wei scale. Point [Description of main components] 12 13 14 15 2 21 31 32 33 4 41 42 51 52 61 62 11 · · · · Multiplier wheel input terminal First divisor input terminal Second divisor input terminal Third divisor input terminal wheel terminal buffer resistance first difference Transducer second differential converter third differential converter pulse generator first latching unit second latching unit first dividing unit second dividing unit first multiplying unit second multiplying unit 12
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96104685A TW200834278A (en) | 2007-02-09 | 2007-02-09 | Multiplier-divider with error compensation function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96104685A TW200834278A (en) | 2007-02-09 | 2007-02-09 | Multiplier-divider with error compensation function |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200834278A TW200834278A (en) | 2008-08-16 |
TWI333600B true TWI333600B (en) | 2010-11-21 |
Family
ID=44819408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW96104685A TW200834278A (en) | 2007-02-09 | 2007-02-09 | Multiplier-divider with error compensation function |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW200834278A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI489735B (en) * | 2013-02-04 | 2015-06-21 | Hon Hai Prec Ind Co Ltd | Electronic device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI496074B (en) * | 2010-04-14 | 2015-08-11 | Richpower Microelectronics | Multiplier-divider and method thereof |
-
2007
- 2007-02-09 TW TW96104685A patent/TW200834278A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI489735B (en) * | 2013-02-04 | 2015-06-21 | Hon Hai Prec Ind Co Ltd | Electronic device |
Also Published As
Publication number | Publication date |
---|---|
TW200834278A (en) | 2008-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101499730B (en) | Apparatus and method for detecting switch current of power converter | |
TWI358883B (en) | Apparatus and method for transient control in a mu | |
TWI342656B (en) | Switching controller for parallel power converters | |
TWI300655B (en) | ||
TWI228862B (en) | Converter device having power factor improving circuit | |
JPS6026463B2 (en) | AC energy measurement circuit | |
TWI345361B (en) | System and method for reducing ripple in multiphase dc-dc converter | |
JP5601965B2 (en) | Power converter | |
CN106685210A (en) | Power factor correction circuit, control method and controller | |
TWI333600B (en) | ||
TWI344742B (en) | Switching controller for power sharing of parallel power supplies | |
TW201246804A (en) | Delta-sigma ADC modulator with excess loop delay compensation | |
JP4395155B2 (en) | Synchronous clock generation circuit and analog / digital angle converter and angle detection device provided with synchronous clock generation circuit | |
TW200825278A (en) | A maximum power point tracking method and device for a wind power generator | |
CN203720238U (en) | Differential circuit, inverter and power system | |
TW200840200A (en) | Method for setting fan speed using RC frequency | |
US7908310B2 (en) | Multiplier-divider having error offset function | |
TW201138276A (en) | Parameter setting circuit and method for an integrated circuit | |
JP5446804B2 (en) | Half-bridge power converter | |
TW200828767A (en) | AC power supply apparatus and control method of its output current | |
CN102135868A (en) | Hybrid wide range multiplier and method thereof | |
RU154184U1 (en) | ACTIVE FILTER OF HIGH HARMONICS WITH THE POSSIBILITY OF COMPENSATION OF REACTIVE POWER | |
Oancea | Analysis of the performance of the mark-space method for determining the power in single-phase circuits | |
JP5981394B2 (en) | Sensor interface circuit and control method | |
TWI379495B (en) |