TWI332252B - Low resistance void-free contacts - Google Patents

Low resistance void-free contacts Download PDF

Info

Publication number
TWI332252B
TWI332252B TW095145418A TW95145418A TWI332252B TW I332252 B TWI332252 B TW I332252B TW 095145418 A TW095145418 A TW 095145418A TW 95145418 A TW95145418 A TW 95145418A TW I332252 B TWI332252 B TW I332252B
Authority
TW
Taiwan
Prior art keywords
conductive material
substrate
opening
conductive
forming
Prior art date
Application number
TW095145418A
Other languages
Chinese (zh)
Other versions
TW200739827A (en
Inventor
Masaaki Higashitani
Original Assignee
Sandisk Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/296,235 external-priority patent/US7737483B2/en
Priority claimed from US11/296,022 external-priority patent/US7615448B2/en
Application filed by Sandisk Corp filed Critical Sandisk Corp
Publication of TW200739827A publication Critical patent/TW200739827A/en
Application granted granted Critical
Publication of TWI332252B publication Critical patent/TWI332252B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region

Description

1332252 九、發明說明: 【發明所屬之技術領域】 本發明關於快閃記憶體陣列,且特別是關於快閃記憶體 陣列之結構與形成其之方法。 【先前技術】 如今所使用的有許多商業上已取得成功的非揮發性記憶 體產品,尤其是形式為小型化卡之產品,其採用一快閃 EEPROM(電性可抹除及可程式唯讀記憶體)單元陣列。此 類卡可藉由(例如)可移除地將一卡插入主機中的卡式插槽 而與主機介接。某些市售卡係C〇mpactFiashTM(cF)卡、多 媒體卡(MMC)、安全數位(SD)卡、Smart Media卡、個人標 籤(P-標籤)與Memory Stick卡。主機包括個人電腦、筆記 型電腦、個人數位助理(PDA)、各種資料通信裝置、數位 相機、蜂巢式電話、可攜式聲頻播放器、汽車聲音系統與 相似類型之設備。於上述分離卡與主機的替代性配置中, 在部分範例裡一記憶體系統會永久連接至一主機,並提供 一專屬於該主機的嵌入式記憶體。 有兩個一般記憶體單元陣列架構已應用到商業中,即 NOR與NAND。在典型的!^〇尺陣列中,記憶體單元係連接 於鄰近的位元線源極與汲極擴散區之間,並會在行方向上 延伸,其中控制閘極係連接至沿單元列延伸的字元線。一 s己憶體單το包括至少一儲存元件,其位於該源極與汲極之 間的單元通道區域之至少—部分之上。儲存元件上已程式 化的電荷位準因而控制該等單元的操作特徵,於是可藉由 U6809.doc 1332252 對已定址的記憶體單元施加適當的電壓來讀取該等單元。 此類單元之範例、其之於記憶體系统中的運用肖製造其之 方法係於下列美國專利案令給出:5 〇7〇 〇32 ; 5 〇95,m 5,313’42! ; 5’315’541 ; 5 343,〇63 ; 5 66ι 如以及 • 6,222,762。此等專利案’連同於此申請案中提及之所有其 他專利帛專利申凊案與其他公開案基於所有目的於此係 ' 以提及方式全部併入本文。 • 於一副〇陣列中,兩個以上之記憶體單元(例如16或32 個)之串列串,其連同一或多個選擇電晶體連接在個別位 元線與-參考電位之間,以形成單元行。字元線會橫跨大 量該等行内的單元而延伸。藉由使該串中的其餘單元硬開 啟以便流過-_的t流係取決於儲存在已定址單元中之電 荷位準,在程式化期間便能讀#並確認一行内的一個別單 元—N娜架構陣列之範例與其之操作成一記憶體系統 之部分係於下列美國專利案中可找到:mow ; 籲 ,,7 ’ 6’°46,935以及6,522,58。》已發現NAND記憶體 裝置特別適於大量儲存應用,例如該等運用可移除式記憶 卡者。 •目前快閃EEPR⑽陣列的電荷儲存元件,如先前所引用 之專利案中所論述,係最常見的導電浮動閉極,其通常係 由導電摻雜的多晶石夕材料所形成。可用於快請pR〇M系 統之一替代類型之記憶體單元利用—非導電介電材料替代 該導電浮動閘極來以非揮發性方式儲存電荷。由二氧化 石夕、氮化石夕與氧化石夕(〇N〇)所形成的三層介電質係夹入一 116809.doc 1332252 導電控制閘極與該記憶體單元通道上—半導電基板之表面 之間。藉由將電子從該單元通道注人該氮化物而程式化單 凡’在該氮化物中該等電子受到截獲並儲存於—受限區域 :’並藉由將熱電洞注入該氮化物而加以抹除。數種運用 介電儲存元件的特殊單元結構與陣列係說明於美國專利案 第 6,925,007號中。 ^1332252 IX. Description of the Invention: [Technical Field] The present invention relates to a flash memory array, and more particularly to a structure of a flash memory array and a method of forming the same. [Prior Art] There are many commercially successful non-volatile memory products used today, especially in the form of miniaturized cards, which use a flash EEPROM (electrically erasable and programmable only) Memory) cell array. Such cards can interface with the host by, for example, removably inserting a card into a card slot in the host. Some commercially available cards are C〇mpactFiashTM (cF) cards, multimedia cards (MMC), secure digital (SD) cards, Smart Media cards, personal tags (P-tags), and Memory Stick cards. Hosts include personal computers, notebook computers, personal digital assistants (PDAs), various data communication devices, digital cameras, cellular phones, portable audio players, car sound systems, and similar types of devices. In an alternative configuration of the split card and the host, in some examples, a memory system is permanently connected to a host and provides an embedded memory dedicated to the host. There are two general memory cell array architectures that have been applied in the commercial, namely NOR and NAND. In the typical! In the scale array, the memory cell is connected between the adjacent bit line source and the drain diffusion region and extends in the row direction, wherein the control gate is connected to the word line extending along the cell column. A suffix body το includes at least one storage element located at least over a portion of the cell channel region between the source and the drain. The programmed charge levels on the storage elements thus control the operational characteristics of the cells, and the cells can be read by applying an appropriate voltage to the addressed memory cells by U6809.doc 1332252. Examples of such units, their use in memory systems, are manufactured in the following US patents: 5 〇7〇〇32; 5 〇95, m 5,313'42!; 5'315 '541; 5 343, 〇 63; 5 66ι as and • 6,222,762. These patents, together with all other patents, patents and other publications referred to in this application, are hereby incorporated by reference in its entirety for all purposes. • In a pair of 〇 arrays, a string of more than two memory cells (eg, 16 or 32) connected between the individual bit lines and the - reference potential with the same or multiple select transistors Form a unit row. The word line extends across a large number of cells within the row. By making the remaining cells in the string hard-on so that the t-stream that flows through -_ depends on the level of charge stored in the addressed location, it is possible to read # and confirm a particular cell in a row during stylization - An example of a N-Architecture array and a portion of its operation into a memory system can be found in the following U.S. patents: mow; y, 7' 6'° 46, 935 and 6, 522, 58. The NAND memory device has been found to be particularly well suited for mass storage applications, such as those utilizing removable memory cards. • Current charge storage elements of flash EEPROM (10) arrays, as discussed in the previously cited patents, are the most common conductive floating closed electrodes, which are typically formed of conductively doped polycrystalline materials. An alternative type of memory cell that can be used in the pR〇M system is to replace the conductive floating gate with a non-conductive dielectric material to store charge in a non-volatile manner. The three-layer dielectric system formed by the dioxide, the nitrite, and the oxidized stone is sandwiched into a 116809.doc 1332252 conductive control gate and the memory cell channel - a semiconductive substrate Between the surfaces. Stylized by electrons injecting the nitride from the cell channel, in which the electrons are intercepted and stored in a confined region: and are injected by injecting a thermal cavity into the nitride. Erase. A number of special cell structures and arrays utilizing dielectric storage elements are described in U.S. Patent No. 6,925,007. ^

如同在大多數積體電路應用中—般,快閃EEpR〇M系統 中亦存在用以縮小實施某些積體電路功能所需的矽基板面 積壓力 i而要增加可以儲存在-石夕基板所具給定面As in most integrated circuit applications, the flash EEpR〇M system also has the 矽 substrate area pressure required to reduce the performance of some integrated circuit functions, and the increase can be stored in the -shixi substrate. Given surface

積中之數位資料的數量,以便增加一給定大小記憶卡及其 它封裝類型之儲存容量,或同時增加容量並減小大小。增 加貝料儲存密度之-種方法係|記憶體單元儲存多個資料 位元。此係藉由將一浮動閘極電荷位準電壓範圍之一視窗 劃分為兩種以上的狀態而實現。使用四種此類狀態使得每 個單元可儲存兩個資料位元,人種狀態可每單元儲存三個 資料位70,以此類推。一種多重狀態快閃EEpR〇M結構與 操作係說明於美國專利案第5,〇43,94〇與5 172 338號中,該 等專利案係以提及方式併入本文。 尚可藉由縮小該等記憶體單元及/或整個陣列之實體大 小來獲得增加的資料密度。由於處理技術隨時間獲得改善 進而允許實施更小的特徵大小,因此積體電路大小之縮小 一般便能針對所有類型之電路加以執行❶然而,採取此方 式通常可使一給定的電路佈局至多能縮小至何種程度受到 限制,因為經常會有至少一特徵在其能縮小多少方面受到 H6809.doc 1332252 限制。一旦以上所述發生時’設計者將會尋求實施該電路 之一新的或不同的佈局或架構,以便能減小執行該電路功 能所需要的矽面積量〇上述快閃EEPROM積體電路系統之 縮小可能會觸及此等限制。 一種用以形成小單元之方式係採用一自我對準淺溝渠隔 離(STI)技術。此會運用811結構來隔離鄰接的浮動閘極單 元串’例如該等屬於NAND類型記憶體陣列者。根據此技 術,首先會形成閘極介電(穿隧介電)層與浮動閘極多晶矽 層。接著,STI結構係藉由蝕刻該等閘極介電與浮動閘極 多晶石夕層以及該下方基板而形成,進而形成溝渠。隨後, 會將此等溝渠以一適當材料(例如,氧化物)加以填充,進 而形成STI結構。介於STI結構間之閘極介電與浮動閘極多 晶石夕層的部分係藉由該等STI結構來加以界定,並因而可 視為疋對該等STI結構的自我對準。一般而言,該等sti结 構會具有與可藉所運用處理技術而產生之最小特徵大小相 專的寬度。STI結構通常亦由該最小特徵大小加以分隔開 來。於是,介於STI區域間之閘極介電與浮動閘極多晶矽 層的部分亦可具有與該最小特徵大小相等的寬度。該等浮 動閘極多晶矽之條狀物會在稍後步驟中進一步形成個別的 汁動閘極。於部分範例中’浮動閘極可具有能夠僅運用微 影圖案化來製造之比該最小特徵大小小的尺寸。用於形成 此類浮動閘極之方案的範例係於美國專利案6,888,755中提 出。 在NAND與其他非揮發性記憶體類型中,對浮動閘極與 116809.doc 1332252 在其上經過之控制閘極之間的電場耦合量(耦合比率)會小 二地加以控制。該耦合量決定位處於該控制閘極上之電壓 當中會有多少將輕合至該等下方浮動閘極。該百分比麵合 係由許多因素來加以決定’其中包括該浮動閘極重疊該控 制閘極表面的表面積量。經常需要藉由使重疊面積量最大 化而使得該等浮動與控制閘極間之百分比耦合最大化。一 種用以提升耦合面積之方法係由Yuan等人在美國專利案第 5,343’063號中加以說明。於該專利案中所說明之方法會使 該等浮動閘極變得比通常用以提供可耦合該等控制閘極之 大垂直表面厚。 一記憶體陣列之個別部分(例如,一 NAND陣列串)通常 係運用橫跨該記憶體陣列延伸之導電線來加以連接在一 起。可將部分導電線連接至該基板之部分,以便能對該等 部分電連接。一般而言,藉由於一覆蓋該基板之介電層中 形成一開口,並藉由以諸如金屬或摻雜多晶矽之導電材料 填充該開口來形成一導電插塞而形成此類連接。由於記憶 體縮小’故而此等插塞的橫向尺寸通常會連同其他記憶體 特徵而縮小。然而,此等插塞的垂直尺寸可能不會依比例 而縮小。此可能是因為浮動閘極之厚度仍保#很高,或基 於其他理由》 一開口之縱橫比係該開口之高度與橫向尺寸的比率。圖 1顯示於一基板105上一介電層103中的開口 ιοί,開口 1〇1 具有一為XI之橫向尺寸(寬度)與一為Y1之高度。開口1〇1 之縱橫比係Y1/XI。一般而言,由於記憶體縮小,故而用 U6809.doc •10· 1332252The amount of digital data in the product to increase the storage capacity of a given size memory card and other package types, or to increase capacity and size at the same time. The method of increasing the storage density of the shell material is that the memory unit stores a plurality of data bits. This is achieved by dividing one window of a floating gate charge level range into two or more states. Four such states are used such that each cell can store two data bits, the ethical state can store three data bits 70 per cell, and so on. A multi-state flash EEpR 〇M structure and operating system is described in U.S. Patent Nos. 5,514,94, and 5,172,338, each incorporated herein by reference. Increased data density can also be obtained by reducing the physical size of the memory cells and/or the entire array. Since processing techniques are improved over time to allow for smaller feature sizes, the reduction in integrated circuit size can generally be performed for all types of circuits. However, this approach can often result in a given circuit layout. The extent to which it is reduced is limited because there are often at least one feature that is limited by H6809.doc 1332252 in terms of how much it can be reduced. Once this happens, the designer will seek to implement a new or different layout or architecture of the circuit in order to reduce the amount of area required to perform the function of the circuit, the flash EEPROM integrated circuit system described above. Shrinking may hit these limits. One way to form small cells is to use a self-aligned shallow trench isolation (STI) technique. This would utilize the 811 structure to isolate adjacent floating gate cells', such as those belonging to a NAND type memory array. According to this technique, a gate dielectric (via dielectric) layer and a floating gate polysilicon layer are first formed. Next, the STI structure is formed by etching the gate dielectric and the floating gate polycrystalline layer and the underlying substrate to form a trench. Subsequently, the trenches are filled with a suitable material (e.g., oxide) to form an STI structure. The portions of the gate dielectric and floating gate polysilicon layers between the STI structures are defined by the STI structures and thus can be considered to be self-aligned to the STI structures. In general, the sti structures will have a width that is comparable to the smallest feature size that can be produced by the processing techniques employed. STI structures are also typically separated by this minimum feature size. Thus, the portion of the gate dielectric and floating gate polysilicon layer between the STI regions may also have a width equal to the minimum feature size. The strips of the floating gate polysilicon will further form individual juice gates in a later step. In some examples, the 'floating gate' may have a size that can be fabricated using only lithographic patterning that is smaller than the minimum feature size. An example of a solution for forming such a floating gate is set forth in U.S. Patent No. 6,888,755. In NAND and other non-volatile memory types, the amount of electric field coupling (coupling ratio) between the floating gate and the control gate over which 116809.doc 1332252 passes is controlled to be small. The amount of coupling determines how much of the voltage at the control gate will be lightly coupled to the lower floating gate. The percentage face is determined by a number of factors, including the amount of surface area over which the floating gate overlaps the surface of the control gate. It is often desirable to maximize the percentage coupling between the floats and the control gates by maximizing the amount of overlap area. A method for increasing the coupling area is described in U.S. Patent No. 5,343,063 to Yuan et al. The method described in this patent will cause the floating gates to be thicker than the large vertical surfaces typically used to provide coupling to the control gates. Individual portions of a memory array (e.g., a NAND array string) are typically connected together using conductive lines extending across the memory array. A portion of the conductive lines can be attached to portions of the substrate to enable electrical connection to the portions. Generally, such a connection is formed by forming an opening in a dielectric layer covering the substrate and forming a conductive plug by filling the opening with a conductive material such as a metal or doped polysilicon. Due to memory shrinkage, the lateral dimensions of such plugs typically shrink along with other memory features. However, the vertical dimensions of such plugs may not shrink in proportion. This may be because the thickness of the floating gate is still high, or for other reasons. The aspect ratio of an opening is the ratio of the height of the opening to the lateral dimension. 1 shows an opening ιοί in a dielectric layer 103 on a substrate 105. The opening 1〇1 has a lateral dimension (width) of XI and a height of Y1. The aspect ratio of the opening 1〇1 is Y1/XI. In general, U6809.doc •10· 1332252 is used due to memory shrinkage.

以對下方基板形成接點之開口的縱橫比會提升,因為該等 垂直尺寸並沒有相對該等橫向尺寸而依比例地縮小。於部 分較新穎之裝置中,用以形成一接點之開口寬度可係7〇1 米或更小。該介電層之厚度可係3000埃(3〇〇奈米)或更大= 縱橫比的提升會在形成良好品質之接點上出現某些問 題。插塞通常係#由沉積一導電材料來製成,使得該材料 會填充-開口。然而’纟開口具有高縱橫比的情況下,所 沉積之材料可能無法完全填充一開口。於部分情況中在 一開口中所沉積之導電材料中形成空隙。圖2顯示一具有 縱橫比為Y2/X2之開口範例,其會讓導電材料沉積於其本 身中以形成一插塞210。然而,在插塞21〇内,由於該開口 之深度形成一空隙212。靠近該開口頂部之沉積會在完全 填充較低部分之前關閉該開口’使得空隙2丨2係包含於插 塞210中。此類空隙可因提升該插塞之電阻抗、妨礙電流 與產生熱而導致裝置失效。部分材料具有即便是在具有高 縱橫比之開口中仍能夠形成良好品質插塞的良好填充特 性。然而’該等能夠產生無空隙插塞之材料的部分具有相 當尚的阻抗性,使得該插塞之阻抗提升,如此並非所希望 的。某些形成技術亦具有較其他技術佳的填充特性。 因此’對於一種以一即便在高縱橫比開口之情況下仍能 形成無空隙插塞之方式來形成導電插塞的方法有所需求。 對於一種形成此種插塞使得其具有一較低整體阻抗的方法 亦有所需求。對於一種以一作為記憶體陣列形成之部分的 有效率方式來形成此類接點的方法亦有所需求。對於具有 116809.doc 1332252 低阻抗之無空隙插塞以及對於具有此 塞之記憶體陣列亦有所需求。 【發明内容】 一種複合插塞係由一沉積以部分填充一開口的第一導電 材料與-會填充該開D之剩餘部分的第二導電材料來形 成。選擇具有良好填充特性的第一材料,使得即便在一且 有高縱橫比之開口中於該第―材料中仍無形成任何空隙:The aspect ratio of the opening forming the contacts to the lower substrate is increased because the vertical dimensions are not scaled down relative to the lateral dimensions. In some of the more novel devices, the width of the opening used to form a joint may be 7 〇 1 m or less. The thickness of the dielectric layer can be 3,000 angstroms (3 angstroms) or more = an increase in the aspect ratio can present certain problems at the joints that form good quality. The plug is typically made by depositing a conductive material such that the material fills the opening. However, in the case where the opening has a high aspect ratio, the deposited material may not completely fill an opening. In some cases, voids are formed in the conductive material deposited in an opening. Figure 2 shows an example of an opening having an aspect ratio of Y2/X2 which deposits a conductive material in its body to form a plug 210. However, in the plug 21, a gap 212 is formed due to the depth of the opening. The deposition near the top of the opening closes the opening before completely filling the lower portion so that the void 2丨2 is contained in the plug 210. Such voids can cause device failure by increasing the electrical impedance of the plug, impeding current and generating heat. Some materials have good filling characteristics that can form good quality plugs even in openings with high aspect ratios. However, such portions of the material capable of producing a void-free plug have a relatively high impedance such that the impedance of the plug is increased, which is not desirable. Some forming techniques also have better filling characteristics than other techniques. Therefore, there is a need for a method of forming a conductive plug in such a manner that a void-free plug can be formed even in the case of a high aspect ratio opening. There is also a need for a method of forming such a plug such that it has a lower overall impedance. There is also a need for a method of forming such contacts in an efficient manner as part of the formation of a memory array. There is also a need for a void-free plug having a low impedance of 116809.doc 1332252 and for a memory array having such a plug. SUMMARY OF THE INVENTION A composite plug is formed by a first conductive material deposited to partially fill an opening and a second conductive material that fills the remainder of the open D. The first material having good filling characteristics is selected such that no voids are formed in the first material even in a high aspect ratio opening:

在沉積該第-材料並部分填充該開口之後,該開口的剩餘 部分具有-減小的縱橫比。此剩餘部分隨後係運用一具有 低阻抗性m;材料來加以填充,使得該插塞具有一 低的整體阻抗。After depositing the first material and partially filling the opening, the remaining portion of the opening has a reduced aspect ratio. This remainder is then filled with a material having a low resistance m; such that the plug has a low overall impedance.

類無空隙、低阻抗插 選擇該第-材料之厚度使得在沉積該第—材料之後,該 開口之剩餘部分具有—經計算為最大值,或近乎最大值= 可在無產生空隙的情況下由該第二材料來加以填充之縱橫 比。因此’該第二材料之厚度在可能的情況下變得較大, 而該第-材料之厚,度則變得較小。此提供低阻抗因為該 第二材料之阻抗性小於該第一材料之阻抗性。 於NAND决閃δ己憶體陣列中,低阻抗、無空隙插塞可 在具有高縱橫比之開口中形成於一 NAND串的任一端。於 任=端之插塞可同時形成。於此類Nand串之一端,插塞 係藉由共用源極線而電連接在一起。於此類nand串之 另一端,對延伸於串上之位元線形成連接。 【實施方式】 圖3A顯不一基板32〇之一部分一覆蓋基板之介電層 116809.doc •12- 1332252 322以及一於介電層322中延伸至基板320之表面326之開口 324的斷面。開口 324具有一為X3之寬度與一為Υ3之高 度。因此’開口 324之縱橫比係Υ3/χ3。 圖3B顯示在沉積一第一導電材料以於開口 324中形成第 一導電部分328後之基板320與介電層322的斷面》第一導 電材料係於開口 324中沉積達一為γ4的厚度。第一導電材 料於此 >儿積期間通常亦沉積於該介電層322之頂部表面330 上,然而頂部表面330上之材料隨後可加以移除。該第一 導電材料之部分亦可沉積於開口 324之側壁上,然而此於 圖3Β中並未加以顯示。可選擇能在高縱橫比開口中提供良 好、無空隙沉積之材料來作為第一導電材料,即便是其可 能具有比其他材料高的阻抗性。尤其是,可選擇針對一具 有縱橫比Υ3/Χ3之開口具有適當填充特性的第一導電材 料。運用低壓化學汽相沉積(LpcvD)或其他方法所沉積之 摻雜多晶矽係此種材料的一項範例。在沉積第一導電部分 328之後,開口 324係填充達一為¥4之高度並留下一仍未 填充的Y5之深度。因此,開口 324之未填充部分325在沉積 第一導電材料之後具有一為γ5/χ3之縱橫比。縱橫比 Υ5/Χ3係小於為Υ3/Χ3之初始縱橫比。 圖3C顯示在沉積一第二導電材料以在開口 324之未填充 部分325中形成第二導電部分332後的斷面。可就其之諸如 低阻抗性的電子性質來選擇該第二導電材料。該第二導電 材料具有比該第一導電材料低的阻抗性。 可具有比該第-導電材料差的填充特性。例= \ 16809.doc •13- 丄幻2252The void-free, low-impedance plug selects the thickness of the first material such that after depositing the first material, the remainder of the opening has - calculated as a maximum, or near maximum = can be produced without voids The second material is filled to fill the aspect ratio. Therefore, the thickness of the second material becomes larger as the case may be, and the thickness of the first material becomes smaller. This provides low impedance because the impedance of the second material is less than the impedance of the first material. In a NAND flashback delta recall array, a low impedance, void free plug can be formed at either end of a NAND string in an opening having a high aspect ratio. Plugs at the end = can be formed simultaneously. At one end of such a Nand string, the plugs are electrically connected together by a common source line. At the other end of the nand string, a connection is made to the bit lines extending over the string. [Embodiment] FIG. 3A shows a section of a substrate 32 一 a dielectric layer 116809.doc • 12- 1332252 322 covering the substrate and a section 324 extending into the opening 324 of the surface 326 of the substrate 320 in the dielectric layer 322. . The opening 324 has a width of X3 and a height of Υ3. Therefore, the aspect ratio of the opening 324 is Υ3/χ3. 3B shows a section of the substrate 320 and the dielectric layer 322 after deposition of a first conductive material to form the first conductive portion 328 in the opening 324. The first conductive material is deposited in the opening 324 to a thickness of γ4. . The first conductive material is also typically deposited on the top surface 330 of the dielectric layer 322 during this > however, the material on the top surface 330 can then be removed. Portions of the first electrically conductive material may also be deposited on the sidewalls of the opening 324, however this is not shown in Figure 3A. A material that provides good, void-free deposition in the high aspect ratio opening can be selected as the first conductive material, even though it may have higher resistance than other materials. In particular, a first electrically conductive material having suitable filling characteristics for an opening having an aspect ratio Υ3/Χ3 can be selected. An example of a doped polysilicon system deposited using low pressure chemical vapor deposition (LpcvD) or other methods. After depositing the first conductive portion 328, the opening 324 is filled to a height of ¥4 and leaves a depth of Y5 that is still unfilled. Thus, the unfilled portion 325 of the opening 324 has an aspect ratio of γ5/χ3 after deposition of the first conductive material. The aspect ratio Υ5/Χ3 is less than the initial aspect ratio of Υ3/Χ3. Figure 3C shows a cross section after depositing a second conductive material to form a second conductive portion 332 in the unfilled portion 325 of the opening 324. The second conductive material can be selected for its electronic properties such as low impedance. The second electrically conductive material has a lower resistance than the first electrically conductive material. There may be a filling characteristic that is inferior to the first conductive material. Example = \ 16809.doc •13- 丄幻2252

材料可為一若單獨用以填充一具有縱橫比y3/X3之開口則 將無法提供良好、無空隙沉積的材料。然而,該第二導電 材料在沉積第一導電部分328之後具有足夠良好的填充特 質來填充該開口 324之未填充部分325,即第二導電材料可 在一具有為Y5/X3之縱橫比的開口中產生良好、無空隙沉 積。該第二導電材料可為一金屬,例如一耐火金屬,如鎢 或些其他諸如鋁的金屬。第一導電部分328與第二導電 部分332會一起形成一會填充開口 324的複合插塞334。 由第一導電部分328與第二導電部分332所形成之複合插 塞334具有比由該第一導電材料所單獨形成之相似尺寸插 塞所將提供之阻抗低的阻抗。與單獨由該第二導電材料所 形成之插塞不同,複合插塞334不會產生空隙。因此具 有許多超越由一單一材料所形成之插塞的明顯優點。 儘管圖3A至3C所顯示之開口 324具有平滑的垂直側,然 而實際開口可能具有不規則之側且可能並非垂直。尤其 是,在一開口係穿透多重介電層而形成之情況中,該等不 同層可能具有不同的蝕刻特性,而導致部分層會比其他層 進一步地回蝕。在一層係比其下之層蝕刻得少的情況中, 可形成一突出◊此等不規則性使得填充一開口益加固難。 一項其中需要良好、低阻抗、無空隙插塞之特定應用係 於。己隱體裝置中接觸基板。尤其是,NAND快閃記憶體裝 置持續快速地變得更小,且用以形成插塞之開口的縱橫比 持續提升❶需要使此類插塞具有一低阻抗但不具有空隙。 插塞通常係用以連接至此類記憶體之記元一 116809.doc 端。由該基板之摻雜區域所連接之浮動閘極單元串列來形 成一串。 圖4顯示於記憶體陣列製造之中間階段時之一示範性 NAND串440的斷面。形成四浮動閘極記憶體單元係藉由四 個控制閘極442a至442d,其覆蓋四個浮動閘極444a至 444d,且浮動閘極444a至444d覆蓋通道區域446a至446d。 於該基板中所顯示之源極與汲極區域448a至448g會將記憶 體單元連接在一起以形成該串。一第一選擇閘極450係顯 示於NAND串440之一端附近。第一選擇閘極450由二部分 450a與450b所構成,該等二部分450a與450b分別與浮動閘 極與控制閘極層相對應。部分450a、450b係電連接在一 起。第一選擇閘極450可考慮為一汲極選擇閘極。一第二 選擇閘極452係顯示於NAND串440之另一端附近。第二選 擇閘極452可考慮為一源極選擇閘極。第二選擇閘極452由 二部分452a與452b所構成,該等二部分452a與452b分別與 浮動閘極與控制閘極層相對應。部分452a、452b係電連接 在一起。然而,選擇閘極並非持續浮動,而是由橫跨該陣 列而延伸之選擇線來連接。於一替代性配置中,一選擇閘 極可由一單一導電部分形成。選擇閘極450、452係用以控 制對NAND串440之記憶體單元所施加的電壓。一介電層 454會覆蓋浮動閘極444a至444d、控制間極442a至442d與 選擇閘極450 ' 452以及該下方基板456。介電層454可由一 單一材料或可在形成NAND串440期間於不同時間裡加以沉 積的不同介電材料之二或更多層所構成。介電層452可基 116809.doc •15· 1332252 於電子之目的考慮成一單一主體,其會提供NAND串440的 隔離。用以形成一介電層之典型材料係硼磷矽酸鹽玻填 (BPSG)。於一項範例中,一介電層係包含覆蓋大約5〇〇埃 之氮化矽(SiN)的大約2500埃之BPSG。 圖5顯示在介電層454中形成開口 560、562後之圖4的 NAND串440。開口 560、562係於鄰近源極選擇閘極452與 汲極選擇閘極450之位置處形成於NAND串440的任一端。 開口 560、562可藉由於介電層454上提供一圖案化遮罩層 而形成,該遮罩層具有與介電層454之所需開口位置對準 的開口。隨後運用一非等向性蝕刻來移除由該遮罩層所建 立之圖案中的介電質。非等向性蝕刻可為反應離子蝕刻 (RIE)或其他技術。形成開口 56〇、562使其一直延伸至基 板456之表面。在形成開口 560、562之後,可能會將雜質 引入該基板之遭曝露的部分。通常,植入諸如砷或磷的N 型雜質以降低基板456之植入區域564、566的阻抗性。或 者疋,可使雜質擴散。諸如硼的p型雜質於部分情況中亦 可加以運用。於部分範例中,此時不會引入任何雜質。稍 後,可在開口 560、562中沉積摻雜多晶矽,且來自該多晶 矽之部分摻雜物會擴散至該開口下的區域中,以在此區中 提供充足的摻雜位準。即使在沒有使轉雜多⑻的情況 中’摻雜物的植入並非永遠必要的。 鶴-般係、用以填充開口並形成插塞來接觸—基板。鶴具 有能夠形成低阻抗結構的低阻抗性,並且亦能夠承受後續 的高溫處理 '然而’於部分設計中,特別是具有較小特徵 116809.doc -16- 之較新設計’該等開口之縱橫比對於運用鎢來形成良好插 塞可能太高。摻雜多晶矽係另一種可用以填充開口並形成 插塞的導電材料。由LPCVD所沉積之多晶石夕即便是在開口 具有尚縱枚比之情況下仍會形成良好、無空隙插塞。然 而’多晶石夕具有比鎢尚的阻抗性,故而多晶石夕結構具有比 相似鎢結構高的阻抗性。欲克服此等限制,一複合插塞係 由依次沉積多晶矽與鎢來形成。 圖6顯示在開口 560、562中以及橫跨介電層454之表面沉 積一第一導電材料後之圖5的NAND串440。該第一導電材 料會在開口 560、562中形成導電部分670、672,並於介電 層454上形成第一導電層674。該第一導電材料於此範例中 係多晶矽,然而亦可使用其他材料。多晶矽可在一爐中或 藉由其他適當方法來加以沉積。摻雜多晶矽使其具有低阻 抗性。可沉積多晶石夕使其在開口 560、562中直接覆蓋基板 456。可在沉積多晶矽之前執行一清潔步驟以在開口 56〇、 562中移除基板456上所出現的任何天然氧化物或其他材 料。在以多晶矽填充開口 560、562之前停止沉積多晶矽。 可在開口 560、562中之第一導電部分670、672的厚度達到 一預定厚度時停止多晶矽沉積。可計算該預定厚度使得開 口 560、562之剩餘未填充部分676、678具有能使其本身適 於由鎢來填充的縱橫比。 圖7顯示在沉積一第二導電材料以形成第二導電層78〇後 之圖6的NAND串440。該第二導電材料於此範例中係鎢, 然而亦可使用其他材料。該第二導電材料會填充開口 116809.doc -17- 560、562之未填充部分676、678,並且橫跨該第一導電層 674而延伸^在沉積鎢之前,可沉積一阻障層(未顯示)。該 阻障層可為一由依序沉積之鈦與氮化鈦所構成的 複合層。於其他範例中,可直接於該第―導電材料沉積該 第二導電材料或一不同的阻障層可位於該第一導電材料與 該第二導電材料之間。 圖8顯示在移除多餘第一與第二導電材料後之圖7的 NAND串440。移除第一導電層674且於第一導電層674上所 沉積之第二導電層780係移除至介電層454之頂部的位準, 而留下第二導電部分882、884。第一與第二導電材料可藉 由化學機械拋光(CMP)或藉由回蝕或其他方法來加以移 除。通常,使用CMP係因為其會提供一為後續步驟所需要 的平坦化表面。剩餘第一導電部分67〇、672與第二導電部 分882、884會形成插塞886、888。插塞886、888具有比單 獨由多晶矽之插塞所提供之阻抗低的阻抗。即使開口 560、562可具有一比一般可能單獨由鎢所填充之縱橫比高 的縱檢比,插塞886、888亦為無空隙。 圖9顯示在沉積一會覆蓋第一介電層454與第二導電部分 882、8料之第二介電層990後之圖8的NAND串44〇 »此範例 之第二介電層990係一二氧化矽(si〇2)層,其係運用原矽酸 四乙醋(Si(OC2H5)4 (TEOS))以化學汽相沉積(CVD)來形 成。亦可使用其它介電材料。 圖10顯示在圖案化第二介電層990後之圖9的NAND串 440。一開口 992係在第二導電部分882上於第二介電層990 I16809.doc -18 · 1332252 中形成。開口 992大致上具有與第二導電部分882相同的橫 向尺寸。一開口 994在第二導電部分884上亦於第二介電層 990中形成。然而,如同圖1〇中所顯示,開口 994會沿 NAND串440之方向延伸得比第二導電部分884寬。此外, 開口 994會在一垂直於圖10中所顯示之斷面的方向上延 伸,使其本身會覆蓋多串的插塞。開口 992、994係運用一 經對準而使開口 992、994係位於第二導電部分882、884之 上的單一遮罩藉由一單一程序來形成。 圖11顯示在沉積且平坦化一第三導電層以形成導電部分 1102、1104後之圖10的NAND串440。一般而言,導電部分 1102、1104係由與第二導電部分882、884相同之材料(於 此範例中-鎢)來形成《此步驟使得汲極插塞886係沿該垂 直方向而延伸。源極插塞888藉由此步驟係以導電部分 1104連接至其他串(於圖11中未顯示)的其他源極接點插 塞。 圖12顯示在接續形成一第三介電層121〇、一位元線1212 與一將、及極插塞886連接至位元線1212的額外導電部分 1214後之圖11的NAND串440。第三介電層121〇可由二氧化 矽(sich)來形成。第三介電層1210可運用TE〇s藉由高密度 電漿(HDP)、電漿增強沉積或以某些其他方法來形成。額 外的導電部分1214可為鋁、銅、鎢或其他適當導電材料。 位το線1212通常係由一諸如鋁或鎢的導電材料來形成◊結 合汲極插塞886與額外導電部分1214進而一起將該NAND串 440之一端連接至位元線1212可稱為一 ”位元線接點"。 H6809.doc 19 圖13顯示圖12之NAND串440的俯視圖,並顯示額外的 NAND串1320、1322。儘管顯示三串440、1320、1322各具 有四浮動閘極單元,然而實際的記憶體陣列可在一串中具 有8、16、32或更多的浮動閘極單元,且上千串可橫跨一 基板而以二維方式延伸。個別串440、1320、1322係由延 伸於串440、1320、1324之每一側上的STI區域1324a至 1324d來加以分離。字元線1326a至1326d(以虛線指明)會覆 蓋不同串之浮動閘極,並在其覆蓋浮動閘極處形成控制閘 極(例如,NAND串440的控制閘極442a至442d)。於基板 456中,源極/汲極植入區域(例如,NAND串440的源極/汲 極植入區域448a至448g)係由鄰近記憶體單元所共享,並 且會在一 NAND串的記憶體單元間提供電連接。選擇線 1328、1330會橫跨串440、1320、1322而平行字元線1326a 至1326d而延伸,並在其本身覆蓋NAND串之通道區域處形 成選擇閘極(例如,NAND串440之選擇閘極450、452)。於 俯視圖中顯示NAND串440之插塞886、888係於NAND串 440之每一端從植入區域延伸。所顯示之NAND串440 ' 1320、1322之源極接點插塞888、1332、1334係由如圖11 中所顯示般形成之導電部分1104(共用源極線)而連接在一 起。共用源極線1104會平行字元線1326a至1326d與選擇線 1328、1330而延伸。 圖14顯示圖13之NAND串440、1320、1322的電路圖。此 外,圖14顯示以與NAND串440、1320、1322相同之方向延 伸的位元線1212、1450、1452(於圖13中未顯示)。位元線 116809.doc -20· 1332252 12、1450、1452係分別形成於串“Ο、1320、1322之 上’如同圖12的斷面中所顯示的一般。 雖然已經針對本發明之示範性具體實施例來說明本發明 之各方面,但是應瞭解,本發明有權在隨附申請專利範圍 的完整範疇内受到保護。 【圖式簡單說明】 圓1顯示先前技術之-於覆蓋一基板之介電層中之開口 的斷面。The material may be a material that does not provide good, void-free deposition if it is used to fill an opening having an aspect ratio y3/X3. However, the second conductive material has a sufficiently good filling characteristic to fill the unfilled portion 325 of the opening 324 after depositing the first conductive portion 328, that is, the second conductive material may have an opening having an aspect ratio of Y5/X3 Produces good, void-free deposits. The second electrically conductive material can be a metal such as a refractory metal such as tungsten or some other metal such as aluminum. The first conductive portion 328 and the second conductive portion 332 together form a composite plug 334 that will fill the opening 324. The composite plug 334 formed by the first conductive portion 328 and the second conductive portion 332 has a lower impedance than would be provided by a similarly sized plug formed separately from the first conductive material. Unlike the plug formed by the second conductive material alone, the composite plug 334 does not create a void. There are therefore many distinct advantages over plugs formed from a single material. Although the openings 324 shown in Figures 3A through 3C have smooth vertical sides, the actual openings may have irregular sides and may not be vertical. In particular, in the case where an opening is formed by penetrating a plurality of dielectric layers, the different layers may have different etching characteristics, causing partial layers to further etch back than other layers. In the case where the layer is less etched than the layer below it, a protrusion may be formed which makes it difficult to fill the opening. A specific application where a good, low impedance, void-free plug is required. The substrate is contacted in the hidden device. In particular, NAND flash memory devices continue to become smaller and faster, and the aspect ratio of the openings used to form the plugs continues to increase, requiring such plugs to have a low impedance but no voids. The plug is typically used to connect to the memory of the memory type 116809.doc. A string is formed by a series of floating gate cells connected to the doped regions of the substrate. Figure 4 shows a cross section of an exemplary NAND string 440 at an intermediate stage of memory array fabrication. The four floating gate memory cells are formed by four control gates 442a through 442d that cover the four floating gates 444a through 444d, and the floating gates 444a through 444d cover the channel regions 446a through 446d. The source and drain regions 448a through 448g shown in the substrate connect the memory cells together to form the string. A first select gate 450 is shown adjacent one end of the NAND string 440. The first selection gate 450 is composed of two portions 450a and 450b, which respectively correspond to the floating gate and the control gate layer. Portions 450a, 450b are electrically connected together. The first selection gate 450 can be considered as a drain selection gate. A second select gate 452 is shown adjacent the other end of the NAND string 440. The second select gate 452 can be considered as a source select gate. The second selection gate 452 is composed of two portions 452a and 452b, which respectively correspond to the floating gate and the control gate layer. Portions 452a, 452b are electrically connected together. However, the selection gates are not continuously floating, but are connected by a selection line extending across the array. In an alternative configuration, a select gate can be formed from a single conductive portion. The select gates 450, 452 are used to control the voltage applied to the memory cells of the NAND string 440. A dielectric layer 454 covers the floating gates 444a through 444d, the control interpoles 442a through 442d and the select gate 450' 452 and the lower substrate 456. Dielectric layer 454 may be comprised of a single material or two or more layers of different dielectric materials that may be deposited at different times during formation of NAND string 440. Dielectric layer 452 can be considered as a single body for electronic purposes, which provides isolation of NAND string 440. A typical material used to form a dielectric layer is borophosphonate glass filled (BPSG). In one example, a dielectric layer comprises a BPSG of about 2500 angstroms covering approximately 5 angstroms of tantalum nitride (SiN). FIG. 5 shows the NAND string 440 of FIG. 4 after the openings 560, 562 are formed in the dielectric layer 454. Openings 560, 562 are formed at either end of NAND string 440 adjacent the source select gate 452 and drain select gate 450. The openings 560, 562 can be formed by providing a patterned mask layer on the dielectric layer 454 having an opening aligned with the desired opening location of the dielectric layer 454. An anisotropic etch is then used to remove the dielectric in the pattern created by the mask layer. The anisotropic etch can be reactive ion etching (RIE) or other techniques. Openings 56, 562 are formed to extend all the way to the surface of the substrate 456. After the openings 560, 562 are formed, impurities may be introduced into the exposed portions of the substrate. Typically, N-type impurities such as arsenic or phosphorous are implanted to reduce the impedance of the implanted regions 564, 566 of the substrate 456. Or 疋, the impurities can be diffused. P-type impurities such as boron can also be used in some cases. In some examples, no impurities are introduced at this time. Thereafter, doped polysilicon can be deposited in openings 560, 562, and a portion of the dopant from the polysilicon will diffuse into the region under the opening to provide sufficient doping levels in this region. Implantation of dopants is not always necessary even in the absence of turning (8). A crane-like system that fills the opening and forms a plug to contact the substrate. Cranes have low resistance to form low-impedance structures and are also able to withstand subsequent high-temperature processing 'however' in some designs, especially newer designs with smaller features 116809.doc -16- It may be too high for the use of tungsten to form a good plug. Doped polysilicon is another electrically conductive material that can be used to fill the opening and form a plug. The polycrystalline stone deposited by LPCVD forms a good, void-free plug even in the case where the opening has a longitudinal ratio. However, 'polycrystalline stone has a higher resistance than tungsten, so the polycrystalline structure has a higher resistance than a similar tungsten structure. To overcome these limitations, a composite plug is formed by sequentially depositing polycrystalline germanium and tungsten. 6 shows the NAND string 440 of FIG. 5 after the openings 560, 562 and across the surface of the dielectric layer 454 deposit a first conductive material. The first conductive material forms conductive portions 670, 672 in openings 560, 562 and a first conductive layer 674 on dielectric layer 454. The first conductive material is polycrystalline germanium in this example, although other materials may be used. The polysilicon can be deposited in a furnace or by other suitable methods. Doped polysilicon makes it resistant to low resistance. The polycrystalline spine may be deposited to directly cover the substrate 456 in the openings 560,562. A cleaning step can be performed prior to depositing the polysilicon to remove any native oxide or other material present on the substrate 456 in the openings 56A, 562. The deposition of polycrystalline germanium is stopped prior to filling the openings 560, 562 with polysilicon. The polysilicon deposition can be stopped when the thickness of the first conductive portions 670, 672 in the openings 560, 562 reaches a predetermined thickness. The predetermined thickness can be calculated such that the remaining unfilled portions 676, 678 of the openings 560, 562 have an aspect ratio that is such that it is suitable for filling with tungsten. Figure 7 shows the NAND string 440 of Figure 6 after depositing a second conductive material to form a second conductive layer 78. The second electrically conductive material is tungsten in this example, although other materials may be used. The second conductive material fills the unfilled portions 676, 678 of the openings 116809.doc -17-560, 562 and extends across the first conductive layer 674. A barrier layer can be deposited prior to depositing tungsten (not display). The barrier layer can be a composite layer of titanium and titanium nitride deposited in sequence. In other examples, the second conductive material may be deposited directly onto the first conductive material or a different barrier layer may be positioned between the first conductive material and the second conductive material. Figure 8 shows the NAND string 440 of Figure 7 after removal of excess first and second conductive material. The second conductive layer 780, which is removed from the first conductive layer 674 and deposited over the first conductive layer 674, is removed to the level of the top of the dielectric layer 454, leaving the second conductive portions 882, 884. The first and second electrically conductive materials may be removed by chemical mechanical polishing (CMP) or by etch back or other methods. Typically, CMP systems are used because they provide a planarized surface that is required for subsequent steps. The remaining first conductive portions 67A, 672 and the second conductive portions 882, 884 form plugs 886, 888. The plugs 886, 888 have a lower impedance than the impedance provided by the plug of the polysilicon alone. Even though the openings 560, 562 can have a higher aspect ratio than the aspect ratio that would normally be filled by tungsten alone, the plugs 886, 888 are also void free. FIG. 9 shows the NAND string of FIG. 8 after depositing a second dielectric layer 990 covering the first dielectric layer 454 and the second conductive portions 882, 8 and the second dielectric layer 990 of this example. A layer of cerium oxide (si 〇 2) which is formed by chemical vapor deposition (CVD) using tetraethyl phthalate (Si(OC2H5) 4 (TEOS). Other dielectric materials can also be used. FIG. 10 shows the NAND string 440 of FIG. 9 after patterning the second dielectric layer 990. An opening 992 is formed in the second conductive portion 882 in the second dielectric layer 990 I16809.doc -18 · 1332252. The opening 992 has substantially the same lateral dimension as the second conductive portion 882. An opening 994 is also formed in the second dielectric layer 990 on the second conductive portion 884. However, as shown in FIG. 1A, the opening 994 may extend wider in the direction of the NAND string 440 than the second conductive portion 884. In addition, the opening 994 extends in a direction perpendicular to the section shown in Figure 10, so that it itself covers a plurality of strings of plugs. The openings 992, 994 are formed by a single process using a single mask that is aligned such that the openings 992, 994 are positioned over the second conductive portions 882, 884. Figure 11 shows the NAND string 440 of Figure 10 after deposition and planarization of a third conductive layer to form conductive portions 1102, 1104. In general, the conductive portions 1102, 1104 are formed of the same material (tungsten in this example) as the second conductive portions 882, 884. "This step causes the drain plug 886 to extend in the vertical direction. The source plug 888 is connected by this step to the other source contact plugs of other strings (not shown in Figure 11). Figure 12 shows the NAND string 440 of Figure 11 after successively forming a third dielectric layer 121, a bit line 1212, and a pad and 886 connected to the additional conductive portion 1214 of the bit line 1212. The third dielectric layer 121 can be formed of sich. The third dielectric layer 1210 can be formed using TE〇s by high density plasma (HDP), plasma enhanced deposition, or by some other method. The additional conductive portion 1214 can be aluminum, copper, tungsten or other suitable electrically conductive material. The bit το line 1212 is typically formed of a conductive material such as aluminum or tungsten, and the germanium bond pad plug 886 and the additional conductive portion 1214 are coupled together to connect the one end of the NAND string 440 to the bit line 1212. Meta-Line Contact " H6809.doc 19 Figure 13 shows a top view of NAND string 440 of Figure 12 and shows additional NAND strings 1320, 1322. Although three strings 440, 1320, 1322 are shown with four floating gate units, However, an actual memory array can have 8, 16, 32 or more floating gate cells in a string, and thousands of strings can extend across a substrate in two dimensions. Individual strings 440, 1320, 1322 are Separated by STI regions 1324a through 1324d extending on each side of strings 440, 1320, 1324. Word lines 1326a through 1326d (indicated by dashed lines) cover different strings of floating gates and cover floating gates Control gates are formed at the poles (eg, control gates 442a through 442d of NAND string 440). In substrate 456, source/drain implant regions (eg, source/drain implant regions 448a of NAND string 440) Up to 448g) shared by adjacent memory cells and will be Electrical connections are provided between the memory cells of the NAND string. The select lines 1328, 1330 extend across the strings 440, 1320, 1322 and parallel word lines 1326a through 1326d and form a select gate at the channel region of the NAND string itself. A pole (e.g., select gates 450, 452 of NAND string 440). Plugs 886, 888 showing NAND string 440 in a top view extend from the implanted region at each end of NAND string 440. The displayed NAND string 440' The source contact plugs 888, 1332, and 1334 of 1320 and 1322 are connected together by a conductive portion 1104 (common source line) formed as shown in Fig. 11. The common source line 1104 is parallel to the word line. 1326a through 1326d extend with select lines 1328, 1330. Figure 14 shows a circuit diagram of NAND strings 440, 1320, 1322 of Figure 13. In addition, Figure 14 shows bit lines extending in the same direction as NAND strings 440, 1320, 1322. 1212, 1450, 1452 (not shown in Figure 13). Bit lines 116809.doc -20· 1332252 12, 1450, 1452 are formed on the strings "Ο, 1320, 1322", respectively, as in the section of Figure 12. The general display. While the invention has been described with respect to the exemplary embodiments of the invention, it should be understood that BRIEF DESCRIPTION OF THE DRAWINGS Circle 1 shows a cross section of a prior art-opening in a dielectric layer covering a substrate.

2 ·4示於一開口中形成之先前技術插塞的斷面,該招 塞包含一空隙。 圖3Α顯示一高縱橫比開口的斷面。 圖3 B顯示由一第一遙常以十丨丄 矛導電材枓加以部分填充之圖3A的開 口,其具有一未填充之剩餘部分。2·4 shows a section of a prior art plug formed in an opening, the trap including a gap. Figure 3 shows a section of a high aspect ratio opening. Figure 3B shows the opening of Figure 3A partially filled with a first tenth spear conductive material, having an unfilled remainder.

:顯示該剩餘部分係由-第二導電材料所填充之圖 3B的開口 β M 圖4顯示由浮動閘極單 兀所形成之一 NAND串以及於一由 介電層所覆蓋之基板之一邱上 锻疋°卩伤上形成之選擇閘極的斷面。 圖5顯示具有形成於該介 、社構。 屯尽r (同縱橫比開口之圖4的 圖6顯示於該等開口中沉積 第 該等開口,並留下㈣材料以部分填 等開口之未填充部分H结構 圖7顯示於該等開口中 開口之第二導電材料以填充該 開之先别未填充部分之圖6的結構。 圖8顯示在移除多餘第— 導電材枓與第二導電材料並 116809.doc •21· 1332252 開口中留下插塞後之圖7的結構。 圖9顯不具有一覆蓋該第一介電材料與該等插塞之一第 二介電層之圖8的結構。 圖1〇顯示在圖案化該第二介電層以使開口對準該等插塞 後之圖9的結構。 圖11顯不於該第二介電層之開口中沉積導電材料以使汲 極插塞延伸且源極插塞係藉由一共用源極線而連接在一起 之圖10的結構。 圖12顯示於該第二介電層上形成一第三介電層並於該第 二介電層上形成一位元線(連接至該NAND串之汲極側的位 元線)之圖11的結構。 圖13顯示於該丫方向上延伸之串以及於該X方向上延伸 之子几線、選擇線與一共用源極線之圖12之結構的俯視 圖。 圖14顯示與圖丨2與13之結構所形成之電路相對應的電路 【主要元件符號說明】 101 開口 103 介電層 105 基板 21〇 插塞 212 空隙 320 基板 322 介電層 116809.doc -22. 1332252: showing that the remaining portion is filled with the second conductive material, the opening β M of FIG. 3B. FIG. 4 shows one NAND string formed by the floating gate unit and one of the substrates covered by the dielectric layer. The section of the selected gate formed on the upper forging 卩°卩 injury. Figure 5 shows that it has formed in the mediation. Figure 6 of Figure 4 shows the deposition of the openings in the openings, and leaves (4) material to partially fill the unfilled portions of the openings H. Figure 7 is shown in the openings. Opening the second conductive material to fill the structure of the open unfilled portion of Fig. 6. Fig. 8 shows the removal of excess first conductive material and second conductive material and 116809.doc • 21· 1332252 opening The structure of Figure 7 after the lower plug. Figure 9 shows a structure of Figure 8 covering the first dielectric material and a second dielectric layer of the plugs. Figure 1A shows the patterning of the first The second dielectric layer aligns the opening to the structure of Figure 9 after the plugs. Figure 11 shows that a conductive material is deposited in the opening of the second dielectric layer to extend the drain plug and the source plug system The structure of FIG. 10 is connected together by a common source line. FIG. 12 shows that a third dielectric layer is formed on the second dielectric layer and a bit line is formed on the second dielectric layer ( The structure of Fig. 11 connected to the bit line of the drain side of the NAND string. Fig. 13 shows the string extending in the x direction And a top view of the structure of the sub-line extending in the X direction, the selection line and a common source line of Fig. 12. Fig. 14 shows the circuit corresponding to the circuit formed by the structures of Figs. 2 and 13 [main component symbol Description] 101 opening 103 dielectric layer 105 substrate 21 plug 212 gap 320 substrate 322 dielectric layer 116809.doc -22. 1332252

324 開口 325 未填充部分 326 表面 328 第一導電部分 330 頂部表面 332 第二導電部分 334 複合插塞 440 NAND 串 442a 控制閘極 442b 控制閘極 442c 控制閘極 442d 控制閘極 444a 浮動閘極 444b 浮動閘極 444c 浮動閘極 444d 浮動閘極 446a 通道區域 446b 通道區域 446c 通道區域 446d 通道區域 448a 源極與汲極區域 448b 源極與汲極區域 448c 源極與汲極區域 448d 源極與汲極區域 ll6809.doc -23 · 1332252324 opening 325 unfilled portion 326 surface 328 first conductive portion 330 top surface 332 second conductive portion 334 composite plug 440 NAND string 442a control gate 442b control gate 442c control gate 442d control gate 444a floating gate 444b floating Gate 444c floating gate 444d floating gate 446a channel region 446b channel region 446c channel region 446d channel region 448a source and drain region 448b source and drain region 448c source and drain region 448d source and drain regions Ll6809.doc -23 · 1332252

448e 源極與汲極區域 448f 源極與沒極區域 448g 源極與汲極區域 450 第一選擇閘極 450a 部分 450b 部分 452 第二選擇閘極 452a 部分 452b 部分 454 第一介電層 456 基板 560 開口 562 開口 564 植入區域 566 植入區域 670 第一導電部分 672 第一導電部分 674 第一導電層 676 未填充部分 678 未填充部分 780 第二導電層 882 第二導電部分 884 第二導電部分 886 插塞 116809.doc -24- 1332252448e source and drain regions 448f source and gate regions 448g source and drain regions 450 first select gate 450a portion 450b portion 452 second select gate 452a portion 452b portion 454 first dielectric layer 456 substrate 560 Opening 562 opening 564 implant region 566 implant region 670 first conductive portion 672 first conductive portion 674 first conductive layer 676 unfilled portion 678 unfilled portion 780 second conductive layer 882 second conductive portion 884 second conductive portion 886 Plug 116809.doc -24- 1332252

888 插塞 990 第二介電層 992 開口 994 開口 1102 導電部分 1104 導電部分 1210 第三介電層 1212 位元線 1214 額外導電部分 1320 NAND 串 1322 NAND 串 1324a STI區域 1324b STI區域 1324c STI區域 1324d STI區域 1326a 字元線 1326b 字元線 1326c 字7L線 1326d 字元線 1328 選擇線 1330 選擇線 1332 源極接點插塞 1334 源極接點插塞 1450 位元線 1452 位元線 116809.doc -25-888 plug 990 second dielectric layer 992 opening 994 opening 1102 conductive portion 1104 conductive portion 1210 third dielectric layer 1212 bit line 1214 additional conductive portion 1320 NAND string 1322 NAND string 1324a STI region 1324b STI region 1324c STI region 1324d STI Area 1326a Word Line 1326b Word Line 1326c Word 7L Line 1326d Word Line 1328 Select Line 1330 Select Line 1332 Source Contact Plug 1334 Source Contact Plug 1450 Bit Line 1452 Bit Line 116809.doc -25 -

Claims (1)

1332252 ____ • 第095145418號專利申請案 „ " ~~ ·- 中文申請專利範圍替換本(99年1月^如汾修(更成·替換頁 十、申請專利範圍: 1 · 一種非揮發性記憶體陣列,其包含·· 浮動閘極憶ft單元_,其延伸於-基板之一第一 摻雜區域與該基板之一第二摻雜區域間; 第一接點,其包括一第一材料之一第一部分與一第 -材料之-第二部分,該第—部分接觸該基板之該第一 4雜區域,β亥第二部分覆蓋該第一部分,第一與第二部 φ 分一者皆於一介電層中之一垂直開口中形成,該第一接 點係一位元線接點;以及 第一接點,其包括一第一材料之一第三部分與一第 一材料之一第四部分,該第三部分接觸該基板之該第二 掺雜區域,該第四部分覆蓋該第三部分,第三與第四部 为一者皆於一介電層中之一垂直開口中形成,該第二接 點係用於該浮動閘極記憶體單元串;及 一共用源極線在該第二接點上,該第二接點與該共用 φ 源極線電性連接。 2·如咐求項1之非揮發性記憶體陣列,其中該第一材料係 摻雜多晶矽而該第二材料係鎢。 3. 如請求項1之非揮發性記憶體陣列,其進一步包含沿該 子動問極記憶體單元串之側而延伸的淺溝渠隔離結構。 4. 如請求項1之非揮發性記憶體陣列,其中字元線會於垂 直遠串之一方向上橫跨該串而延伸。 5. 如請求項1之非揮發性記憶體陣列,其中該浮動閘極記 憶體單元串包括一第一選擇閘極與一第二選擇閘極。 116809.990l22.doc 二..... _ , 6 · 一種非揮發性記憶體陣列,其包含: 複數個浮動閘極記憶體單元串,一個別串於一第一方 向上延伸於該基板之一第一摻雜區域與該基板之一第二 摻雜區域間; 複數個字元線,其於垂直該第一方向之一第二方向上 k伸並覆蓋該專複數個浮動閘極記憶體單元的浮動閘 極; 複數個選擇線,其於該第二方向上延伸以連接該等複 數個串的選擇閘極; 複數個複合插塞,一個別複合插塞包括一第一材料之 一第一部分與一第二材料之一第二部分,該第二部分覆 蓋该第一部分,第一與第二部分二者皆於一介電層中之 一垂直開口中形成,該等複數個複合插塞包含連接至該 基板的第一摻雜區域的一第一群组複合插塞及連接該基 板的第二摻雜區域的一第二群組複合插塞; 一共用源極線,其於該第二方向上延伸,該共用源極 線在該第一群組複合插塞之上且連接至該第一群組複合 插塞的每一複合插塞;以及 複數個位元線’其於該第一方向上延伸於該等複數個 串上’ 一個別位元線連接至該第二群組複合插塞的一複 合插塞。 7.如請求項6之非揮發性記憶體陣列,其中鄰近率係藉由 淺溝渠隔離區來加以分離。 8_如請求項6之非揮發性記憶體陣列,其中該第一材料係 116809-990122.doc -2- 办》忿(更)正替換買 摻雜多晶矽而該第二材料係鎢。 其中一阻障層延伸 其中該阻障層係鈦 其中該垂直開口具 蜀以該第一材 9·如請求項8之非揮發性記憶體陣列 於該第一材料與該第二材料之間。 ι〇.如請求項9之非揮發性記憶體陣列 與氮化欽的一複合。 U .如明求項6之非揮發性記憶體陣列 有一縱橫比,其對於使該垂直開口 料來加以填充係太高。 12. 一種於—半㈣基板上形成-非揮發性記憶料列的方 法’其包含: 形成-記憶體單元串,其具有由一介電層所覆蓋的浮 動閘極與控制閘極’該串會從一第一基板區域延伸至一 第二基板區域; 在該第—基板區域上於該介電層中形成一第一開口, 該第一開口延伸至該第一基板區域; 在該第二基板區域上於該介電層中形成一第二開口, 該第二開口延伸至該第二基板區域; 接著沉積一第一導電材料,其接觸該等第一與第二基 板區域,该第一導電材料會部分但非完全填充該等第一 與第二開口,該第一導電材料完全地填充該等第一開口 至一第一高度’及完全地填充該等第二開口至一第二高 度;以及 於該等第一與第二開口中接著沉積一第二導電材料, 該第二導電材料會在該等第一與第二開口中直接覆蓋該 116809-990122.doc 材^全地填充該等第一開 二導電:地填充該寺第二開口’該第-導電材料及該第 :二!:料於該第—開口中形成-位元線接點及於該第 幵口令形成一源極線接點。 U.如請求項12之方法,1進一牛 陣列之—上表面,、…接者平坦化該記憶體 額;:Ϊ: 13之方法,其進-步包含接著形成並圖案化-=^卜 料外一,並㈣料電㈣來填充 口。 & 口’该等額外開口對準該等第一與第二開 15·如请求項12之方法,盆中 橫 中5亥專第一與第二開口具有一縱 一 八防止早獨以該第二材料來填充該等第一與第 一開口,且該第一導電材料填充該等第一盥笸 、 能留下且有可輩^ 彳異充該等第一與第二開口達 一… 二導電材料填充之-縱橫比之 未真充部分的一位準。 種於-半導體基板上形成—非揮發性記憶 法,其包含: 干Ν幻力 形成複數個浮動閘極記憶體單元苴 上延伸並橫跨一臭姑仏墙^ 第一方向 會從一第― 向上分隔開’-個別争 會 第一鳊延伸至一第二端; 於°亥等複數個浮動閘極單元串上形成-介電層; 移除》亥"電層之部分以於該等複數個串中之若干者的 ff端與第二端上形成複數個開口,該等複數個開口會 從該介電層之―頂部表面延伸至該基板表面; a 116809-990I22.doc 於該等複數個開口中接著沉積_第_導電 一導電材料接觸該基板 ’ μ第 攸衣面亚填充该等複數個 該介電層之該頂部表面之頂部低的-位m 於該等複數個開口中接荽… 一導電材料言垃几積-弟二導電材科,該第 -“材科直接覆盖該第一材料並填充該等複 口 達至少與該介電層之該頂部表面一樣高的 二!ΠΓ比該第—導電材料更低的-阻值二 第二導電材料形成第-接點至該等複數串的該等第 一端及形成第二接點至該等複數㈣該等第二端; 形成-共用源極線,該等第二接點的每—者形成一電 連接至該共用源極線的至少一部分;及 、形成複數個位元線,該等第—接點的每-者形成一電 連接至該等位元線中_者的至少—部份。 17. 18. 19. :凊求項16之方法’其進一步包含接著執行化學機械拋 移除該第二導電材料之部分,於該第-介電層上接 者形成-第二介電層’圖案化該第二介電層並沉積額外 導電材料。 士-月求項17之方法’其中該額外導電材料係該第二導電 材料。 種於非揮發性§己憶體陣列中形成一低阻抗無空隙插 塞的方法,其包含: ;外’丨私層形成一開口,該開口具有一第一垂直尺寸 /、第—水平尺寸,其給出一第一縱橫比,該開口暴露 一基板的一部分; 116809-990122.doc 1332252 ί - -**^-*1 :夕年/ 趁·(更)正替技更j ~ -----J 植入一摻雜至該基板由該開口所暴露的該部分; 於該開口中沈積一第一導電材料之一第一導電部分, °亥第一導電部分具有一第二垂直尺寸,該沈積留下具有 〜第二垂直尺寸之該開口的一未填充部分,該未填充開 D部分具有小於該第一縱橫比的一第二縱橫比; 於該未填充部分中形成一第二導電部分,該第二導電 邹分由具有比該第一導電材料低之一阻抗性的一第二導 電材料來形成,該第二導電材料提供具有該第二縱:比 之開口的無空隙填充,且不會提供具有該第一縱橫比之 開口的無空隙填充;及 在該第二導電部分上形成—第三導電部分,該第三導 電部分m源極線,該第—及第:導電材料提供介 於具有植人摻雜的該基板的該部分及該共用源極線之間 的一電連接之至少一部分。 導電材料係摻雜多晶矽 2〇_如請求項19之方法,其中該第 而該第二導電材料係鎢。 21.如請求項19之方法,其中選擇該第二垂直尺寸使得該第 —縱橫比係大約可由續第-道兩 縱橫比。 導電材料適當地填充的最大 22.如請求項19之方法,其中該等第—盥 一導雷奸_ ^. 〃弟一導電部分形成 v電插基,其會對一NANI^^ 串產生接點。 ㈣陣列之-NAND 23.如請求項19之方法,其進一 該第一導電材料之間形成一 步包含於該第一 阻障層。 導電材料與 116809-990122.doc •6- 1332252 财修(更)正替換頁 24.如請求項19之方 ^ 具中第一與第二暮 由毯覆沉積來形成, 兄且接者移除多餘坌 餘第二導電材料。 第— 25'如請:項24之方法,其中該多餘第一導電 第二導電材料係由化學機械拋光來移除, 化表面’其上形成額外導電部分。 部分二者係藉 導電材料與多 材料與該多餘 以留下一平坦1332252 ____ • Patent application No. 095145418 „ " ~~ ·- Chinese patent application scope replacement (January 99^如汾修(更成·Replacement page 10, patent application scope: 1 · A non-volatile memory a body array comprising: a floating gate memory ft unit_ extending between a first doped region of the substrate and a second doped region of the substrate; the first contact comprising a first material a first portion and a second portion of the first material, the first portion contacting the first 4 impurity region of the substrate, the second portion of the β hai covering the first portion, and the first portion and the second portion φ Formed in one of the vertical openings of the dielectric layer, the first contact is a one-dimensional line contact; and the first contact includes a third portion of the first material and a first material a fourth portion, the third portion contacts the second doped region of the substrate, the fourth portion covers the third portion, and the third portion and the fourth portion are all vertically open in one of the dielectric layers Formed in the second contact for the floating gate memory cell string; and A common source line is on the second contact, and the second contact is electrically connected to the common φ source line. 2. The non-volatile memory array of claim 1, wherein the first material system The polysilicon is doped and the second material is tungsten. 3. The non-volatile memory array of claim 1 further comprising a shallow trench isolation structure extending along a side of the sub-movement memory cell string. The non-volatile memory array of claim 1, wherein the word line extends across the string in one of the vertical far strings. 5. The non-volatile memory array of claim 1, wherein the floating gate The memory cell string includes a first selection gate and a second selection gate. 116809.990l22.doc II..... _ , 6 · A non-volatile memory array comprising: a plurality of floating gate memories a string of body cells, one string extending in a first direction between a first doped region of the substrate and a second doped region of the substrate; a plurality of word lines perpendicular to the first direction Extending in a second direction and covering the plurality of floating gates a floating gate of the memory cell; a plurality of select lines extending in the second direction to connect the plurality of select gates of the plurality of strings; a plurality of composite plugs, the one composite plug comprising a first material a first portion and a second portion of a second material, the second portion covering the first portion, the first portion and the second portion being formed in one of the vertical openings in a dielectric layer, the plurality of composites The plug includes a first group composite plug connected to the first doped region of the substrate and a second group composite plug connecting the second doped region of the substrate; a common source line, wherein Extending in the second direction, the common source line is over the first group of composite plugs and connected to each composite plug of the first group of composite plugs; and a plurality of bit lines The first direction extends over the plurality of strings. A single bit line is connected to a composite plug of the second group of composite plugs. 7. The non-volatile memory array of claim 6, wherein the proximity is separated by a shallow trench isolation region. 8_ The non-volatile memory array of claim 6, wherein the first material is replaced by a doped polysilicon and the second material is tungsten. One of the barrier layers extends wherein the barrier layer is titanium, wherein the vertical opening has a first non-volatile memory array between the first material and the second material. 〇. A combination of the non-volatile memory array of claim 9 and the nitride. U. The non-volatile memory array of claim 6 having an aspect ratio which is too high for filling the vertical opening. 12. A method of forming a non-volatile memory material column on a semi-four substrate: comprising: forming a memory cell string having a floating gate and a control gate covered by a dielectric layer Extending from a first substrate region to a second substrate region; forming a first opening in the dielectric layer on the first substrate region, the first opening extending to the first substrate region; Forming a second opening in the dielectric layer on the substrate region, the second opening extending to the second substrate region; then depositing a first conductive material contacting the first and second substrate regions, the first The conductive material partially but not completely fills the first and second openings, the first conductive material completely filling the first openings to a first height 'and completely filling the second openings to a second height And depositing a second conductive material in the first and second openings, the second conductive material directly covering the 116809-990122.doc material in the first and second openings Waiting for the first two Electric: filling the second opening of the temple 'of the first - and the second electrically conductive material: two! And forming a bit line contact in the first opening and forming a source line contact in the first password. U. As in the method of claim 12, 1 enters the upper surface of the array of cattle, ... the receiver flattens the amount of the memory;: Ϊ: 13 method, the further step comprises forming and patterning -=^ The material is outside, and (4) the electricity (4) is used to fill the mouth. & 'The additional openings are aligned with the first and second openings 15 as in the method of claim 12, the first and second openings in the middle of the basin have a vertical one and eight to prevent early independence a second material to fill the first and first openings, and the first conductive material fills the first 盥笸, can leave and have a first... The two conductive materials are filled with - the aspect ratio of the unfilled portion. Formed on a semiconductor substrate - a non-volatile memory method, comprising: a dry illusion force forming a plurality of floating gate memory cells extending over the scorpion and crossing a stinky wall ^ first direction will be from a Separating upwards--the first one of the individual competitions extends to a second end; forming a dielectric layer on a plurality of floating gate unit strings such as °H; removing the part of the "Hai" electric layer for And forming a plurality of openings on the ff end and the second end of the plurality of strings, the plurality of openings extending from the top surface of the dielectric layer to the surface of the substrate; a 116809-990I22.doc And then depositing a plurality of openings _ a conductive-conductive material contacting the substrate 'μ 攸 攸 亚 亚 亚 亚 该 该 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低In the middle of the 荽... a conductive material 垃 几 - - - 弟 弟 - - - - - - - - - - 弟 弟 弟 弟 弟 “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ 直接Second! 更低 lower than the first - conductive material - resistance The second conductive material forms a first contact to the first ends of the plurality of strings and a second contact to the plurality (four) of the second ends; forming a common source line, the second contacts Each forming an electrical connection to at least a portion of the common source line; and forming a plurality of bit lines, each of the first contacts forming an electrical connection to the bit line At least a portion. 17. 18. 19. The method of claim 16, wherein the method further comprises performing a chemical mechanical polishing to remove a portion of the second conductive material, the contact being formed on the first dielectric layer - The second dielectric layer 'patterns the second dielectric layer and deposits additional conductive material. The method of the method of the present invention, wherein the additional conductive material is the second conductive material. A method of forming a low-impedance void-free plug in an array, comprising: the outer 'slip layer forming an opening, the opening having a first vertical dimension / a first horizontal dimension, which gives a first aspect ratio, The opening exposes a portion of a substrate; 116809-990122.doc 1332252 ί - -**^-*1 : 夕年/ 趁·(more) is replacing the part of the substrate that is exposed to the substrate by the opening; depositing in the opening a first conductive portion of a first conductive material, the first conductive portion having a second vertical dimension, the deposit leaving an unfilled portion of the opening having a second vertical dimension, the unfilled portion D Having a second aspect ratio smaller than the first aspect ratio; forming a second conductive portion in the unfilled portion, the second conductive portion being a second having a lower resistance than the first conductive material Formed by a conductive material, the second conductive material providing void-free filling having the second longitudinal: opening, and providing no void-free filling having the opening of the first aspect ratio; and on the second conductive portion Forming a third conductive portion, the third conductive portion m source line, the first and the first conductive material providing an electric current between the portion of the substrate having implanted doping and the common source line At least a part of the connection. The conductive material is doped with polysilicon. The method of claim 19, wherein the second conductive material is tungsten. 21. The method of claim 19, wherein the second vertical dimension is selected such that the first aspect ratio is approximately contiguous from the first to the second aspect ratio. The maximum amount of electrically conductive material properly filled. 22. The method of claim 19, wherein the first 盥 导 雷 _ ^ 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一point. (4) Array-NAND 23. The method of claim 19, wherein a further step is formed between the first conductive material and the first barrier layer. Conductive material and 116809-990122.doc • 6- 1332252 Financial repair (more) replacement page 24. As in the case of claim 19, the first and second 暮 are formed by blanket deposition, and the brother removes Excessive excess of the second conductive material. The method of claim 24, wherein the excess first conductive second conductive material is removed by chemical mechanical polishing to form an additional conductive portion thereon. Part of the two are made of conductive materials and multiple materials with this excess to leave a flat 116809-990122.doc116809-990122.doc
TW095145418A 2005-12-06 2006-12-06 Low resistance void-free contacts TWI332252B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/296,235 US7737483B2 (en) 2005-12-06 2005-12-06 Low resistance void-free contacts
US11/296,022 US7615448B2 (en) 2005-12-06 2005-12-06 Method of forming low resistance void-free contacts

Publications (2)

Publication Number Publication Date
TW200739827A TW200739827A (en) 2007-10-16
TWI332252B true TWI332252B (en) 2010-10-21

Family

ID=38123591

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095145418A TWI332252B (en) 2005-12-06 2006-12-06 Low resistance void-free contacts

Country Status (3)

Country Link
EP (1) EP1958252A2 (en)
TW (1) TWI332252B (en)
WO (1) WO2007067860A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108766969B (en) * 2017-04-13 2023-10-13 三星电子株式会社 Method for manufacturing semiconductor memory device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534867B1 (en) * 1999-09-27 2003-03-18 Kabushiki Kaisha Toshiba Semiconductor device, semiconductor element and method for producing same
JP2003188252A (en) * 2001-12-13 2003-07-04 Toshiba Corp Semiconductor device and manufacturing method thereof
JP4455017B2 (en) * 2003-11-10 2010-04-21 株式会社東芝 Nonvolatile semiconductor memory device
US7112488B2 (en) * 2004-05-27 2006-09-26 Micron Technology, Inc. Source lines for NAND memory devices

Also Published As

Publication number Publication date
WO2007067860A3 (en) 2007-09-07
EP1958252A2 (en) 2008-08-20
WO2007067860A2 (en) 2007-06-14
TW200739827A (en) 2007-10-16

Similar Documents

Publication Publication Date Title
US7615448B2 (en) Method of forming low resistance void-free contacts
TWI313933B (en) Flash memory with recessed floating gate
TWI282177B (en) Low-k spacer structure for flash memory
TWI321844B (en) Memory cell layout and process flow
KR101358693B1 (en) Electronic device including discontinuous storage elements
US8722490B2 (en) Method of making a floating gate non-volatile MOS semiconductor memory device with improved capacitive coupling and device thus obtained
TWI637490B (en) Method of forming a semiconductor device structure and semiconductor device structure
TW452941B (en) A contact-less array of fully self-aligned, triple polysilicon, source-side injection, nonvolatile memory cells with metal-overlaid wordlines
JP2008192708A (en) Nonvolatile semiconductor storage device
JP5249757B2 (en) Non-volatile memory
TWI433304B (en) Eeprom cell
JP2008078404A (en) Semiconductor memory and manufacturing method thereof
US7737483B2 (en) Low resistance void-free contacts
KR100760926B1 (en) Nonvolatile semiconductor device to preparing multi bit cell and fabricating method thereof
TW200810120A (en) Double gate transistor and method of manufacturing same
TW200822296A (en) Self-aligned method of forming a semiconductor memory array of floating gate memory cells with source side erase, and a memory array made thereby
JP2007207947A (en) Semiconductor device and its manufacturing method
TW200406904A (en) Bit line structure and method for fabricating it
JP2003179168A (en) Non-volatile semiconductor memory device and manufacturing method therefor
US7041545B2 (en) Method for producing semiconductor memory devices and integrated memory device
TWI332252B (en) Low resistance void-free contacts
JP4502801B2 (en) Method for manufacturing nonvolatile memory element
CN100539084C (en) Make the method for flash memory
TW200845153A (en) NAND memory with virtual channel
TWI415248B (en) Non-volatile memory device and method of the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees