TWI332239B - Semiconductor wafer and method for forming the same - Google Patents

Semiconductor wafer and method for forming the same Download PDF

Info

Publication number
TWI332239B
TWI332239B TW95146904A TW95146904A TWI332239B TW I332239 B TWI332239 B TW I332239B TW 95146904 A TW95146904 A TW 95146904A TW 95146904 A TW95146904 A TW 95146904A TW I332239 B TWI332239 B TW I332239B
Authority
TW
Taiwan
Prior art keywords
metal
layer
metal structure
region
semiconductor wafer
Prior art date
Application number
TW95146904A
Other languages
Chinese (zh)
Other versions
TW200826175A (en
Inventor
Chien Li Kuo
Ping Chang Wu
Jui Meng Jao
Hui Ling Chen
Kai Kuang Ho
Ching Li Yang
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW95146904A priority Critical patent/TWI332239B/en
Publication of TW200826175A publication Critical patent/TW200826175A/en
Application granted granted Critical
Publication of TWI332239B publication Critical patent/TWI332239B/en

Links

Description

1332239 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種半導體晶圓,尤指一種能夠有效 避免晶圓切割造成介層剝離(delamination)現象的半導體晶 圓0 【先前技術】 ·· 隨著半導體製程技術的不斷提昇、以及積體電路晶片 尺寸的微小化,金屬内連線間往往也形成許多不必要的寄 生電容(parasite capacit0r)。由於電子要·先充滿寄生電容之 後才能進行傳遞’因此使得訊號的傳遞延遲,造成所謂的 電阻-電容時間延遲效應(RC time delay effects),而且電阻_ 電容時間延遲效應也成為進一步提升積體電路元件之速度 與效能的瓶頸。為了要提升積體電路元件的速度與效能, 目前大多是利用降低金屬内連線的線路電阻或者是降低介 電層的介電常數等方式來減少電阻-電容時間延遲效應的 影響。在此需求之下,電阻率較低的銅金屬漸漸取代電阻 率較高的鋁金屬成為金屬内連結線路的材料,而低介電常 數的介電材料也逐漸取代氟石夕玻璃(fluorinated silicate glass,FSG)、填石夕玻璃(phosphosiiicate giaiss,PSG)或者未摻 雜石夕玻璃(undoped silicate glass, tJSG)等氧化石夕介電材料。 . ♦ . 然而,低介電常數材料和銅金屬之介面卻格外容易產 6 生亲i落(peelmg)或是介層剝離等現象。因為在半導體晶圓 _積體電路袁作完成後,通常封裝康_會以研磨輸或切對 刀來切割半導體晶圓以進行後續之封裝製程,但機械式的 士刀割難免會在半導體晶圓中產生機械内應力(intermal =ress) ’造成裂縫(crack),尤其是當切害,丨道(scribe line)中包 3有低介電常數材料和鋼金屬時,便特別容易引發低介電 常數材料層產生剝落或是介層剝離。 因為在進行切割步驟 =研磨輪或切割刀會從晶圓表面向下施加切割應力,而 田刀。丨應力壓迫至較大面積之金屬結構時,整個金屬結構 會齊壓週邊之低介電常數材料層,擠壓的結果就可能造 成低’I電常數材料層剝落現象,這是由於銅金屬材料之性 質堅硬’相較於晶圓之其他材料層而言較難切割,而低介 電係數材料層卻材質鬆軟或呈多孔性結構,且與其他材料 層的附著力不佳。當剝落現象.由切割道延伸至各晶粒區域 •(die area)中之驅動電路時,這些潛在的問題往往會傷害到 最終產品的可靠度。 儘管可能存在上述缺點,但切割道中卻難以避免地會 包含有金屬墊等較大面積之金屬材料。因為在半導體製程 t,為維持產品品質的穩定,就必須針對所生產之半導體 晶圓持續進行線上測試❶目前業界大多是採用晶圓可接受 度測試(wafer acceptance testing, WAT),其係於兩晶粒之週 邊處城(PeriPhery area)提供複數個測試鍵(tesi key)結構,用 1332239 以分別監控母道半導體製程之各項缺陷。亦即在進行各式 製程的同時,便採用相同的步驟於晶囿之切對道中同步製 ^作一測試用元件,來模擬相同製程,然後再利用金屬探針 等測試裝置量測測試鍵的各項參數作為檢視製程是否正常 之指標,進而有效控制產品品質。上述測試鍵結構即包含 有金屬墊且位於切割道中’其他位於切割道中之金屬墊結 構還有電性測試結構(test key)、特徵尺寸(feature dimension) ••之量測元件以及元件對準標記(alignment mark)等製程測試 結構或是識別標識(logo)。 * * · - 請參閱第1圖以及第2圖。第1圖為傳統半導體晶圓 的之上視示意圖,第2圖則是第1圖所示之半導體晶圓切 割後之側視示意圖。如第1圖所示,半導體晶圓10包括有 複數個呈陣列排列之晶粒區域12、複數個本質上相互平行 的第一切割道區域(scribe line area)14以及複數個本質上相 互平行的第二切割道區域16,其中第一切割道區域14與 第二切割道區域16之胡大致上是相互金直分佈,用以隔開 各晶粒區域12。另外,在目前之半導體晶圓10表面大多 包含有低介電常數材料層18構成之保護層(passivation layer)或金屬内介電材料層_(inier_metai dielectric layer,IMD layer)。於第一切割道區域14或第二切割道區域16中設有 至少一金屬測試結構.20,金屬測試結構20可為任意之電 •性測試結構、特徵尺寸等之量測元件以及元件對準標記、 8 1332239 晶圓可靠度測試墊等製程測試結構。 ' 如前所述,當半導體晶圓10上之積體電路製作完成之 後,開始進行封裝製程之時,研磨輪或切割刀會沿著第一 * * . ‘ 切割道區域14與第二切割道區域16進行切割,用以將半 • · 導體晶圓10分割為多個獨立之晶粒區域12。一般而言, 第一切割道區域14與第二切割道區域16之寬度可隨著半 像春導體晶圓尺寸、切割方式、積體電路的種類等因素而定, 約介於數十微米(micrometer)至數百微米之間。 ·. 如第2圖所示,半導體晶圓10經切割後,剝落或是介 層剝離等現象特別容易產生在最頂層之低介電常數材料層 18與下方之其他材料層的介面,尤其是切割應力壓迫至切 割道區域14中較大面積之金屬結構時,整個金屬結構便會 _擠壓週邊之低介電常數材料層,進而造成低介電常數材料 層發生剝落、介層剝離等現象,而且這種現象非常容易沿 著垂直於切割路徑的行經方向進行傳遞,使低介電常數材 料層18之剝落範圍可能觸及晶粒區域12中之金屬内連線 層而破壞晶粒内之積體電路運作。 【發明内容】 -據此,本發明之主要目的在於提供一種半導體晶圓, .以解決習知技術無法克腋之難題’,進而防止半導體晶圓切 9 1332239 割引起晶粒損傷。 . ^ 根據本發明之申請專利範圍,本發明係提供一種半導 體晶圓,包括有複數個晶粒區域、至少一第一切割道區域 及至少一第二切割道區域圍繞在各晶粒區域周圍、至少一 第一金屬結構與至少一第二金屬結構分別設置於第一與第 二切割道區域中,而且第一金屬結構具有至少一平行於該 ♦籲第-切割道區域之第-狹縫或開口,第二金屬結構具有至 少一平行於第二切割道區域之第二狹縫或開口。 '· 根據申請專利範圍’本發明另提供一種製作金屬結構 之方法。首先,提供一半導體晶圓,半導體晶圓定義有一 切割道區域,且切割道區域具有至少一第一介電層。接著, 於切割道區域中之第一介電層中形成一第一金屬層,且第 _一金屬層具有至少一平行於切割道區域之狹縫。之後,於 切割道區域中形成一第二介電層.,且第二介電層具有複數 個平行於切割道區域之狭長介層洞(viah〇le),用以暴露出 部分之第一金屬層。最後,於第二介電層表面形成一第二 金屬層以及複數個介層條填充於狹長介層洞中,且第二金 屬層係藉由介層條電連接第一金屬層。 由於在本發明半導體晶圓之金屬結構中形成有狹縫結 構或是複數個陣列排列之開σ結構,因此可以避免機械式 1332239 的切割引發材料層剝落或是介層剝離的現象進而 護晶粒不被剝落現象損傷。 效保1332239 IX. Description of the Invention: [Technical Field] The present invention relates to a semiconductor wafer, and more particularly to a semiconductor wafer 0 capable of effectively preventing wafer delamination caused by wafer dicing [Prior Art] · With the continuous improvement of semiconductor process technology and the miniaturization of integrated circuit chips, many unnecessary parasitic capacitances (parasite capacit0r) are often formed between metal interconnects. Since the electrons must be filled with parasitic capacitance before they can be transmitted, the delay of signal transmission is delayed, causing so-called RC time delay effects, and the resistance_capacitor time delay effect is further improved. The bottleneck of the speed and performance of components. In order to improve the speed and performance of integrated circuit components, most of the current methods are to reduce the resistance of the resistor-capacitor time delay by reducing the line resistance of the metal interconnect or reducing the dielectric constant of the dielectric layer. Under this demand, copper metal with lower resistivity gradually replaces aluminum metal with higher resistivity as the material of metal inner connecting line, and dielectric material with low dielectric constant gradually replaces fluorinated silicate glass. , FSG), phosphosiiate giaiss (PSG) or undoped silicate glass (tJSG) and other oxidized oxide dielectric materials. ♦ . However, the interface between the low dielectric constant material and the copper metal is particularly prone to the phenomenon of peeling or peeling. Because after the semiconductor wafer_integrated circuit is completed, the package will be cut by the grinding or cutting tool to cut the semiconductor wafer for subsequent packaging process, but the mechanical knife cutting will inevitably be in the semiconductor crystal. Mechanical internal stress in the circle (intermal = ress) 'cause cracks, especially when cutting, scribe line contains low dielectric constant material and steel metal, it is particularly easy to cause low-media The layer of electrically constant material is spalled or interbedded. Because the cutting step is performed = the grinding wheel or the cutting blade will apply cutting stress downward from the wafer surface, and the field knife. When the 丨 stress is pressed to a large area of the metal structure, the entire metal structure will squash the surrounding low dielectric constant material layer, and the extrusion result may cause the low 'I electrical constant material layer peeling phenomenon, which is due to the copper metal material. The hard nature is harder to cut than other layers of the wafer, while the low-k material layer is soft or porous and has poor adhesion to other material layers. These potential problems often jeopardize the reliability of the final product when the flaking phenomenon extends from the scribe line to the drive circuitry in each die area. Although the above disadvantages may exist, it is difficult to avoid a large area of metal material such as a metal pad in the dicing street. Because in the semiconductor manufacturing process, in order to maintain the stability of product quality, it is necessary to continue online testing for the semiconductor wafers produced. Most of the current industry adopts wafer acceptance testing (WAT), which is based on two The PeriPhery area provides a plurality of test key structures, and 1332239 is used to monitor the defects of the parent semiconductor process. That is, while performing various processes, the same steps are used to simultaneously synthesize a test component in the channel of the wafer to simulate the same process, and then the test device is measured by a test device such as a metal probe. Each parameter is used as an indicator to check whether the process is normal, and thus effectively control product quality. The above test key structure comprises a metal pad and is located in the scribe line. The other metal pad structure located in the scribe line has an electrical test key, a feature dimension, a measuring component, and a component alignment mark. (alignment mark) and other process test structures or identification marks (logo). * * · - Please refer to Figure 1 and Figure 2. Fig. 1 is a top plan view of a conventional semiconductor wafer, and Fig. 2 is a side view showing a semiconductor wafer shown in Fig. 1 after cutting. As shown in FIG. 1, the semiconductor wafer 10 includes a plurality of die-arranged die regions 12, a plurality of first scribe line regions 14 that are substantially parallel to each other, and a plurality of substantially parallel to each other. The second scribe line region 16 wherein the first scribe lane region 14 and the second scribe lane region 16 are substantially directly distributed to each other to separate the respective grain regions 12. Further, on the surface of the current semiconductor wafer 10, a passivation layer or an indium metal dielectric layer (IMD layer) composed of a low dielectric constant material layer 18 is often contained. At least one metal test structure 20 is disposed in the first scribe line region 14 or the second scribe channel region 16. The metal test structure 20 can be any electrical measurement test structure, feature size, etc., and component alignment. Mark, 8 1332239 wafer reliability test pad and other process test structures. As described above, when the package process is completed after the integrated circuit on the semiconductor wafer 10 is completed, the grinding wheel or the cutter will follow the first * * ' cutting channel region 14 and the second cutting channel. The region 16 is diced to divide the semi-conductor wafer 10 into a plurality of individual die regions 12. In general, the widths of the first scribe line region 14 and the second scribe channel region 16 may be determined by factors such as the size of the spring conductor wafer, the cutting method, the type of the integrated circuit, and the like, and are about several tens of micrometers ( Micrometer) to between hundreds of microns. As shown in FIG. 2, after the semiconductor wafer 10 is diced, peeling or interlayer peeling is particularly likely to occur at the interface of the topmost layer of the low dielectric constant material 18 and the other material layers below, especially When the cutting stress is pressed to the metal structure of a large area in the scribe line region 14, the entire metal structure will squash the surrounding low dielectric constant material layer, thereby causing peeling of the low dielectric constant material layer and peeling of the dielectric layer. And this phenomenon is very easy to transfer along the direction perpendicular to the cutting path, so that the peeling range of the low dielectric constant material layer 18 may touch the metal interconnect layer in the grain region 12 and destroy the product in the grain. The body circuit operates. SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to provide a semiconductor wafer that solves the problem that conventional techniques cannot overcome, thereby preventing grain damage caused by semiconductor wafer cutting. According to the patent application scope of the present invention, the present invention provides a semiconductor wafer including a plurality of die regions, at least one first scribe region, and at least one second scribe region surrounding each die region. At least one first metal structure and at least one second metal structure are respectively disposed in the first and second scribe line regions, and the first metal structure has at least one first slit parallel to the yoke-cutting region or The opening, the second metal structure has at least one second slit or opening parallel to the second scribe line region. The invention further provides a method of making a metal structure according to the scope of the patent application. First, a semiconductor wafer is provided, the semiconductor wafer defining a scribe region and the scribe region having at least a first dielectric layer. Next, a first metal layer is formed in the first dielectric layer in the scribe line region, and the first metal layer has at least one slit parallel to the scribe line region. Thereafter, a second dielectric layer is formed in the scribe line region, and the second dielectric layer has a plurality of vias parallel to the scribe region to expose a portion of the first metal Floor. Finally, a second metal layer is formed on the surface of the second dielectric layer, and a plurality of via stripes are filled in the elongated via holes, and the second metal layer is electrically connected to the first metal layer by the via stripes. Since the slit structure or the plurality of arrayed open σ structures are formed in the metal structure of the semiconductor wafer of the present invention, the delamination of the mechanical 1332239 can be prevented from causing the material layer to peel off or the dielectric layer is peeled off, thereby protecting the crystal grains. Not damaged by peeling. Effective

V 為了使貴審查委員·能更近一步了解本發明之特徵及 技術内容,請參閱以下有關本發明之詳細說明與附圖^。然 而所附圖式僅供參考與辅助說明用,並非用來對本發明: 以限制者。 Μ 【實施方式】 請參考第3圖至第7圖,第3圖至第6圖為本發明之一 -較佳實施例形成半導體晶圓之方法示意圖,而第7圖是第 • 6圖所示之半導體晶圓3 Q沿著7 _ 7,切線之剖面示意圖。如 第3圖所示,本發明之半導體晶圓30,其上包括有至少一 低電㊉數之第-介電層38a、複數個晶粒區域32、複數 耱個本質上相互平行的第一切割道區域34以及複數個本質 上相互平行的第二切割道區域36。其中,在每一晶粒區域 32中皆形成有一積體電路,其可包括有電晶體⑽nSiSt〇r)、 電容㈣acit〇r)、二極體(di〇de)、推雜擴散區、記憶體陣列 或者金屬内連線等之各式電子元件與導線電路。第一切割 道區域3’與第—切割道區域%之間大致上是相互垂直分 伟並構成-網狀之切割道區域,用以隔開各晶粒區域%。 接著如第4圖所示,進行一金屬製程,以於各晶粒區域V For a more detailed understanding of the features and technical aspects of the present invention, please refer to the following detailed description of the present invention and the accompanying drawings. The drawings are for illustrative purposes only and are not intended to be limiting of the invention. Μ Embodiments Please refer to FIGS. 3 to 7 , and FIGS. 3 to 6 are schematic views showing a method of forming a semiconductor wafer according to a preferred embodiment of the present invention, and FIG. 7 is a diagram of FIG. A schematic cross-sectional view of the semiconductor wafer 3 Q along the 7-7, tangent line. As shown in FIG. 3, the semiconductor wafer 30 of the present invention includes at least one low-power tenth dielectric layer 38a, a plurality of die regions 32, and a plurality of first substantially parallel to each other. The scribe line region 34 and a plurality of second scribe lane regions 36 that are substantially parallel to each other. Wherein, an integrated circuit is formed in each of the die regions 32, which may include a transistor (10) nSiSt〇r), a capacitor (four) acitr), a diode (di〇de), a push-diffusion region, and a memory. Various electronic components and wire circuits such as arrays or metal interconnects. The first dicing area 3' and the first dicing area % are substantially perpendicular to each other and constitute a mesh-shaped scribe line area for separating the respective grain area %. Then, as shown in FIG. 4, a metal process is performed for each grain region.

Claims (1)

1332239 申請4利範圍 1. 一種半導體晶圓,包括有: 複數個晶粒區域,且各該晶粒區域周圍 切割道區域及至少-第二切割道區域; 第 且 第-金屬結構’設置於該第—切割道區域中,』 :亥第構具有至少一平行於該第一切割道區域之第一狹縫 和-弟-金屬材料完全環繞該第_狹縫;以及 至少一第二金屬結構,設置於該第二切割道區域中,且 該第二金屬結構具有至少—平行於該第二蝴道區域之第 -狹縫和-第二金屬材料完全環繞該第二狹縫。 2·如申請專利範圍第i項所述之半導體晶圓,其中該第一 金屬結構及該第二金屬結構包含有電性測試結構、特徵尺 寸等之量測元件以及元件對準標記、晶圓可靠度測試塾 製程測試結構。 3. 如申請專利範圍帛i項所述之半導體晶圓,其令各該晶 粒£域中皆形成有一積體電路。 4. 如申請專利範圍第1項所述之半導體晶圓,其中該第一 切割道區域及該第二切割道區域均包含有至少一低介電常 數之介電層。 " [S } 23 5今如申請專利範圍第4項所述之半導體晶圓,其中該第一 層表面。 I。構u於該低介電常數之介電 L曰如申請專利範圍第4項所述之半導體晶圓,其中該半導 體曰曰um保護層覆蓋於該低介電常數之介電層以及 该第一金屬結構及該第二金屬結構表面。 8.如申請專利範圍第i項所述之半導體晶圓,其中該第一 ,屬結構及該第二金屬結構包含有鈦、组、鶴、紹、銅、 氮化欽、氮化组或上述合金之組合。 9·如申請專利範圍第1項所述之半導體晶圓,其中該第一 金屬結構及該第二金屬結構具有複數個第三狹縫自該等金 屬結構之邊界向内延伸。 10.如申請專利範圍第9項所述之半導體晶圓,其中該第一 金屬結構及該第二金屬結構另具有複數個第四狹縫,與該 等第三狹縫呈交錯排列。 1332239 η·—種設置於一切割道區域中之一金屬結構,且該金屬結 構具有至少一平行於該切割道區域之狹縫和—金屬材料完 全環繞該狹縫。 12. 如申請專利範圍第u項所述之金屬結構,其中該金屬 結構包含有電性測試結構、特徵尺寸等之量測元件=及元 件對準標記、晶圓可靠度測試墊等製程測試結構。凡 13. 如申請專利範圍第u項所述之金屬結構,其中該切割 道區域係設置於一半導體晶圓中。 J 14.如申請專利範圍第13項所述之金屬結構,其令該 3另包含至少二晶粒區域,且該切割道區域係設置於 U茨寺晶粒區域之間。 ::構 構,_ 構’其中該金屬 17.如申請專利範圍第15項所述之金屬結 、、°構係鑲嵌於該低介電常數之介電層令。1332239 Application 4 Scope 1. A semiconductor wafer comprising: a plurality of die regions, and a scribe line region around each of the die regions and at least a second scribe region; and wherein the first metal structure is disposed In the first-cutting region, the first structure has at least one first slit parallel to the first cutting lane region and the -metal-metal material completely surrounds the first slit; and at least one second metal structure, Provided in the second scribe line region, and the second metal structure has at least - a first slit parallel to the second butterfly region and a second metal material completely surrounding the second slit. 2. The semiconductor wafer of claim i, wherein the first metal structure and the second metal structure comprise a measuring component of an electrical test structure, a feature size, and the like, and a component alignment mark, a wafer Reliability test 塾 process test structure. 3. The semiconductor wafer according to claim ii, wherein an integral circuit is formed in each of the crystal domains. 4. The semiconductor wafer of claim 1, wherein the first scribe lane region and the second scribe lane region each comprise at least one low dielectric constant dielectric layer. < [S} 23 5 The semiconductor wafer of claim 4, wherein the first layer surface. I. The dielectric wafer of the low dielectric constant, such as the semiconductor wafer of claim 4, wherein the semiconductor NMOS protective layer covers the low dielectric constant dielectric layer and the first a metal structure and a surface of the second metal structure. 8. The semiconductor wafer of claim i, wherein the first, genus structure and the second metal structure comprise titanium, group, crane, sho, copper, nitride, nitride or the above A combination of alloys. 9. The semiconductor wafer of claim 1, wherein the first metal structure and the second metal structure have a plurality of third slits extending inwardly from a boundary of the metal structures. 10. The semiconductor wafer of claim 9, wherein the first metal structure and the second metal structure further have a plurality of fourth slits staggered with the third slits. 1332239 η—a metal structure disposed in a scribe line region, the metal structure having at least one slit parallel to the scribe line region and a metal material completely surrounding the slit. 12. The metal structure according to claim 5, wherein the metal structure comprises a measuring component having an electrical test structure, a feature size, and the like; and a component alignment mark, a wafer reliability test pad, and the like; . 13. The metal structure of claim 5, wherein the scribe region is disposed in a semiconductor wafer. J. The metal structure of claim 13, wherein the third layer further comprises at least two grain areas, and the scribe line area is disposed between the Uz temple grain areas. The structure, the structure of the metal, is as described in claim 15, and the structure is embedded in the dielectric layer of the low dielectric constant. 25 1332239 18. 如申請專利範圍第11項所述之金屬結構,其中該金屬 結構包含有鈦、钽、鎢、鋁、銅、氮化鈦、氤化鈕或上述 合金之組合。 19. 如申請專利範圍第11項所述之金屬結構,其中該金屬 結構具有複數個邊界狹縫自該金屬結構之邊界向内延伸。 2〇·如申請專利範圍第19項所述之金屬結構,其中該金屬 結構另具有複數個交錯狹縫,與該等邊界狹縫呈交錯排列。 21·種金屬結構’該金屬結構係設置於一半導體晶圓之一 切割道區域中,且該金屬結構包含有: 一第-金騎’且該第-金屬層具有至少—平行_切割道區 域之狹縫和一金屬材料完全環繞該狹縫; 一第二金屬層,設置於該第一金屬層上方;以及 複數個平行於該切割道區域之介層條,設置於該第一金 屬層與該第二金屬層之間,並電連接該第一金屬層與該第 二金屬層。 22·如申請專利範圍第21項所述之金屬結構,其φ該第一 金屬層包含有電性測試結構、特徵尺謂之量測元件以及 元件對準標記、晶圓可靠度測試塾等製程測試結構。 [S 26 =·曰如申料·㈣21韻狀金i纟㈣,其中該半導 :曰另包含至少二晶粒區域,且該切割道區域係設置於 °哀等晶粒區域之間。 24.如申請專利範圍第21項所述之 道區域具有至少一低介電常數之介電層。n亥切割 =如申請專利範圍第2 4項所述之金屬結構,其中該金屬 、'、°構係設置於該低介電常數之介電層表面。 26·如申請專利範圍第24項所述之金屬結構,並㈣ 結構係鑲嵌於該低介電常數之介電層_。 項所述之金屬結構,其中該金屬 鋁、銅 '氮化鈦、氮化鈕或上述 27.如申請專利範圍第21 結構包含有鈦、鈕、鎢、 合金之組合。 讥如申請專利範圍第21項所述之金屬結構,其中咳第一 ^屬層具有觀個邊界賴自該第—金屬層之邊界向内延 tf糊制第28項㈣之金狀構,射該第一 二屬層另具有複數個交錯狹縫,與該等邊界狹縫呈交錯排 27 1332239 31. 複數摘置於蝴道區域中之一金屬結構,且該金屬結構具有 陣列排列之開口和-金屬材料完全環繞該開口。 ^如申^_範圍第31項所述之金屬結構,其中該金屬 有電性測試結構、特徵尺寸等之量測元件以及元 牛對耗記、晶圓可靠度測試塾等製程測試結構。 33. 如申請專利範圍第31項所述之金屬結 道區域係、設置於—半導體晶圓巾。 其中如割 34. 如申請專利範圍第33項所述之金屬結構, 體晶圓另包含至少-曰妞,日$ 、 5Λ導 該等晶粒區域之間了 刀割道區域係設置於 H申請料则第31項所狀金屬結構,其巾該切 、區域具有至少一低介電常數之介電層。 36.如申請專利範圍第35項所述之金屬結構,其中該金 結構係設置於該低介電常數之介電層表面。 Λ 28 U32239 其中該金屬 二如申·請專利範圍第35項所述之金屬結構, 、、、。構係鑲嵌於該低介電常數之介電層中。 再中該金屬 处8.如申請專利第31項所述之金屬結構 鶴、紹、銅、“或二 利範圍第3】項所述之金屬結構,其中該金屬 。*數個邊界狭縫自該金屬結構之邊界向内延伸。 =如申請專利範圍第39項所述之金屬結構,1中該金屬 、,,。籌另具有複數個交錯狹縫,與該等邊界狹縫呈交錯排列。 41. 一種製作金屬結構之方法,其包含有: 提供-半導體晶圓,該半導體晶圓定義有—切割道區 域,且該切割道區域具有至少一第一介電層; 於該切割道區域中形成一第二介電層,且該第二介電層 具有複數辦行於該蝴道區域之縣介層洞,用以暴露 出部分之該第一金屬層;以及 於該第二介電層表面形成-第二金屬層以及複數個介The metal structure of claim 11, wherein the metal structure comprises titanium, tantalum, tungsten, aluminum, copper, titanium nitride, a zirconium button or a combination of the foregoing. 19. The metal structure of claim 11, wherein the metal structure has a plurality of boundary slits extending inwardly from a boundary of the metal structure. The metal structure of claim 19, wherein the metal structure further has a plurality of staggered slits which are staggered with the boundary slits. 21. A metal structure 'the metal structure is disposed in a scribe line region of a semiconductor wafer, and the metal structure comprises: a first-gold ride' and the first metal layer has at least a parallel-cut region a slit and a metal material completely surround the slit; a second metal layer disposed above the first metal layer; and a plurality of via strips parallel to the scribe line region disposed on the first metal layer The first metal layer and the second metal layer are electrically connected between the second metal layers. 22. The metal structure according to claim 21, wherein the first metal layer comprises an electrical test structure, a measuring element of the characteristic ruler, a component alignment mark, a wafer reliability test, and the like. Test structure. [S 26 = · For example, (4) 21 rhyme gold i 纟 (4), wherein the semiconductor: 曰 further comprises at least two grain regions, and the scribe region is disposed between the grain regions. 24. A dielectric layer having at least one low dielectric constant as described in claim 21 of the scope of the patent application. The n-cut is a metal structure as described in claim 24, wherein the metal, ', ° configuration is disposed on the surface of the low dielectric constant dielectric layer. 26. The metal structure of claim 24, and (4) the structure is embedded in the dielectric layer of the low dielectric constant. The metal structure according to the item, wherein the metal aluminum, copper 'titanium nitride, nitride button or the above 27. The structure of the twenty-first aspect of the invention includes a combination of titanium, a button, a tungsten, and an alloy. For example, the metal structure described in claim 21, wherein the first layer of the cough has a viewing boundary depending on the boundary of the first metal layer, and the inner structure of the tf paste is the gold structure of the 28th item (4). The first two-layer layer further has a plurality of staggered slits staggered with the boundary slits 27 1332239 31. The plurality of metal structures are picked up in the butterfly track region, and the metal structure has an array of openings and - The metal material completely surrounds the opening. The metal structure as described in claim 31, wherein the metal has a measuring component such as an electrical test structure, a feature size, and a process test structure such as a memory-receiving, wafer reliability test, and the like. 33. The metal bypass region as described in claim 31 of the patent application is disposed on a semiconductor wafer. For example, if the metal structure is as described in claim 33, the bulk wafer further includes at least - 曰, $, Λ, Λ, and the grain area between the die areas is set in the H application. The metal structure of the item 31 has a dielectric layer having at least one low dielectric constant. 36. The metal structure of claim 35, wherein the gold structure is disposed on a surface of the low dielectric constant dielectric layer. Λ 28 U32239 where the metal is as described in the metal structure described in claim 35 of the patent scope, , , , . The structure is embedded in the low dielectric constant dielectric layer. Further, the metal portion is the metal structure described in the metal structure of the crane, the shovel, the copper, or the "or the second range of the third item" as described in claim 31, wherein the metal has a plurality of boundary slits. The boundary of the metal structure extends inward. = The metal structure described in claim 39, wherein the metal has a plurality of staggered slits which are staggered with the boundary slits. 41. A method of fabricating a metal structure, comprising: providing a semiconductor wafer defining a dicing region and having at least a first dielectric layer; in the dicing region Forming a second dielectric layer, and the second dielectric layer has a plurality of county vias in the butterfly region for exposing a portion of the first metal layer; and the second dielectric layer Surface formation - second metal layer and a plurality of layers 29 丄: 充於該等狭長介層洞中,’且該第二金屬 等介層條電連接該第一金屬層。 ·日由°亥 利範圍第41項所述之方法,其中該第一金屬 二二己=蝴、特徵尺寸等之量測元件以及元件 己、aa圓可靠度測試塾等製程測試結構。 43.如申請專利範圍第“項所述之 圓另包含至少二日日拉^、 …其中該半導體晶 晶粒區域之間。心°°域’且邊切割道區域係設置於該等 層與H專 =圍第41項所述之方法,其中該第一介電 I電層包含有一低介電常數材料。 係設置申於^第41項所述之方法,其㈣等介層條 第-金屬層與該第第-金屬層之間’以電連接該 包含有 ^範圍第41項所述之方法,其中該金屬結構 之組合'。、轉、紹、銅、氮化鈦、氮化麵或上述合金 介層條與^第利4圍第41項所述之方法,其中於形成該等 一金屬層之後,另包含有一於該切割道區域 30 1332239 層係暴露出部分之該第 上形成一保護層之步驟,且該保護 -一金屬層。 48.如申請專利範圍第41項所述之方法,其巾於形成該第 2屬層之㈣中,該第—金屬層具有複數個邊界狹縫自 该第—金屬層之邊界向内延伸。 H申請專職㈣48項所述之方法,其中於形成該第 金屬層之步驟中,該第—金屬層另具有複數個交錯狹 縫與戎等邊界狹縫呈交錯排列。 :如申請專利範圍第49項所述之金屬結構,”於形成 似Γ金屬層與料介層狀㈣巾,各該介層條之形狀 係為鋸齒形、波浪形或是方波形。 51. 1設置於—切割道區財之—金屬結構,包含有 複數個邊界狹縫,自該金屬結構之邊界向内延伸; 複數個交錯狹縫,與該等邊界狹縫呈交錯排列;以及 一金屬材料完全環繞該等交錯狹縫。 ϋ申請專利範圍第51項所述之金屬結構,其中該金肩 ==含有電性測試結構、特徵尺寸等之量測⑽以及天 ㈣準標記、晶圓可靠度測試墊等製程測試結構。 31 1332239 53. 如申請專利範圍第51項 道區域κ金屬結構,其中該切割 織係5又置於一半導體晶圓中。 54. 如申請專利範圍第53項所 體《曰圄s a a I 屬結構,其中該半導 日日囡另包含至少二晶粒區域,且 該等晶粒區域之間。 W拖域係設置於 鄕,1項所叙金屬結構,其中該切割 k區域具有至少一低介電常數之介電層。 从如申請專利範圍第55項所述之金屬結構,其中 結構係設置於該低介電常數之介電層表面。 人 57·如申請專利範圍第55項所述之金屬、结構,《中該金 結構係鑲嵌於該低介電常數之介電層中。 / 58.如申請專利範圍第51項所述之金屬結構,其中該金屬 結構包含有鈦、组、鶴、铭、銅、氣化銥、氣化组或上 合金之組合。 十 圖式· 3229 丄: filled in the elongated via holes, and the second metal or the like is electrically connected to the first metal layer. The method of claim 41, wherein the first metal is a measurement element such as a butterfly, a feature size, and the like, and a process test structure such as a component, aa circular reliability test, and the like. 43. The circle of claim ", wherein the circle further comprises at least two days, ... wherein the semiconductor crystal grain region is between the heart and the region" and the edge cutting region is disposed in the layer The method of claim 41, wherein the first dielectric I electrical layer comprises a low dielectric constant material. The method of applying the method described in the 41st item, the (iv) equal interlayer layer - A method of electrically connecting the metal layer to the first metal layer, wherein the metal structure is combined, wherein the metal structure is combined with a turn, a copper, a titanium nitride, a nitrided surface. Or the method of the above-mentioned alloy interlayer strip, and the method of claim 41, wherein after forming the one metal layer, the first portion is formed on the exposed portion of the layer of the scribe line region 30 1332239 A protective layer and a protective layer - a metal layer. 48. The method of claim 41, wherein the first metal layer forms (four), the first metal layer has a plurality of boundaries The slit extends inward from the boundary of the first metal layer. H applies for full-time (4) 48 items The method, wherein in the step of forming the metal layer, the first metal layer further has a plurality of staggered slits arranged in a staggered manner with boundary slits such as 戎. : The metal structure according to claim 49," In forming a tantalum-like metal layer and a material-like layer (four) towel, each of the via strips has a zigzag shape, a wave shape or a square wave shape. 51. 1 disposed in a dicing zone - a metal structure comprising a plurality of boundary slits extending inwardly from a boundary of the metal structure; a plurality of interlaced slits staggered with the boundary slits; A metallic material completely surrounds the staggered slits. ϋ The metal structure described in claim 51, wherein the shoulder == contains the electrical test structure, the feature size, etc. (10) and the day (four) quasi-marker, wafer reliability test pad and other process test structures. 31 1332239 53. As claimed in claim 51, the region κ metal structure, wherein the dicing system 5 is again placed in a semiconductor wafer. 54. The 曰圄s a a I genus structure as set forth in claim 53 wherein the semi-conductive day further comprises at least two grain regions and between the grain regions. The W-drag domain is set forth in 鄕, a metal structure as described in the section, wherein the dicing k region has at least one dielectric layer of low dielectric constant. A metal structure as described in claim 55, wherein the structure is disposed on a surface of the low dielectric constant dielectric layer. Person 57. The metal and structure described in claim 55, wherein the gold structure is embedded in the low dielectric constant dielectric layer. The metal structure of claim 51, wherein the metal structure comprises a combination of titanium, group, crane, stellite, copper, gasified ruthenium, gasification group or upper alloy. Ten schema · 32
TW95146904A 2006-12-14 2006-12-14 Semiconductor wafer and method for forming the same TWI332239B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95146904A TWI332239B (en) 2006-12-14 2006-12-14 Semiconductor wafer and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95146904A TWI332239B (en) 2006-12-14 2006-12-14 Semiconductor wafer and method for forming the same

Publications (2)

Publication Number Publication Date
TW200826175A TW200826175A (en) 2008-06-16
TWI332239B true TWI332239B (en) 2010-10-21

Family

ID=44772317

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95146904A TWI332239B (en) 2006-12-14 2006-12-14 Semiconductor wafer and method for forming the same

Country Status (1)

Country Link
TW (1) TWI332239B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8604593B2 (en) * 2009-10-19 2013-12-10 Mosaid Technologies Incorporated Reconfiguring through silicon vias in stacked multi-die packages
TWI417975B (en) * 2009-12-30 2013-12-01 Raydium Semiconductor Corp Testkey structure, chip packaging structure, and method for fabricating the same

Also Published As

Publication number Publication date
TW200826175A (en) 2008-06-16

Similar Documents

Publication Publication Date Title
Ker et al. Fully process-compatible layout design on bond pad to improve wire bond reliability in CMOS Ics
US7256475B2 (en) On-chip test circuit for assessing chip integrity
US7622309B2 (en) Mechanical integrity evaluation of low-k devices with bump shear
US7649268B2 (en) Semiconductor wafer
US7115985B2 (en) Reinforced bond pad for a semiconductor device
US10636703B2 (en) Semiconductor device for preventing crack in pad region and fabricating method thereof
TWI336920B (en) Pad structure and forming method of the same
US8450126B2 (en) Semiconductor test pad structures
JP2008258258A (en) Semiconductor device
US7247552B2 (en) Integrated circuit having structural support for a flip-chip interconnect pad and method therefor
TWI330877B (en) Semiconductor device
US9397054B2 (en) Semiconductor structure with an interconnect level having a conductive pad and metallic structure such as a base of a crackstop
JP2003045876A (en) Semiconductor device
TWI228292B (en) Semiconductor integrated device and manufacturing method thereof
TW201214641A (en) Semiconductor device and manufacturing method of semiconductor device
US7538346B2 (en) Semiconductor device
TW200426926A (en) Semiconductor device
US20070187838A1 (en) Pad structure for bonding pad and probe pad and manufacturing method thereof
US6579734B2 (en) Wire bonding method
US11121056B2 (en) Semiconductor device and manufacturing method of the same
TWI316741B (en) Method for forming an integrated cricuit, method for forming a bonding pad in an integrated circuit and an integrated circuit structure
TWI332239B (en) Semiconductor wafer and method for forming the same
CN108269730B (en) Semiconductor device and method for manufacturing the same
JP5270836B2 (en) High current structures compatible with active area bonding
JP5559599B2 (en) Semiconductor device, manufacturing method thereof, and semiconductor wafer