TWI332228B - Field emission display device - Google Patents

Field emission display device Download PDF

Info

Publication number
TWI332228B
TWI332228B TW94106538A TW94106538A TWI332228B TW I332228 B TWI332228 B TW I332228B TW 94106538 A TW94106538 A TW 94106538A TW 94106538 A TW94106538 A TW 94106538A TW I332228 B TWI332228 B TW I332228B
Authority
TW
Taiwan
Prior art keywords
field emission
display device
wire
emission display
gate
Prior art date
Application number
TW94106538A
Other languages
Chinese (zh)
Other versions
TW200632984A (en
Inventor
Yang Wei
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW94106538A priority Critical patent/TWI332228B/en
Publication of TW200632984A publication Critical patent/TW200632984A/en
Application granted granted Critical
Publication of TWI332228B publication Critical patent/TWI332228B/en

Links

Description

1332228 __1332228 __

-〇99年曰接正替換女I 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種場發射顯示器,尤其涉及—種高解析度 . 之三極型場發射顯不装置。 【先前技術】 [〇〇〇2] 場發射顯示器係繼陰極射線管(CRT)顯示器以及液晶 (LCD)顯示器之後’最具發展潛力之新興平面顯示技術。 相對於習知技術之各種顯示器,場發射顯示器具有顯示 效果好、視角大、功耗小以及體積小等優點,尤其係基 於奈米碳管之場發射顯示器,即奈米碳管場發射顯示器 (CNT-FED),近年來越來越受到重視 [0003] 奈米碳管首先係由日本研究人員發現》義發表在《自然 > 雜誌(Nature, Vol. 354,Nov. 7,1991,pp. 56-58)。奈米碳管係一種新型碳材料,其具有極優異之 導電性能,以及幾乎接近理論極限之尖端表面積(尖端表 面積愈小’其局部電場愈集中,場增強因數愈大),故, 奈米碳管係已知最好的場發射材料之一,它具有極低的 開啓電場(大約2伏/微米),可傳輸極大的電流密度, 並且發射電流極穩定,因而非常適合做場發射顯示器的 發射體(電子發射材料)。隨著奈米碳管生長技術的曰益 成熟’奈米碳管場發射顯示器的研究已經取得一系列重 要進展。 [0004] 一般而言,場發射顯示器按結構可以分爲二極型和三極 型。所謂二極型即包括有陽極和陰極的場發射結構,這 種結構由於需要施加高電壓,而且均勻性以及電子發射 094106538 表單編號A0101 第4頁/共21頁 0993237360-0 1332228 099年07月02日修正替换頁| 難以控制,驅動電路成本高,基本上不適合^^-' 示器的實際應I三極型結構則餘二極型基礎上改進. ’增加有柵極來㈣電子發射,可以實現在較低電壓條 件下發出電子,而且電子發射容易通過柵極來精破控制 〇 [0005] 如第六圖所示,係目前-種典型的三極型場發射裝置, 圖中僅示出-個像素的顯示結構。這裏所謂像素係指圖 像顯示的最小單元。在典型的彩色顯示系統中,彩色圖 像係通過三原色的組合而實現,即紅(R)、綠(G)、藍 ⑻王種單獨的色彩單元。每個用於顯示單獨的色彩(例 如紅色)的單元即可稱爲一個'像素、以下的碭發射裝置係 以紅色像素單元爲例來說明〜該裝.置其包括一基底1〇1 , 升> 成於基底1 01上的絕緣層1 〇 2,形成於絕緣層1 〇 2上的 柵極103,其中絕緣層102和柵極1〇3形成有穿孔1〇4以供 發射電子穿過,在穿孔1〇4底端形成有發射電子的發射元 件105,此處它也係陰極v另外,在栅極丨〇3上方間隔一 疋距離的位置係陽極1 〇 6以及具有紅色螢光物質的螢光層 107 »使用時’施加不同電壓在陽極1〇6、栅極丨〇3和陰 極’電子即可從發射元件1〇5發射出’並穿過穿孔丨〇4, 然後在陽極106形成的電場作用下加速到達陽極106和勞 光層107 ’激發螢光層! 〇7發出可見光。一般陽極1〇6電 壓係幾千伏’柵極103的電壓爲100伏左右《這種結構的 場發射顯示裝置,發射的電子由於受兩側柵極103的電場 作用’有一大部分電子110和111會發生較大角度的偏轉 ’打到螢光層107以外的區域。而打到與發射元件105正 094106538 表單編號A0101 第5頁/共21頁 0993237360-0 1332228 099年07月〇2日接正雜頁1 對區域的中心位置的電子报少,這樣就導致電子偏轉到 旁邊其他的像素上(例如綠色或藍色),從而顯示出其 他顏色,産生錯誤的顏色顯示;或者係電子打到旁邊其 · 他的紅色像素上,從而導致圖像解析錯誤。 [0006] 請參見第七圖,爲解決上述問題,Toshiba公司的研究人 員Hironori Asai等人於2〇〇2年9月3日公告之美國專利 第6, 445, 124號提出一種改進的結構,主要包括一基底 211,一陰極層203形成在基底211上’絕緣層202及柵極 201順序形成在陰極層203上,並形成有穿孔,在穿孔的 底端、陰極層203上形成有電子發射層207,用以發射電 子。其改進之處在於,上述結構需符合L/s 1,其中S係 穿孔的直徑’ L係電子射出到達柵顏201的J:短距離,也 即係電子發射層207與柵極2〇1的最短距離。這種結構由 於L需比較大,即電子發射層207的電子發射端與栅極201 的距離較大’使得栅極201需很高電壓才能夠形成足夠的 電場作用將電子從電子發射層207拔出,所以不利於降低 發射電壓’也會提高該裝置的電能消耗;另外,由於電 子發射層207位於絕緣層202底端,電子發射點距離柵極 201較遠,發射出的電子很大部份被絕緣層202阻擋吸收( 這一點也係這種結構能夠減少橫向擴散電子的原因),所 以發射電子的有效利用率很低,不可避免會影響圖像的 顯示亮度。 爲解決上述現有技術存在的技術問題,本發明其中兩發 明人魏洋及范守善二人曾經提出一種具有中心柵結構的 場發射裝置,詳情請參見台灣專利申請第931 1 21 95號。 094106538 表單編號A0101 第6頁/共21頁 0993237360-0 [0007] 1332228 [0008] [0009] [0010] [0011] 099年.ci^j 02日接正替換頁I 在此,本發明對該中心柵結構的場發射裝置作進一步改 良,進一步提高電子發射性能及其利用效率,並簡化制 程,降低成本。 【發明内容】 爲解決現有技術的場發射顯示器柵極發射電壓高,以及 由於電子發射體周圍的栅極對電子發射産生擴散作用技 術問題,以下將通過若干實施例說明一種場發射顯示器 ,其可在較低電壓下容易發射電子,可以有效的控制發 射電子的方向,將電子束聚焦到對應的像素區域,實現 尚解析度圖像顯示,並可提高電子發射效率。 爲實現上述内容,提供一種場發射顯示裝置:,其包括: 具有螢光層的陽極,導電陰極和栅極,所述陰極包含有 電子發射材料,其中,對應於同一像素的電子發射材料 分佈在s亥像素對應的柵極的兩側,所述柵極懸空設置在 該像素對應的電子發射材料與該像素對應的螢光層之間 I·' 〇 優選的,所述柵極由金屬絲製:成,金屬絲包括金絲、鎳 絲等。 [0012] [0013] 優選的,該場發射顯示裝置進一步包括至少兩絕緣障壁 ,所述金屬絲懸掛固定在兩絕緣障壁頂部。 優選的,所述陰極爲圓柱狀金屬絲;電子發射材料包括 奈米碳管,形成在圓柱狀金屬絲表面。 相較於習知技術,本技術方案具有如下優點:由於電子 發射體的頂端相距拇極的距離可以較小,所以,可以降 094106538 表單编號A0101 第7頁/共21頁 0993237360-0 [0014] 1332228 099年07月02日俊正替換頁 [0015] [0016] 低發射電子的開啓電壓;而且,由於柵極位於電子發射 體的上方中央,這種結構可使柵極同時具有發射電子和 聚’、、電子的作用,也就係柵極的電場可以改變電子束運 動的方向,使電子束打到螢光屏上的斑點變小,從而實 门解析度的平面顯示;另外,由於柵極懸空設置在電 毛射材料上方,所以大部分電子發射材料均可發射電 子森擊其對應㈣光層,從而提高電子發射效率。 【實施方式】 下面結合說明書附圖及具體實施例對本發明的實施方式 作詳細福述。 明一起參見第一圖及第二圖,係本發明第一實施例一種 奈米碳管場發射顯示器10的刹示圖。鉍場發射顯示器1〇 包括:相對並平行設置的一基底11及一透明出光板2i, 多個支撐壁18將該基底11及該出光板21間隔開一定距離 ,以此形成一内部空間(圖未標示);多個絕緣障壁丨4相 互平行並分別間隔一定距離排列形成在該基底丨丨的表面 ,這樣在相鄰兩個絕緣障壁14之間形成一空隙15 ;在每 兩個絕緣障壁之間的各個空隙15的底部,分別設置有一 第一金屬絲12 ’其基本平行於絕緣障壁14排列在基底11 表面上,該第一金屬絲12的兩端可分別焊接在設置於兩 侧的引出極121上’所述引出極121有一部分延伸出内部 空間外面’以利於與傳輪訊號的裝置相連接;該第一金 屬絲12的表面形成有奈米碳管13,用於發射電子;至少 一第二金屬絲16 ’橫跨各絕緣障壁14的頂部,懸掛於第 —金屬絲12的上面,且該第二金屬絲16兩端部161及162 094106538 表單编號A0101 第8頁/共21頁 0993237360-0 1332228 099年07月02日按正替換頁 分別向形成在基底11側邊表面的金屬電極17彎折延伸, 並與之電連接,該第二金屬絲16用作Λ極電極;上述金 屬電極17可直接形成於基底11兩側邊的表面上,並且有 一部分伸出内部空間外面以利於與傳輸訊號的裝置(圖未 示)相連接;所述出光板21面向基底11的内表面形成有一 陽極22,而陽極22的表面形成有由螢光層23,螢光層23 含有螢光物質,受電子轟擊時可激發出相應顏色的可見 光。 [0017] 在本實施例中,所述基底11可由玻璃、矽、陶瓷等絕緣 材料製成;所述出光板21可由透明的玻璃板製成;陽極 22可由銦錫氧化物導電膜(Ι.Τ0)製成;而所述絕緣障壁 14可由玻璃等絕緣材料形成具有一定高度的長條形,多 個絕緣障壁14可相互平行、間隔一定距離的分佈排列。 [0018] 優選的,本實施例中的第一金屬絲12可由金絲、鎳絲等 導電性優良的導體製成,其直徑適合實際使用即可,例 如可爲十微米至數十微求。第一金屬絲12表面的奈米碳 管13可通過合適的方法形咸,例如,可以直接在鎳絲上 通過化學氣相沈積法生長奈米碳管,或用其他方法使奈 米碳管附著於第一金屬絲表面。優選的,第一金屬絲12 表面爲圓弧狀,一方面有利於在圓弧狀表面上形成更多 數量的奈米碳管,另一方面可使奈米碳管呈發散分佈, 有利於增大相鄰奈米碳管尖端之間的距離,從而減小相 互之間的場遮罩效應,這種結構的優點請參閱台灣專利 申請第93133748號。 [0019] 優選的,第二金屬絲16可由金絲、鎳絲等導電性優良的 094106538 表單編號Α0101 第9頁/共21頁 0993237360-0 1332228 導體製成,其直徑在滿足機械強度的前提下可以儘旦 '里 / J、 ,例如數微米至數十微米,以利於減少電子發射時對電 子的阻擋。另外,第二金屬絲16可以通過粘結或其他方 式固疋於絕緣障壁14頂部,例如,可在安裝第_金屬纟 16之前,先行在絕緣障壁14頂部印刷—層玻璃漿料,然 後將第二金屬絲16繃緊、暫時橫懸在絕緣障壁14頂部, 再通過燒結玻璃漿料將其固定於絕緣障壁14頂部。 [0020] 在典型的場發射顯示裝置中,才冊極與陰極分別係以相互 垂直的行、列方式排佈的’柵極與陰極分別控制掃描訊 號或控制訊號。在本實施例中’當然也可以採用這種行 、列排佈的方式來安排柵極(即第二金屬絲16)與陰極(即 形成有奈米碳管丨3的第一金屬絲12) »每一行、列相交^ 位置即可對應於一個像素點。 [0021] 本實施例中,各螢光層23分別正對於—第-金屬絲12, 而作爲栅極的第:金屬絲16縣直於第-金屬絲12、懸 掛在其上方’這種結構可稱爲懸掛中心柵場發射結構。 [0022] =實施例中’絕緣障壁14的高度應比第—金屬絲12的直 役大,確保第—金屬絲12表面的奈米碳管13不會與第二 金屬絲16(即柵極)相接觸形成短路 。優選的,奈米碳管 13與第二金屬絲16之間的距離較小,有利於降低場發射 所需的電壓。 使用時’分別施加不同電壓給陽極22,栅極(第二金屬絲 6)孝陰極(第一金屬絲12),在柵極的電場作用下,電子 從第金屬絲12表面的奈米碳管13頂端發射出來,並在 094106538 表單編號A0101 笫10頁/共21頁 0993237360-0 [0023] 1332228 099年07月02日修正替換頁 陽極22的電場作用下,穿過内部空間加速轟擊至螢光層 23發出可見光。本實施例的場發射結構中,柵極的位置 對應於螢光層23的中心處,電子發射體奈米碳管13則分 別位於柵極兩側,這樣,柵極不僅起到將電子從奈米碳 管13頂端“拔出”的作用,還起到聚焦電子束的作用, 即奈米碳管13發射出的電子受懸掛在中央上方的柵極的 電場作用,聚焦於螢光層23,從而實現電子正確、精准 的轟擊在所需位置,可以實現較高解析度的平面顯示。 [0024] 爲進一步瞭解本實施例的具體結構、實現電子束聚焦的 原理以及其他特點,下面作以一個像素的結構爲例子作 進一步詳細描述。 ,; [0025] 請參見第三圖,形成在第一金屬.絲12(即陰極)表面的奈 米碳管13在第二金屬絲16(即柵極)的電壓(兩電極之間的 電勢差)形成的電場作用下,奈米碳管13發射出電子,其 中距離第二金屬絲16較遠的奈来碳管發射出來的電子33 在電場作用下發生偏轉,容易轟擊在對應的螢光層23邊 ;· . 緣處,靠近第二金屬絲16的米碳管發射出來的電子31 容易轟擊在螢光層23的中心附近,僅僅只有極少數正對 於第二金屬絲16的奈米碳管發射出來的電子32容易被第 二金屬絲16阻擋不能轟擊到螢光層23上,而且當第二金 屬絲16直徑很小的情況下這種阻擋也可以降到最小。因 此,大部分奈米碳管13發射的絕大部分的電子均能有效 的轟擊於螢光層23用於發光,所以,相對於現有技術, 本實施例的電子發射效率大爲提高;而且,由於第二金 屬絲16的聚焦作用,使得電子轟擊在螢光層上的區域面 094106538 表單編號Α0101 第11頁/共21頁 0993237360-0 1332228 099年07月〇2日核正替換頁 積變小,從而可減小圖像最小像素的尺寸大小,可實現 高解析度、高質量的圖像顯示。 [0026] 下面簡單介紹上述實施例的製備方法:含有奈米碳管13 的第一金屬絲12可以採用前述的方法單獨製備;絕緣障 壁14可採用傳統的絲網印刷方法形成;第二金屬絲16可 採用前述的燒結方法固定於絕緣障壁上;最後將製備好 的各部分組裝,並與帶有陽極及螢光層的玻璃板對中、 真空封裝即可。所以,本實施例製備方法比較簡單,可 大量生産。 [0027] 請參閱第四圖和第五圖,本發明的第二實施例與第一實 施例的結構大致相同,包括相對設置的基底丨丨和出光板 21 ’形成在基底11上的絕緣障壁ί4 ’以及形成在出光板 21上的陽極22以及螢光層23,其不同在於,在相鄰兩絕 緣障壁14之間形成的間隙丨5區域,形成有導電的陰極層 41以及形成在該陰極層41表面的奈米碳管層43 ,其中該 陰極層41可爲一層與絕緣障壁14平行的帶狀金屬薄膜, 例如鎳、銅或金薄膜等。栅極45橫跨在絕緣障壁14頂部 ,與陰極層41呈垂直正交狀’其中柵極45與陰極層41相 交叉的區域正對其上方的螢光層23。奈米碳管層43可通 過印刷奈米碳管漿料的方法形成在陰極層41表面,也可 通過其他方法形成;當然’奈米碳管層43可分佈於整個 陰極層41表面,也可僅分佈於栅極45與陰極層41相交區 域的部分表面。 [0028] 第二實施例的電子發射軌道及聚焦機理與第一實施例大 致相似,在此不作詳細說明。 094106538 表單编號Α0101 第12頁/共21頁 0993237360-0 1332228 07月02日修正番換頁] [0029] 上述實施例僅對場發射顯示裝置的一部分單元結構作出 說明,本技術領域的人員可根據上述實施例的精神擴大 尺寸’形成大尺寸的平面顯示裝置。 [0030] 可以理解的係,雖然本發明場發射顯示器的上述實施例 採用奈米碳管作爲電子發射體,但不能因此限制本發明 的範圍,另外的實施例中也可採用其他具有發射電子的 头_端的材料’如碳纖維、石墨、金剛石也可適用,甚至 具有尖端的金屬發射體也可作爲發射電子的材料。 [0031] 綜上所述’本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者;僅為本發明之較佳實施例 ,自不能以此限制本案之申請.專利範圍Y舉尽熟悉本案 技藝之人士援依本發明之精神价作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0032] 第一圖係本發明第一實施例奈米碳管場發射顯示裝置的 剖視圖。 [0033] 第二圖係沿第一圖I I - 11剖線的狗;見圖。 [0034] 第三圖係本發明第一實施例奈米碳管場發射顯示裝置的 電子發射與聚焦機理示意圖。 [0035] 第四圖係本發明第二實施例的剖視圖。 [0036] 第五圖係沿第四圖的V-V剖線的剖視圖。 [0037] 第六圖係現有技術三極型場發射顯示器的結構和電子發 射示意圖° 094106538 表單编珑Α0101 笫13頁/共21頁 0993237360-0 1332228 099年07月02日修正替換頁 [0038] 第七圖係另一種現有技術揭露的場發射裝置結構示意圖 〇 【主要元件符號說明】 [0039] 場發射顯示器:10 [0040] 基底:11 [0041] 第一金屬絲:12 [0042] 奈米碳管:13 [0043] 絕緣障壁:14 [0044] 空隙:15 [0045] 第二金屬絲:16 [0046] 金屬電極:17 [0047] 支撐壁:18 [0048] 出光板:21 [0049] 陽極:22 [0050] 螢光層:23 [0051] 電子:31,32,33 [0052] 陰極層:41 [0053] 奈米碳管層:43 [0054] 柵極:45 [0055] 引出極:121 表單編號A0101 094106538 第14頁/共21頁 0993237360-0 1332228 [0056] 端部:161 162 099年07月02日核正替換頁 094106538 表單編號A0101 第15頁/共21頁 0993237360-0-〇99年曰接正换女I VI, invention description: [Technical field of invention] [0001] The present invention relates to a field emission display, and more particularly to a high-resolution three-pole field emission display device . [Prior Art] [〇〇〇2] The field emission display is the emerging flat display technology with the most potential after the cathode ray tube (CRT) display and liquid crystal (LCD) display. Compared with various displays of the prior art, the field emission display has the advantages of good display effect, large viewing angle, low power consumption and small volume, especially based on a field emission display of a carbon nanotube, that is, a carbon nanotube field emission display ( CNT-FED) has received increasing attention in recent years [0003] The carbon nanotubes were first discovered by Japanese researchers, published in the journal Nature (Vol. 354, Nov. 7, 1991, pp. 56-58). The carbon nanotube is a new type of carbon material with excellent electrical conductivity and a tip surface area close to the theoretical limit (the smaller the tip surface area is, the more concentrated the local electric field is, the larger the field enhancement factor is), so the nano carbon One of the best field emission materials known in the tube system, it has a very low on-state electric field (about 2 volts / micron), can transmit a very large current density, and the emission current is extremely stable, so it is very suitable for the emission of field emission display. Body (electron emission material). With the benefits of nanocarbon tube growth technology, the research on nanocarbon tube field emission displays has made a series of important progress. [0004] In general, field emission displays can be classified into two-pole type and three-pole type by structure. The so-called dipole type includes a field emission structure having an anode and a cathode. This structure requires high voltage application, and uniformity and electron emission. 094106538 Form No. A0101 Page 4 / Total 21 Page 0993237360-0 1332228 099 July 02 Day correction replacement page | Difficult to control, the drive circuit cost is high, basically not suitable for ^^-' The actual operation of the indicator should be improved on the basis of the remaining two-pole type. 'Increased with the gate to (four) electron emission, can Realizing electron emission under lower voltage conditions, and electron emission is easy to pass through the gate to fine-tune the control. [0005] As shown in the sixth figure, it is a typical three-pole field emission device, only shown in the figure. - A pixel display structure. The term "pixel" as used herein refers to the smallest unit of image display. In a typical color display system, the color image is achieved by a combination of three primary colors, namely red (R), green (G), and blue (8) kings. Each unit for displaying a separate color (for example, red) can be referred to as a 'pixel, and the following 砀 emitting device is exemplified by a red pixel unit. The package includes a substrate 1 〇 1 , liter > An insulating layer 1 〇 2 formed on the substrate 101, a gate electrode 103 formed on the insulating layer 1 , 2, wherein the insulating layer 102 and the gate electrode 1 3 are formed with perforations 1 〇 4 for emitting electrons to pass through An electron-emitting emitting element 105 is formed at the bottom end of the perforation 1〇4, where it is also a cathode v. In addition, a position at a distance above the gate 丨〇3 is an anode 1 〇6 and a red fluorescent substance Fluorescent layer 107 » When used, 'applying different voltages at the anode 1 〇 6, the gate 丨〇 3 and the cathode 'electrons can be emitted from the emitting element 1 〇 5 ' and pass through the perforated crucible 4 and then formed at the anode 106 The electric field is accelerated to reach the anode 106 and the light layer 107' to excite the fluorescent layer! 〇7 emits visible light. Generally, the voltage of the anode 1〇6 is several thousand volts. The voltage of the gate electrode 103 is about 100 volts. The field emission display device of this structure has a large portion of electrons 110 due to the electric field of the two sides of the gate 103. 111 will cause a large angle of deflection 'to hit the area other than the fluorescent layer 107. And hit and launch component 105 is 094106538 Form No. A0101 Page 5 / Total 21 Page 0993237360-0 1332228 099 July 〇 2nd, the miscellaneous page 1 The number of electronic bullets in the center of the area is small, which leads to electronic deflection Go to other pixels next to it (such as green or blue) to display other colors, resulting in a wrong color display; or electronically hitting its red pixel next to it, resulting in image parsing errors. [0006] Please refer to the seventh figure, in order to solve the above problem, an improved structure is proposed in U.S. Patent No. 6,445,124, the disclosure of which is incorporated herein by reference. Mainly comprising a substrate 211, a cathode layer 203 is formed on the substrate 211. The insulating layer 202 and the gate electrode 201 are sequentially formed on the cathode layer 203, and perforations are formed, and electron emission is formed on the bottom end of the perforation and the cathode layer 203. Layer 207 is used to emit electrons. The improvement is that the above structure needs to conform to L/s 1, wherein the diameter of the S-type perforation 'L-electron emission reaches the J: short distance of the gate 201, that is, the electron-emitting layer 207 and the gate 2〇1 The shortest distance. Such a structure is relatively large, that is, the electron emission end of the electron emission layer 207 is at a large distance from the gate electrode 201, so that the gate electrode 201 needs a high voltage to form a sufficient electric field to pull electrons from the electron emission layer 207. Out, so it is not conducive to lowering the emission voltage' will also increase the power consumption of the device; in addition, since the electron emission layer 207 is located at the bottom end of the insulating layer 202, the electron emission point is far from the gate 201, and a large part of the emitted electrons The absorption is blocked by the insulating layer 202 (this is also the reason why this structure can reduce the lateral diffusion of electrons), so the effective utilization rate of the emitted electrons is low, which inevitably affects the display brightness of the image. In order to solve the above-mentioned problems existing in the prior art, two of the inventors Wei Yang and Fan Shoushan have proposed a field emission device having a center gate structure. For details, please refer to Taiwan Patent Application No. 931 1 21 95. 094106538 Form No. A0101 Page 6 / Total 21 Page 0993237360-0 [0007] 1332228 [0008] [0009] [0011] [9911] 099. ci^j 02 接正正换页 I Here, the present invention The field emission device of the center gate structure is further improved to further improve the electron emission performance and utilization efficiency, and simplify the process and reduce the cost. SUMMARY OF THE INVENTION In order to solve the problem that the gate emission voltage of the field emission display of the prior art is high, and the diffusion effect of the gate around the electron emitter on the electron emission, a field emission display will be described below through several embodiments. Easily emit electrons at a lower voltage, which can effectively control the direction of the emitted electrons, focus the electron beam to the corresponding pixel area, realize the resolution image display, and improve the electron emission efficiency. To achieve the above, there is provided a field emission display device comprising: an anode having a phosphor layer, a conductive cathode and a gate, the cathode comprising an electron emission material, wherein electron emission materials corresponding to the same pixel are distributed Preferably, the gate is suspended between the electron-emitting material corresponding to the pixel and the phosphor layer corresponding to the pixel, and the gate is made of metal wire. : into, the wire includes gold wire, nickel wire and the like. [0013] Preferably, the field emission display device further comprises at least two insulating barriers, and the wires are suspended and fixed on top of the two insulating barriers. Preferably, the cathode is a cylindrical wire; the electron-emitting material comprises a carbon nanotube formed on the surface of the cylindrical wire. Compared with the prior art, the technical solution has the following advantages: since the distance between the top end of the electron emitter and the thumb pole can be small, it can be lowered 094106538 Form No. A0101 Page 7 / Total 21 Page 0993237360-0 [0014 ] 1332228 July 02, 2008, Jun Zheng replacement page [0015] [0016] The low-emission electron turn-on voltage; and, since the gate is located at the upper center of the electron emitter, this structure allows the gate to have both emission electrons and poly ',, the role of electrons, that is, the electric field of the gate can change the direction of the electron beam movement, so that the spot on the fluorescent screen becomes smaller, so that the real-gate resolution of the plane display; in addition, due to the grid The dangling is disposed above the electro-shine material, so most of the electron-emitting materials can emit electrons to hit their corresponding (four) light layers, thereby improving electron emission efficiency. [Embodiment] Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings and specific embodiments. Referring to the first and second figures together, a brake diagram of a carbon nanotube field emission display 10 according to a first embodiment of the present invention is shown. The field emission display 1 includes a substrate 11 and a transparent light-emitting plate 2i disposed opposite to each other, and the plurality of support walls 18 space the substrate 11 and the light-emitting plate 21 at a certain distance to form an internal space. Not shown); a plurality of insulating barriers 4 are parallel to each other and are arranged at a distance from each other to form a surface of the substrate, such that a gap 15 is formed between two adjacent insulating barriers 14; in each of the two insulating barriers The bottom of each of the gaps 15 is provided with a first wire 12' which is arranged substantially parallel to the insulating barrier 14 on the surface of the substrate 11. The two ends of the first wire 12 can be respectively soldered to the outlets provided on both sides. The pole 121 has a portion extending from the outer space of the inner space to facilitate connection with the device for transmitting the signal; the surface of the first wire 12 is formed with a carbon nanotube 13 for emitting electrons; A second wire 16' straddles the top of each of the insulating barriers 14 and is suspended above the first wire 12, and the second wire 16 is 161 and 162 094106538. Form No. A0101 Page 8 of 21 Page 0993237360-0 1332228 On July 2, 099, the metal electrode 17 formed on the side surface of the substrate 11 is bent and extended and electrically connected thereto according to the positive replacement page, and the second wire 16 is used as a drain electrode; The metal electrode 17 may be directly formed on the surface of both sides of the substrate 11, and a part of the metal electrode 17 may be extended outside the internal space to facilitate connection with a device for transmitting signals (not shown); the light-emitting plate 21 faces the inside of the substrate 11. An anode 22 is formed on the surface, and the surface of the anode 22 is formed with a phosphor layer 23 containing a fluorescent substance which can excite visible light of a corresponding color when bombarded by electrons. [0017] In this embodiment, the substrate 11 may be made of insulating material such as glass, enamel, ceramic, etc.; the light-emitting plate 21 may be made of a transparent glass plate; the anode 22 may be made of an indium tin oxide conductive film (Ι. The insulating barrier 14 may be formed of an insulating material such as glass to form a strip having a certain height, and the plurality of insulating barriers 14 may be arranged in parallel with each other at a distance. [0018] Preferably, the first wire 12 in the present embodiment may be made of a conductor having excellent electrical conductivity such as gold wire or nickel wire, and the diameter thereof may be suitable for practical use, for example, may be ten micrometers to several tens of micrometers. The carbon nanotube 13 on the surface of the first wire 12 can be salted by a suitable method. For example, the carbon nanotube can be grown directly on the nickel wire by chemical vapor deposition, or the carbon nanotube can be attached by other methods. On the surface of the first wire. Preferably, the surface of the first wire 12 is arc-shaped, which is beneficial to form a larger number of carbon nanotubes on the arc-shaped surface, and on the other hand, the carbon nanotubes are divergently distributed, which is beneficial to increase The distance between the tips of the large adjacent carbon nanotubes, thereby reducing the field mask effect between each other. For the advantages of this structure, please refer to Taiwan Patent Application No. 93133748. [0019] Preferably, the second wire 16 may be made of a conductor such as gold wire or nickel wire, which is excellent in electrical conductivity, such as 094106538 Form No. 1010101, page 9 / 21 pages, 0993237360-0 1332228, and the diameter thereof satisfies the mechanical strength. It can be done in a few minutes, such as a few micrometers to tens of micrometers, to help reduce electron blocking during electron emission. In addition, the second wire 16 may be bonded to the top of the insulating barrier 14 by bonding or other means. For example, the glass paste may be printed on the top of the insulating barrier 14 before the mounting of the first metal crucible 16, and then the first The two wires 16 are tensioned, temporarily suspended over the top of the insulating barrier 14, and then fixed to the top of the insulating barrier 14 by a sintered glass paste. [0020] In a typical field emission display device, the gate electrode and the cathode are respectively controlled in a row and column manner which are perpendicular to each other, and the gate electrode and the cathode electrode respectively control the scanning signal or the control signal. In the present embodiment, it is of course also possible to arrange the gate (ie, the second wire 16) and the cathode (ie, the first wire 12 formed with the carbon nanotubes 3) by means of such row and column arrangement. »Each row and column intersection ^ position can correspond to one pixel. [0021] In this embodiment, each of the phosphor layers 23 is opposite to the -th wire 12, and the wire: the wire 16 is straighter than the first wire 12 and suspended above it. It can be called a suspended center gate field emission structure. [0022] In the embodiment, the height of the insulating barrier 14 should be larger than that of the first wire 12, ensuring that the carbon nanotube 13 on the surface of the first wire 12 does not interact with the second wire 16 (ie, the gate). The contacts form a short circuit. Preferably, the distance between the carbon nanotubes 13 and the second wire 16 is small, which is advantageous for reducing the voltage required for field emission. When used, 'different voltages are applied to the anode 22, the gate (second wire 6), the cathode (first wire 12), and the electrons from the surface of the wire 12 under the electric field of the gate. 13 The top is emitted, and at 094106538 Form No. A0101 笫 10 pages / Total 21 pages 0993237360-0 [0023] 1332228 On July 2, 2008, the correction of the electric field of the anode 22 is accelerated, and the bombardment to the fluorescent light is accelerated through the internal space. Layer 23 emits visible light. In the field emission structure of this embodiment, the position of the gate corresponds to the center of the phosphor layer 23, and the electron emitter carbon nanotubes 13 are respectively located on both sides of the gate, so that the gate not only functions to transfer electrons from the bottom. The function of "pull out" at the top of the carbon tube 13 also serves to focus the electron beam, that is, the electrons emitted from the carbon nanotube 13 are subjected to an electric field of a grid suspended above the center, and are focused on the phosphor layer 23, Thereby, the correct and accurate bombardment of the electrons can be realized at the desired position, and a higher resolution flat display can be realized. [0024] In order to further understand the specific structure of the embodiment, the principle of realizing electron beam focusing, and other features, the structure of one pixel will be further described in detail below as an example. [0025] Referring to the third figure, the voltage of the carbon nanotube 13 formed on the surface of the first metal wire 12 (ie, the cathode) at the second wire 16 (ie, the gate) (the potential difference between the two electrodes) Under the action of the electric field formed, the carbon nanotubes 13 emit electrons, wherein the electrons 33 emitted from the carbon nanotubes farther from the second wire 16 are deflected by the electric field, and are easily bombarded in the corresponding phosphor layers. 23 edges; · . At the edge, the electrons 31 emitted from the carbon nanotubes near the second wire 16 are easily bombarded near the center of the phosphor layer 23, and only a very small number of carbon nanotubes are being applied to the second wire 16. The emitted electrons 32 are easily blocked by the second wire 16 from being bombarded onto the phosphor layer 23, and this barrier can be minimized when the second wire 16 has a small diameter. Therefore, most of the electrons emitted by most of the carbon nanotubes 13 can be effectively bombarded by the phosphor layer 23 for light emission, so that the electron emission efficiency of the present embodiment is greatly improved compared with the prior art; Due to the focusing action of the second wire 16, the area of the electron bombardment on the phosphor layer is 094106538. Form No. 1010101 Page 11/Total 21 Page 0993237360-0 1332228 099 July 2nd, the replacement of the page product becomes smaller Therefore, the size of the minimum pixel of the image can be reduced, and high-resolution, high-quality image display can be realized. The preparation method of the above embodiment will be briefly described below: the first wire 12 containing the carbon nanotube 13 can be separately prepared by the foregoing method; the insulating barrier 14 can be formed by a conventional screen printing method; the second wire 16 can be fixed on the insulating barrier by the above-mentioned sintering method; finally, the prepared parts are assembled and aligned with the glass plate with the anode and the fluorescent layer, and vacuum-packed. Therefore, the preparation method of the present embodiment is relatively simple and can be mass-produced. [0027] Referring to the fourth and fifth figures, the second embodiment of the present invention is substantially the same as the structure of the first embodiment, and includes an insulating barrier formed on the substrate 11 with the opposite substrate and the light-emitting plate 21' disposed oppositely. Ί4' and the anode 22 and the phosphor layer 23 formed on the light-emitting plate 21 are different in that a region of the gap 丨5 formed between the adjacent two insulating barriers 14 is formed with a conductive cathode layer 41 and formed at the cathode The carbon nanotube layer 43 on the surface of the layer 41, wherein the cathode layer 41 may be a strip of a metal film parallel to the insulating barrier 14, such as a nickel, copper or gold film. The gate 45 spans the top of the insulating barrier 14 and is vertically orthogonal to the cathode layer 41. The region where the gate 45 and the cathode layer 41 intersect is directly above the phosphor layer 23. The carbon nanotube layer 43 can be formed on the surface of the cathode layer 41 by printing a carbon nanotube slurry, or can be formed by other methods; of course, the 'carbon nanotube layer 43 can be distributed over the entire surface of the cathode layer 41, or It is distributed only on a part of the surface where the gate 45 and the cathode layer 41 intersect. The electron emission trajectory and focusing mechanism of the second embodiment are substantially similar to those of the first embodiment and will not be described in detail herein. 094106538 Form No. 1010101 Page 12/Total 21 Page 0993237360-0 1332228 The following is a description of a part of the unit structure of the field emission display device, and those skilled in the art can The spirit of the above embodiment is expanded to form a large-sized flat display device. [0030] It can be understood that although the above embodiment of the field emission display of the present invention uses a carbon nanotube as the electron emitter, the scope of the invention cannot be limited thereby, and other embodiments may also employ other electron-emitting electrons. Head-end materials such as carbon fiber, graphite, and diamond are also applicable, and even metal emitters with a tip can be used as electron-emitting materials. [0031] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above is only a preferred embodiment of the present invention, and the application of the present invention is not limited thereto. Patent Scope Y is equivalent to the modification or variation of the spirit of the present invention by those skilled in the art. , should be covered by the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS [0032] The first drawing is a cross-sectional view of a carbon nanotube field emission display device of a first embodiment of the present invention. [0033] The second figure is a dog taken along the first line I I - 11; see figure. [0034] The third figure is a schematic diagram of the electron emission and focusing mechanism of the carbon nanotube field emission display device of the first embodiment of the present invention. [0035] The fourth drawing is a cross-sectional view of a second embodiment of the present invention. [0036] The fifth drawing is a cross-sectional view taken along line V-V of the fourth drawing. [0037] Figure 6 is a schematic diagram of the structure and electron emission of a prior art three-pole field emission display. 094106538 Form Compilation 0101 笫 13 pages / Total 21 pages 0993237360-0 1332228 Correction replacement page of July 2, 099 [0038] Figure 7 is a schematic diagram showing the structure of another field emission device disclosed in the prior art. [Main component symbol description] [0039] Field emission display: 10 [0040] Substrate: 11 [0041] First wire: 12 [0042] Nano Carbon tube: 13 [0043] Insulation barrier: 14 [0044] Clearance: 15 [0045] Second wire: 16 [0046] Metal electrode: 17 [0047] Support wall: 18 [0048] Light exit plate: 21 [0049] Anode: 22 [0050] Fluorescent layer: 23 [0051] Electron: 31, 32, 33 [0052] Cathode layer: 41 [0053] Carbon nanotube layer: 43 [0054] Gate: 45 [0055] :121 Form No. A0101 094106538 Page 14 of 21 0993237360-0 1332228 [0056] End: 161 162 July 2, 2009, Nuclear Replacement Page 094106538 Form No. A0101 Page 15 of 21 0993237360-0

Claims (1)

13322281332228 七、t請專利範園·· 一種場發射顯示裝置,其包括··具有螢光層之陽極,導電 陰極及柵極,所述陰極包含有電子發射材料,其改進在於 ’對應於同-像素之電子發射材科分佈在該像素對應之拇 極兩側,該柵極懸空設置在該像素對應之電子發射材料與 該像素對應之螢光層之間,每個柵極和陰極相交的位置對 應於一個像素點® 2 .根據申請專利範圍第丨項所述之場發射顯示裴置,其中所 述陰極與柵極分別按行列排佈。 3.根據申請專利範圍第2項所述之場發射顯示裝置,其中各 柵極正對於其對應的螢光層的中心。 4 .根據申請專利範圍第3項所述之場發射顯示裝置,其中所 述栅極由金屬絲製成。 5 .根據申請專利範圍第4項所述之場發射顯示裝置,其中所 述金屬絲包括金絲、鎳絲。 6 .根據申請專利範圍第4項所述之場發射顯示裝置,甚中該 場發射顯示裝置進一步包括炱少兩絕緣障壁,所述金屬絲 懸掛固定在兩絕緣障壁頂部° 7 .根據申請專利範圍第2項所述之場發射顯示裝置,其中所 述陰極爲圓柱狀金屬絲。 8 ‘根據申請專利範圍第2項所述之場發射顯不裝置’其中所 述陰極爲金屬薄膜。 9 .根據申請專利範圍第7或8項所述之場發射顯示裝置,其中 所述電子發射材料係奈米碳管 10 .根據申請專利範圍第1項所述之揚發射顯示裝置’其中所 094106538 表單編號A0101 第16買/共21寅 0993237360-0 1332228 099年07月02日按正替換頁 述電子發射材料係選自奈米碳管、碳纖維、石墨碳、金剛 石或金屬其中之一。 094106538 表單編號A0101 第17頁/共21頁 0993237360-0VII. Patent application: A field emission display device comprising: an anode having a fluorescent layer, a conductive cathode and a gate, the cathode comprising an electron-emitting material, the improvement being that 'corresponding to the same-pixel The electron-emitting material is distributed on both sides of the thumb pole corresponding to the pixel, and the gate is suspended between the electron-emitting material corresponding to the pixel and the fluorescent layer corresponding to the pixel, and the position where each gate and cathode intersect The field emission display device according to the invention of claim 2, wherein the cathode and the gate are arranged in rows and columns, respectively. 3. The field emission display device of claim 2, wherein each of the gates is facing the center of its corresponding phosphor layer. 4. The field emission display device of claim 3, wherein the gate is made of a wire. 5. The field emission display device of claim 4, wherein the wire comprises gold wire or nickel wire. 6. The field emission display device of claim 4, wherein the field emission display device further comprises two insulating barriers, the wire suspension being fixed on top of the two insulating barriers. 7 according to the patent application scope The field emission display device of item 2, wherein the cathode is a cylindrical wire. 8 'Field emission display device according to item 2 of the patent application' wherein the cathode is a metal film. 9. The field emission display device according to claim 7 or 8, wherein the electron emission material is a carbon nanotube 10, and the radiation emission display device according to claim 1 is 094106538 Form No. A0101 No. 16 Buy/Total 21寅0993237360-0 1332228 On July 2, 099, the electron emission material is selected from one of carbon nanotubes, carbon fiber, graphite carbon, diamond or metal. 094106538 Form No. A0101 Page 17 of 21 0993237360-0
TW94106538A 2005-03-04 2005-03-04 Field emission display device TWI332228B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94106538A TWI332228B (en) 2005-03-04 2005-03-04 Field emission display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94106538A TWI332228B (en) 2005-03-04 2005-03-04 Field emission display device

Publications (2)

Publication Number Publication Date
TW200632984A TW200632984A (en) 2006-09-16
TWI332228B true TWI332228B (en) 2010-10-21

Family

ID=45074703

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94106538A TWI332228B (en) 2005-03-04 2005-03-04 Field emission display device

Country Status (1)

Country Link
TW (1) TWI332228B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI383420B (en) * 2008-04-11 2013-01-21 Hon Hai Prec Ind Co Ltd Electron emitter and displaying device using the same
TWI386964B (en) * 2008-04-11 2013-02-21 Hon Hai Prec Ind Co Ltd Electron emitter and displaying device using the same

Also Published As

Publication number Publication date
TW200632984A (en) 2006-09-16

Similar Documents

Publication Publication Date Title
CN100543913C (en) Field emission display device
TWI277120B (en) Field emission device and field emission display device using the same
US20050184647A1 (en) Electron emission device
US20050266766A1 (en) Method for manufacturing carbon nanotube field emission display
TW200410282A (en) Triode structure of field-emission display and manufacturing method thereof
JP3936841B2 (en) Flat field emission display
JP2005158696A (en) Field emission display device
KR100859685B1 (en) Field emission display device having carbon-based emitter
JPH0316202Y2 (en)
US7714493B2 (en) Field emission device and field emission display employing the same
CN102097272B (en) Triode structured field emission display (FED) with anode and grid on same substrate
TWI332228B (en) Field emission display device
US20050236961A1 (en) Triode type field emission display with high resolution
JP2007042570A (en) Electron emission display device
JP2004259577A (en) Flat-plate type image display device
US20090015130A1 (en) Light emission device and display device using the light emission device as a light source
US20090134766A1 (en) Electron emission source, electron emission device, electron emission type backlight unit and electron emission display device
EP1780759A2 (en) Electron emission device and electron emission display having the same
JP4067922B2 (en) Display device
CN100477066C (en) Cathode structure of back grid field emitting display and preparing method thereof
CN100533647C (en) Electron emission display device
JP3556919B2 (en) Light emitting element
TWI329337B (en) Field emission display
KR19990077954A (en) KAIST Field Emitter Display
US20090009690A1 (en) Light emission device and display device using the light emission device as light source