TWI331819B - Fuel cell with bipolar plate module - Google Patents

Fuel cell with bipolar plate module Download PDF

Info

Publication number
TWI331819B
TWI331819B TW095149477A TW95149477A TWI331819B TW I331819 B TWI331819 B TW I331819B TW 095149477 A TW095149477 A TW 095149477A TW 95149477 A TW95149477 A TW 95149477A TW I331819 B TWI331819 B TW I331819B
Authority
TW
Taiwan
Prior art keywords
bipolar plate
flow path
gas flow
cathode
anode
Prior art date
Application number
TW095149477A
Other languages
Chinese (zh)
Other versions
TW200828663A (en
Inventor
Yi Yie Yan
Shiqah Ping Jung
Huan Ruei Shiu
Falin Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW095149477A priority Critical patent/TWI331819B/en
Publication of TW200828663A publication Critical patent/TW200828663A/en
Application granted granted Critical
Publication of TWI331819B publication Critical patent/TWI331819B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

第 95149477 號 ,九、發明說明: 修正日期:99.7.7 修正本 【發明所屬之技術領域】 本發明是有關於一種具有雙極板模組之燃料電池,特 別疋關於一種具有不同氣體流道深度之雙極板設計。 【先前技術】 、一般習知之燃料電池可採水冷與氣冷形式,而水冷式 燃料電池S在雙極板纽置額外的岐道來引導與排出冷卻 劑,口但是由於燃料與氧化劑在流量上具有不同的流量以及 壓扣限制’所以習知之雙極板上之流道形狀設計並不相 5 口此在猎封设计與雙極板的加工上更為複雜,不利 於電池製作成本的降低。 【發明内容】 有鑑於此,本發明之目的在於提供一種具有雙極板模 H料電池’其中之陰極雙極板及陽極雙極板具有相同 2 _式以及不同的氣體流道深度,以維持電池穩 運棘。 兩個氣體 根據本發明,提供一種具有雙極板模組之燃料電池, 2數個單電池模組組合而成,其中每—個單電池模組包 陽極雙極板、—陰極雙極板、二個氣體擴散層以及一 ^極組’陽極雙極板包括-第—氣體流道,而陰極雙極 一以相對觸極雙極板之方式成對設置,陰極雙極板包括 一第二氣體流道,且陰極雙極板及陽極雙極板 流這與第二氣體流道相互面對設置之方式組人, 、 1331819 第95149477號 . 修正日期:99.7.7 修正本 擴散層與膜電極組設置於陽極雙極板與陰極雙極板之間, 其中第二氣體流道之深度大於第一氣體流道之深度。 在一較佳實施例中,第二氣體流道之深度為第一氣體 流道之深度之1.5至2倍。 在另一較佳實施例中,第一氣體流道與第二氣體流道 具有相同之一流道形狀。 在另一較佳實施例中,流道形狀係為蛇型。 在另一較佳實施例中,陽極雙極板與陰極雙極板更包 括一散熱流道,分別設置於第一氣體流道及第二氣體流道 所在表面之背面上。 在另一較佳實施例中,每一成對之該陰極雙極板以該 散熱流道與另一成對中之該陽極雙極板之該散熱流道相互 連接。 在另一較佳實施例中,散熱流道之形式為直通型流道。 在另一較佳實施例中,陽極雙極板及陰極雙極板更包 括複數個進氣歧道,分別設置於陽極雙極板及陰極雙極板 之上方,分別提供氧化劑及燃料進入第一氣體流道及第二 氣體流道中。 在另一較佳實施例中,陽極雙極板與陰極雙極板更包 括複數個排氣歧道,分別設置於陽極雙極板及陰極雙極板 之下方,分別提供多餘的氧化劑及燃料排出。 在另一較佳實施例中,進氣歧道與排氣歧道為具有圓 角之孔洞。 在另一較佳實施例中,具有雙極板模組之燃料電池更 6 1331819 第95149477號 . 议 修正日期:99.7.7 修正本 包括複數彳HU封結構,其中該等密封結構設置於該等進氣 歧道與該等排氣歧道之周圍以及額電極組之周圍。 #為使本發明之上述及其他目的、特徵和優點能更明顯 易1下文特舉纟體之較佳實施例,並配合所附圖式做 詳細說明。 . 【實施方式】 鲁 1 第2圖’—種具有雙極板模組之燃料電 池1,可由複數個單電池模組2所組成,其中每一個單電 池模組2包括—陽極雙極板3、-陰極雙極板4、-膜電極 ,、且5兩個密封結構6、以及兩個氣體擴散層7,其組合順 序為,先利用兩個氣體擴散層7炎住膜電極組5,接著利 ‘用兩個f封結構6夾住氣體擴散層7與膜電極組5之結合 體’接著其中-密封結構6同時密封陽極雙極板3之周圍 以及膜電極組5之周圍,另一密封結構6則同時密封陰極 # ^極板4與膜電極組5之周圍。另外,陽極雙極板3包括 一第一面31及一第二面32 ,陰極雙極板4亦包括一第一 面41及一第二面42,其中兩者以陽極雙極板3之第一面 31面對於陰極雙極板4之第一面41之方式設置組合之。 參考第3圖,陽極雙極板3之第一面31包括一第一氣 體流道33、一第一進氣歧道34、一第二進氣歧道%、一 弟一排氣歧道36、以及一第二排氣歧道37,其中第一氣體 流道33呈一蛇型流場,更包括一第一氣體流道入口 3%及 一第一氣體流道出口 33b,第一進氣歧道34位於第一氣體 7 1331819 第 95149477 號 修正日期:99.7.7 修正本 流道入口 33a上方(位於第3圖中之左上方),第一排氣歧 道36則位於第一氣體流道出口 33b之下方(位於第3圖中 之右下方),因為陽極雙極板3大致成一長方形,因此第一 進氣歧道34與第一排氣歧道36互位於對角線位置上,而 同理可推,第二進氣歧道35與第二排氣歧道37亦互位於 對角線位置上,當使用本發明之燃料電池1時,會產生電 化學氧化與還原反應,此時,燃料從第一進氣歧道34從第 一氣體流道入口 33a導入第一氣體流道33内並分配燃料, 而未消耗完之燃料可以從第一排氣歧道36排出。 參考第4圖,陰極雙極板4之第一面41包括一第二氣 體流道43、一第三進氣歧道44、一第四進氣歧道45、一 第三排氣歧道46、以及一第四排氣歧道47,其中第二氣體 流道43呈一蛇型流場,更包括一第二氣體流道入口 43a及 一第二氣體流道出口 43b,第三進氣歧道44位於第二氣體 流道入口 43a上方(位於第4圖中之左上方),第三排氣歧 道46則位於第二氣體流道出口 43b之下方(位於第4圖中 之右下方),因為陰極雙極板4大致成一長方形,因此第三 進氣歧道44與第三排氣歧道46互位於對角線位置上,而 同理可推,第四進氣歧道45與第四排氣歧道47亦互位於 對角線位置上,當使用本發明之燃料電池1時,會產生電 化學氧化與還原反應,此時,氧化劑從第三進氣歧道44 從第二氣體流道入口 43a導入第二氣體流道43内並分配氧 化劑,而未消耗完之氧化劑及生成水可以從第三排氣歧道 46排出。由第3圖及第4圖中,可以發現陽極雙極板3與 8 1331819 修正本 道的形式都相同, ’可有效降低電池 第95149477號 . 修正日期哪刀 陰極雙極板4之大小相同且其上氣體凉 在密封設計與雙極板加工上都更為巧: 的製作成本。 另外’㈣考第3圖及第4圖, :放置時’第-氣體流道出”3b與 二為上 皆順著重力方向’因此有助於產生之液態 =No. 95149477, ninth, invention description: date of revision: 99.7.7 amendments TECHNICAL FIELD The present invention relates to a fuel cell having a bipolar plate module, in particular to a gas flow depth having different Bipolar plate design. [Prior Art] A conventionally known fuel cell can be in the form of water-cooled and air-cooled, while a water-cooled fuel cell S has an additional ramp in the bipolar plate to guide and discharge the coolant, but the flow is due to fuel and oxidant. It has different flow rates and press-restriction limits. Therefore, the shape of the runner on the bipolar plate is not so complicated. It is more complicated in the design of the hunting seal and the processing of the bipolar plate, which is not conducive to the reduction of the battery manufacturing cost. SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a bipolar plate mode H material battery in which a cathode bipolar plate and an anode bipolar plate have the same 2 _ type and different gas flow path depths to maintain The battery is stable. According to the present invention, a gas battery having a bipolar plate module is provided, and a plurality of single cell modules are combined, wherein each of the single cell modules comprises an anode bipolar plate, a cathode bipolar plate, The two gas diffusion layers and the one-electrode 'anode bipolar plate comprise a -first gas flow path, and the cathode bipolar one is arranged in pairs opposite to the polar bipolar plate, and the cathode bipolar plate comprises a second gas The flow path, and the cathode bipolar plate and the anode bipolar plate flow are arranged to face each other with the second gas flow path, 1331819 No. 95149477. Amendment date: 99.7.7 Correction of the diffusion layer and the membrane electrode group The anode gas is disposed between the anode bipolar plate and the cathode bipolar plate, wherein the depth of the second gas flow path is greater than the depth of the first gas flow path. In a preferred embodiment, the depth of the second gas flow path is 1.5 to 2 times the depth of the first gas flow path. In another preferred embodiment, the first gas flow path has the same flow path shape as the second gas flow path. In another preferred embodiment, the flow channel shape is a serpentine shape. In another preferred embodiment, the anode bipolar plate and the cathode bipolar plate further comprise a heat dissipating flow path respectively disposed on the back surface of the surface on which the first gas flow path and the second gas flow path are located. In another preferred embodiment, each pair of the cathode bipolar plates is interconnected by the heat dissipating flow path with the heat dissipating flow path of the other pair of the anode bipolar plates. In another preferred embodiment, the heat dissipation runner is in the form of a through flow passage. In another preferred embodiment, the anode bipolar plate and the cathode bipolar plate further comprise a plurality of intake manifolds respectively disposed above the anode bipolar plate and the cathode bipolar plate to provide oxidant and fuel respectively into the first In the gas flow path and the second gas flow path. In another preferred embodiment, the anode bipolar plate and the cathode bipolar plate further comprise a plurality of exhaust manifolds disposed respectively below the anode bipolar plate and the cathode bipolar plate to provide excess oxidant and fuel discharge respectively. . In another preferred embodiment, the intake manifold and the exhaust manifold are holes having rounded corners. In another preferred embodiment, the fuel cell having the bipolar plate module is further in accordance with the number of the slabs of the slabs of the slabs of the slabs. The intake manifold is surrounded by the exhaust manifold and around the front electrode group. The above and other objects, features and advantages of the present invention will become more apparent. [Embodiment] Lu 1 Figure 2 - a fuel cell 1 having a bipolar plate module, which may be composed of a plurality of single cell modules 2, wherein each cell module 2 comprises an anode bipolar plate 3 , a cathode bipolar plate 4, a membrane electrode, and five sealing structures 6, and two gas diffusion layers 7, in the order of combination, first infiltrating the membrane electrode assembly 5 with two gas diffusion layers 7, followed by 'The combination of the gas diffusion layer 7 and the membrane electrode assembly 5 is sandwiched by two f-sealing structures 6, and then the sealing structure 6 simultaneously seals the periphery of the anode bipolar plate 3 and the periphery of the membrane electrode group 5, and the other seal Structure 6 simultaneously seals the periphery of cathode #4 plate 4 and membrane electrode assembly 5. In addition, the anode bipolar plate 3 includes a first surface 31 and a second surface 32. The cathode bipolar plate 4 also includes a first surface 41 and a second surface 42. One side 31 is provided in combination with the first face 41 of the cathode bipolar plate 4. Referring to FIG. 3, the first face 31 of the anode bipolar plate 3 includes a first gas flow path 33, a first intake manifold 34, a second intake manifold %, and a first exhaust manifold 36. And a second exhaust manifold 37, wherein the first gas flow path 33 is a serpentine flow field, and further includes a first gas flow path inlet 3% and a first gas flow path outlet 33b, the first intake air The first passage 31 is located at the first gas passage exit. Below the 33b (located on the lower right in the third figure), since the anode bipolar plate 3 is substantially rectangular, the first intake manifold 34 and the first exhaust manifold 36 are located at a diagonal position, and the same It can be inferred that the second intake manifold 35 and the second exhaust manifold 37 are also located at diagonal positions with each other. When the fuel cell 1 of the present invention is used, electrochemical oxidation and reduction reactions are generated. Fuel is introduced into the first gas flow path 33 from the first gas flow path inlet 33a from the first intake manifold 34 and distributes fuel, and Unconsumed fuel may be discharged from the first exhaust manifold 36. Referring to FIG. 4, the first surface 41 of the cathode bipolar plate 4 includes a second gas flow path 43, a third intake manifold 44, a fourth intake manifold 45, and a third exhaust manifold 46. And a fourth exhaust manifold 47, wherein the second gas flow path 43 is a serpentine flow field, and further includes a second gas flow path inlet 43a and a second gas flow path outlet 43b, the third air intake manifold The track 44 is located above the second gas flow path inlet 43a (located on the upper left in FIG. 4), and the third exhaust manifold 46 is located below the second gas flow path outlet 43b (located on the lower right in FIG. 4) Because the cathode bipolar plate 4 is substantially rectangular, the third intake manifold 44 and the third exhaust manifold 46 are located at a diagonal position with each other, and the fourth intake manifold 45 and the fourth intake manifold 45 The four exhaust manifolds 47 are also located at diagonal positions with each other. When the fuel cell 1 of the present invention is used, an electrochemical oxidation and reduction reaction occurs, and at this time, the oxidant flows from the third intake manifold 44 from the second gas. The flow path inlet 43a is introduced into the second gas flow path 43 and distributes the oxidant, and the un-consumed oxidant and the generated water can be from the third The exhaust manifold 46 is exhausted. From Fig. 3 and Fig. 4, it can be found that the anode bipolar plate 3 and the 8 1331819 correction are all in the same form, 'can effectively reduce the battery number 95149477. The correction date is the same as the size of the cathode bipolar plate 4 and its The upper gas is more compact in both the seal design and the bipolar plate processing: the production cost. In addition, in the fourth and fourth figures of the test, the 'first gas flow path' 3b and the second are all along the direction of gravity, thus contributing to the liquid state generated.

極組。 ^歧應讀^擴散道膜電 參考第5圖’圖中顯示為陽極雙極板 之結構,亦與陰極雙極板4之第二面42 皆具備-直通型散熱流道38或 #相门兩者 也批σ^ 8 了梃供早電池組2之 可配置—散熱幫浦(未圖示)來加速散熱。 對於燃料電池來說,燃 ^ ± 叶叙會使用重組氣或氫氣於 知極’而氧化劑會使用純氧或是空氣於陰 1輸出功率為1千瓦㈣時,在考慮反應氣體劑纽、氣體 溫度與加濕水蒸氣之相對料等㈣參數的可能變化範圍 下’以純氫燃料來說’所需流量約為Η) S 30公升/分鐘 (SLPM) ’以空氣作為氧化軸f流量約為25至⑽公升/ 分鐘(SLPM)’由於氧化劑f要的高流量,會導致於陰極雙 極板4之第二氣體流道43之高壓損,此,需要減低流道 43中之壓力,才能夠容許氧化劑之高流量,故將陰極雙極 板4之第二氣體流道43之深度設計的較陽極雙極板3之第 二氣體流迢33為深,以符合氣體之流量與壓力之限制,且 貫驗結果發現,當陰極雙極板4之第二氣體流道43之深度 9 1331819 第 95149477 號 修正日期:99.7.7 修正本 為陽極雙極板3之第一氣體流道33的1.5至2倍深的時 候,電池有一最佳表現。另外,陽極雙極板3及陰極雙極 板 4 上之進排氣歧道(34、35、36、37、44、45、46、47) 採取圓角之設計,不僅可以減少流體流動時之流阻,進而 可降低流場之壓損。 第6圖顯示本發明之燃料電池1與習知燃料電池之性 能比較,由圖中可以發現,本發明之燃料電池1在各個同 電壓下之電流密度皆高於習知之燃料電池,舉例來說,當 單電池平均輸出電壓為0.65V時,電流密度由原本支 340mA/cm2提升至450mA/cm2,其電流密度增加幅度約為 30%左右。 應注意的是,陽極雙極板3及陰極雙極板4上之進排 氣歧道數目並不限定如第3圖及第4圖所示,可依照需求 增減歧道數目。 雖然本發明已以較佳實施例揭露於上,然其並非用以 限定本發明,任何熟習此項技藝者,在不脫離本發明之精 神和範圍内,當可作些許之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。 1331819 第 95149477 號 修正曰期:99.7.7 修正本 【圖式簡早說明】 第1圖係為本發明具有雙極板模組之燃料電池; 第2圖係為本發明中之單電池組; 第3圖係為本發明中之陽極雙極板; 第4圖係為本發明中之陰極雙極板; 第5圖係為本發明中陽極雙極板或陰極雙極板之第二 面上之散熱流道;以及 第6圖係為本發明與習知燃料電池之效能比較。 【主要元件符號說明】 1〜燃料電池; ' 2〜單電池模組; - 3〜陽極雙極板; 31~第一面; 32〜第二面; ^ 33〜第一氣體流道; 33a〜第一氣體流道入口; 33b〜第一氣體流道出口; 34〜第一進氣歧道; 35〜第二進氣歧道; 36〜第一排氣歧道; 37〜第二排氣歧道; 3 8〜散熱流道; 4〜陰極雙極板; 1331819 第 95149477 號 修正日期:99.7.7 修正本 41〜第一面; 42〜第二面; 43〜第二氣體流道; 4 3 a〜第二氣體流道入口, 43b〜第二氣體流道出口; 44〜第三進氣歧道; 45〜第四進氣歧道; 46-第三排氣歧道; 47〜第四排氣歧道; 4 8〜散熱流道, 5〜膜電極組; 6〜密封結構; 7〜氣體擴散層。Extreme group. ^ 应 读 扩散 扩散 扩散 扩散 电 电 电 电 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散Both also approved σ^8 for the early battery pack 2 configurable-heating pump (not shown) to accelerate heat dissipation. For fuel cells, the fuel gas is used to recombine gas or hydrogen in the knower' and the oxidant will use pure oxygen or air in the cathode 1 output power of 1 kW (four), considering the reaction gas agent, gas temperature With the possible variation of the parameters of the humidified water vapor, etc. (4), the required flow rate for the pure hydrogen fuel is about Η) S 30 liters per minute (SLPM) 'Air as the oxidation axis f flow rate is about 25 to (10) liters per minute (SLPM) 'Because of the high flow rate of the oxidant f, the high pressure loss of the second gas flow path 43 of the cathode bipolar plate 4 is caused, and the pressure in the flow path 43 needs to be reduced to allow the oxidant to be allowed. The high flow rate, so that the depth of the second gas flow path 43 of the cathode bipolar plate 4 is designed deeper than the second gas flow 迢 33 of the anode bipolar plate 3 to meet the gas flow and pressure limits, and The test results show that the depth of the second gas flow path 43 of the cathode bipolar plate 4 is 9 1331819. The correction date of 95149477 is 99.7.7. The correction is 1.5 to 2 times the first gas flow path 33 of the anode bipolar plate 3. In the deep, the battery has the best performance. In addition, the inlet and exhaust manifolds (34, 35, 36, 37, 44, 45, 46, 47) on the anode bipolar plate 3 and the cathode bipolar plate 4 are designed with rounded corners to reduce fluid flow. Flow resistance, which in turn reduces the pressure loss of the flow field. Figure 6 is a graph showing the performance comparison between the fuel cell 1 of the present invention and a conventional fuel cell. It can be seen from the figure that the current density of the fuel cell 1 of the present invention at each voltage is higher than that of the conventional fuel cell, for example, When the average output voltage of the single cell is 0.65V, the current density is increased from the original 340mA/cm2 to 450mA/cm2, and the current density increases by about 30%. It should be noted that the number of intake and exhaust manifolds on the anode bipolar plate 3 and the cathode bipolar plate 4 is not limited as shown in Figs. 3 and 4, and the number of channels can be increased or decreased as required. Although the present invention has been disclosed in its preferred embodiments, it is not intended to limit the present invention, and it is possible to make some modifications and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims. 1331819 Amendment No. 95149477: 99.7.7 Amendment [Description of the drawings] Fig. 1 is a fuel cell with a bipolar plate module of the present invention; Fig. 2 is a single battery pack of the present invention; Figure 3 is an anode bipolar plate in the present invention; Figure 4 is a cathode bipolar plate in the present invention; Figure 5 is a second surface of an anode bipolar plate or a cathode bipolar plate in the present invention. The heat dissipation channel; and Fig. 6 is a comparison of the performance of the present invention with a conventional fuel cell. [Main component symbol description] 1 ~ fuel cell; ' 2 ~ single battery module; - 3 ~ anode bipolar plate; 31 ~ first side; 32 ~ second side; ^ 33 ~ first gas flow path; 33a ~ First gas flow path inlet; 33b to first gas flow path outlet; 34 to first intake manifold; 35 to second intake manifold; 36 to first exhaust manifold; 37 to second exhaust manifold 3; 8~ heat dissipation runner; 4~ cathode bipolar plate; 1331819 Revision No. 95149477: 99.7.7 Amendment 41 to first face; 42 to second face; 43 to second gas flow path; a ~ second gas flow path inlet, 43b ~ second gas flow path outlet; 44 ~ third intake manifold; 45 ~ fourth intake manifold; 46 - third exhaust manifold; 47 ~ fourth row Gas manifold; 4 8 ~ heat dissipation runner, 5 ~ membrane electrode group; 6 ~ sealing structure; 7 ~ gas diffusion layer.

1212

Claims (1)

13318191331819 修正曰期:99.7.- 第 95149477 號 > 曰修 十、申請專利範圍: 1. 一種具有雙極 池模組組合而成,其中每一個單電池模組包括:电 -陽極雙極板’包括一第一氣體流道; -陰極^板’以相對應歸極雙極板之方式成對設 置’包括-第:氣體流道’其中該陰極雙極板及該陽極雙 極板以該第-氣體流道與該第二氣體流道相互面對設置之 方式組合;Correction period: 99.7.- No. 95149477> 曰修10, the scope of application for patents: 1. A combination of bipolar pool modules, each of which includes: an electric-anode bipolar plate' a first gas flow path; - a cathode plate is disposed in pairs corresponding to the fused bipolar plates, including a -first: gas flow path, wherein the cathode bipolar plate and the anode bipolar plate are The gas flow path and the second gas flow path are combined to face each other; 兩個氣體擴散層; 一膜電極組,設置於該陽極雙極板與該陰極雙極板之 間,而兩個氣體擴散層與膜電極組設置於陽極雙極板 與陰極雙極板之間’其中該第二氣體流道之深度大於該第 一氣體流道之深度。 2. 如申請專利範圍第〗項所述之具有雙極板模組之燃 料電池,其中該第二氣體流道之深度為該第一氣體流道之 深度之1.5至2倍。 3. 如申凊專利範圍第1項所述之具有雙極板模組之燃 料電池,其中該第一氣體流道與該第二氣體流道具有相同 之一流道形狀。 4. 如申請專利範圍第3項所述之具有雙極板模組之燃 料電池,其中該流道形狀係為蛇型。 5. 如申請專利範圍第i項所述之具有雙極板模組之燃 料電池,其中該陽極雙極板與該陰極雙極板更包括一散熱 流道,分別設置該第一氣體流道及該苐二氣體流道所在表 13 1331819 修正日期:99.7.7 修正本 第 95149477 被 面之背面上。 6. 如申請專利範圍第5項所述之具有雙極板模組之燃 料電池,其中每一成對之該陰極雙極板以該散熱流道與另 一成對中之該陽極雙極板之該散熱流道相互連接。 7. 如申請專利範圍第6項所述之具有雙極板模組之燃 料電池,其中該散熱流道之形式為直通型流道。 8. 如申請專利範圍第丨項所述之具有雙極板模組之燃 料電池,其中該陽極雙極板及該陰極雙極板更包括複數個 進氣歧道,分別設置於該陽極雙極板及該陰極雙極板之上 方,分別提供氧化劑及燃料進入該第一氣體流道及該第二 氣體流道中。 9. 如中請專利範圍帛8項所述之具有雙極板模組之燃 也,其中該陽極雙極板與該陰極雙極板更包括複數個 ^氣歧道,分別設置於該陽極雙極板及該陰極雙極板之下 方刀別^供多餘的氧化劑及燃料排出。 10. 如申請專利翻帛9項所述之具有雙極板模組之燃 ;電池八中該進氣歧道與該排氣歧道為具有圓角之孔洞。 .厂11.如申請專利範圍第10項所述之具有雙極板模組之 ,料電,,更包括複數個密封結構,其中該等密封結構設 ;該等進氣歧道與該等排氣歧道之周圍以及該膜電極組 之周圍。 14Two gas diffusion layers; a membrane electrode group disposed between the anode bipolar plate and the cathode bipolar plate, and two gas diffusion layers and a membrane electrode group disposed between the anode bipolar plate and the cathode bipolar plate Wherein the depth of the second gas flow path is greater than the depth of the first gas flow path. 2. A fuel cell having a bipolar plate module as claimed in claim 1, wherein the second gas flow path has a depth of 1.5 to 2 times the depth of the first gas flow path. 3. The fuel cell having a bipolar plate module according to claim 1, wherein the first gas flow path and the second gas flow path have the same flow path shape. 4. The fuel cell having a bipolar plate module according to claim 3, wherein the flow path is serpentine. 5. The fuel cell with a bipolar plate module according to the invention of claim 1, wherein the anode bipolar plate and the cathode bipolar plate further comprise a heat dissipation flow channel, and the first gas flow path is respectively disposed The second gas flow path is shown in Table 13 1331819. Revision date: 99.7.7 Amendment on the back of the 95149477 quilt. 6. The fuel cell with a bipolar plate module according to claim 5, wherein each pair of the cathode bipolar plates has the heat dissipating channel and the pair of the anode bipolar plates The heat dissipation channels are connected to each other. 7. The fuel cell having a bipolar plate module according to claim 6, wherein the heat dissipation channel is in the form of a through flow channel. 8. The fuel cell with a bipolar plate module according to the invention of claim 2, wherein the anode bipolar plate and the cathode bipolar plate further comprise a plurality of intake manifolds respectively disposed on the anode bipolar Above the plate and the cathode bipolar plate, oxidant and fuel are respectively supplied into the first gas flow path and the second gas flow path. 9. The method of claim 2, wherein the anode bipolar plate and the cathode bipolar plate further comprise a plurality of gas channels, respectively disposed on the anode pair The lower plate and the lower side of the cathode bipolar plate are provided with excess oxidant and fuel. 10. The method of claim 2, wherein the intake manifold and the exhaust manifold are holes having rounded corners. Factory 11. The bipolar plate module according to claim 10, wherein the electric material further comprises a plurality of sealing structures, wherein the sealing structures are arranged; the intake manifolds and the rows are arranged Around the gas channel and around the membrane electrode set. 14
TW095149477A 2006-12-28 2006-12-28 Fuel cell with bipolar plate module TWI331819B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW095149477A TWI331819B (en) 2006-12-28 2006-12-28 Fuel cell with bipolar plate module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095149477A TWI331819B (en) 2006-12-28 2006-12-28 Fuel cell with bipolar plate module

Publications (2)

Publication Number Publication Date
TW200828663A TW200828663A (en) 2008-07-01
TWI331819B true TWI331819B (en) 2010-10-11

Family

ID=44817714

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095149477A TWI331819B (en) 2006-12-28 2006-12-28 Fuel cell with bipolar plate module

Country Status (1)

Country Link
TW (1) TWI331819B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423496B (en) * 2010-10-20 2014-01-11 Energy Control Ltd Formed by a plurality of superposed battery modules

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400833B (en) * 2010-02-22 2013-07-01 Univ Nat Central Fuel cell bipolar plate structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423496B (en) * 2010-10-20 2014-01-11 Energy Control Ltd Formed by a plurality of superposed battery modules

Also Published As

Publication number Publication date
TW200828663A (en) 2008-07-01

Similar Documents

Publication Publication Date Title
CN107658480B (en) A kind of fuel-cell single-cell and pile of the enhancing of temperature and humidity uniformity
JP4516229B2 (en) Solid polymer cell assembly
EP2461403A1 (en) Air-cooled metal separator for fuel cell and fuel cell stack using same
JP2002260709A (en) Solid polymer cell assembly, fuel cell stack and operation method of fuel cell
JP5768882B2 (en) Fuel cell
CN102195058B (en) Solid polymer fuel cell
JP2008293758A (en) Fuel cell
CA2450846A1 (en) Integrated module of bipolar plate for fuel cell stack
TWI474548B (en) Polar plate and polar plate unit using the same
TWI331819B (en) Fuel cell with bipolar plate module
EP1432060A1 (en) Integrated bipolar plate module for fuel cell stack
JP2009231083A (en) Fuel cell
JP2003338299A (en) Fuel battery
JP2004087190A (en) Solid polymer cell assembly
JP2006221896A (en) Fuel cell and separator for fuel cell
JPH1167258A (en) Fuel cell
KR101313382B1 (en) Metal seperator for fuel cell including and fuel cell stack having the same
JP2010165692A (en) Solid polymer cell assembly
CN220324490U (en) Electric pile core and fuel cell
CN103875105A (en) Separator plate with intermediate injection of gas, fuel cell, method of feeding a fuel cell
JP2004185933A (en) Fuel cell stack
JP2003242998A (en) Solid polymer fuel cell
TW200910677A (en) Device of the drainage layer on cathode side for the free-breathing fuel cell
JP2006164766A (en) Fuel cell
JP2004055196A (en) Oxidant gas feeding mechanism for fuel cell