TWI331805B - A single poly, multi-bit non-volatile memory device and methods for operating the same - Google Patents

A single poly, multi-bit non-volatile memory device and methods for operating the same Download PDF

Info

Publication number
TWI331805B
TWI331805B TW95120682A TW95120682A TWI331805B TW I331805 B TWI331805 B TW I331805B TW 95120682 A TW95120682 A TW 95120682A TW 95120682 A TW95120682 A TW 95120682A TW I331805 B TWI331805 B TW I331805B
Authority
TW
Taiwan
Prior art keywords
diffusion region
gate
substrate
floating gate
floating
Prior art date
Application number
TW95120682A
Other languages
Chinese (zh)
Inventor
Ming Chang Kuo
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW95120682A priority Critical patent/TWI331805B/en
Application granted granted Critical
Publication of TWI331805B publication Critical patent/TWI331805B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)

Description

1331805 九、發明說明: 【發明所屬之技術領域】 本發明之實施例係有關於非揮發性記憶元件,並尤其有 關於一個與互補式金氧半場效電晶體製程相容的單層多晶矽非 揮發記憶元件。 【先前技術】 許多非揮發性半導體記憶體係奠基於習知的金氧半導 * 體結構(MOS)。換言之,其包括了以一介電層而與一基板 分隔的一閘極結構。擴散區域係植入於基板中並位於閘極 結構的角落之下。當施加適當的電壓至擴散區域與控制閘 極時,可生成一通道於基板的上層内、介於擴散區域之間 並在閘極結構之下。如電子等載子可在擴散區域之間的通 道中移動。 若在閘極結構的方向中存在一夠強的電場分量,則如電 子等載子可被吸引至閘極結構處。若電子具有足夠的能量 • 以克服介電層的能障,則這些載子可穿透介電層而注入。 舉例而言,第1圖係繪示一習知浮動閘極記憶元件 100。可以瞭解的是,此一浮動閘極元件可做為一習知快閃 記憶元件之基礎記憶結構。浮動閘極元件100包括了基板 102,在基板102中則植入有擴散區域104與106。在第1 圖的範例中,元件100係為一 NMOS元件,亦即基板102 係為一 P型基板,而擴散區域104,106則為N型擴散區域。 可以瞭解的是,特定的記憶元件亦可使用PMOS結構,亦 即基板102為N型基板,且擴散區域104,106為P型擴散1331805 IX. Description of the Invention: [Technical Field] The embodiments of the present invention relate to non-volatile memory elements, and in particular to a single-layer polycrystalline germanium non-volatile compatible with a complementary metal oxide half field effect transistor process. Memory component. [Prior Art] Many non-volatile semiconductor memory systems are based on the well-known metal oxide semiconductor structure (MOS). In other words, it includes a gate structure separated from a substrate by a dielectric layer. The diffusion region is implanted in the substrate and below the corners of the gate structure. When an appropriate voltage is applied to the diffusion region and the control gate, a channel can be created in the upper layer of the substrate, between the diffusion regions, and below the gate structure. Carriers such as electrons can move in the channels between the diffusion regions. If there is a strong electric field component in the direction of the gate structure, a carrier such as an electron can be attracted to the gate structure. If the electrons have sufficient energy to overcome the energy barrier of the dielectric layer, these carriers can be implanted through the dielectric layer. For example, Figure 1 illustrates a conventional floating gate memory element 100. It can be understood that the floating gate component can be used as a basic memory structure of a conventional flash memory component. The floating gate element 100 includes a substrate 102 in which diffusion regions 104 and 106 are implanted. In the example of Figure 1, element 100 is an NMOS device, i.e., substrate 102 is a P-type substrate, and diffusion regions 104, 106 are N-type diffusion regions. It can be understood that a specific memory element can also use a PMOS structure, that is, the substrate 102 is an N-type substrate, and the diffusion regions 104, 106 are P-type diffusion.

Chinese spec.-MXIC_P940187_fina! 1331805 區域。 . 一介電層11〇係接著形成於基板上、介於擴散區域ι〇4 = 106,間。此介電層係通常為一二氧切(si〇2)介電層, 爲可被稱為穿隨氧化物層。—浮動間極112係形成於介電 =〇之上。浮動閘極112係典型地從—多料層而形成, 2夕晶石夕層係沈積於基板102之上,並_至適當的尺 寸。一層間介電層114係接著形成於浮動閘極112之上, 並且一控制閘極116係接著形成於層間介電層114之上。 如同浮動閘極m,控制閘極116係典型地從一多晶石夕層經 蝕刻至適當尺寸而形成。 當適當的電壓係施加至控制閘極116以及擴散區域 /,106時,在基板102之通道區域⑽中可形成一通道。 知加至控制閘極116之電壓將純至控制閘極ιΐ2以 用以將在通道區域1G8中之载子吸引至浮㈣極ιΐ2所需 ,之場分量。可以瞭解的是,在㈣閘極116與浮動問極 之間的輕接係取決於施加至控制閘極116的電壓,並取 決於與控制閘極m、層間介電層114、與浮 關的尺寸。 π 一可以進-步瞭解的是’在非揮發性半導體記憶技術中, 始、度與成本是重要的驅動因素。針對非揮發性半 元件的大量需求,則使得此等記憶體必須以大規模、低^ 本的方式製造。此外’非揮發性半導體記憶元件對於新應 用的需求’將會需要更多的容量、以及更小的尺寸。心 第1圖的元件預防了在這個方面的幾個考量。首 先’由於浮動閘極m與控制閘極116係由多㈣層所形Chinese spec.-MXIC_P940187_fina! 1331805 area. A dielectric layer 11 is then formed on the substrate between the diffusion regions ι 4 = 106. The dielectric layer is typically a dioxo (si〇2) dielectric layer, which may be referred to as a pass-through oxide layer. - The floating interpole 112 is formed above dielectric = 〇. The floating gate 112 is typically formed from a multi-layer layer, and the layer 2 is deposited on the substrate 102 and is _ to an appropriate size. An interlevel dielectric layer 114 is then formed over the floating gate 112, and a control gate 116 is then formed over the interlayer dielectric layer 114. Like the floating gate m, the control gate 116 is typically formed by etching a polycrystalline layer to an appropriate size. When a suitable voltage is applied to the control gate 116 and the diffusion region /, 106, a channel can be formed in the channel region (10) of the substrate 102. It is known that the voltage applied to the control gate 116 will be pure to the control gate ι 2 for the field component required to attract the carrier in the channel region 1G8 to the floating (four) pole ι2. It can be understood that the light connection between the (four) gate 116 and the floating gate depends on the voltage applied to the control gate 116 and depends on the control gate m, the interlayer dielectric layer 114, and the floating gate. size. π One can further understand that 'in terms of non-volatile semiconductor memory technology, the degree, degree and cost are important driving factors. A large demand for non-volatile semi-elements makes these memories have to be manufactured in a large-scale, low-cost manner. In addition, 'non-volatile semiconductor memory elements for new applications' will require more capacity and smaller size. The elements of Figure 1 prevent several considerations in this regard. First, because the floating gate m and the control gate 116 are shaped by multiple (four) layers

Chinese spec.-MXlC^P940187_final 6 1331805 成,因此7L件100係以一「雙層多晶矽」製程所製造。這 會使得元件100的製造方式與現有的CMOS技術不相容, 因為現有的CMOS技術係為單一多晶矽製程。因此,為了 製造το件100,將需要特殊的製造程序。再者,元件1〇〇 僅月b儲存一位元的資訊’進而限制了使用元件1〇〇所能達 到的密度。 【發明内容】 本發明係揭露一種非揮發性記憶元件其包括一基板,並 f基板上形成一介電層。一控制閘極係形成於介電層上, 同時二洋動閘極亦形成於基板上、並分別位於控制閘極的 兩側。因此,此非揮發記憶元件可使用一單一多晶矽製程 =氣造,因而與現有互補式金氧半場效電晶體製程相容。此 此元件可儲存雙位元資料,分別位於每一浮動閘極。 依據本發明提供實施例之一目的,此元件在基板中形成 有二擴散區域,分別接近每一浮動閘極。 丑依據本發明提供實施例之另—目的,此元件可包括四擴 散區域,分別接近每一浮動閘極的各邊緣。 、依據本發明提供實施例之又一目的,控制閘極、擴散區 域與浮動閘極之間的耦接,係用以在基板中形成一通道, 以允許元件的操作。 、依據本發明提供實施例之又—目的,通道熱電子技術係 被用以程式化此元件。 依據本發明提供實施例之又一目的,紫外線照射(UV) 可被用以抹除此元件。Chinese spec.-MXlC^P940187_final 6 1331805, so the 7L piece 100 is manufactured by a "double layer polysilicon" process. This would make the fabrication of component 100 incompatible with existing CMOS technology because existing CMOS technology is a single polysilicon process. Therefore, in order to manufacture the piece 100, a special manufacturing process will be required. Furthermore, component 1〇〇 stores only one bit of information on month b, which in turn limits the density that can be achieved using component 1〇〇. SUMMARY OF THE INVENTION The present invention discloses a non-volatile memory device that includes a substrate and a dielectric layer formed on the substrate. A control gate is formed on the dielectric layer, and a second ocean gate is also formed on the substrate and located on both sides of the control gate. Therefore, the non-volatile memory element can be fabricated using a single polysilicon process = gas, and thus compatible with existing complementary metal oxide half field effect transistor processes. This component stores dual bit data at each floating gate. According to one aspect of the present invention, the element is formed with two diffusion regions in the substrate, each adjacent to each floating gate. According to another aspect of the present invention, the element may include four diffusion regions adjacent to each of the edges of each of the floating gates. According to still another object of the present invention, the coupling between the gate, the diffusion region and the floating gate is used to form a channel in the substrate to allow operation of the device. In accordance with yet another embodiment of the present invention, channel hot electron technology is used to program the component. According to yet another object of the present invention, ultraviolet radiation (UV) can be used to erase the component.

Chinese spec.-MXIC_P94〇187_final 7 1331805 依據本發明提供實施例之又一目.的,帶至帶熱電洞注入 (BTBHHI)技術可被用以抹除此元件。 以下係詳細說明本發明之結構與方法。本發明内容說明 章節目的並非在於定義本發明。本發明係由申請專利範圍 所定義。舉凡本發明之實施例、特徵、目的及優點等將可 透過下列說明申請專利範圍及所附圖式獲得充分瞭解。 【實施方式】 • 以下所述之各實施例係有關於一非揮發性記憶元件,其 包括一基板與一形成於此基板上之介電層。一控制閘極係 形成於此介電層上、接著則沈積二浮動閘極於介電層上控 制閘極的兩侧。擴散區域係形成於基板中。施加至控制閘 極與擴散區域的電壓,可被耦接至浮動閘極,以在基板中 形成一通道,而提供用以使得在通道區域中之載子可穿透 介電層而進入浮動閘極所需要的電場。 可以暸解的是,在此所述之任何尺寸、測量結果、範圍、 φ 測試結果、數據資料等,係接近真實且並非被用做為準確 資料。其接近真實的程度將取決資料的本質、所使用特定 實施例的内容與實施方式。Chinese spec.-MXIC_P94〇187_final 7 1331805 In accordance with another aspect of the present invention, a band-to-band thermal hole injection (BTBHHI) technique can be used to erase the component. The structure and method of the present invention are described in detail below. SUMMARY OF THE INVENTION The purpose of the section is not to define the invention. The invention is defined by the scope of the patent application. The embodiments, features, objects and advantages of the present invention will be fully understood from the following description of the appended claims. [Embodiment] Each of the embodiments described below relates to a non-volatile memory element including a substrate and a dielectric layer formed on the substrate. A control gate is formed on the dielectric layer, and then two floating gates are deposited on the dielectric layer to control both sides of the gate. The diffusion region is formed in the substrate. The voltage applied to the control gate and the diffusion region can be coupled to the floating gate to form a channel in the substrate, and is provided to enable the carrier in the channel region to penetrate the dielectric layer and enter the floating gate The electric field required. It can be understood that any size, measurement result, range, φ test result, data data, etc. described herein are close to reality and are not used as accurate data. Its proximity to reality will depend on the nature of the material, the content and implementation of the particular embodiment used.

第2圖係繪示一非揮發性記憶元件,其係根據本發明一 實施例而組態。元件200包括一基板202,並於基板中形 成有擴散區域212與214。在第2圖的實施例中,基板202 係為一 P型基板、且擴散區域212,214係為N型擴散區域。 因此,元件200係為一 NMOS元件。然而可以瞭解的是, 在其他實施例中元件200可為一 PMOS元件,其包括一 N 8 Chinese spec.-MXIC_P940187_final 1331805 型基板以及P型擴散區域。 . 介電層204係接著形成於基板202之上。浮動閘極結構 206與210、以及控制閘極結構208,係接著利用一單一多 晶矽製程而形成於介電層204之上。換言之,浮動閘極 206、控制閘極208、浮動閘極210係從一單一多晶矽層所 形成,而此單一多晶石夕層則係形成於介電層204之上。此 多晶矽層與介電層204係接著利用一習知微影技術而進行 蝕刻,以形成第2圖所示之閘極結構與閘極介電層。 因此,元件200可利用一單一多晶矽製程而製造,而使 其與習知的CMOS製程技術相容。用以製造元件200之例 示製程係如下所詳述。 第3圖係繪示一非揮發性記憶元件300之例示實施例, 其係根據本發明另一實施例而進行組態。在第3圖的實施 例中,元件300包括額外的擴散區域220與222。元件200 與300之間的操作差異,將詳述如下。此外,用以製造元 件200與300之製程步驟差異,亦將詳述如下。 請參照第2圖,每一浮動閘極206與210係組態以儲存 代表一位元資訊之電荷,例如一邏輯”1”或一邏輯”0”。因 此,元件200係組態以進行多位元操作,其進而可增加密 度、減少元件尺寸、縮短製造時間、及/或降低成本。 施加至控制閘極208之電壓,可耦接至浮動閘極206與 210,以協助浮動閘極206與210的程式化、抹除與讀取。 因此,舉例而言,為了程式化浮動閘極206,施加至控制 閘極208的電壓係耦接至浮動閘極206,以在基板202中、 浮動閘極206之下,生成一通道區域216。耦接至浮動閘 9 Chinese spec.-MXIC_P940187_.fina) 1331805 極206的電壓亦可提供用以在通道區域216中誘發載子以 穿透介電層204而進入浮動閘極206所需之電場。相似地, 施加至控制閘極208之電壓亦可耦接至浮動閘極210,以 允許針對浮動閘極210中所儲存的位元進行程式化、抹 除、與讀取。 此耦接可藉由第4圖與第5圖而進一步瞭解。第4圖係 繪示在元件200中之各閘極及各層與浮動閘極206之間所 形成之電容。可以瞭解的是,針對浮動閘極210的辆接機 • 制亦是相同的。因此,為了簡要起見,與浮動閘極210相 關的耦接機制描述將被省略。相似地,可以瞭解的是,元 件300之耦接機制亦與元件200相同。因此,為了簡要起 見,與元件300相關的耦接機制描述將被省略。 如第4圖中所示,當一電壓係施加至控制閘極208時, 此電壓將經由控制閘極電容(CCG)而耦接至浮動閘極206。 浮動閘極206係接著經由本體電容(CB)而耦接至基板202。 此外,當一電壓施加至擴散區域212時,浮動閘極206可 φ 經由接面電容(Cj)而與擴散區域212耦接。此電容耦接機制 係生成用以致使在通道區域216中的載子穿透介電層204 而進入浮動閘極206所需要的電場。 第5圖係根據一特定實施例,說明與元件200相關的例 示尺寸。這些尺寸可用以說明元件200所能產生的耦接作 用。首先,控制閘極電容(CCG)、接面電容(Cj)、與本體電 容(CB)係由下列方程式獲得: CCG = e(H*W)/Ll (1) CB = s(L3*W)/T (2) 10 Chinese spec.-MXIC_P940187_finalFigure 2 illustrates a non-volatile memory element configured in accordance with an embodiment of the present invention. Element 200 includes a substrate 202 with diffusion regions 212 and 214 formed in the substrate. In the embodiment of Fig. 2, the substrate 202 is a P-type substrate, and the diffusion regions 212, 214 are N-type diffusion regions. Therefore, component 200 is an NMOS component. It can be appreciated, however, that in other embodiments component 200 can be a PMOS device that includes a N 8 Chinese spec.-MXIC_P940187_final 1331805 type substrate and a P-type diffusion region. A dielectric layer 204 is then formed over the substrate 202. Floating gate structures 206 and 210, and control gate structure 208 are then formed over dielectric layer 204 using a single polysilicon process. In other words, the floating gate 206, the control gate 208, and the floating gate 210 are formed from a single polysilicon layer, and the single polycrystalline layer is formed on the dielectric layer 204. The polysilicon layer and dielectric layer 204 are then etched using a conventional lithography technique to form the gate structure and gate dielectric layer shown in FIG. Thus, component 200 can be fabricated using a single polysilicon process, making it compatible with conventional CMOS process technology. An exemplary process for fabricating component 200 is as detailed below. FIG. 3 illustrates an exemplary embodiment of a non-volatile memory element 300 that is configured in accordance with another embodiment of the present invention. In the embodiment of Figure 3, component 300 includes additional diffusion regions 220 and 222. The operational differences between components 200 and 300 will be detailed below. In addition, the differences in the process steps for fabricating components 200 and 300 will also be detailed below. Referring to Figure 2, each of the floating gates 206 and 210 is configured to store a charge representing a bit of information, such as a logic "1" or a logic "0". Thus, component 200 is configured for multi-bit operation, which in turn can increase density, reduce component size, reduce manufacturing time, and/or reduce cost. The voltage applied to control gate 208 can be coupled to floating gates 206 and 210 to assist in the staging, erasing and reading of floating gates 206 and 210. Thus, for example, to program the floating gate 206, the voltage applied to the control gate 208 is coupled to the floating gate 206 to create a channel region 216 in the substrate 202 below the floating gate 206. Coupling to the floating gate 9 English spec.-MXIC_P940187_.fina) The voltage of the pole 206 may also provide the electric field required to induce the carrier to penetrate the dielectric layer 204 into the floating gate 206 in the channel region 216. Similarly, the voltage applied to control gate 208 can also be coupled to floating gate 210 to allow for stylizing, erasing, and reading of the bits stored in floating gate 210. This coupling can be further understood by FIGS. 4 and 5. Figure 4 illustrates the capacitance formed between the gates and layers in component 200 and floating gate 206. It can be understood that the vehicle system for the floating gate 210 is also the same. Therefore, for the sake of brevity, the description of the coupling mechanism associated with the floating gate 210 will be omitted. Similarly, it can be appreciated that the coupling mechanism of component 300 is also the same as component 200. Therefore, for the sake of brevity, the description of the coupling mechanism associated with component 300 will be omitted. As shown in FIG. 4, when a voltage is applied to control gate 208, this voltage will be coupled to floating gate 206 via a control gate capacitance (CCG). The floating gate 206 is then coupled to the substrate 202 via a body capacitor (CB). In addition, when a voltage is applied to the diffusion region 212, the floating gate 206 can be coupled to the diffusion region 212 via the junction capacitance (Cj). This capacitive coupling mechanism generates the electric field required to cause the carriers in the channel region 216 to penetrate the dielectric layer 204 into the floating gate 206. Figure 5 illustrates an exemplary size associated with component 200 in accordance with a particular embodiment. These dimensions can be used to illustrate the coupling that component 200 can produce. First, the control gate capacitance (CCG), junction capacitance (Cj), and bulk capacitance (CB) are obtained by the following equation: CCG = e(H*W)/Ll (1) CB = s(L3*W) /T (2) 10 Chinese spec.-MXIC_P940187_final

Cj = s(L4*W)/T ,⑺ 其中,ε為介電常數;以及 w為閘極進入頁面的寬度 Η為閘極的高度 L1為閘極間的側壁子的長度 L3為介電層在閘極底下的長度,不包 括L4 L4為’ |電層在浮動閘極下、擴散區域 上的長度 Τ為介電層的厚度 因此’控制閘極電容(Ccg)係等於ε乘以控制問極⑽的 乘以控制閉極·的寬度、再除以控制閑極2〇8 二極206之間的空間。本體電容(Cb)則等於c乘以 J電層204在浮動閘極寫下的長度(不包括重疊至擴散 區域212的部分)'再乘以浮動閘極寫的寬度、接著除以 介電層204的高度。接面電容(Q)係等於4以在浮動間極 206之下、擴散區域212之上的介電層2〇4的長产 洋動閘極206的寬度、接著除以介電層2〇4的厚 整體電容係由下列方程式獲得: 又 CT〇T = Cj + CCG + CB (4) 在控制閘極208與浮動閘極2〇6之間的輕合 下列方程式獲得: acG ~ Ccg/Ct〇t (5) 在擴散區域2】2與浮動間極施之間的轉合 下列方程式獲得: 你人Cj = s(L4*W)/T , (7) where ε is the dielectric constant; and w is the width of the gate entering the page Η is the height of the gate L1 is the length of the sidewall between the gates L3 is the dielectric layer The length under the gate does not include L4 L4 is 'the length of the electrical layer under the floating gate, the length of the diffusion region is the thickness of the dielectric layer. Therefore, the control gate capacitance (Ccg) is equal to ε multiplied by the control. The pole (10) is multiplied by the width of the control closed pole and divided by the space between the control poles 2〇8 and the two poles 206. The body capacitance (Cb) is then equal to c times the length of the J electrical layer 204 written at the floating gate (excluding the portion overlapping the diffusion region 212) 'multiplied by the width of the floating gate write, then divided by the dielectric layer The height of 204. The junction capacitance (Q) is equal to 4 to the width of the long-lived gate 206 of the dielectric layer 2〇4 below the floating interpole 206, over the diffusion region 212, and then divided by the dielectric layer 2〇4 The thick overall capacitance is obtained by the following equation: CT 〇T = Cj + CCG + CB (4) The following equation is obtained between the control gate 208 and the floating gate 2〇6: acG ~ Ccg/Ct〇 t (5) The following equation is obtained between the diffusion zone 2] 2 and the floating pole:

Chinese ^c -MXJC P940187 fmai 11 1331805 (Xj = Cj/Ct〇t . (6) 因此,在浮動閘極206上的電壓可由下列方程式獲得: VfG = (VcG*aCG) + (VN*aJ)⑺ 其中,VCG係為控制閘極電壓,且 V N係為擴散區域電壓。 舉例而言,在一實施例中,根據本發明系統與方法所組 態之一非揮發性記憶元件,可包括下列尺寸: Η = 1000 埃; φ L1 = 200 埃; L3 = 400 埃; L4 = 200 埃;且 Τ = 100 埃。 因此,總體電容係由方程式(4)所獲得:English ^c -MXJC P940187 fmai 11 1331805 (Xj = Cj/Ct〇t . (6) Therefore, the voltage on the floating gate 206 can be obtained by the following equation: VfG = (VcG*aCG) + (VN*aJ)(7) Wherein, the VCG is the control gate voltage, and the VN is the diffusion region voltage. For example, in one embodiment, one of the non-volatile memory elements configured according to the system and method of the present invention may include the following dimensions: Η = 1000 angstroms; φ L1 = 200 angstroms; L3 = 400 angstroms; L4 = 200 angstroms; and Τ = 100 angstroms. Therefore, the overall capacitance is obtained by equation (4):

Ctot = Cj + Ccg + Cg = sllW 在控制閘極208與浮動閘極206之間的耦合比例,係以 方程式(5)而獲得: cxcg = Ccg/Ct〇t =ε5 "W/ε 11W = 5/11 在擴散區域212與浮動閘極206之間的耦合比例,接著 係以方程式(6)獲得: aj = Cj/Ct〇t =b2W/811W= 2/11 在浮動閘極206上的電壓,可由下列方程式獲得:Ctot = Cj + Ccg + Cg = sllW The coupling ratio between the control gate 208 and the floating gate 206 is obtained by equation (5): cxcg = Ccg/Ct〇t = ε5 "W/ε 11W = 5/11 The coupling ratio between the diffusion region 212 and the floating gate 206 is then obtained by equation (6): aj = Cj / Ct 〇 t = b2W / 811W = 2 / 11 voltage on the floating gate 206 , can be obtained by the following equation:

VfG = (VcG*aCG) + (Vn*CIj) =Vcg*5/11 + Vn*2/11 可以瞭解的是,在此所述的尺寸可以隨著特定發明的需 求而改變;然而可以瞭解的是,無論使用何種尺寸,一定 12 Chinese spec.-MXIC_P940187_final 1331805 要達到足夠的耦合。因此,一實施例的實際尺寸必須足以 提供所需要的耦合。 舉例而言,在其他實施例中,上述的尺寸可落於下列近 似範圍内: Η = 800-1500 埃;VfG = (VcG*aCG) + (Vn*CIj) = Vcg*5/11 + Vn*2/11 It will be appreciated that the dimensions described herein may vary with the needs of a particular invention; however, it is understood Yes, no matter what size you use, you must have 12 Chinese spec.-MXIC_P940187_final 1331805 to achieve sufficient coupling. Therefore, the actual size of an embodiment must be sufficient to provide the required coupling. For example, in other embodiments, the above dimensions may fall within the following approximate ranges: Η = 800-1500 angstroms;

Ll= 160-300 埃; L3 = 300-500 埃;Ll = 160-300 angstroms; L3 = 300-500 angstroms;

L4 = 160-300 埃;且 T = 50-250 埃。 第6圖係根據本發明一實施例,繪示元件200之浮動閘 極206之例示程式化操作。首先,可施加一高電壓至控制 閘極208,此電壓同時如上所述而耦接至浮動閘極206。亦 可施加電壓至擴散區域212,214,以橫越通道區域而產生大 橫向電場。在此情況下,係施加一低電壓至擴散區域214 (在此作用為源極區域),並施加一高電壓擴散區域212(在 此作用為汲極區域)。施加至擴散區域212的高電壓亦如上 所述而耦接至浮動閘極206。 與浮動閘極206耦合的高電壓,必須足以允許在浮動閘 極206之下形成反轉通道區域216,因而使大橫向電場可 誘發載子(在此為電子602),載子並在通道216中從擴散 區域214流向擴散區域212,最後流入浮動閘極206。耦合 至浮動閘極206的電壓必須足以致使至少部分載子602經 由介電層204而注入浮動閘極206。被注入的載子接著會 被儲存於浮動閘極206中,進而改變臨界電壓(VT),且因 此程式化浮動閘極206的狀態。 13 Chinese spec.-MX!C_P940187_final 1331805 可以瞭解的是,載子602必須具有足夠得能量而克服 電層2〇4的能障高度。舉例而言,若介電層綱二轰 ^匕石夕,電層,載子繼必須具有超過3加的能量’,: 服一虱化矽層204的能障高度。在第 式,-般係稱為通道熱電子(CHE)注中所不的,主入形 在第6圖的實施例中,大約 栌制闡炻 π丄 特的高電壓係施加至 二而⑹約5伏特的高電壓係施加至擴散區域 ’而擴政區域214則維持於約以 / 做為舉例用,且實際^ 疋貝把方式的需求而變動。舉例而言, 施加至控制閘極細的電塵可介於約8至η伏貝特1門且 施的㈣可介㈣4至6伏特之二 第7圖係根據本發明一實施例,緣示用以程式 的:例示CHE方法。在此,横向必二 =散St通道218中,載子從擴散區域2: 厂道218則係由施加至控制間極2。8 動=33 '而產生於浮 致使至少部分的载子由必須足以 極210。 、由"電層綱而注入浮動閘 控二7:的實且= 域犯’同時擴散區域214係维二^係施加至擴散區 X;:所述的電星係僅做為舉例用,且實二= 攻者特定實施方式的需求而變動。舉例而言,L4 = 160-300 angstroms; and T = 50-250 angstroms. Figure 6 illustrates an exemplary stylized operation of floating gate 206 of component 200, in accordance with an embodiment of the present invention. First, a high voltage can be applied to control gate 208, which is simultaneously coupled to floating gate 206 as described above. A voltage can also be applied to the diffusion regions 212, 214 to create a large transverse electric field across the channel region. In this case, a low voltage is applied to the diffusion region 214 (here acting as a source region) and a high voltage diffusion region 212 (here acting as a drain region) is applied. The high voltage applied to the diffusion region 212 is also coupled to the floating gate 206 as described above. The high voltage coupled to the floating gate 206 must be sufficient to allow the inversion channel region 216 to be formed below the floating gate 206, thereby allowing the large transverse electric field to induce a carrier (here, electron 602), and the carrier is in channel 216. The medium flows from the diffusion region 214 to the diffusion region 212 and finally flows into the floating gate 206. The voltage coupled to the floating gate 206 must be sufficient to cause at least a portion of the carrier 602 to be injected into the floating gate 206 via the dielectric layer 204. The injected carrier is then stored in floating gate 206, which in turn changes the threshold voltage (VT) and thus the state of floating gate 206. 13 Chinese spec.-MX!C_P940187_final 1331805 It can be appreciated that the carrier 602 must have sufficient energy to overcome the energy barrier height of the electrical layer 2〇4. For example, if the dielectric layer is the second layer, the electric layer, the carrier must have more than 3 plus energy, and the energy barrier height of the layer 102 is taken. In the first embodiment, generally referred to as channel hot electron (CHE), the main form is shown in the embodiment of Fig. 6, and the high voltage system is about to be applied to two (6). A high voltage of about 5 volts is applied to the diffusion region' while the extended region 214 is maintained at about / for example, and the actual ^ mussels vary in the manner of the mode. For example, the electric dust applied to the control gate can be between about 8 and η volts, and the fourth (four) can be (four) 4 to 6 volts. FIG. 7 is an embodiment of the present invention. In the program: exemplify the CHE method. Here, the lateral direction must be two = the st channel 218, the carrier from the diffusion region 2: the plant road 218 is applied to the control interpole 2. 8 movement = 33 ' is generated by floating so that at least part of the carrier is required Sufficient for 210. Injected by the "Electrical layer, the floating gate 2: true and = domain committed' while the diffusion region 214 is applied to the diffusion zone X; the electric galaxy is used as an example only, And the actual two = changes in the needs of the specific implementation of the attacker. For example,

Chinese 5^..^1(:_„4〇|87 fina| 1331805 >至丨2伏特之 4至6伏特之 例中,施加至控制閘極208的電壓可介於約 間,且施加至擴散區域212的電麗可介於約 間0 可以瞭解的是,在第6與第7圖所繪示的士 J石法中,捐道 216與218係將基板202的區域長度,從棒 m w汽驳區蜮212往 擴散區域214延伸。這些通道係藉由施加至控制 用而產生 的電壓、以及此電壓與浮動閘極206及21〇夕„ Μ極2〇8 < +, 之間的耦合作 鲁 第8圖係根據本發明一實施例,繪示用以姑 _ 抹除元件2〇〇 之第一位兀的一例示方法。在第8圖的實施例中,乂 帶至帶熱電洞(ΒΤΒΗΗ)注入技術以抹除浮動閑極係使用 帶至帶熱電洞注入係藉由在浮動閘極206與擴散區知212 之間產生一閘極誘發汲極漏電流(GIDL)而生成。卷^力負 偏壓至浮動閘極206、並施加正偏壓至擴散區域,、 則會產生閘極誘發汲極漏電流。因此,如第8圖所厂、寸大 負電壓係施加至控制閘極208。此大負電壓會耦入不丄 • 閑極206,因而施加負偏壓至浮動閘極206。接著二力二言 電壓至擴散區域212。擴散區域214係維持於低電壓(= 即〇伏特),以防止帶至帶熱電洞抹除浮動閘極2&。 ’ 在第8圖的狀態下,位於浮動閘極206之下並靠近通道 216的N型擴散區域212的一大部分,會被抹除電子。 ^橫跨介電層204的電場足夠大、且擴散區域212的摻雜 /辰度係介於約1〇18至1019cnT3的範圍内時,電洞802可穿 '通道w電層204而流入浮動閘極206 ’並在此抹除所有 儲存於浮動閘極206中的電子。 15 Chinese spec.-MXIC_P940187_final 1331805 可以瞭解的是,在第8圖中所繪示’的電壓係僅做為舉例 用,且實際的電壓會隨著特定實施方式的需求而變動。舉 例而言,在特定實施例中,施加至控制閘極208的電壓可 介於約-15至-25伏特之間,且施加至擴散區域212的電壓 可介於約4至6伏特之間。 第9圖係根據本發明一實施例,繪示用以抹除元件200 之第二位元的一例示帶至帶熱電洞方法。因此,其係施加 一大負電壓(例如-20伏特)至控制閘極208,以施加負偏 φ 壓至浮動閘極210。在此範例中,擴散區域214係施加以 一正偏壓(例如5伏特),而擴散區域212則係維持於一低 電壓(亦即0伏特),以避免帶至帶熱電洞抹除浮動閘極 206。由施加至浮動閘極210與擴散區域214的偏壓所產生 並橫跨介電層2 04的電場’會消耗在擴散區域214中的部 分電子,並開始進行在介電層204中所生成的次要載子902 的帶至帶熱電洞注入至浮動閘極210中,並在此抹除先前 儲存於浮動閘極210中的電子。 φ 同樣地,可以暸解的是,在第9圖中所示的電壓係僅做 為舉例用,且實際的電壓會隨著特定實施方式的需求而變 動。舉例而言,在特定實施例中,施加至控制閘極208的 電壓可介於約-15至-25伏特之間,且施加至擴散區域214 的電壓可介於約4至6伏特之間。 第10圖係根據本發明一實施例,繪示用以抹除元件200 的一例示方法。根據第10圖,照射紫外線1004於元件200 之上。紫外線1004的能量會提供能量足以穿透介電層204 的電子,並漏散進入基板202。 16 Chinese spec.-MXIC_P940187_final 1331805 第11圖係根據本發明一實施例,繪示用以讀取元件 之浮動閘極206的一例示逆讀取操作。首先,必須施加— 高電壓至控制閘極208。亦可施加一高電壓至擴散區口域 214,並施加一低電壓至擴散區域212。 在第11圖的實施财,可施加―範圍介於5至9伏 的高電壓(例如約6.6伏特)至控制閘極期。同時施加— 巳圍w於約1至2.5伏特的高電壓(例如約16伏特)至 ,區域2M。擴散區域212可維持於一大約〇伏特的低電巧 同樣地’在第U圖中所示的電壓係僅做為舉例用,-且 實際的電壓會隨著特定實施方式的需求而變動。 敢相Π’第、'尸圖係根據本發明一實施例,繪示用以讀 : 之,予動閘極210的一例示逆讀取操作。在此, 々口至擴散區域212與214的電壓係相反,使得儲存 件200左側的位元可被讀取。 使付儲存於兀 枯在古第12圖的實施例中,係施加一範圍介於約5至9伏 範ΐ二::Ϊ例如約6.6伏特)至控制閘極208。並施加-感丨於約i至2.5伏特之高電墨(例如約Μ =212第擴散區域214可維持於約。伏特的低電壓: 二ί 中所示的係僅做為舉例用,且實際 ^ 9者特疋實施方式的需求而變動。 第丨3圖係根據本發明一 — 程式化操作。如同笛/闽實"例繪不兀件300的例示 (CHE ) λ η第6圖的實施例,係使用通道熱電子 被視為包括三=式!_匕=300的第一位元。元件300可 域214,220所^存凡件由洋動閘極21G與擴散區 、一存取電晶體由控制閘極208與擴散English 5^..^1(:_„4〇|87 fina| 1331805 > In the case of 4 to 6 volts of 丨 2 volts, the voltage applied to the control gate 208 may be between approximately and applied to The electric potential of the diffusion region 212 may be between about 0. It can be understood that in the J-stone method illustrated in FIGS. 6 and 7, the donor tracks 216 and 218 are the lengths of the region of the substrate 202 from the bar mw. The steamer region 212 extends to the diffusion region 214. These channels are generated by the voltage applied to the control, and the voltage is between the floating gates 206 and 21 Μ „ 〇 2〇8 < +, Coupling Figure 8 shows an exemplary method for erasing the first position of the element 2〇〇 according to an embodiment of the invention. In the embodiment of Fig. 8, the belt is brought to the stage with thermoelectricity. A hole (ΒΤΒΗΗ) implantation technique is used to erase the floating idler. The use of the tape to the hot hole injection system is generated by generating a gate induced drain leakage current (GIDL) between the floating gate 206 and the diffusion region 212. The negative force is biased to the floating gate 206 and a positive bias is applied to the diffusion region, and a gate-induced drain leakage current is generated. The negative voltage in Figure 8 is applied to the control gate 208. This large negative voltage is coupled into the non-volatile pole 206, thus applying a negative bias to the floating gate 206. Diffusion region 212. Diffusion region 214 is maintained at a low voltage (= 〇 volts) to prevent strip to the hot hole to erase floating gate 2 & ' in the state of Figure 8, under floating gate 206 And a large portion of the N-type diffusion region 212 near the channel 216 is erased. The electric field across the dielectric layer 204 is sufficiently large, and the doping/density of the diffusion region 212 is between about 1 and 18. When in the range of 1019cnT3, the hole 802 can pass through the 'channel w electrical layer 204 and flow into the floating gate 206' and erase all the electrons stored in the floating gate 206. 15 Chinese spec.-MXIC_P940187_final 1331805 The voltages depicted in Figure 8 are for illustrative purposes only, and the actual voltage may vary with the requirements of a particular implementation. For example, in certain embodiments, applied to a control gate The voltage of the pole 208 can be between about -15 and -25 volts, and The voltage applied to the diffusion region 212 can be between about 4 and 6 volts. FIG. 9 illustrates an example of a second band of the component 200 being erased to a hot hole in accordance with an embodiment of the present invention. Therefore, it applies a large negative voltage (for example, -20 volts) to the control gate 208 to apply a negative bias φ to the floating gate 210. In this example, the diffusion region 214 is applied with a positive bias. (eg, 5 volts), while the diffusion region 212 is maintained at a low voltage (ie, 0 volts) to avoid stripping the floating gate 206 to the hot hole. The electric field generated by the bias applied to the floating gate 210 and the diffusion region 214 and across the dielectric layer 204 will consume some of the electrons in the diffusion region 214 and begin to be generated in the dielectric layer 204. The tape of the secondary carrier 902 is injected into the floating gate 210 with a thermal hole, and the electrons previously stored in the floating gate 210 are erased here. φ Similarly, it will be appreciated that the voltages shown in Figure 9 are for illustrative purposes only and that the actual voltage will vary with the requirements of a particular embodiment. For example, in a particular embodiment, the voltage applied to control gate 208 can be between about -15 and -25 volts, and the voltage applied to diffusion region 214 can be between about 4 and 6 volts. FIG. 10 illustrates an exemplary method for erasing component 200, in accordance with an embodiment of the present invention. According to Fig. 10, ultraviolet light 1004 is irradiated over the element 200. The energy of the ultraviolet light 1004 provides energy sufficient to penetrate the electrons of the dielectric layer 204 and leak into the substrate 202. 16 Chinese spec.-MXIC_P940187_final 1331805 FIG. 11 illustrates an exemplary reverse read operation of the floating gate 206 for reading an element, in accordance with an embodiment of the present invention. First, a high voltage must be applied to the control gate 208. A high voltage can also be applied to the diffusion region 214 and a low voltage is applied to the diffusion region 212. In the implementation of Fig. 11, a high voltage (e.g., about 6.6 volts) ranging from 5 to 9 volts can be applied to the control gate period. Simultaneously apply - a high voltage (e.g., about 16 volts) to about 2 to 2.5 volts to the region 2M. Diffusion region 212 can be maintained at a low voltage of approximately one volt volt. Similarly, the voltage system shown in Figure U is for illustrative purposes only, and the actual voltage will vary with the needs of a particular implementation. In accordance with an embodiment of the present invention, an exemplary reverse reading operation of the pre-operation gate 210 is shown. Here, the voltages of the mouth to the diffusion regions 212 and 214 are opposite, so that the bits on the left side of the storage member 200 can be read. In the embodiment of the ancient Fig. 12, a range of between about 5 and 9 volts is applied to the control gate 208. And applying a high-ink with a sensitivity of about i to 2.5 volts (for example, about Μ = 212, the diffusion region 214 can be maintained at about volts. The voltage shown in volts is only used as an example, and actually The change of the embodiment is in accordance with the requirements of the embodiment. The third figure is based on the present invention - a stylized operation. Like the flute / tamping " exemplification of the example 300 (CHE) λ η Figure 6 In the embodiment, the use of channel hot electrons is considered to include the first bit of the three-form!_匕=300. The component 300 can be field 214, 220, and the memory is replaced by the oceanic gate 21G and the diffusion region, and an access voltage Crystal by control gate 208 and diffusion

Chinese spec.-MXlC_P940!87_finaJ 17 1331805 區域220,222所構成、以及一第二儲存元件由浮動閘極2〇6 與擴散區域222,212所構成。為了使電流在通道區域216 中流動以程式化浮動閘極206,存取電晶體必須是開啟狀 因此,可先施加一高電壓至控制閘極2〇8。供應至栌制 問極208的電壓,會開啟包括有控制閘極2〇8的&取^晶 體。同時亦可施加電壓至擴散區域212與214,以產生: 行跨通道區域的大橫向電場。在此情況中,一低電壓係施 加至擴散區4 214,同時-高電壓係施加至擴散區域212。 施加至擴散區域212的高電壓亦同時輕合至浮動問極 206,如上所示。 搞接至浮動閘極206的高㈣,必須足以允許一反轉通 道區域216形成於浮動閘極施之下,並使得載 例中為電子13〇2)可在此區域中藉由大橫向電場而誘發、 並在通道2丨6中從擴散區域222流向擴散區域2ι 至序動閘極206的電壓,亦必須足以致使至少部分; 1302經由介電層2〇4而注入浮動閘極寫。所注 =則會,儲存於浮動祕施中,並改變其臨界電麼 (Vt)、並進而程式化洋動閘極2〇6的狀態。 可以瞭解的是,载子13〇2的能量必須 2〇4的能障高度。舉例而言,若介電層綱传 石夕介電層,則載子1302的能量必須高於3 2e^、、=化 氧化矽層204的能障高度。 兄服一 在第13圖的實施例中,係施加一大約 壓至控制閘極,並施加一大約為5伏特的高Chinese spec.-MXlC_P940!87_finaJ 17 1331805 The area 220, 222 is constructed, and a second storage element is composed of a floating gate 2〇6 and diffusion regions 222, 212. In order for the current to flow in the channel region 216 to program the floating gate 206, the access transistor must be open. Therefore, a high voltage can be applied first to the control gate 2〇8. Supply to the voltage of the pole 208 will open the & control crystal including the control gate 2〇8. At the same time, a voltage can be applied to the diffusion regions 212 and 214 to produce: a large transverse electric field across the channel region. In this case, a low voltage is applied to the diffusion region 4 214 while a high voltage is applied to the diffusion region 212. The high voltage applied to the diffusion region 212 is also simultaneously coupled to the floating pole 206, as shown above. The high (four) connected to the floating gate 206 must be sufficient to allow a reversal channel region 216 to be formed under the floating gate and cause the electrons 13 〇 2 in the carrier to be in this region by a large transverse electric field. The voltage induced and flowing from the diffusion region 222 to the diffusion gate 206 in the channel 2丨6 must also be sufficient to cause at least a portion; 1302 injects a floating gate write via the dielectric layer 2〇4. Note = Yes, it will be stored in the floating secret, and its critical power (Vt) will be changed, and then the state of the oceanic gate 2〇6 will be programmed. It can be understood that the energy of the carrier 13〇2 must have a barrier height of 2〇4. For example, if the dielectric layer is transferred to the Xixi dielectric layer, the energy of the carrier 1302 must be higher than the energy barrier height of the 3 2e^, = yttria layer 204. In the embodiment of Fig. 13, an approximation is applied to the control gate and a maximum of about 5 volts is applied.

Chinese spcc.-MXlC_P94〇187_final 18 1331805 散區域212,並且擴散區域214係於 瞭解的是,在此所述的電壓係僅做為兴、用 寺。可以 壓會隨著特定實施方式的需求而變而且實際的電 ^中,施加至控制閘極2G8的電壓可舉^而言,在= 且施力™物的電,可二= 第14圖係根據本發明一實施例 3⑼之浮動問請的一例示通道元件 向電場必須被逆轉,以使得載子14〇2在通、^ :,橫 區域220往擴散區域214流動 二從擴散 至控制問極施以及擴散區域214之的m係由於施加 的耗合作用、而生成浮動閘極210之下。耦、 21 =壓,必須足以致使至少部分的载子二;㈣介 電層204而注入浮動閘極21 〇。 在第14圖的實施例中,係施加_大約為伏言兩 極2〇8 ’並施加一大約為5伏特的高電壓 且擴散區域212係維持於約〇伏特。可以 漫特ί;匕壓係僅做為舉例用,且實際的電 實;需求而變動。舉例而言,在特定 =歹中,施加至控制閘極施的電財介於約^⑴犬 :且施加至擴散區域214的電塵可介於約4至6伏 -,係施加一大負電塵至控娜208 β此大如負電Chinese spcc.-MXlC_P94〇187_final 18 1331805 The scattered region 212, and the diffusion region 214 is understood to be that the voltage system described herein is only used as a temple. The voltage can vary with the requirements of the particular embodiment and the actual voltage can be applied to the control gate 2G8. In the case of = and the force of the TM is applied, the voltage can be two. An example of a floating element according to an embodiment 3 (9) of the present invention is that the channel element must be reversed so that the carrier 14〇2 is in the pass, the transverse region 220 flows into the diffusion region 214, and diffuses to the control pole. The m of the diffusion region 214 and the diffusion region 214 are formed below the floating gate 210 due to the applied dissipation. The coupling, 21 = voltage, must be sufficient to cause at least a portion of the carrier 2; (iv) the dielectric layer 204 to be implanted into the floating gate 21 〇. In the embodiment of Fig. 14, the application of _ approximately two volts 2 〇 8 ′ and a high voltage of approximately 5 volts is applied and the diffusion region 212 is maintained at approximately 〇 volts. It can be used as an example, and the actual electricity is real; the demand changes. For example, in a particular=歹, the electricity applied to the control gate is between about ^1 (1) dogs: and the dust applied to the diffusion region 214 can be between about 4 and 6 volts - a large negative charge is applied. Dust to control 208 β this big as negative

Chinese spec.-MXIC_P940I87_finaI 19 1331805 .雜合至浮動間極206 ’以施加負偏塵至浮動㈤極禀。接著 可施加-高電塵至擴散區域212。擴散區域214係維持於Chinese spec.-MXIC_P940I87_finaI 19 1331805 . Hybrid to floating pole 206' to apply negative dust to floating (five) poles. High dust can then be applied to the diffusion region 212. The diffusion region 214 is maintained at

-低電壓(亦即0伏特),以避免帶至帶熱電洞抹除 極 210。 J 在第15圖的狀況中,位於浮動閘極2〇6之下並接近通 道區域216 # N型擴散區域的一大部分,將會被抹除電 子。當橫跨介電層204的電場變成足夠大的時候,電洞15〇2 可通過介電層204而注入至浮動閘極襄,並在此處抹除 • 任何先前儲存於浮動閘極206中的電子。 可以瞭解的是’在第15圖中所述的電壓係僅做為舉例 用’且實際的電壓會隨著特定實施方式的需求而變動。舉 例而言,在特定實施例中,施加至控制閘極2〇8的電壓可 "於約-15至-25伏特之間,且施加至擴散區域212的電壓 可介於約4至6伏特之間。 第16圖係根據本發明一實施例,繪示用以抹除元件3〇〇 之第二位元的帶至帶熱電洞方法。因此,施加一大負電壓 鲁(例如伏特)至控制閘極208 ,以施加負偏壓至浮動閘 極21 〇在此例中,擴散區域214係施加以一正偏壓(例 如5伏特),且擴散區域212係維持於一低電壓(例如〇伏 特),以避免帶至帶熱電洞抹除浮動閘極2〇6。藉由施加至 浮動閘極210與擴散區域214的偏壓所生成於橫跨介電層 2〇4的電場,會消除擴散區域214中的部分電子,並使^ 在介電層204中所生成的次要載子16〇2開始進行帶至帶熱 電洞注入至浮動閘極210,並在此處抹除先前儲存於浮^ 閘極21 〇中的電子。 20 Chinese spec.-Mxic_p94〇lg7_fmai 1331805 相同地,可以瞭解的是,在16圖中所述的電壓係僅做 為舉例用,且實際的電壓會隨著敎實财式的需求而變 動。舉例而言,在特定實施例中,施加至控制閘極的 電廢可介於約-15至·25伏特之間’且施加至擴散區域214 的電壓可介於約4至6伏特之間。- Low voltage (ie 0 volts) to avoid stripping the pole 210 to the hot hole. J In the condition of Figure 15, a large portion of the diffusion region below the floating gate 2〇6 and close to the channel region 216 #N will be erased. When the electric field across the dielectric layer 204 becomes sufficiently large, the hole 15〇2 can be injected into the floating gate 通过 through the dielectric layer 204 and erased there. Any previously stored in the floating gate 206 Electronics. It will be appreciated that the voltages described in Figure 15 are for illustrative purposes only and that the actual voltage will vary with the requirements of a particular embodiment. For example, in a particular embodiment, the voltage applied to control gate 2〇8 can be between about -15 and -25 volts, and the voltage applied to diffusion region 212 can be between about 4 and 6 volts. between. Figure 16 is a diagram showing a tape-to-belt method for erasing a second bit of an element 3A, in accordance with an embodiment of the present invention. Therefore, a large negative voltage (e.g., volts) is applied to the control gate 208 to apply a negative bias to the floating gate 21. In this example, the diffusion region 214 is applied with a positive bias (e.g., 5 volts). And the diffusion region 212 is maintained at a low voltage (eg, volts) to avoid stripping the floating gate 2〇6 to the hot hole. The electric field across the dielectric layer 2〇4 is generated by the bias applied to the floating gate 210 and the diffusion region 214, which eliminates some of the electrons in the diffusion region 214 and is generated in the dielectric layer 204. The secondary carrier 16〇2 begins to be taped into the thermal via to the floating gate 210, where the electrons previously stored in the floating gate 21 are erased. 20 English spec.-Mxic_p94〇lg7_fmai 1331805 Similarly, it can be understood that the voltage system described in Fig. 16 is only used as an example, and the actual voltage will vary with the demand of the financial system. For example, in a particular embodiment, the electrical waste applied to the control gate can be between about -15 and 25 volts' and the voltage applied to the diffusion region 214 can be between about 4 and 6 volts.

第17圖係根據本發明一實施例,繪示元件3⑻之例示 抹除操作。在第17圖的實施例中,係照射紫外線〗7〇4於 元件300上。紫外線1704的能量會提供帶有足夠能量的電 子1702,使其穿透介電層204並漏散至基板2〇2中。 第18圖係根據本發明一實施例,繪示用以讀取元件 之浮動閘極206的一例示逆讀取操作。首先,必須施加一 阿電壓至控制閘極208。亦可施加一高電壓至擴散區域 214 ’同時施加一低電壓至擴散區域212。施加至控制閘極 208的高電壓,會開啟包括有控制閘極2〇8的存取電晶體。 在第18圖的實施例中,可施加一範圍介於5至9伏特 的高電壓(例如約6.6伏特)至控制閘極2〇8。同時施加—Figure 17 is a diagram showing an exemplary erase operation of component 3 (8) in accordance with an embodiment of the present invention. In the embodiment of Fig. 17, the ultraviolet rays 7 are applied to the element 300. The energy of the ultraviolet light 1704 provides an electron 1702 with sufficient energy to penetrate the dielectric layer 204 and leak into the substrate 2〇2. Figure 18 is a diagram showing an exemplary reverse read operation of the floating gate 206 for reading an element, in accordance with an embodiment of the present invention. First, a voltage must be applied to the control gate 208. A high voltage can also be applied to the diffusion region 214' while applying a low voltage to the diffusion region 212. The high voltage applied to the control gate 208 turns on the access transistor including the control gate 2〇8. In the embodiment of Fig. 18, a high voltage (e.g., about 6.6 volts) ranging from 5 to 9 volts can be applied to the control gate 2〇8. Simultaneous application -

範圍介於約1至2.5伏特的高電壓(例如約16伏特)至擴 散區域214。擴散區域212可維持於—大約G伏特的低電 壓,同樣地,在第18圖中所示的電壓係僅做為舉例用,且 可以瞭解的是,實際使用的f壓會隨著特定實施 求而變動。 而 相似地,第19圖係根據本發明一實施例,繪示用以钱 取元件300之浮動閘極210的一例示逆讀取操作。在此嗔 施加至擴散區域212與214的電麼係相反,而可 存於元件300左側的位元。 °A high voltage (e.g., about 16 volts) ranging from about 1 to 2.5 volts is applied to the diffusion region 214. The diffusion region 212 can be maintained at a low voltage of about -about volts. Similarly, the voltage system shown in FIG. 18 is used as an example only, and it can be understood that the actually used f-voltage will be implemented with specific implementation. And change. Similarly, Fig. 19 illustrates an exemplary reverse read operation of the floating gate 210 for the borrowing component 300, in accordance with an embodiment of the present invention. Here, the NMOS applied to the diffusion regions 212 and 214 is reversed, and can be stored on the left side of the element 300. °

Chinese spee,MXIC_P940187_final 21 1331805 在第19圖的實施例中,可施加一範圍介於5至9伏特 的高電壓(例如約6.6伏特)至控制閘極208。同時施加一 範圍介於約1至2.5伏特的高電壓(例如約1.6伏特)至擴 散區域212。擴散區域214可維持於一大約0伏特的低電 壓,同樣地,在第19圖中所示的電壓係僅做為舉例用,且 可以瞭解的是,實際使用的電壓會隨著特定實施方式的需 求而變動。 因此,上述的非揮發性記憶元件、及其相關的方法,可 • 提供較高的密度、較低的成本、以及較少的功率消耗。此 外上述的元件係相容於傳統的單一多晶矽製造程序,而可 以更進一步降低成本、增加產量。 第20-24圖係為製造一如元件200之根據本發明一實施 例所組態之非揮發性記憶元件的特定製程步驟的剖面圖。 首先,如第20圖所示,此製程可由一矽基板2002開始。 在第20圖的實施例中,基板2002係為一 P型矽基板,然 而可以瞭解的是,根據本發明所述的實施例,亦可使用N φ 型矽基板。 閘極介電層2004係接著形成於基板2002之上。舉例而 言,閘極介電層2004可為一二氧化矽(Si02)層。閘極介電 層2004可藉由化學氣相沈積(CVD)而沈積,特別是可利 用高密度電漿化學氣相沈積(HDPCVD)製程而沈積此閘 極介電層2004。 多晶矽層2006係接著沈積於閘極介電層2004之上。多 晶矽層2006亦可藉由化學氣相沈積製程而沈積。 如第21圖所示,多晶矽層2006係接著利用一由光阻層 22 Chinese spec.-MX!C_P940187_final I33l8〇5 2008所形成之光阻光罩而進行圖案化,光阻層2008係塗 佈於多晶石夕層2006之上。光阻層2008可利用習知的光微 影技術而被塗佈並圖案化(或稱定義)。 如第22圖所示,一旦光阻層2008係如第21圖所定義, 多晶石夕層2006與閘極介電層2004可被钱刻,以形成閘極 結構2010,2012,2014。由於垂直側壁係閘極結構 2010,2012,2014所必須’較佳係使用一非等向性勉刻製程 以蝕刻多晶矽層2006與閘極介電層2004。所定義的光阻 % 層2008可接著利用如電漿灰化法而移除。 如第3圖所示,氧化物側壁子2016係接著形成於閘極 結構2010,2012,2〇14的側邊。舉例而言,氧化物側壁子2016 可利用沈積一氧化物層於基板2002上並接著移除(蝕刻) 不需要的部分而形成。 如第24圖所示,擴散區域2〇18,2020可接著形成於基板 2002 中。 第25圖係繪示專門用以製造元件3〇〇之一製程步驟示 • 意圖。因此,元件300的製造可依照上述第20-22圖中製 造元件200之方法而進行;然而如第25圖所示,一旦閘極 結構2010,2012,2014形成之後,即可進行擴散區域 2018,2020,2022,2024 的植入。一旦擴散區域 2〇18,2〇2〇, 2022,2024的植入完成後,即可如第23圖而形成氧化物側 壁子2016。 可以瞭解的是,上述的步驟並不代表所有製造一非揮發 性§己憶元件時所需要的步驟。可以瞭解的是,亦需要進行 其他前置與後續製程步驟如清潔步驟、研磨步驟、多晶矽 23 Chinese spec.*MXIC_P940187_final 的各^屬成步料。因此,可㈣解的是上述 記憶元件時所需的::關=製造本發明所述之非揮發性 需要的所有^ 而非用以列明製造此—元件時所 戶發=參照較佳實施例來加以描述,將為吾人 換方B 2 W創作並未受限於其詳細描述内容。替 施古1 ^樣式係已於先前描述中所建議,並且盆他替 樣式將為熟習此項技藝之人士所思及。、特; 二月:媒i發明之結構與方法,所有具有實質上相同於本 ^月之構件、,,。合㈣成與本發明實f上相同結果者皆不脫 弋俜範疇。因此,所有此等替換方式及修改樣 式係忍欲洛在本發明於隨附申請專利範圍及其均等界 定=範嘴之中、。任何在前文中提及之專利申請案以及印刷 文本’均係列為本案之參考。 【圖式簡單說明】 第1圖係緣示一習知浮動閘極記憶元件; 圖係係繪示根據本發明一實施例之非揮發性記憶 第2 元件組態 第3圖係根據本發明另一實施爿,緣示一例示非揮發性 記憶元件之組態; 第4圖繪示第2圖中的元件耦合至浮動閘極; 第5圖係繪示第2圖之元件的例示尺寸; 第6圖係根據本發明一實施例,繪示用以程式化第2圖 元件中的第一位元的例示方法;English spee, MXIC_P940187_final 21 1331805 In the embodiment of Fig. 19, a high voltage (e.g., about 6.6 volts) ranging from 5 to 9 volts can be applied to the control gate 208. A high voltage (e.g., about 1.6 volts) ranging from about 1 to 2.5 volts is applied simultaneously to the diffusion region 212. The diffusion region 214 can be maintained at a low voltage of about 0 volts. Similarly, the voltage shown in FIG. 19 is for example only, and it will be appreciated that the actual voltage used will vary with the particular implementation. Change in demand. Thus, the non-volatile memory elements described above, and related methods, can provide higher density, lower cost, and less power consumption. In addition, the above components are compatible with the conventional single polysilicon manufacturing process, which can further reduce costs and increase production. 20-24 are cross-sectional views of particular process steps for fabricating a non-volatile memory element configured as an element 200 in accordance with an embodiment of the present invention. First, as shown in Fig. 20, the process can be started by a substrate 2002. In the embodiment of Fig. 20, the substrate 2002 is a P-type germanium substrate, however, it will be appreciated that an N?-type germanium substrate can also be used in accordance with embodiments of the present invention. A gate dielectric layer 2004 is then formed over the substrate 2002. For example, the gate dielectric layer 2004 can be a germanium dioxide (SiO 2 ) layer. The gate dielectric layer 2004 can be deposited by chemical vapor deposition (CVD), particularly by depositing the gate dielectric layer 2004 using a high density plasma chemical vapor deposition (HDPCVD) process. A polysilicon layer 2006 is then deposited over the gate dielectric layer 2004. The polysilicon layer 2006 can also be deposited by a chemical vapor deposition process. As shown in Fig. 21, the polysilicon layer 2006 is then patterned using a photoresist mask formed by a photoresist layer 22 Chinese spec.-MX!C_P940187_final I33l8〇5 2008, and the photoresist layer 2008 is applied to Above the polycrystalline stone layer 2006. Photoresist layer 2008 can be coated and patterned (or defined) using conventional photolithographic techniques. As shown in Fig. 22, once the photoresist layer 2008 is as defined in Fig. 21, the polycrystalline layer 2006 and the gate dielectric layer 2004 can be engraved to form a gate structure 2010, 2012, 2014. Since the vertical sidewall gate structure 2010, 2012, 2014 must be 'optional' to use an anisotropic etch process to etch the polysilicon layer 2006 and the gate dielectric layer 2004. The defined photoresist % layer 2008 can then be removed using, for example, plasma ashing. As shown in Fig. 3, the oxide sidewall spacers 2016 are then formed on the sides of the gate structures 2010, 2012, 2〇14. For example, oxide sidewall spacers 2016 may be formed by depositing an oxide layer on substrate 2002 and then removing (etching) unwanted portions. As shown in Fig. 24, the diffusion regions 2, 18, 2020 can then be formed in the substrate 2002. Figure 25 is a diagram showing the process steps for manufacturing a component. Therefore, the fabrication of the component 300 can be performed in accordance with the method of fabricating the component 200 in the above FIGS. 20-22; however, as shown in FIG. 25, once the gate structure 2010, 2012, 2014 is formed, the diffusion region 2018 can be performed. Implantation of 2020, 2022, 2024. Once the implantation of the diffusion regions 2〇18, 2〇2〇, 2022, 2024 is completed, the oxide side wall 2016 can be formed as shown in Fig. 23. It will be appreciated that the above steps do not represent all of the steps required to make a non-volatile § element. It can be understood that other pre- and subsequent process steps such as a cleaning step, a grinding step, and a polycrystalline step 23 Chinese spec.*MXIC_P940187_final are also required. Therefore, (4) can be used to solve the above-mentioned memory elements:: off = all the non-volatile needs of the invention are not required to be used to specify the manufacture of the components - the preferred implementation For the sake of description, the creation of B 2 W for our replacement is not limited by the detailed description. The Shigu 1 ^ style system has been suggested in the previous description, and the pottery style will be considered by those skilled in the art. February; February: The structure and method of the invention, all of which have components that are substantially the same as this month. The combination of (4) and the results of the present invention is the same as that of the invention. Accordingly, all such alternatives and modifications are intended to be in the scope of the appended claims and their equivalents. Any patent application and printed text mentioned in the foregoing section are references to this case. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a conventional floating gate memory element; FIG. 1 is a diagram showing a configuration of a non-volatile memory second element according to an embodiment of the present invention. FIG. In one embodiment, an example shows a configuration of a non-volatile memory element; FIG. 4 illustrates that the element in FIG. 2 is coupled to a floating gate; and FIG. 5 illustrates an exemplary size of the element in FIG. 6 is an illustration of an exemplary method for programming a first bit in a second image element, in accordance with an embodiment of the invention;

Chinese spec.-MXiC P940I87 final 24 1331805 第7圖係根據本發明一實施例,繪示用以程式化第2圖 元件的第二位元的例示方法; 第8圖係根據本發明一實施例,繪示用以抹除第2圖_ 件中的第一位元的例示方法; 第9圖係根據本發明一實施例,繪示用以抹除第2圖_ 件中的第二位元的例示方法; ° 第10圖係根據本發明另一實施例,繪示用以抹除第2 圖元件中的二個位元的例示方法; 第11圖係根據本發明一實施例’繪示用以逆讀取第2 圖元件中的第一位元的例示方法; 第12圖係根據本發明一實施例,繪示用以逆讀取第2 圖元件中的第二位元的例示方法; 第13圖係根據本發明一實施例,繪示用以程式化第3 圖元件中的第一位元的例示方法; 第14圖係根據本發明一實施例,繪示用以程式化第3 圖元件中的第二位元的例示方法; 第15圖係根據本發明一實施例’繪示用以抹除第3。 元件中的第一位元的例示方法; ' ° 第16圖係根據本發明一實施例,繪示用以抹除第3。 元件中的第二位元的例示方法; ** 第P圖係根據本發明一實施例’繪示用以抹除第3 元件中的二個位元的例示方法; " 第18圖係根據本發明一實施例,繪示用以逆讀取 圖元件中的第一位元的例示方法; 第19圖係根據本發明一實施例,繪示用以逆讀取第3 25English spec.-MXiC P940I87 final 24 1331805 FIG. 7 illustrates an exemplary method for programming a second bit of the second image element according to an embodiment of the present invention; FIG. 8 is an embodiment of the present invention, An exemplary method for erasing the first bit in the second image is shown; FIG. 9 is a diagram illustrating the second bit in the second image according to an embodiment of the invention. Illustrative method; ° FIG. 10 illustrates an exemplary method for erasing two bits in the element of FIG. 2 according to another embodiment of the present invention; FIG. 11 is a diagram showing an embodiment of the present invention An exemplary method for inversely reading a first bit in a second picture element; FIG. 12 is a diagram illustrating an exemplary method for inversely reading a second bit in the second picture element, in accordance with an embodiment of the invention; FIG. 13 is a diagram showing an exemplary method for programming a first bit in a third figure element according to an embodiment of the invention; FIG. 14 is a diagram showing a third form for programming according to an embodiment of the invention. An exemplary method for the second bit in the diagram element; FIG. 15 is a diagram illustrating the erasing of the third in accordance with an embodiment of the present inventionAn exemplary method of the first bit in the component; '° Fig. 16 is a diagram for erasing the third in accordance with an embodiment of the present invention. An exemplary method of the second bit in the component; ** P is an exemplary method for erasing two bits in the third component according to an embodiment of the invention; " Figure 18 is based on An embodiment of the present invention is an exemplary method for inversely reading a first bit in a picture element. FIG. 19 is a diagram showing an inverse reading of a third bit according to an embodiment of the invention.

Chinese spec.-MXic^P94〇I87Chinese spec.-MXic^P94〇I87

JinsA 1331805 1002 電子 1004 紫外線 1302 電子 1402 電子 1502 電洞 1602 電洞 1704 紫外線 2002 z夕基板 2004 閘極介電層 2006 多晶矽層 2008 光阻層 2010,2012,2014 閘極結構 2016 側壁子 2018,2020,2022,2024 擴散區域JinsA 1331805 1002 Electronics 1004 UV 1302 Electronics 1402 Electronics 1502 Hole 1602 Hole 1704 UV 2002 z ray substrate 2004 Gate dielectric layer 2006 Polycrystalline layer 2008 Photoresist layer 2010, 2012, 2014 Gate structure 2016 Side wall 2018, 2020, 2022, 2024 diffusion area

27 Chinese spec.-MXTC_P940187_final27 Chinese spec.-MXTC_P940187_final

Claims (1)

I?31805 中華民國發明專利申請案第095120682號 無劃線之申請專利範圍替換本 中華民國99年5月μ曰送呈 十、申請專利範圍: 1. 一種非揮發性記憶元件,包括: 一基板; 一介電層,其係形成於該基板上; 一控制閘極,其係形成於該介電層上; 一第一浮動閘極,其係形成於該介電層上並位於該控制 閘極之一側; 一第二浮動閘極,其係形成於該介電層上並位於該控制 閘極之另一側; 一第一擴散區域,其係形成於該基板中接近該第一浮動 閘極處;以及 一第二擴散區域,其係形成於該基板中接近該第二浮動 閘極處。 2. 如申請專利範圍第1項所述之非揮發性記憶元件,其 中該基板係為一 Ρ型基板。 3. 如申請專利範圍第1項所述之非揮發性記憶元件,其 中該基板係為一 η型基板。 4. 如申請專利範圍第1項所述之非揮發性記憶元件,其 中該第一與第二浮動閘極以及控制閘極,係可利用一單一 多晶矽製程而製造之。 5. 如申請專利範圍第1項所述之非揮發性記憶元件,其 28 1331805 中該f制閘極與該第—擴散區域係組態為施加至控制閘極 以及第-擴散區域之電麗而與該第—浮動閘極輕合。 ^如申請專利範圍第5項所述之非揮發性記憶元件,其 h於雜制極與該第—浮_極 ^係數細該㈣_之高度,縣《該控_=; 又而接者除以介於該控制閉極與該浮動閑極之間的距離。 二二申請專利範圍第6項所述之非揮發性記憶元件,1 中该控制_之高度係約為_至!埃㈣strGm)t ^ &如申請專利範圍第6項 十介於該控制閘極 _至300埃。 第一汗動間極之間的距離係約為 中介㈣第=第1項所述之非揮發性記憶元件,其 極與該第-擴散區域之間的電容,係 浮動閘極之下、該第-擴散區域 而接著除以“:厚】乘以該第-浮動閘極的寬度’ 其二9項所述之非揮發性記憶元件, 介電層的長度,係約 29 1331805 豆中,八專利圍第9項所述之非揮發性記憶元件’ 其中5亥介電層的厚度係約為50至250埃。 中該圍第1項所述之非揮發性記憶元件, 該控術U:、該第二擴散區域’係組態為藉由施加至 耦? °该第二擴散區域之電壓而與該第二浮動閘極 件,13其Γ介申二二利二圍/ 12項所述之非揮發性記憶元 之寬产,而垃ί 制閘極之高度’再乘以該控制閘極 距離Γ 除以介於該控·極與該浮動閘極之間的 件13 g所述之非揮發性記憶元 、w工彳開極之高度係約為800至1500埃。 件,15其專利範圍第13項所述之非揮發性記憶元 為約160 ^ 3〇〇1制閘極與該第二浮接電極之間的距離係 1中介糊範圍第1項所述之非揮發性記憶元件, 工介電係間的電容係 之寬度’―電 30 於該第二浮動閘極之下 以及該第二擴散區域之上 件ϋ申請專利範圍第16項所述之非揮發性記憶元 上的該“::^:=之下以及該第二擴散區域之 电禮疋長度係為約100至300埃。 二範圍第9項所述之非揮發性記憶元件, 、τ省;丨電層之厚度係為約5〇至25〇埃。 爭s如申請專利範圍第1項所述之非揮發性記憶元件, °第二擴散區域、以及一第四擴 =形成於該基板中接近該第一浮動間:二: /第四擴散區域係形成於該基板中接近該第二浮動 閘極與該控制閘極處。 ^0.如申料利範圍第1項所述之非揮發性記憶元件, 其中該元件係組態以儲存二位元之資訊。 一 fi.在一包括有一基板、一介電層、一第一浮動閘極、 一第j浮動閘極、以及—控制閘極均形成於該介電層之 ^、了第一擴散區域形成於該基板中接近該第一浮動閘極 处、以及一第二擴散區域形成於該基板中接近該第二浮動 閘極處之非揮發性記憶元件巾一觀㈣式化該元件之 方法,包括: 施加-鬲電壓至該控制閘極,其中該控制閘極係組態以 31 1331805 ,/斤施加電壓與3亥第一浮動閘極耗合,以在該基板中該 第一浮動閘極之下生成一通道;以及 々施力向電壓至該第一擴散區域、並施加一低電壓至該 第二擴散區域’以生成—高水平電場於該第—與第二擴散 區域之間。 ’、 22·如申請專利範圍第21項所述之方法,其令所施加至 邊控制閘極之該高電壓係為約8至12伏特。 > 23.如申請專利範圍第21項所述之方法,其中所施加至 垓第一擴散區域之該高電壓係為約4至6伏特。 2个如申請專利範圍第21項所述之方法,更包括注入電 荷於該第二浮動閘極中,其中注人電荷於該第二浮動閘極 之步驟係包括: 她加同電壓至該控制閘極,其中該控制閘極係组態以 將所施加之電塵與該第二浮動閘_合,以在該基板中位 於5亥第二浮動閘極之下處生成一通道;以及 施加一高電壓至該第二擴散區域、並施加一低電壓至該 區域’以生成—高水平電場於該第—與第二擴散 25.如申請專利範圍第21項所述之方法,其中該元件更 包括一第三擴散區域其形成於該基板中接近該第一浮動閘 極與該控制閘極處、以及―第四擴散區域其形成於該基板 32 ⑶ 1805 與該控制閘極處,且其中用以注入 、人务'手動閘極之該咼水平電場,係形忐认β筮一 與該第三擴散區域之間。 /、乂成於该第一 包二㈣21 方法’其中該元件更 極與該域其形成?該基板中接近該第-浮動閘 中接近‘第甲、::、以及一第四擴散區域其形成於該基板 極與該控制問極處,且其中用以注人 盥二'ί—動閘極之該高水平電場,係形成於該第二 與该第四擴散區域之間。 —在-包括有-基板、—介電層、—第—浮動閉極、 弟:汙動閘極、以及一控制閘極均形成於該介電層之 ^、一第一擴散區域形成於該基板中接近該第一浮動閘極. 处、以及一第二擴散區域形成於該基板中接近該第二浮動 閑極處之非揮發性記憶元件中’一種用以抹除該元件之方 法,包括: 施加一大負電壓至該控制閘極,該控制閘極係組態以將 該所施加之電壓與該第一浮動閘極耦合; 施加一高電壓至該第一擴散區域,其中生成於該第一浮 動閘極與該第一擴散區域之間的電場係生成次要載子於該 =一擴散區域中’並提供該些次要載子足夠之能量以注乂 牙透該介電層、並注入該第一浮動閘極中;以及 施加一低電壓至該第二擴散區域。 33 如申請專利範圍帛27項所述之方法其中施加至該 制閘極之該大負電壓係約為-15至-25伏特。 29·如申請專利範圍第27項所述之方法,其中所施加至 '-第一擴散區域之高電壓係約為4至6伏特。 30. ^申請專利範圍第27項所述之方法,更包括致使電 ^入β第二浮動閘極,其中致使電洞注人 極之步驟包括: 卞切「甲J 施加-大負電壓至該控制極,該控·極係組態以將 所她加之電壓與該第二浮動閘極耦合; 施加-高電駐該第二擴散輯,其中生成於該第 =極與該第二擴散區域之_電場,係生成次要載子於 U二擴散區域巾,並提供該些次要載子足夠之能量以注 入穿透該介電層、並注入該第二浮動閘極中;以及 施加一低電壓至該第一擴散區域。 儿如甲言,專利範圍帛27項所述之方法,其中該非揮發 件更包括—第三擴散區域形成於該基板中接近該 苐-汙動閘極與該控制閘極處’以及一 於該基板中接近該第二浮動間極與該控制間極處。邮成 —J動^有一基板、一介電層、-第-浮動閘極、 弟-:于動閘極、以及一控制閘極均形成於該介電層之 上、一第-擴散區域形成於該基板中接近該第—浮動^極 34 丄 ^搞Ϊ及—第二擴散區域形成於該基板中接近該第二浮動 笛非揮發性㈣&件巾’―種用以讀取該元件之該 弟一洋動閘極之方法,包括: 施加一高電壓至該控制閘極; 施加一低電壓至該第一擴散區域;以及 施加一高電壓至該第二擴散區域。 33·如申請專利範圍第32項所述之方法,其中施加至該 控制閘極之該高電壓係為約5至9伏特。 一34.如申請專利範圍帛32項所述之方法,其中施加至該 第二擴散區域之高電壓係為約丨至2 5伏特。 35.如申凊專利範圍第32項所述之方法,其中施加至該 第一擴散區域之低電壓係為約〇伏特。 36·如申請專利範圍第%項所述之方法,其中該非揮發 性記憶兀件更包括一第三擴散區域形成於該基板中接近該 第浮動閘極與該控制閘極處、以及一第四擴散區域形成 於該基板中接近該第二浮動閘極與該控制閘極處。 37.在一包括有一基板、一介電層、一第一浮動閘極、 一第二浮動閘極、以及一控制閘極均形成於該介電層之 上、一第一擴散區域形成於該基板中接近該第一浮動閘極 處、以及一第二擴散區域形成於該基板中接近該第二浮動 35 U31805 閘極處之非揮發性記憶元件中,一 二浮動間極之方法,包括:種用以剩元件之第 施加一高電壓至該控制閘極; 施加—高電壓至該第一擴散區域;以及 施加一低電壓至該第二擴散區域。 38. 如申請專利範圍第37項所述之 控制閘極之該高電屢係為約5至9伏特。法,、中知加至該 39. 如申請專利範圍第37項所述之 第一擴散區域之高電壓係為約!至2 5伏^、中施加至該 40. 如申請專利範圍第37項所 第二擴散區域之該低電壓係為約Q伏特。〃施加至5亥 性二第37項所述之方法’其中該非揮發 第;:===區Γ形狀該基板中接近該 於該基板中接近該第二浮動二::控::::區域形成 42·-種製造-非揮發性記憶元件之方法,包括: 形成一控制閘極結構於一基板上; · 結構形之成-"4一浮動閉極結構於該基板上、位於該控制閉極 形成-第二軸間極結構料基板上、位料控制閑極 36 1331805 之另一側處 形成一第一擴散區域於該基板中接近該第—浮動 構處;以及 閘極 形成一第二擴散區域於該基板中接近該第二浮動閘極 結構處。 一43.如申請專利範圍第42項所述之方法,更包括形成一 第三擴散區域於該基板+接近該第—浮動閘極結構與該控 制閘極結構處。 、卫 44, 如申請專利範圍第43項所述之方法,更包括形成一 第四擴散區域於該基板中接近該第二浮動閘極結構 制閘極結構處。 《徑 ^ 申叫專利範圍第42項所述之方法,其中形成該第 ^ ^ ]極、、Ό構、5亥第二浮動閘極結構、以及該控制閘極 結構之步驟係包括: 沈積一介電層於該基板上; ’尤積—多晶石夕層該介電層上; 利用光阻層定義該多晶石夕層;以及 蝕刻該經定義之多晶矽層與該介電層。 46. 與該多 ^申請專利範圍第45項所述之方法,其中該介電層 3曰石夕層係利用化學氣相沈積法而沈積。 37 二其㈣介電層 復如申請專利範圍第42項所述之方法,更包括形成氧 化物側壁子於該些閘極結構之間。 38I?31805 The Republic of China invention patent application No. 095120682 No-line application patent scope replaces the Republic of China on May 1999. The application scope is as follows: 1. A non-volatile memory component, comprising: a substrate; a dielectric layer formed on the substrate; a control gate formed on the dielectric layer; a first floating gate formed on the dielectric layer and located at the control gate a second floating gate formed on the dielectric layer and located on the other side of the control gate; a first diffusion region formed in the substrate adjacent to the first floating gate a pole; and a second diffusion region formed in the substrate proximate the second floating gate. 2. The non-volatile memory device of claim 1, wherein the substrate is a 基板-type substrate. 3. The non-volatile memory device of claim 1, wherein the substrate is an n-type substrate. 4. The non-volatile memory device of claim 1, wherein the first and second floating gates and the control gate are fabricated using a single polysilicon process. 5. The non-volatile memory element according to claim 1, wherein the f gate and the first diffusion region are configured to be applied to the control gate and the first diffusion region. And it is lightly combined with the first floating gate. ^ As in the non-volatile memory element described in claim 5, the h is at the height of the (-) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Divided by the distance between the control closed pole and the floating idler. 22. The non-volatile memory element described in item 6 of the patent application scope, the height of the control _ in 1 is about _ to!埃(四)strGm)t ^ & as claimed in the sixth item of the tenth is between the control gate _ to 300 angstroms. The distance between the first sweating poles is about the non-volatile memory element of the medium (4) item = item 1, the capacitance between the pole and the first diffusion region is below the floating gate, The first diffusion region is then divided by ": thick" multiplied by the width of the first floating gate. The non-volatile memory element of the two items, the length of the dielectric layer, is about 29 1331805, eight The non-volatile memory element described in the ninth aspect of the patent has a thickness of about 50 to 250 angstroms. The non-volatile memory element described in item 1 of the circumference, the control U: The second diffusion region is configured to be coupled to the second floating gate member by applying a voltage to the second diffusion region, and the second floating gate member The non-volatile memory element is widely produced, and the height of the gate is multiplied by the control gate distance Γ divided by the piece 13 g between the control pole and the floating gate The non-volatile memory element and the height of the open end of the work are about 800 to 1500 angstroms. The non-volatile record described in item 13 of the patent scope of 15 The distance between the gate of the 160^3〇〇1 gate and the second floating electrode is the non-volatile memory element of the first range of the paste range, and the width of the capacitance between the dielectric layers. '- electricity 30 below the second floating gate and above the second diffusion region on the non-volatile memory element of claim 16 of the patent application scope under the "::^:= and The length of the second diffusion region is about 100 to 300 angstroms. The non-volatile memory element according to item 9 of the second aspect, wherein the thickness of the tantalum layer is about 5 〇 to 25 〇. For example, in the non-volatile memory element described in claim 1, the second diffusion region and a fourth diffusion are formed in the substrate close to the first floating space: two: / fourth diffusion region Formed in the substrate proximate to the second floating gate and the control gate. ^0. The non-volatile memory component of claim 1, wherein the component is configured to store information of two bits. a fi. includes a substrate, a dielectric layer, a first floating gate, a jth floating gate, and a control gate formed on the dielectric layer, and the first diffusion region is formed on the first diffusion region A method for forming a fourth non-volatile memory device in the substrate adjacent to the first floating gate and a second diffusion region in the substrate, wherein the method is: Applying a voltage to the control gate, wherein the control gate is configured to apply a voltage of 31 1331805, the voltage applied to the first floating gate of the 3H to be below the first floating gate in the substrate Generating a channel; and applying a force voltage to the first diffusion region and applying a low voltage to the second diffusion region 'to generate a high level electric field between the first and second diffusion regions. The method of claim 21, wherein the high voltage applied to the edge control gate is about 8 to 12 volts. The method of claim 21, wherein the high voltage applied to the first diffusion region is about 4 to 6 volts. The method of claim 21, further comprising: injecting a charge into the second floating gate, wherein the step of charging a charge to the second floating gate comprises: adding a voltage to the control a gate, wherein the control gate is configured to combine the applied electric dust with the second floating gate to generate a channel at a lower floating gate of the substrate in the substrate; and apply a Applying a high voltage to the second diffusion region and applying a low voltage to the region to generate a high level electric field in the first and second diffusions. The method of claim 21, wherein the component is further a third diffusion region is formed in the substrate near the first floating gate and the control gate, and a fourth diffusion region is formed on the substrate 32 (3) 1805 and the control gate, and wherein The horizontal electric field of the injection and the person's manual gate is between the β筮1 and the third diffusion region. /, in the first package two (four) 21 method 'where the component is more polar with the domain it formed? The substrate is adjacent to the first floating gate, and the fourth diffusion region is formed at the substrate pole and the control pole, and is used for injecting a second The high level electric field is formed between the second and fourth diffusion regions. Forming a first diffusion region formed in the dielectric layer, including a substrate, a dielectric layer, a first floating gate, a dirty gate, and a control gate. a method in the substrate adjacent to the first floating gate, and a second diffusion region formed in the non-volatile memory element in the substrate adjacent to the second floating electrode, a method for erasing the component, including Applying a large negative voltage to the control gate, the control gate being configured to couple the applied voltage to the first floating gate; applying a high voltage to the first diffusion region, wherein the An electric field between the first floating gate and the first diffusion region generates a secondary carrier in the = diffusion region and provides sufficient energy for the secondary carriers to implant the dielectric layer, And injecting into the first floating gate; and applying a low voltage to the second diffusion region. 33. The method of claim 27, wherein the large negative voltage applied to the gate is about -15 to -25 volts. The method of claim 27, wherein the high voltage applied to the '-first diffusion region is about 4 to 6 volts. 30. The method of claim 27, further comprising causing the second floating gate to be electrically charged, wherein the step of causing the hole to be injected into the pole comprises: cutting "a J applied - a large negative voltage to the a control electrode configured to couple the applied voltage to the second floating gate; applying a high voltage to the second diffusion sequence, wherein the second electrode and the second diffusion region are generated An electric field that generates a secondary carrier in the U-diffusion region and provides sufficient energy for the secondary carriers to penetrate into the dielectric layer and into the second floating gate; and apply a low The method of claim 27, wherein the non-volatile member further comprises a third diffusion region formed in the substrate proximate the 苐-soil gate and the control a gate portion 'and a substrate adjacent to the second floating interpole and the control electrode. The postal-J moving ^ has a substrate, a dielectric layer, a - first floating gate, a brother -: a gate and a control gate are formed on the dielectric layer and a first diffusion region Formed in the substrate proximate to the first-floating electrode 34, and the second diffusion region is formed in the substrate to be adjacent to the second floating flute non-volatile (four) & The method of erecting the galvanic gate includes: applying a high voltage to the control gate; applying a low voltage to the first diffusion region; and applying a high voltage to the second diffusion region. The method of claim 32, wherein the high voltage applied to the control gate is about 5 to 9 volts. The method of claim 32, wherein the method is applied to the second The method of claim 32, wherein the low voltage applied to the first diffusion region is about volts. The method of claim 5, wherein the non-volatile memory element further comprises a third diffusion region formed in the substrate near the first floating gate and the control gate, and a fourth diffusion region formed on the substrate Approaching the substrate a floating gate and the control gate. 37. A substrate, a dielectric layer, a first floating gate, a second floating gate, and a control gate are formed on the dielectric layer Above, a first diffusion region is formed in the substrate near the first floating gate, and a second diffusion region is formed in the non-volatile memory device in the substrate near the gate of the second floating 35 U31805 a method of floating between two poles, comprising: applying a high voltage to the control gate for applying a high voltage to the control gate; applying a high voltage to the first diffusion region; and applying a low voltage to the second diffusion region 38. The high voltage of the control gate as described in claim 37 of the patent application is about 5 to 9 volts. The law is added to the 39. As described in the 37th article of the patent application. The high voltage of a diffusion region is about! The low voltage system is about Q volts as applied to the second diffusion region of the 37th aspect of the patent application. 〃 applied to the method described in item 37 of the 5th bis. 2 wherein the non-volatile portion;:=== region Γ shape in the substrate is close to the second floating two in the substrate:: control:::: region Forming a method for manufacturing a non-volatile memory element, comprising: forming a control gate structure on a substrate; · forming a structure-"4 a floating closed-pole structure on the substrate, located in the control a first diffusion region is formed on the other side of the second axis interpole structure substrate on the other side of the bit control idler 36 1331805, and the first diffusion region is adjacent to the first floating structure; and the gate is formed A second diffusion region is adjacent to the second floating gate structure in the substrate. The method of claim 42, further comprising forming a third diffusion region at the substrate + proximate the first-floating gate structure and the control gate structure. The method of claim 43, further comprising forming a fourth diffusion region in the substrate proximate to the second floating gate structure gate structure. The method of claim 42, wherein the step of forming the second electrode, the structure, the second floating gate structure, and the step of controlling the gate structure comprises: depositing one a dielectric layer on the substrate; 'Ultra-polycrystalline layer on the dielectric layer; defining the polycrystalline layer by a photoresist layer; and etching the defined polysilicon layer and the dielectric layer. 46. The method of claim 45, wherein the dielectric layer 3 is deposited by chemical vapor deposition. 37 (4) Dielectric layer The method of claim 42 further includes forming an oxide sidewall between the gate structures. 38
TW95120682A 2006-06-09 2006-06-09 A single poly, multi-bit non-volatile memory device and methods for operating the same TWI331805B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95120682A TWI331805B (en) 2006-06-09 2006-06-09 A single poly, multi-bit non-volatile memory device and methods for operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95120682A TWI331805B (en) 2006-06-09 2006-06-09 A single poly, multi-bit non-volatile memory device and methods for operating the same

Publications (1)

Publication Number Publication Date
TWI331805B true TWI331805B (en) 2010-10-11

Family

ID=45074662

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95120682A TWI331805B (en) 2006-06-09 2006-06-09 A single poly, multi-bit non-volatile memory device and methods for operating the same

Country Status (1)

Country Link
TW (1) TWI331805B (en)

Similar Documents

Publication Publication Date Title
TWI358834B (en)
US7057234B2 (en) Scalable nano-transistor and memory using back-side trapping
US6911690B2 (en) Flash memory cell, flash memory cell array and manufacturing method thereof
JP4784940B2 (en) Method of operating a single layer polysilicon non-volatile memory cell
US9196363B2 (en) Semiconductor device
US20080145985A1 (en) Embedded semiconductor memory devices and methods for fabricating the same
US20070108508A1 (en) Single-poly non-volatile memory device
JP2007110073A (en) Semiconductor device
KR100706071B1 (en) Single bit nonvolatile memory cell and methods for programming and erasing thereof
US8648406B2 (en) Single poly EEPROM having a tunnel oxide layer
KR100608376B1 (en) Non-volatile memory cell using state of three kinds and method of manufacturing the same
TW200527655A (en) Semiconductor memory device and method for making same
JP2007250974A (en) Nonvolatile semiconductor memory device
CN101826526B (en) Semiconductor memory unit, driving method thereof and semiconductor memory
JP4113559B2 (en) Nonvolatile semiconductor memory device and writing method thereof
US20140131811A1 (en) Semiconductor device and method of manufacturing the same
Ryu et al. Designed workfunction engineering of double-stacked metal nanocrystals for nonvolatile memory application
TWI331805B (en) A single poly, multi-bit non-volatile memory device and methods for operating the same
CN100563031C (en) The non-volatile memory device of a kind of single level polysilicon, multidigit and manufacture method thereof
CN101826531B (en) Semiconductor memory unit, driving method thereof and semiconductor memory
JP2005317921A (en) Nonvolatile memory and its operating method
JP2006269697A (en) Nonvolatile semiconductor memory device
Zakaria et al. An overview and simulation study of conventional flash memory floating gate device using concept FN tunnelling mechanism
TWI499044B (en) 3-d single floating gate non-volatile memory device
JP2927794B2 (en) Semiconductor memory device and writing method thereof