TWI331191B - Manufacturing tool of fluid dynamic bearing - Google Patents

Manufacturing tool of fluid dynamic bearing Download PDF

Info

Publication number
TWI331191B
TWI331191B TW95137559A TW95137559A TWI331191B TW I331191 B TWI331191 B TW I331191B TW 95137559 A TW95137559 A TW 95137559A TW 95137559 A TW95137559 A TW 95137559A TW I331191 B TWI331191 B TW I331191B
Authority
TW
Taiwan
Prior art keywords
tool
cracking
groove
fluid
diameter
Prior art date
Application number
TW95137559A
Other languages
Chinese (zh)
Other versions
TW200817603A (en
Inventor
Jian Dih Jeng
Original Assignee
Jian Dih Jeng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jian Dih Jeng filed Critical Jian Dih Jeng
Priority to TW95137559A priority Critical patent/TWI331191B/en
Publication of TW200817603A publication Critical patent/TW200817603A/en
Application granted granted Critical
Publication of TWI331191B publication Critical patent/TWI331191B/en

Links

Description

1331191 九、發明說明: 【發明所屬之技術領域】 本發明有關流體轴承溝槽加工工具,提供轴 承内溝槽形狀,提供潤滑油的流動條件,滿足# 承穩定旋轉功能需求。内溝槽加工工具,圓·周上 佈設複數個切削刀具,製造工具的最大外徑,可 做微調放大、縮小,容易進出軸承内徑,刻劃内 溝槽。 【先前技術】 習知一般的流體軸承設計,請參閱「第一圖 所示’考量轴與軸套之間在高轉速時仍能維持低J 摩擦、低漏油等需求’轴或轴套表面具有内溝槽 加工,溝槽的深度約3〜10微米(#m)e該内溝槽 設計’流體在魚骨交會點上,將造成徑向的凸起 壓力波,一圈圓周上同時產生向軸心的徑向壓 力,提供軸承穩定旋轉的流體動力源。 提供轴承穩定旋轉功能,軸套内壁表面的内 溝槽為關鍵加工重點。一般的内溝槽加工工具, 刀具的最大外徑為固定值’且稱大於軸承孔^, 故須自抽孔起點開始加工’因此溝槽與外部有通 連,造成潤滑油溢漏,或吸入空氣等缺點。 軸孔尺寸小於5 mm的流體軸承,内溝槽之刻 劃方式’更疋困難。若採一般單柄工具,深入軸 孔内刻劃溝槽’由於工具的長徑比較大,且無支 撐點,工具軸的強度不足,工具容易晃動、振“動, 刻劃深度及大小尺寸不易控制等缺點。 5 1331191 【發明内容】 根據上述對於内溝槽加工部分,本發明以刀具 最大外徑可調式設計,製造工具進入轴套軸孔^ 後,再調整刀具最大外徑位置,進行内溝槽刻劃 加工。工具軸圓周上的刀具,採複數個、對稱佈 置設計’可滿足軸承孔徑小於5 mm之内溝槽刻劃 加工0 【實施方式】 茲謹就本發明「流體軸承溝槽加工工具」的 * 内容,及其所產生的功效,配合圖式,舉出本案 之較佳實施例詳細說明如下。 請參閱「第二圖」所示,圓柱形之溝槽加工 工具50,在第一圓徑61的圓周上,同一圓周 圈佈設複數個凸起刀具5 1,稱之為一組刀具 組;依加工需求,沿著工具的不同轴向位置,可 佈設多組刀具組,分別建於不同之圓周圈上。圓 柱形工具的轴心,採中空設計,每區段之中心孔 5 3内徑’可依抽向位置而有漸大、漸小、台階 ·· 等變化。圓周圈上的刀具組,在刀具與刀具之間, 沿轴向方向割劃出軸向預裂(割)槽5 2 1,軸向 預裂槽的切割深度’自工具表面穿透至中心孔, 或=穿透至中心孔’視刀具加工範圍(溝槽深度) 而定。預裂槽割劃範圍,可不及工具最尖端,一 體性仍可巧持工具之結構強度。中心孔的徑向截 3積’隨著轴向改變,配合具有相對斜度(面積) 變化之項針’採前後移動方式,由中心孔内部向 1揮大中心孔’提供徑向外力,藉由預裂槽的可 張陡’使得工具表面之刀具組可向徑向方向輻 6 1331191 射張開。中心孔内頂針尚未作用前,整體刀具本 巧的加工圓控6 0,微小於待加工的軸套轴孔内 徑ii,工具可進入轴孔内。為避免工具與軸承 孔發生尺寸干涉,及提供切削料排放通道,工具 可設有第二圓徑5 9,直徑小於第一圓徑6工 ^向預裂槽設計,請參閱「第三圖」所示, ^具表面預割的預裂槽521,預裂槽深度可穿 透工具表面至中心孔,或僅限於工具表面。當來 中心孔内部之徑向力3 0,其利用中心 <8* i # 士中心孔内徑之干涉關係,或以氣/油壓流 成ill孔内部壓力增大,將預裂槽向外輻射 田撐開之徑向範圍視溝槽加工深度而定,工 具圓面之刀具加工半徑範圍,亦隨之擴大。 "參閱「第四圖」所示,中心孔可另加 設計,工具本體的軸向預裂槽割劃範圍, 了卫具最尖端,前端由固定座55固定, ^ ,伸至工具的最尖端(參閱第二圖所示)。溝 工^具,亦可搭配軸孔鑽頭工具5 7,合併 劃内溝槽等功能,不需更換工具。轴承 内溝槽加工程序,說明如下。 內湳ί參閲「第五圖」~示’加工工具進入軸孔 後,中心孔頂針5 4,可於中心孔内 ,,後移動,頂針可適時頂住中心孔 徑向力,將刀具的最大外徑"外 ^Μ 1〇產生尺寸干涉,配合加工工具的 ί=:ί65 ’前後作動方式“,及頂針 二方式68,切削轴套的内壁,加工出内 請參閲「第六圖」所示,中心孔頂針可具有 7 斜度螺紋設計,搭配中心孔的螺紋’頂針旋轉作 動方式6 7,亦可提供中心孔沿徑向向外輻射的 作用力’將刀具的最大外徑6 2外移,與軸承1 0產生尺寸干涉,配合加工工具的旋轉作動方式 6 5 ’前後作動方式6 6,及頂針作動方式6 7、 6 8 ’切削軸套的内壁,加工出内溝槽形狀。 本發明的另一型態加工工具設計,刀具的加 工圓徑60大於軸承孔徑11,工具的第一圓徑 6 1稍小於轴孔内徑’請參閱「第七圖」所示。 為了使工具順利進入軸孔内加工,需壓縮刀具的 最大外徑至小於軸孔内徑。同樣的,在工具圓周 上預割軸向預裂槽,但原設置於中心孔的面積變 化梯度,改設置於工具外徑表面,與外徑套筒5 £的徑向截面積,互相對應,當外徑套筒以前後 移動方式6 4,可壓抑或放鬆刀具的最大圓徑, 改變刀具的加工圓徑至略小於轴承孔徑,加工工 ^可順利進入轴承内。請參閱「第八圖」所示, 藉由外徑套筒5 6的前後作動方式,改變刀具的 徑向加工範圍,與軸承1 0產生尺寸干涉,配合 轉作動方式6 5,前後作動方式6 6,刀肖」丨軸套的内壁,加工出内溝槽形狀。 紋犬t士5 ΐ 5 1與加工工具間,亦可採斜度螺 ,藉由斜度螺紋旋轉模式6 3,亦 ::後移動之目的,改變刀具的徑 與軸承1 〇產生尺寸干涉,配合加 作動方式6 5,前後作動方式6 6二刀”土的内壁,加工出内溝槽形狀。 7 i另一,具設計,改變預裂槽的割劃方向’採 徑向預裂槽5 2 2,請參間「楚 砑爹閲第九圖」所示。在 1331191 【圖式簡單說明】 第一圖:係一般軸承内溝槽示意圖。 第二圖:係本發明之溝槽加工工具示意圖。 第三圖:係本發明之轴向預裂槽設計示意圖。 第四圖:係本發明之另一溝槽加工工具示意圖。 第五圖:係本發明之溝槽加工方式示意圖。 第六圖:係本發明之另一溝槽加工方式示意圖。 第七圖:係本發明之另一溝槽加工工具示意圖。 第八圖:係本發明之另一溝槽加工方式示意圖。 第九圖:係本發明之徑向預裂槽設計示意圖。 第十圖:係本發明之溝槽加工工具示意圖。 第十一圖:係本發明之另一溝槽加工方式示意圖。 【主要元件符號說明】 10 -----軸套 11 -----軸承孔徑 12 -----旋轉軸 15-----轴套油室 21-----上部溝槽 23-----下部溝槽 30-----徑向力 35-----氣/油屋源 50 -----内溝槽加工工具 51 -----刀具 521 ----轴向預裂(割)槽 522 ----徑向預裂(割)槽 53 -----中心孔 54 -----中心孔頂針 55 -----固定座 1331191 56 -----外徑套筒 57 -----鑽頭 58 -----氣/油壓流體 59 -----工具第二圓徑 60 -----刀具加工圓徑 61 -----工具第一圓徑 62 -----刀具外移後加工圓徑 63 -----外徑套筒旋轉作動方式 64 -----外徑套筒前後作動方式 65 -----製造工具旋轉作動方式 66 -----製造工具前後作動方式 67 -----頂針旋轉作動方式 68 -----頂針前後作動方式 111331191 IX. Description of the Invention: [Technical Field] The present invention relates to a fluid bearing groove processing tool which provides a groove shape in a bearing and provides a flow condition of the lubricating oil to meet the requirements of the stable rotation function of the bearing. The inner groove machining tool is provided with a plurality of cutting tools on the circumference and circumference, and the maximum outer diameter of the manufacturing tool can be finely adjusted to enlarge and contract, and it is easy to enter and exit the inner diameter of the bearing and scribe the inner groove. [Prior Art] For the general fluid bearing design, please refer to "The first figure shows the requirement of maintaining low J friction and low oil leakage at high speeds between the shaft and the bushing." Shaft or bushing surface With internal groove processing, the depth of the groove is about 3~10 microns (#m)e. The inner groove is designed to 'fluid at the fishbone intersection point, which will cause radial convex pressure waves, which are simultaneously generated on one circle. The radial pressure to the shaft provides a fluid power source for stable rotation of the bearing. Provides stable rotation of the bearing, and the inner groove of the inner wall surface of the sleeve is the key processing focus. The general inner groove machining tool, the maximum outer diameter of the tool is The fixed value 'is more than the bearing hole ^, so it must be processed from the starting point of the pumping hole'. Therefore, the groove is connected to the outside, causing oil leakage or air inhalation. The fluid bearing with a shaft hole size of less than 5 mm, The scribe pattern of the inner groove is more difficult. If a general single-handle tool is used, the groove is drilled deep into the shaft hole. Since the long diameter of the tool is relatively large and there is no support point, the strength of the tool shaft is insufficient, and the tool is easy to shake. ,vibration Scoring depth and difficult to control sizes and other shortcomings. 5 1331191 SUMMARY OF THE INVENTION According to the above-mentioned inner groove processing part, the invention is designed with the maximum outer diameter of the tool adjustable, and after the manufacturing tool enters the shaft hole of the sleeve, the maximum outer diameter position of the tool is adjusted, and the inner groove is scribed. machining. The tool on the circumference of the tool shaft is multiplied and symmetrically arranged to meet the groove scribe machining of the bearing diameter less than 5 mm. [Embodiment] The contents of the "fluid bearing groove machining tool" of the present invention are provided. And the resulting effects, in conjunction with the drawings, illustrate the preferred embodiment of the present invention as detailed below. Referring to the second drawing, the cylindrical groove processing tool 50 is arranged on the circumference of the first circular diameter 61, and a plurality of convex cutters 5 1 are arranged on the same circumference ring, which is called a group of cutters; Processing requirements, along the different axial positions of the tool, can be set up with multiple sets of tool sets, respectively, built on different circumferential circles. The axis of the cylindrical tool is hollow, and the inner diameter of each section of the section 5 3 can be gradually increased, gradually smaller, stepped, etc. depending on the direction of the pumping. The tool set on the circumference circle, between the tool and the tool, the axial pre-cracking (cutting) groove 5 2 is cut along the axial direction, and the cutting depth of the axial pre-cracking groove penetrates from the tool surface to the center hole. , or = penetrate to the center hole 'depends on the tool machining range (groove depth). The range of the pre-cracking groove can be less than the tip of the tool, and the structural strength of the tool can still be grasped by one body. The radial cut 3 product of the center hole changes with the axial direction, and the needle with the relative inclination (area) changes the front and rear movement mode, and the radial internal force is provided from the inside of the center hole to the 1 center hole. The sharpness of the pre-cracking groove allows the tool set of the tool surface to be flared in the radial direction 6 1331191. Before the ejector pin in the center hole has not been applied, the overall tooling of the overall tool is 60, which is smaller than the inner diameter ii of the shaft hole of the bushing to be machined, and the tool can enter the shaft hole. In order to avoid the size interference between the tool and the bearing hole, and to provide the cutting material discharge passage, the tool can be provided with a second circular diameter 5.9, the diameter is smaller than the first circular diameter 6 working direction pre-cracking groove design, please refer to the "third figure" As shown, a pre-cracking groove 521 having a surface pre-cutting depth that penetrates the tool surface to the center hole or is limited to the tool surface. When the radial force inside the center hole is 3 0, it utilizes the interference relationship of the inner diameter of the center <8* i #士士士, or the internal pressure of the ill hole increases with the gas/oil pressure flow, and the pre-cracking groove is oriented The radial extent of the external radiation field expansion depends on the depth of the groove machining, and the radius of the tool radius of the tool round surface also increases. "Refer to the “Fourth Diagram”, the center hole can be additionally designed, the axial pre-cracking groove of the tool body is cut, the tip of the guard is the most advanced, the front end is fixed by the fixing seat 55, ^, and the tool is the most Tip (see the second figure). Ditch tools can also be used with the shaft hole drill tool 5 7, combined with the function of the groove inside, without the need to change tools. The bearing inner groove machining program is described below.湳 湳 「 Refer to "fifth figure" ~ show 'the processing tool enters the shaft hole, the center hole thimble 5 4, can be inside the center hole, and then move, the thimble can timely resist the radial force of the center hole, the maximum tool Outer diameter " outside ^Μ 1〇 produces dimensional interference, with the processing tool ί=: ί65 'front and rear actuation mode', and thimble two way 68, cutting the inner wall of the sleeve, please refer to the "sixth figure" As shown, the center hole ejector pin can have a 7-slope thread design, with the thread of the center hole' thimble rotation actuation method 6.7, can also provide the force of the central hole radiating radially outward'. The maximum outer diameter of the tool is 6 2 The outer movement is in interference with the bearing 10, and the rotation of the machining tool is used. 6 5 'the front and rear actuation modes 6 6 and the ejector actuation mode 6 7 , 6 8 'cut the inner wall of the sleeve to machine the inner groove shape. Another type of processing tool of the present invention is designed such that the tooling diameter 60 of the tool is larger than the bearing diameter 11, and the first circular diameter 6 1 of the tool is slightly smaller than the inner diameter of the shaft hole. Please refer to the "seventh drawing". In order for the tool to smoothly enter the shaft hole, it is necessary to compress the maximum outer diameter of the tool to be smaller than the inner diameter of the shaft hole. Similarly, the axial pre-cracking groove is pre-cut on the circumference of the tool, but the area change gradient originally set in the center hole is changed to the outer diameter surface of the tool, and the radial cross-sectional area of the outer diameter sleeve 5 £ corresponds to each other. When the outer diameter sleeve moves forward and backward 6 4, the maximum circular diameter of the tool can be suppressed or relaxed, and the machining circle diameter of the tool can be changed to be slightly smaller than the bearing diameter, and the processing worker can smoothly enter the bearing. Please refer to the "Eighth Figure". By the front and rear actuation of the outer diameter sleeve 56, the radial machining range of the tool is changed, and the bearing 10 is in interference with the size of the bearing 10, and the rotation mode 6 5 is used. 6. The inner wall of the bushing is machined to form the inner groove shape. Between the dog and the dog 5 ΐ 5 1 and the processing tool, you can also use the slope snail, by the slope thread rotation mode 6 3, also:: the purpose of the rear movement, change the diameter of the tool and the bearing 1 〇 to produce size interference, In conjunction with the actuating mode 6 5, the inner wall of the 6 6 second knife" is used to machine the inner groove shape. 7 i, another design, change the cutting direction of the pre-cracking groove 'take the radial pre-cracking groove 5 2 2, please refer to the "Zhu Yu read the ninth map". In 1331191 [Simple description of the figure] The first picture: is a schematic diagram of the groove inside the general bearing. Second: A schematic view of a groove processing tool of the present invention. The third figure is a schematic diagram of the design of the axial pre-cracking groove of the present invention. Fourth Figure: is a schematic view of another groove processing tool of the present invention. Fig. 5 is a schematic view showing the groove processing mode of the present invention. Fig. 6 is a schematic view showing another groove processing mode of the present invention. Figure 7 is a schematic view of another groove processing tool of the present invention. Figure 8 is a schematic view of another groove processing method of the present invention. Figure 9 is a schematic view showing the design of the radial pre-cracking groove of the present invention. Figure 10 is a schematic view of a groove processing tool of the present invention. Eleventh drawing: A schematic view of another groove processing method of the present invention. [Main component symbol description] 10 ----- Bushing 11 -----bearing aperture 12 -----Rotary shaft 15-----sleeve oil chamber 21-----upper groove 23 -----Lower groove 30----- Radial force 35-----Gas/oil house source 50 -----Intergroove processing tool 51 -----Tool 521 ---- Axial pre-cracking (cutting) groove 522 ---- radial pre-cracking (cutting) groove 53 ----- center hole 54 ----- center hole ejector pin 55 ----- fixing seat 1331191 56 -- ---Outer diameter sleeve 57 -----Drill 58 -----Gas/Hydraulic fluid 59 -----Tool second diameter 60 -----Tool processing diameter 61 --- --The first diameter of the tool 62 -----The diameter of the tool after the tool is moved out 63 ----- The outer diameter sleeve rotates the action mode 64 -----The outer diameter sleeve is operated before and after 65 --- -- Manufacturing tool rotation mode 66 ----- Manufacturing tool before and after actuation mode 67 ----- thimble rotation actuation mode 68 ----- thimble before and after actuation mode 11

Claims (1)

1331191 嫩正替換宵 、申請專利範圍: 種>”1·體轴承溝槽加工工具’為一設有第一圓 徑之圓柱狀,該圓柱狀工具的軸心内部為中空 狀’工具的第一圓徑表面圓周圈上佈設複數個 凸起刀具,刀具與刀具之間,沿圓周方向設有 複數個軸向預裂割槽。 2、 如申请專利範圍第1項所述流體軸承溝槽加工 工具’該圓周面上的複數個凸起刀具,配合相 對數量的軸向預裂槽設計,採圓周對稱分佈, 減少因圓周加工時造成工具振動。 3、 如申請專利範圍第1項所述流體軸承溝槽加工 工^,該工具中心孔内徑,隨著轴向變^,使 其橫截面積具有漸大、漸小或台階等變化。 4、 如申請專利範圍第1項所述流體軸承溝槽加工 工具,該工具中心孔内搭配相對應圓徑變化之 中心孔頂針,提供中心孔頂針於工具内部中心 孔内沿軸向做前後移動。 、如申請專利範圍第1項所述流體軸承溝槽加工 ^具,該工具中心孔内壁具有斜度螺紋設計, 搭配對應具有斜度螺紋型態的頂針,提供中心 孔頂針於工具内部中心孔内沿軸向做前'後轉 6、 如申請專利範圍第i項所述流體軸承溝槽加工 工具,圓柱狀工具進一步設有第二圓徑,苴直 徑小於第一圓徑,以避免工具與軸承孔發&尺 寸干涉’及做為切削料排除通道。 7、 如申請專利範圍第i項所述流體軸承溝槽加工 工具,其工具外徑外部設置一套筒搭配 斜度螺紋設計,可提供外徑套筒於工具外部表 12 1331191 * - £ΐ"*». KS3=vr « ·»τ_鼈__.__ I _ 面沿軸向做前後移動、轉動。 8 9 如申請專利範圍第1項所述流體軸承溝槽加工 工具,於工具中心孔内填充氣/油壓流體,以 流體幫浦加壓或中心孔頂針推送方式,提供流 體壓力源,造成工具表面變形,撐開預裂槽。 如申請專利範圍第1項所述流體軸承溝槽加工 工具,轴向預裂槽的預裂範圍,延伸至工具最 尖端丄並加以固定座固定’避免預裂槽分離。 1 0、如申請專利範圍第丄項所述流體軸承溝槽加 工工具,軸向預裂槽的預裂範圍,不延 具端,一體性仍可維持工具之結構強度。 1 1、一種流體軸承溝槽加工工具,一Μ 圓徑之圓柱狀,轴心内部為中办Ζ 6又,第一 -囫徑表面’包含至少一個 = 裂割槽。 則俊位置5 又有徑向預 以流體幫浦加壓或中心流 $供流體壓力源,撐開預裂槽刀^, 最大加工圓徑範圍。 擴張刀具組的 1 3、如申請專利範圍第i i項所 加工工具,溝槽加工工且,=體軸承溝槽 工 2體具具備轴承鑽孔、内雀择&丨二 等功能。 α溝槽刻劃加 13 1331191 月P日修(更)正替換頁I1331191 The replacement of the 宵, the scope of the patent application: "The body bearing groove processing tool" is a cylindrical shape with a first circular diameter, the inner core of the cylindrical tool is hollow - the tool's A plurality of raised cutters are arranged on the circumference of a circular diameter surface, and a plurality of axial pre-cracking slits are arranged in the circumferential direction between the cutter and the cutter. 2. The fluid bearing groove processing according to the first claim of the patent scope The tool's plurality of raised tools on the circumferential surface, combined with a relative number of axial pre-cracking designs, are circumferentially symmetrically distributed to reduce tool vibration caused by circumferential machining. 3. Fluid as described in claim 1 The bearing groove processing tool ^, the inner diameter of the center hole of the tool, with the axial change, the cross-sectional area of the tool has a progressive, decreasing or step change. 4. The fluid bearing described in claim 1 The groove processing tool, the center hole of the tool is matched with the center hole thimble corresponding to the change of the circular diameter, and the center hole thimble is provided to move back and forth along the axial direction in the inner hole of the tool inner body, as in the first application patent scope. The fluid bearing groove processing tool has a slope thread design on the inner wall of the tool hole, and a thimble corresponding to the inclined thread type, and the center hole thimble is provided in the inner center hole of the tool along the axial direction. The fluid bearing groove processing tool according to claim i, wherein the cylindrical tool is further provided with a second circular diameter, the diameter of the crucible is smaller than the first circular diameter, so as to avoid interference between the tool and the bearing hole & size For the cutting material to exclude the channel. 7. The fluid bearing groove processing tool according to the scope of claim i, the outer diameter of the tool is externally provided with a sleeve with a slope thread design, and the outer diameter sleeve can be provided on the outer surface of the tool 12 1331191 * - £ΐ"*». KS3=vr « ·»τ_鳖__.__ I _ The surface moves back and forth along the axial direction. 8 9 Fluid bearing groove machining as described in claim 1 The tool fills the gas/hydraulic fluid in the hole of the tool center, and presses the fluid pump or the center hole ejector pin to provide a fluid pressure source, which causes the tool surface to deform and expand the pre-cracking groove. The fluid bearing groove processing tool, the pre-cracking range of the axial pre-cracking groove, extends to the tip end of the tool and is fixed by the fixing seat to avoid the separation of the pre-cracking groove. 10. The fluid bearing as described in the scope of the patent application The groove processing tool, the pre-cracking range of the axial pre-cracking groove, does not extend the end, and the integrity can maintain the structural strength of the tool. 1 1. A fluid bearing groove processing tool, a cylindrical shape with a circular diameter, a shaft The inside of the heart is in the middle of the Ζ 6, the first - 囫 surface ' contains at least one = split slot. Then Jun position 5 and radial pre-pressurization of the fluid pump or central flow $ supply fluid pressure source, open pre- Cracking cutter ^, the maximum processing diameter range. Expanding the tool set 1 3, as in the patent processing range ii processing tools, groove processing, and = body bearing groove 2 body with bearing bore, inside Bird selection & 丨 second-class function. α groove scribe plus 13 1331191 month P repair (more) is replacing page I 十一、圖式:XI. Schema: 第一圖First picture 14 51 1331191 卜斧仰少日修(更)正替換頁14 51 1331191 卜斧仰少修(more) is replacing page 第四圖 15 1331191Fourth picture 15 1331191 ίοΊο 66 第六圖 16 B31191 月#日卿正替換頁!66 Figure 6 B31191 Month #日卿 is replacing the page! 第七圖 17 1331191Figure 7 17 1331191 朽年/月/日修(更)正替換頁j 64 L__ -_JDecay/month/day repair (more) is replacing page j 64 L__ -_J 第八圖Eighth picture 18 13-31191 if年<月沪曰修(更)正替換頁I18 13-31191 if year <月月曰修(more) is replacing page I /\\\\\又\\\\\、 35-»·/\\\\\又\\\\\, 35-»· 第十圖Tenth map 19 13-31191 修(更)正替換頁I ί19 13-31191 Repair (more) is replacing page I ί 2020
TW95137559A 2006-10-12 2006-10-12 Manufacturing tool of fluid dynamic bearing TWI331191B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95137559A TWI331191B (en) 2006-10-12 2006-10-12 Manufacturing tool of fluid dynamic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95137559A TWI331191B (en) 2006-10-12 2006-10-12 Manufacturing tool of fluid dynamic bearing

Publications (2)

Publication Number Publication Date
TW200817603A TW200817603A (en) 2008-04-16
TWI331191B true TWI331191B (en) 2010-10-01

Family

ID=44769374

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95137559A TWI331191B (en) 2006-10-12 2006-10-12 Manufacturing tool of fluid dynamic bearing

Country Status (1)

Country Link
TW (1) TWI331191B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109404416A (en) * 2018-12-14 2019-03-01 中国船舶重工集团公司第七0七研究所 A kind of hydrodynamic pressure bearing and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109404416A (en) * 2018-12-14 2019-03-01 中国船舶重工集团公司第七0七研究所 A kind of hydrodynamic pressure bearing and its manufacturing method

Also Published As

Publication number Publication date
TW200817603A (en) 2008-04-16

Similar Documents

Publication Publication Date Title
JP2011020255A (en) Drill with coolant holes
CN105921943A (en) Machining method for axial step deep hole system of thin-wall ring
CN106255573A (en) Expanding drill bit
CN200995288Y (en) Pressure and oil-pressure rotary gripping head
US6760971B2 (en) Method of making a gas turbine engine diffuser
JP2020146831A (en) Drill tool and drill method
TWI331191B (en) Manufacturing tool of fluid dynamic bearing
JP5741138B2 (en) Manufacturing method of flange-integrated corrugated pipe, flange-integrated corrugated pipe, and cutting apparatus for corrugated pipe used in the manufacturing method
JP2014012302A (en) Drill for composite material, and method and apparatus for machine work using the drill
Zhang et al. Turning of microgrooves both with and without aid of ultrasonic elliptical vibration
JP4733770B2 (en) Forming hole forming method and apparatus (tool)
CN102513555A (en) High-speed and high-rigidity main shaft system rotary support structure
JP6126410B2 (en) Drill bit for diameter expansion
JP2017105199A (en) Diameter expanding drill bit
CN107755728B (en) Method for producing a groove structure in the inner surface of a piston
CN202367214U (en) Pivoting support structure of high-speed and high-rigidity main shaft system
JP2009119542A (en) Rotating tool for drilling and manufacturing method of yoke for universal-joint
CN208245883U (en) A kind of self-positioning cornish bit of compound deep hole
CN217551874U (en) Expansive force dabber and tight subassembly that expands for processing
JP2009148860A (en) End mill, and machining method using the same
JP2019504974A (en) Bearing, production and use thereof
JP5990478B2 (en) Drilling tool
JP6400887B2 (en) Cutting tool and method of manufacturing cutting tool
TWI284716B (en) Fluid dynamic bearing
US20230405691A1 (en) Tool

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees