TWI330403B - Sensor platform using a horizontally oriented nanotube element - Google Patents

Sensor platform using a horizontally oriented nanotube element Download PDF

Info

Publication number
TWI330403B
TWI330403B TW93113553A TW93113553A TWI330403B TW I330403 B TWI330403 B TW I330403B TW 93113553 A TW93113553 A TW 93113553A TW 93113553 A TW93113553 A TW 93113553A TW I330403 B TWI330403 B TW I330403B
Authority
TW
Taiwan
Prior art keywords
sensor
component
platform
sensing
conductive
Prior art date
Application number
TW93113553A
Other languages
Chinese (zh)
Other versions
TW200514250A (en
Inventor
Brent M Segal
Thomas Rueckes
Venkatachalam C Jaiprakash
Claude L Bertin
Bernhard Vogeli
Darren K Brock
Original Assignee
Nantero Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantero Inc filed Critical Nantero Inc
Publication of TW200514250A publication Critical patent/TW200514250A/en
Application granted granted Critical
Publication of TWI330403B publication Critical patent/TWI330403B/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

1330403 七、 指定代表圖: (一) 本案指定代表圖為:第(5 )圖。 (二) 本代表圖之元件符號簡單說明· 412下電極 472懸浮奈米管組織 500結構 51 ◦絕緣材料 52◦間隙高度 八、 本案若有化學式時,請揭示最能顯示發明特徵的化學式: 九、 發明說明: 【相關申請案之參考】 本申請案係主張下列申讀日之優先權與利益:1330403 VII. Designated representative map: (1) The representative representative of the case is: picture (5). (2) Brief description of the symbol of the representative figure. 412 Lower electrode 472 suspended nano tube structure 500 structure 51 ◦Insulation material 52◦ Gap height 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: , Description of the invention: [Reference to the relevant application] This application claims the priority and benefits of the following application dates:

Horizontally Oriented Sensor Constructed with Nanotube Technology (美國臨時專利申請案序號6〇/47〇,41 〇 ),2〇〇3 5 14 申請;Horizontally Oriented Sensor Constructed with Nanotube Technology (US Provisional Patent Application No. 6〇/47〇, 41 〇), 2〇〇3 5 14 application;

Vertically Oriented Sensor Constructed with Nanotube Technology(美國臨時專利申請案序號6〇/47〇,37i ),2003.5.14 申請;及Vertically Oriented Sensor Constructed with Nanotube Technology (US Provisional Patent Application Serial No. 6〇/47〇, 37i), application of 2003.5.14;

Resistance and Capacitance Modulation Structures Constructed with Nanotube Techno丨ogy (美國臨時專利申請案 序號 60/503,098),2003.9.15 申請。 下列讓予本申請案之受讓人,並將其全文併入本文供參考: Nanotube Films and Artie丨es (美國專利申請案序號 10/128,118),2002.4.23 申請;Resistance and Capacitance Modulation Structures Constructed with Nanotube Techno丨ogy (US Provisional Patent Application Serial No. 60/503,098), 2003.9.15 Application. The assignee of the present application is hereby incorporated by reference in its entirety by reference in its entirety in its entirety in the the the the the the the the the the the the the the the the the the the the

Electromechanical Memory Array Using Nanotube Ribbons and Method for Making Same (美國專利申請案序號 09/915,093),20017.25 申請; 1330403Electromechanical Memory Array Using Nanotube Ribbons and Method for Making Same (US Patent Application Serial No. 09/915,093), 20017.25 Application; 1330403

Electromechanical Three-Trace Junction Devices (美國專 利申請案序號10/033,323),200112.23申請;Electromechanical Three-Trace Junction Devices (US Patent Application Serial No. 10/033,323), 200112.23 application;

Method of Making Carbon Nanotube Films,Layers, Fabrics, Ribbons, Elements and Articles (美國專利申請案序號 10/341,005),i〇03.1.13 申請;Method of Making Carbon Nanotube Films, Layers, Fabrics, Ribbons, Elements and Articles (US Patent Application Serial No. 10/341,005), i 〇 03.1.13 Application;

Electro-Mechanical Switches and Memory Cells Using Vertically-Disposed Nanofabric Articles and Methods of Making the Same (美國臨時專利申請案序號60/446,786), 2003.2.12 申請;Electro-Mechanical Switches and Memory Cells Using Vertically-Disposed Nanofabric Articles and Methods of Making the Same (US Provisional Patent Application Serial No. 60/446,786), 2003.2.12;

Electro-Mechanical Switches and Memory Cells Using Horizontally-Disposed Nanofabric Articles and Methods of Making the Same (美國臨時專利中請案序號60/446,783), 2003.2.12 申請;Electro-Mechanical Switches and Memory Cells Using Horizontally-Disposed Nanofabric Articles and Methods of Making the Same (US Provisional Patent Application Serial No. 60/446, 783), 2003.2.12 Application;

Patterning of Nanoscopic Articles (美國臨時專利申請案序 號 60/501,033),2003.9.8 申請;Patterning of Nanoscopic Articles (US Provisional Patent Application No. 60/501,033), 2003.9.8 Application;

Patterning of Nanoscopic Articles (美國臨時專利申請案序 號 60/503,099),2003.9.15 中請; ”Patterning of Nanoscopic Articles (US Provisional Patent Application No. 60/503, 099), 2003.9.15; ”

Non-Volatile 日ectromechanical Field Effect Transistors and Methods of Forming Same (美國臨時專利中讀牵库跋 60/476,976),2003.6.9 中請;及 八 ^Non-Volatile ectromechanical Field Effect Transistors and Methods of Forming Same, 2003.6.9; and 八

Sensor Platform Using a Non-Hori2〇ntally Oriented Nanotube Element (美國臨時專利申請案,序號尚未给定), 2004.5.12 申請; ° 【發明所屬之技術領域】 本申請案概與利用個別奈米感測器及奈米感測器陣列以檢 測目標分析物及測量或制各種電氣值之方法㈣。本中請案特 1330403 別與產生該等感測器及感測器陣列之載具或平臺有關。 【先前技術】 自空氣中污染物(例如空氣品質感測器中)至存在血液樣本 或其他樣本中之特殊去氧核醣核酸(DNA)節,化學感測器與生 物感測器之檢測運用種類廣泛。更近來,已提出採用奈米管如單 壁碳奈米管(SWNT)之化學及生物感測器。此類感測器優點在 於感測器之尺寸較小且敏感度較高。見於例如j K〇ng等人在Sensor Platform Using a Non-Hori2〇ntally Oriented Nanotube Element (U.S. Provisional Patent Application No.), 2004.5.12 Application; ° [Technical Field of the Invention] This application uses an individual nano sensor And nano sensor arrays to detect target analytes and methods for measuring or making various electrical values (4). The case specific 1330403 is not related to the vehicle or platform that produces the sensors and sensor arrays. [Prior Art] From the use of airborne contaminants (such as in air quality sensors) to special deoxyribonucleic acid (DNA) sections in blood samples or other samples, the use of chemical sensors and biosensors widely. More recently, chemical and biological sensors using a nanotube such as a single-walled carbon nanotube (SWNT) have been proposed. The advantages of such sensors are that the sensors are smaller in size and more sensitive. Seen in, for example, j K〇ng et al.

Science 第 287 卷第 622-625 頁(2000.1.28)。 可將奈米管製化學感測器功能化或修改成為特定分子或特 定種類感測器,見於P. Qi等人於Nano Lett第3卷第3號第 347-51 頁(2003 )之,Toward Large Arrays of MultiplexScience, Vol. 287, pp. 622-625 (2000.1.28). The nano-regular chemical sensor can be functionalized or modified into a specific molecule or a specific type of sensor, as described in P. Qi et al., Nano Lett, Vol. 3, No. 3, pp. 347-51 (2003), Toward Large Arrays of Multiplex

Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Mo丨ecular Detection” ; Dai 等人於2002.6.18 申 請之美國專利申請案序號10/175,026之”carb〇n Nanotube Sensing”。另一方面,此類感測器可包括未功能化半導管,並可 感測已知化學物是否存在,見於例如K〇ng (同上)。 由於置放個別奈米管於電極間之控制不易,採用個別奈米管 之奈米級感測器之可靠製造成為問題。此外,如此使用之奈米管 係以個別為之。故採用它們之裝置若單—奈米f在單點^故障 時,即可能停止工作。 口此雖大里技藝及文獻之已存在並發展用於感測器配置 之個別奈米管,但存在對充作感測器之更可靠載具或平臺之需 求。 【發明内容】 本發明與感測裔平臺及製作感測器平臺之方法有關,其中感 oj〇4〇3 t » ; ϋ構件’其相對於基板主表面(瞭解為,,水平”) ^中有奈料或其他奈紐構如絲線,其在各實 在纽有或可被製造使之具有對相應分析物之親合力。 I有如太=之特定實施财,感·平臺包含感·構件,其 徵。支線或其混合物之奈米結構集,並具有電氣特 測感測’罐路編氣感 在本發明f測相應分析物之存在與否。 數個奈料之^:^大型朗时錯顺含各具複 親合^本_之狀實_巾,_轉件具辆減分析物之 ,^明之特定實施射,所採社奈米 ^發明之特定實施例中,奈米管為原始奈米管 合力在本發批實施财,將奈她相4具有或增加親 合力在本發明之蚊實施例中,將奈米管功能化為具有或增加親 之蚊獅财,感·齡具辆 之親合力’轉數個奈米管包含至 /=, 之親合力。 ^類奈米㈣具有對第二分析物 構#t本發明之特定實施例中,支獅構包含—通道,且_哭 構件懸洋以延伸該通道。 且α測。。 在=私特找關巾,支職構包含贿通道中 可電氣檢測感測器構件中奈米管編接觸電極,俾 在本發明之特定實施例中,上電極位於感測器構件上方且與 1330403 之分離。 在胃本發明之特定實施例中,感測器平台包括遠離感測器構件 之傳導構件,使得傳導構件與感測器構件具有電容關係。 在本發明之特定實施例中,感測器平台包括於第一點接觸感 2構件之第―傳導構件及於第二點接觸感·構件之第二傳 件,使得電流得以行經第一與第二傳導構件間之感測器構 所鬥t =之特定實施例中,感測器構件實質為支樓結構材料 /、、不實質上暴露於流體造成之潛在接觸,取而代之者 σ σ作或為部分參考電阻器或電客器。 陣列具有大型感測器平台陣列,其中 板之’感測器之製作可藉由提供包含基 米結構隼,·界定^板t提供如奈米m線或其混合物之奈 ;Γ. ^ ^ 制電路系統結構集亚具電氣特徵,·以及提供控 分析物之存在。域測_器構件之錢特徵,俾可檢測相應 成奈,_喻心長成集而形 在本發明之特定實施例中,在長成夺米 衍生化使之對所選 分ϋ具親合力長成示米管集期間,將奈米管 在本發明之待定實施例中, 功能化使之對所選 ZtJZ合在力長成奈米管集期間’將奈米管 板上而實姆,她積轉_之_基 製成在本發叫技實施财,感·構件係由預衍生化奈米管 製成在本發明之特定實施例中,感測器構件係由預功能化奈米管 化在本㈣球定實關t,在奈料储基板上後將之衍生 化在本發明之特定實施例中,在奈米管位於基板上後將之功能 生化在本發日月之特定實施例中,將維持在基板上之樣式化組織衍 能化在本發明之特定實施例中,將維持在基板上之樣式化組織功 器構提烟簡量與料構件及感測 :,路系統具-參考電容器。 質暴露於流體造成之潛在接觸。 便竹Ha構件未貫 感測:r電:定之=。提供用以㈣ 在本發明之特定實施例令,此電路系統具-參考電阻器。 1330403 她在t發明之特定實施例中,藉由在不亂點提供與感測器構件1 ” ί第一與第二傳導構件'而提供參考電阻器,但提供覆蓋材料 使付感測器構件未實質暴露於流體造成之潛在接觸。 【實施方式】 洌哭佳實施例提供一種用於生物及/或化學感測之感 及感測态陣列之新平臺或載具。其可利用習知半導體 ί建,並可提升财之製造基翁構及製程,以舰制碳夸米 I ^測器。該製造技術與CM〇S製程廣泛相容,並可於較製 别技藝之奈料❹彳結構低福度施行。允許於_可 制及計算電路系統整合之給定晶片或晶圓上之缝感 太半 =1下/斤將詳述,本發明之較佳實施例採用奈米管組織(” (nanofabrics) Ί , 奈求管。可如個別絲管之技藝中所教導般將這些 iff純。與_衫料规在於謎絲組織構 度之備援(redundancy)(例如即使構件中有-給 疋巨故P早,感測器仍將運作)、更易於製造,以及可 统之感測器之大陣列之零件·例如藉由置放感測器構件於 口圖22所示之接觸孔陣列之各複數個組件中。 、 奈米組織構件可能為未經修改或6經功能化 測化學分析物如有機與無機分子。在特定實施例t,^用、= 可^物分子如縮氨酸、蛋㈣或核I可將奈米組織功能化, 非共價或共價(例如藉由衍生化),俾專與贼分析物交 。可將修改或未修改之對分析物敏感之奈米组織併入夺米 感測裔裝置中,以檢測樣本中之對應分析物。已知 : 例用電荷於麵T與吸收分子間轉移之原則改變奈米 。較佳實施例利用一於與分析物· 變’提供用以檢測目標分析物之 方法及成份。Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Mo丨ecular Detection"; "Carb〇n Nanotube Sensing", U.S. Patent Application Serial No. 10/175,026, filed on Jan. 26, s. It may include unfunctionalized semi-catheters and may sense the presence or absence of known chemicals, as found, for example, in K〇ng (ibid.). Because of the difficulty in controlling the placement of individual nanotubes between the electrodes, the nanotubes of individual nanotubes are used. The reliable manufacture of the level sensor is a problem. In addition, the nanotubes used in this way are individually used. Therefore, if the device using them is single-nano, it may stop working when it is single-point fault. Dali Arts and Literature has existed and developed individual nanotubes for sensor configurations, but there is a need for a more reliable carrier or platform to act as a sensor. [Invention] The present invention and sensing platform And related to the method of making the sensor platform, wherein the sense of oj〇4〇3 t » ; the ϋ member 'relative to the main surface of the substrate (understand, horizontal)) ^ in the mean or other nai For example, a silk thread, which is present in each thread or can be made to have an affinity for the corresponding analyte. I have a specific implementation of the financial system, and the platform includes the sense and components. The set of nanostructures of the spurs or mixtures thereof, and with electrical characteristic sensing 'cans." In the present invention, the presence or absence of the corresponding analyte is measured. ^奈^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ In a particular embodiment of the invention, the nanotubes are combined with the original nanotubes in the present invention, and the naphtha 4 has or increases the affinity. In the mosquito embodiments of the invention, the nanotubes are functionalized to have Or increase the affinity of the mosquito lion, the sense of age and the affinity of the car 'turn a few nanotubes to / /, the affinity. ^Nano-type (4) has a second analyte structure. In a particular embodiment of the invention, the lion-like structure comprises a channel, and the _ crying member is suspended to extend the channel. And alpha measurement. . In the special configuration of the brigade channel, the nanotube braided contact electrode can be electrically detected in the bridging channel. In a particular embodiment of the invention, the upper electrode is located above the sensor component and Separation of 1330403. In a particular embodiment of the invention, the sensor platform includes a conductive member remote from the sensor member such that the conductive member has a capacitive relationship with the sensor member. In a specific embodiment of the present invention, the sensor platform includes a first conductive member of the first point contact sensing member and a second transmitting member for the second point contact sensing member, so that the current can pass the first and the first In a particular embodiment of the sensor assembly between the two conductive members, the sensor member is substantially a structural material of the branch structure, and is not substantially exposed to the potential contact caused by the fluid, and instead is σ σ or Partial reference resistor or electric passenger. The array has a large array of sensor platforms, wherein the 'sensors of the board can be fabricated by providing a structure comprising a base structure, and defining a layer such as a nanometer m or a mixture thereof; Γ. ^^ The circuit system structure sets the sub-electrical characteristics, and provides the presence of controlled analytes. The money characteristic of the domain _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ During the growth of the rice tube set, the nanotubes are functionalized in the pending embodiment of the present invention, so that the selected ZtJZ is combined with the force of the nanotubes during the set of nanotubes. She is made up of the technology, and the sensory components are made of pre-derivatized nanotubes. In a particular embodiment of the invention, the sensor components are pre-functionalized nanometers. In the specific embodiment of the present invention, after the nanotube is placed on the substrate, the function is biochemically specified in the present day and month. In an embodiment, the patterned tissue that is maintained on the substrate is derivatized in a particular embodiment of the invention, and the structured tissue device that is maintained on the substrate is configured to extract smoke and material components and sense: The system has a reference capacitor. The potential exposure of the substance to the fluid. The bamboo member Ha is not permeated. Sensing: r electricity: fixed =. Provided is a (4) specific embodiment of the invention, the circuit system having a reference resistor. 1330403 In a particular embodiment of the invention of the invention, the reference resistor is provided by providing the first and second conductive members with the sensor member 1", but providing a cover material for the sensor assembly Potential exposure to fluids that are not substantially exposed to fluids. [Embodiment] The present invention provides a new platform or carrier for sensing and sensing state arrays for biological and/or chemical sensing, which utilizes conventional semiconductors.建建, and can enhance the manufacturing structure and process of the financial industry, with the ship carbon quart meter I. The manufacturing technology is widely compatible with the CM〇S process, and can be used in the process of making more technical skills. The structure is implemented with low blessing. The seam feel on a given wafer or wafer that allows for the integration of the circuit and the calculation system is too half = 1 / kg. The preferred embodiment of the present invention uses a nanotube structure. ("(nanofabrics) Ί , 奈 。. These iff pure can be as taught in the art of individual wire tubes. _ 衣 规 规 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于- Give the giant P early, the sensor will still work), and it is easier to manufacture. And a large array of components of the sensor, such as by placing the sensor components in a plurality of components of the array of contact holes shown in Figure 22. The nanostructured components may be unmodified or 6 functionalized chemical analytes such as organic and inorganic molecules. In a specific embodiment t, ^, ^ ^ ^ molecules such as peptides, eggs (tetra) or nuclear I can functionalize nanostructures, non-covalent or Covalently (for example, by derivatization), the sputum is specifically associated with the thief. The modified or unmodified analyte-sensitive nanostructure can be incorporated into the sensory device to detect the corresponding Analyte. Known: The example uses a charge to change the phase of the transfer between the face T and the absorbing molecule. The preferred embodiment utilizes a method and composition for detecting a target analyte using an analyte.

可藉由半導奈歸上之場效應,併同位於奈*管下方或與之 相鄰之閘電極,測量感測器之f氣性質變化,見於例如p. 性,以提供新穎奈米感測器機制。輕 鍵結時奈米管組織之料性之改變, 人於 Nan〇 Lett.第 3 卷第 3 號第 347-51 頁(2003)之”TowardThe change in the gas properties of the sensor can be measured by the field effect of the semiconducting homing and the gate electrode located below or adjacent to the tube, as seen, for example, in p. Detector mechanism. The change of the nature of the nanotube structure at the time of light bonding, by To〇, Vol. 3, No. 3, pp. 347-51 (2003)

Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective MolecularLarge Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular

Detection” °當以此方式檢測變化日寺,較佳可利用具懸浮奈米組 織結構之感測器。 亦可藉由電機械機制以測量感測器電氣性質變化,其中相對 於與I方電極有關之奈米組織構件之電阻或流經其之電流之切 換電壓間差異係於奈米組織暴露於分析物前後確定之。此外,實 際存在感測之分子或種類可能造成在懸浮奈米組織上之可檢測 張力,藉以潛在允許直接確定材料之分子重。例如當張力能量因 感測之分子之鍵結而改變時,即可測量電壓中之對應變化。 依較佳實施例之奈米感測器與實質上避免非目標分析物之 非特定鍵結之協定相容。非特定鍵結避免之一實例見於Star等 人於 Nano Lett.第 3 卷第 4 號第 459-63 頁(2003)之"Electronic Detection of Specific Protein Binding Using Nanotube FET Devices、 •在特定實施例中,奈米組織感測器可充做電化學感測器中電 極-例如C丨ark-型感測器,見於Lawrence等人於Anal. Chem. 1330403 弟 75 卷弟 9 號弟 2053-59 頁( 2003 )之”A Thin-layer · Amperometric Sensor for Hydrogen Sulfide: The Use of Microelectrodes To Achieve a Membrane-Independent Response for Clark-Type Sensors" ° 例示性架構感測器平臺 組織成大量陣列、 本平臺。後續段為 質,以達成特定t 圖2 (A) _ (E)闡示依本發明之各實施例。如下所將述,感 測器平臺可提供一載具,其中可在製作平臺後將奈米組織構件衍 生化或功此化,但在部份實施例中,可將奈米組織構件之衍生化 或功能化併入形成感測器平臺之製造步驟中。在圖2 中,顯示個別感測器單元,但自下述將清楚得知,採用熟知的半 導體製造技術允許大量複製這些個別感測器單元,使得一給定晶 片或晶圓可具有極大量基本上彼此姻之❹⑶。可將這些單元 、小群組或個別實體。本描述焦點在於架構及基Detection" ° When detecting the changing sun temple in this way, it is preferable to use a sensor having a suspended nanostructure structure. The electrical properties of the sensor can also be measured by an electromechanical mechanism, wherein the electrode is opposite to the I square. The difference between the switching voltages of the resistance of the nanostructured member or the current flowing through it is determined before and after the nanostructure is exposed to the analyte. In addition, the actual presence of the sensed molecule or species may be caused on the suspended nanostructure. The tension can be detected, thereby potentially allowing direct determination of the molecular weight of the material. For example, when the tension energy changes due to the bonding of the sensed molecules, the corresponding change in voltage can be measured. Nano sensing according to the preferred embodiment The device is compatible with protocols that substantially avoid non-specific binding of non-target analytes. One example of non-specific bond avoidance is found in Star et al., Nano Lett. Vol. 3, No. 4, pp. 459-63 (2003). "Electronic Detection of Specific Protein Binding Using Nanotube FET Devices, • In a particular embodiment, the nanostructure sensor can be used as an electrode in an electrochemical sensor - for example C丨ark - Type sensor, see Lawrence et al., Anal. Chem. 1330403, brother 75, brother 9th, 2053-59 (2003) "A Thin-layer · Amperometric Sensor for Hydrogen Sulfide: The Use of Microelectrodes To Achieve a Membrane-Independent Response for Clark-Type Sensors" ° The exemplary architecture sensor platform is organized into a large array of platforms. Subsequent paragraphs are qualitative to achieve a particular tFig. 2(A)_(E) illustrating various embodiments in accordance with the present invention. As will be described below, the sensor platform can provide a carrier in which the nanostructured components can be derivatized or functionalized after fabrication of the platform, but in some embodiments, the derivatization of the nanostructured components can be achieved. Or functionally incorporated into the manufacturing steps that form the sensor platform. In Figure 2, individual sensor units are shown, but it will be apparent from the following that the use of well-known semiconductor fabrication techniques allows for the mass reproduction of these individual sensor units so that a given wafer or wafer can have a very large number of basic Marry each other (3). These units, small groups, or individual entities can be used. The focus of this description is on architecture and base.

m 物娜_12批晶圓之大 輯上長二ΐ;=。(相對地’在超過次微米範圍 構件之藉由提供經過奈米組織 =二別奈米管損壞,則組織内之其他管可提 =:米組織構件之電阻應遠低於個別奈米管之電, 能奈米管之單層組織,對特心用而言,可 =織’或具多壁奈米管或具單壁與多壁奈飯:^ 面;S/、與—電極之交又形成奈米感測ϋ交又捍接 或遠離電極而偏 實際)之穩定位置之狀態。 細以刀綠(例如電氣或 平臺 #3〇圖^ iA )闡示例示性平臺(或感測器單元)200剖面圖。 〇匕3位於或釘於支撐體2〇4與206之太半0诚4&从 =2 °構件以-間隙距離2iG懸浮於電極上。 ()之結構因而類似圖彳所示各,,交 一 ^ " 之通道之奈米管交叉。可_見於 “Jiff/,準微影處理,置放及__式化及Λ 其他S3量^包含於高產量製造令為共通要求之金屬或 ^30403 * . f 2 (A)中奈米組織構件2〇2之兩種狀態示如圖$ (B) _ 之,視圖。例如圖2 顯示未偏折狀態下之平臺,圖2 則减示偏折狀態下之平臺,其中奈米組織構件已導 人電極208接觸。藉由施加或移除跨越奈米 關電極208之特定電壓來達成狀態:= ί織物件2Q2與電極2〇8間靜電吸引與排斥之相 為,:揮^=寺ί環境下,奈米組織與電極間接觸之第二狀態 X f .例如奈米組織僅在施加電壓時移動而與電極接觸, 非你;^除,麵_其未偏減11。林同環境下,接觸狀態為,, 仍21:變:例如其可初始肇因於電壓之施加’但在移除電i後 可想像增加奈歸與電極表面_著能之方法,並可 面之:f這些方法可用以延伸奈米管-電極接 —旦成功完成感測活動,即希望可於場中重置一 重置i可能可提供可導致感測之分子自奈米感測器移除之 測器類二二除或消除感測器狀態。所需電壓可特別針對侧感 、决疋,或可為整體重置樣式之部分,其可於 自其狀態清除。此—重置特徵將使感測器得以飽和’, 體狀態,俾可再使用該裝置。可再用性將降低整 哭ίίίΐ施例中’電極208可充作測量中之參考或場產生 :。麥考琶極可藉由產生,,感測,,單元與非鍵結單元間之比較而· 用以避免錯誤之正或負讀取。 錢例_,可藉由施加歧及/或賴至H组織物件 旦狀=電極208而讀取各單元。接著可測量感測器之電性(測 里衣置未如)。例如奈米_構件2Q2可於非揮發性狀態接觸 1330403 下方電極208並維持接觸。結果可檢測到構件202之電阻或其 他電性因分析物鍵結之改變-例如閘效應。見於p· Qj等人於m 物娜_12 batch of wafers on the second series of long lines; =. (relatively, in the case of a member exceeding the sub-micron range, by providing damage through the nanostructure=biemenite tube, other tubes in the tissue can be raised =: the resistance of the rice tissue member should be much lower than that of the individual nanotubes Electricity, the single-layer structure of the nano tube, for special use, can be woven or multi-walled tube or single-walled and multi-walled rice: ^ surface; S /, and - electrode intersection In addition, a state in which the nanometer senses a stable position in which the sinus is connected and is spliced or away from the electrode is formed. A cross-sectional view of an exemplary platform (or sensor unit) 200 is illustrated with a knife green (e.g., electrical or platform #3〇图^ iA). The crucible 3 is located or nailed to the support bodies 2〇4 and 206, and is suspended from the electrode at a distance of 2iG from the =2° member. The structure of () is thus similar to that shown in the figure, and the nanotubes of the channel of the intersection of ^ " Can be found in "Jiff /, quasi-lithography processing, placement and __ format and Λ other S3 amount ^ included in the high-volume manufacturing order for the common requirements of the metal or ^ 30403 * . f 2 (A) medium nanostructure The two states of the member 2〇2 are shown in Fig. $(B) _, the view. For example, Figure 2 shows the platform in the unbiased state, and Figure 2 shows the platform in the deflected state, where the nanostructured component has The contact electrode 208 is contacted. The state is achieved by applying or removing a specific voltage across the nano-electrode electrode 208: = ί The relationship between the electrostatic attraction and the repulsion between the fabric member 2Q2 and the electrode 2〇8 is: In the environment, the second state of contact between the nanostructure and the electrode X f . For example, the nanostructure moves only when the voltage is applied and contacts the electrode, which is not yours; ^, the surface _ is not deduced by 11. In the same environment , the contact state is,, still 21: change: for example, it can be initially caused by the application of voltage 'but after removing the electric i can imagine increasing the method of returning to the surface of the electrode _ energy, and can be: f The method can be used to extend the nanotube-electrode connection to successfully complete the sensing activity, that is, it is desirable to reset a reset in the field i may provide The sensor type that causes the sensed molecules to be removed from the nanometer sensor to remove or eliminate the state of the sensor. The required voltage may be particularly specific to the side sense, the decision, or may be part of the overall reset pattern. Can be cleared from its state. This - reset feature will make the sensor saturated ', body state, 俾 can use the device again. Reusability will reduce the whole crying ίίίί ΐ Reference or field generation: The McCaw can be used to avoid positive or negative readings by generating, sensing, and comparing the unit to the non-bonding unit. Each unit is read by approximating and/or depending on the H tissue object denier = electrode 208. The electrical properties of the sensor can then be measured (measured as if the coating is not as good). For example, nano-component 2Q2 can be The volatile state contacts 1330403 lower electrode 208 and maintains contact. As a result, resistance or other electrical properties of component 202 can be detected due to changes in analyte binding - such as gate effects. See p. Qj et al.

Nano Lett 弟 3 卷弟 3 號第 347-51 頁(2003)之,Toward LargeNano Lett 3, Volume 3, No. 3, 347-51 (2003), Toward Large

Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Mo丨ecular Detection”。 在特定實施例中,支撐體結構204與206係由氮化矽(Si3N4) 製成且相隔約180奈米。同時間隙距離21〇趨近於5_5〇奈米。 此- 5项奈糊隙距離較佳供使用自碳奈米㈣成之奈米組織 之特定實施例,並反映偏折奈米;I;之張力能絲著關特定相互 =°約51G奈来之間隙距離—般產生偏折狀態維持於非揮發 性情況之平臺,亦即構件202將維持偏折,即使將電 移除亦然。其他_距射崎其倾 用以電Γ當電力令斷時將喪失偏折= 幾何外型配置。特定較佳實施例採用時 構件,其以不較奈米組織物件2〇 土、 ^成此一傳v 更低。其他實施例使用金屬作導體。在特^ ^二 可以由奈米組織構成。 只色例宁電極208 類似地,支撐體結構204與2〇6 幾何外型製成,作特定鲈 之材科可由多種材料及不同 固持,諸如藉由多種技術之任—太202可藉其 發或旋轉塗佈材料如金屬、半組織於支撐體結 化妙綱亞氨,均可二體’顺、欽,氧 接釘強度。可藉由利用化學物 在特定實施例t,奈米組織物件2益 撐體結構。在其他實施例中,夺 9由摩擦固持於絕緣支 ,m ",. ·. 以紐織物件202可藉其他手段 構。蒸 氧 1330403 之父互作用,包含藉由利用碳化合物如范(pyrene)或其他化風, 反應物種之共價鍵增加摩擦交互作用。見於RJ Chen等人二 丄 Am. Chem· Soc-第 123 卷第 3838_39 頁(2〇; 之 Non-covalent Si細alj Functiona丨jzation of Single-WalledArrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Mo丨ecular Detection". In a particular embodiment, the support structures 204 and 206 are made of tantalum nitride (Si3N4) and are separated by about 180 nm. 21〇 tends to be close to 5_5〇 nanometer. This -5-term gap distance is better for the specific embodiment of the nanostructure formed from carbon nano (four), and reflects the deflection of nano; I; The specific distance between each other is about 51G, and the gap is maintained in a non-volatile situation, that is, the member 202 will remain deflected even if the electricity is removed. It is used for electric power. When the power is broken, the deflection will be lost = geometrical configuration. The specific preferred embodiment adopts the time component, which uses the non-nano-structured object 2 bauxite, which is the lower one. Other embodiments use a metal as a conductor. In particular, it can be composed of a nanostructure. The color-only electrode 208 is similarly formed by a support structure 204 and a geometric shape of 2〇6, which can be made of a specific material. Multiple materials and different holdings For example, by any of a variety of techniques - too 202 can be used to send or rotate coating materials such as metal, semi-tissue in the support body to synthesize Mithium, can be two-body 'shun, Qin, oxygen nail strength. By utilizing the chemical in a particular embodiment t, the nanostructured article 2 benefits the support structure. In other embodiments, the 9 is held by the friction on the insulating branch, m ", . . . The interaction of steamed oxygen 1330403 involves the use of carbon compounds such as pyrene or other chemical winds, and the covalent bond of the reactive species increases the frictional interaction. See RJ Chen et al., Am. Chem. Soc - Volume 123, page 3838_39 (2〇; Non-covalent Si fine alj Functiona丨jzation of Single-Walled

Carbon Nanotubes for pr〇tejn |mmobj|丨zati〇n”及 Dai 等人於 APPI. Phys_ Lettj 77 卷第 3〇15_17 頁(2〇〇〇),作為以全接 釘與塗佈奈米管之例示性技術。亦見於w〇〇1/〇32〇8,供此類 技術时論之用。 、 特別w之’例如奈米組織物件2〇2可藉由將矩陣材料引 孔奈米組織中之奈米管間之空間而稱合至另一材料,以形成如上 所述之傳導合成接面。利用此等合成接面與 連接可传到㈣與機械伽。在—實例中,將傳導材料沉積於太 ^组織上’並允許穿透至多孔奈米組_賴中,因而形成對^ ;;組織之改良之電連接及降低奈米闕物件細電阻。在另一 例中,沉積絕緣材料於奈米組織上,並允許穿透至多孔奈米組織 力因而形成改#之機械接釘接觸’其於物件偏折或偏折 們不依本發明之一實施例之偏折奈米組織感測開 ,。電極或傳導軌跡2〇8位於充分接近奈米組織構件2〇2之懸 浮。卩處兩者可於奈米組織偏折時相互接觸。電極2〇8亦可操 作以蓋生可改變鄰近奈米組織感測器電性之場,更特別言之,電 極20^可產生改變諸如圖2⑻所示之奈米感測器單元令半導 奈米,性質之場。HJ此本發批特定實補之—目的在產生實質 上或完全由配置為與場·發射電極相鄰之半導奈米管組成之奈米 =感,器。見於R Q丨等人於_。⑽第3卷第3號第347_51 ,C 03)之 Toward Large Arrays of _tip|ex Functi〇nafized , arbon Nanotube Sensors for Highly Sensitive and Selective ^30403 tCarbon Nanotubes for pr〇tejn |mmobj|丨zati〇n" and Dai et al. in APPI. Phys_ Lettj 77, Vol. 3, pp. 15_17 (2〇〇〇), as an example of a full-stitched and coated nanotube Sex technology, also found in w〇〇1/〇32〇8, for the use of such technology. In particular, 'for example, nanostructured objects 2〇2 can be obtained by introducing matrix materials into the nanostructures. The space between the nanotubes is referred to as another material to form a conductive composite junction as described above. With these composite junctions and connections, it can be transferred to (4) and mechanical gamma. In the example, the conductive material is deposited. On the tissue, it is allowed to penetrate into the porous nano-group, thus forming a pair of improved electrical connections and reducing the fine resistance of the nano-sheets. In another case, the insulating material is deposited. On the nanostructure, and allowing penetration into the porous nanostructure, thus forming a mechanical staple contact, which deflects or deflects the object without biasing the nanostructure sensing according to an embodiment of the present invention. The electrode or conductive track 2〇8 is located in close proximity to the suspension of the nanostructure member 2〇2. The two can be in contact with each other when the nanostructures are deflected. The electrodes 2〇8 can also be operated to cover the field that can change the electrical properties of the adjacent nanostructure sensor, and more particularly, the electrodes 20^ can produce changes such as The nanometer sensor unit shown in Fig. 2(8) is a semi-conducting nanometer, a field of nature. HJ is a specific compensation for the purpose of generating a substantial or complete configuration of the half adjacent to the field/emitter electrode. The nanometer consists of nanotubes, sense, and is found in RQ丨 et al. _. (10) Vol. 3, No. 3, 347_51, C 03) Toward Large Arrays of _tip|ex Functi〇nafized , arbon Nanotube Sensors for Highly Sensitive and Selective ^30403 t

Molecular Detection”。 士圖2(D)闡示另-奈來感測器單元22〇。在此實施例中,平 室200之電極208被配置為與奈米管組織之2〇2之懸浮部相鄰 之非金屬材料222所置換。上述接釘結構224在此例中明 釘結構可於電連捿至奈米_及提供奈練織對下方表 撐或粉爽。接釘結構在許多應用中具傳導性,但為 %緣性或傳導性皆可,端視應用而定。 …圖Λ(Ε)闡示另一奈米感測器單元226。在此實施例中,奈 ,2〇1非懸浮而係位於支樓體材料230上。支撐體材 他W可特徵化為接釘結構,其可為與_則目容使用之任 H 但不限於金屬、合金、魄、半導體、塑膠、玻璃等。 許多事例中具傳導性,但為絕緣性或傳導性皆可, 狀雜圖uA^ic)闡示另一感測器單元及此單元可能達成之 極iofi Η早70中’奈米組織構件202位於下電極304與上電 件202 2〇2)可受電刺激使構 ΡΠ9 -Τ ^ 碭電極304偏折。例如在部份實施例中,構件 偏折。3 (Β) 牿定〜中’構件202可導致向電極306偏折)在 織巾’、此偏折狀態可特徵化為”開啟”狀態,其中奈米組 81二妾面為導電之整流接面(例如Schottky或PN),在定址 二„奈米組織物件202或電極304感測導致如此。當 狀態時’如圖3 (C)之結構314所示,奈米組 啟,,狀能r : %極3〇6偏折產生異於先前實例之”開啟”狀態之,,開 定址)〜 _重開啟狀態下之相關電性可相肖,但為不同電極 應知圖式如圖3 (A) - (C)未按比例緣製,且例如在—給 1330403 r 定單元中之難麟210無需鱗。在其他實補巾,在奈米 ϋ物件2〇2之不同側上之間隙可彼此相異,大大允許揮發性 ^非揮發性切換行為之各拉合。此外,在—釋放節點之型式中 執跡可增加此第三執跡重置單元或將特定單元絕 ίίΐΓ例何施加—電驗第三軌跡,以藉由導致奈米組織 物件雉持於特定非揮發性狀態而將單元絕緣。 =,因兩傳導電極3〇4與3〇6而允許之備援可造成可靠性 ;、缺心各限增加之優點。兩傳導電極 並使奈米官-技術單元得以更易於併入立他及’ ^ 之本f亦可促進可堆疊感測器層之 修改奈米組織構件特性之技術 單層組織係自單或多壁奈米管製成。 -給定組織仅奈米管敍1冑# 〜、我冑氣特徵視 如藉由選擇奈米f 。可控觀些特徵。例 ι-ι__α至長寬及其多孔性,可於 特定電阻,觀所需裝量每:正挪之 米組織尺寸及使奈米組織與金屬接觸來達成較 度須較面之特定褒置可能需要較低電阻奈米_二。感測裔濃 較敏感性裝置(例如在奈米组钟y、,'’、’哉。 定分析物所需之鍵結處較少,並可奈米管者)對特 備奈米組織之特定方法,端視特定°可想像許多製 產調節方法及所得產品,可利用旋轉寺需求而定。生 所述功能化或衍生化達成裝置需求。^、试衫之短合併同此處 如旋預製奈米管於基板上(例 /或公告之專利及專技術述如前揭併入及 能化長成之奈米管之情況下,組織之衍生化或功 管d用mi可在長成製程期間於cvd長成之奈米 ι®μ支付4雜—定數量材料ϋ、#、·mMolecular Detection". Figure 2(D) illustrates another Neil sensor unit 22A. In this embodiment, the electrode 208 of the chamber 200 is configured to hang with the 2'2 of the nanotube structure. The adjacent non-metallic material 222 is replaced. In the example, the nail structure 224 can be electrically connected to the nano _ and provide a nap to the underlying support or powder. The nail structure is used in many applications. It is conductive, but it is either % edge or conductive, depending on the application. Figure Λ (Ε) illustrates another nanometer sensor unit 226. In this embodiment, Nai, 2〇 1 is non-suspended and is located on the body material 230. The support material can be characterized as a nail structure, which can be used for the purpose of H, but not limited to metal, alloy, tantalum, semiconductor, plastic , glass, etc. Many cases are conductive, but they are either insulative or conductive. The figure uA^ic) illustrates another sensor unit and this unit may reach the extreme iofi Η early 70 'nai The rice tissue member 202 is located at the lower electrode 304 and the power-on member 202 2 〇 2) can be electrically stimulated to deflect the structure 9 - Τ ^ 砀 electrode 304. For example, in the portion In the embodiment, the member is deflected. 3 (Β) 牿 〜 〜 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' The two sides are electrically conductive rectifying junctions (e.g., Schottky or PN), which are caused by the sensing of two nano tissue objects 202 or electrodes 304. When the state is as shown in the structure 314 of Fig. 3 (C), the nano group is activated, and the shape energy r: % pole 3〇6 deflection is different from the "on" state of the previous example, and the address is opened) The relevant electrical properties in the _re-open state can be different, but the patterns for different electrodes should be as shown in Fig. 3 (A) - (C) not proportional, and for example, in the 1330403 r unit 210 does not need scales. In other solid wipes, the gaps on the different sides of the nano-objects 2〇2 can be different from each other, greatly permitting the pull-in of the volatile ^non-volatile switching behavior. In addition, the execution of the release node may increase the third orthographic reset unit or apply a specific unit to the third trace of the detector to cause the nanostructured object to be held in a specific non-volatile state. The unit is insulated by the sexual state. =, the redundancy allowed by the two conductive electrodes 3〇4 and 3〇6 can cause reliability; and the advantage of increased lack of heart. The two-conducting electrode allows the nano-manufacturer unit to be more easily incorporated into the "manufacturer" and the technical single-layer structure of the stackable sensor layer that modifies the characteristics of the nanostructure member Made of wall nanotubes. - Given a tissue only nanometer tube 胄1胄#, my 胄 特征 characteristics as by choosing nano f. Controllable view of some features. For example, ι-ι__α to length and width and its porosity can be used for specific electrical resistance, and the required capacity per: the size of the tissue to be moved and the contact between the nanostructure and the metal to achieve a specific surface. Need lower resistance nano _ two. Sensing sensitization to sensitive devices (eg, in the nanometer group y,, '', '哉. The number of bonds required for the analyte is small, and the nanotubes) is specific to the special nano tissue The method, depending on the specific ° can be imagined a number of production adjustment methods and products obtained, can be determined by the needs of the rotating temple. The functionalization or derivatization is achieved by the device. ^, the shortness of the test shirt is combined with the pre-fabricated nano tube on the substrate (in the case of the patent and the special technology disclosed in the previous article and the nano tube that can be grown into a thin tube, the organization Derivatization or power tube d can be used in the process of growing into a cvd grown into a nanometer ι®μ to pay for 4 miscellaneous quantities of material ϋ, #,·m

^ '^na; rNA . ' * 及佈獅成奈料之奈纽織製造述如前揭併入 專利及專利申請案。此方法具有凌駕以⑽製造夺 料供ίΪΪΐ點。例如可以較低溫度製造裝置。此允許採用更多材 ^ 組織^牛作為潛在基板。此外,可在施加奈米管於基 引以近乎不$限之齡將賴之奈米管触化或功能化。 絲纽敵觀齡氣稀應用、沉^ '^na; rNA . ' * and the manufacture of the cloth lion into the nai fabric is described in the patent and patent application. This method has the advantage of (10) manufacturing the material for the supply. For example, the device can be manufactured at a lower temperature. This allows more materials to be used as a potential substrate. In addition, the nanotubes can be thixotropic or functionalized at the age of application of the nanotubes to the primers. Silk new enemy, age, application, sinking

^米域感測器可由半導奈米管、金屬奈米管細者組成。 研究者已顯示金屬奈米管可藉由職而自半導奈米管分離。見於 例如 D. Chattopadhyay 等人於丄 Amer Chem s〇c 第 125 卷第 3370-75 I (2003.2.22) Route for Bulk Separation of Semiconducting from Metallic Single-Walled Carbon Nanotubes”。因此其係本發明之特定實施例之一態樣,其利用 此或任何其他分離方法產生受控組成(半導對金屬)之奈米組 織。根據一沉澱方法,單壁奈米管經酸處理並接著功能化非共價 -例如在八葵基胺酸(0ctacjecy|amjne )及四氫呋喃 (tetrahydrofuran)中-導致金屬物種自溶液中沉澱,同時將半導 =組中。只要彼此分離,分離之多個奈米管均可供奈 :力能非:用产隹之奈来管可用以產生充作奈米感測器用之 此處所織’此等奈米管可用於旋轉塗佈應用及 金屬太^方法及所併參考文件中。此外,可控制半導與 與未分離之夺米營^猪由此°1◦以奈未官溶液, 米管之_了 = 來產生近乎90%半導管及鄉金屬奈 亦可盘^ ’以取件各類奈米管之所需漠度。100%半導管溶液 亦可與1GG%金屬奈米管溶液混合。 …冷,夜 除全 電ΐ感應之氧化自已形成之奈米組織中破壞性消 百i於例如ρ·G·Cdlins等人於Sci嶋第292The rice field sensor can be composed of a semi-conductive nano tube and a thin metal tube. Researchers have shown that metal nanotubes can be separated from semi-conductive nanotubes by their jobs. See, for example, D. Chattopadhyay et al., Amer Chem s〇c, Vol. 125, No. 3370-75 I (2003.2.22) Route for Bulk Separation of Semiconducting from Metallic Single-Walled Carbon Nanotubes. Thus, it is a specific implementation of the present invention. In one aspect, it utilizes this or any other separation method to produce a controlled composition (semiconducting to metal) nanostructure. According to a precipitation method, the single-walled nanotube is acid treated and then functionalized non-covalent - For example, in octadecylcysine (0ctacjecy|amjne) and tetrahydrofuran (in tetrahydrofuran) - causing metal species to precipitate from solution, while at the same time semiconducting = group. As long as they are separated from each other, the separated nanotubes are available for Nai : Force Energy: The tube can be used to produce a nano sensor. The nano tubes can be used in spin coating applications and metal methods and reference documents. In addition, it is possible to control the semi-conducting and non-separating of the rice cultivating pigs, and thus the ◦ 未 官 官 , , , , , , 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生Required for all kinds of nanotubes Indifferent. 100% semi-catheter solution can also be mixed with 1GG% metal nanotube solution. ...cold, night, all-electric enthalpy induction, oxidation, self-destructive nanostructure, destructive, such as ρ·G·Cdlins Etc. in Sci嶋 292

Nanotuh。·頁(2001·)之 Engineering Carb〇n Nanotubes and 實施例之e Usin9 Eleet「iGai B「eakdQwn”。本發明之特定 在此參考文件令之協定產生奈米組織並於 i電壓’以有效繞毀金屬奈米管。此方法將伴隨以 CVD或= 域他製杨_塗料產生之奈麵織執行。 針只要一形成’即可利用標準微影技術將奈米組織樣式化,如 開之專利參考案中所述。此微影技術可藉由對充作感 之組輕域之受控界定達絲麵織之樣式化-例如在 貝貝預疋尺寸之奈米管帶之型式中。 了利用較佳實施例之感測n平臺製作之例示性類型之感測器 一種由碳奈米管或其他高度耐用材料組成 含奈親仙,可林錢_紅極祕件下 種一般類型之奈求感測器如下: •原始奈求管(亦即非功能化奈米管) •非共價之功能化奈米管 •共價衍生化奈米管 •上述之混合物 UJU403 f 1 ·非功能化或原始奈米管 第厂型感測ϋ於奈米組織構件愤_始奈歸 Ϊ米ΐί非功能化奈米管。奈米管表面將吸收分析物,其可二 示米管電性,諸如奈米管傳導性或電容。 〃、又 在此方法中,奈米管可於其表面吸收分 特财之可糧,諸如傳轉、雜、電容之變^成= 由適當電氣接觸自奈米管本身直接測量電氣特徵變化。'、 可利用奈米感測器檢測特定已知分子之 valentini 等人於 Appl. Phys Lett 第 82 卷第 6Nanotuh. · Page (2001) Engineering Carb〇n Nanotubes and Example e Usin9 Eleet "iGai B "eakdQwn". The particularity of the invention is hereby incorporated by reference to the production of nanostructures at i voltage ' to effectively circumvent the metal nanotubes. This method will be accompanied by a woven or woven fabric produced by CVD or = YANG. The nanostructures can be styled using standard lithography techniques as soon as the needle is formed, as described in the patent reference. This lithography technique can be modeled by the controlled definition of the silky woven fabric of the light-weighted group of sensations - for example, in the form of a Beibei pre-size nanotube strip. An exemplary type of sensor fabricated using the sensing n platform of the preferred embodiment is a carbon nanotube or other highly durable material containing a naphtha, which can be a general type of The sensor is as follows: • Original tube (also known as non-functionalized nanotube) • Non-covalent functionalized nanotube • Covalently derivatized nanotube • The above mixture UJU403 f 1 • Non-functional The original type of the original tube is sensed by the nano-organism component 愤 奈 组织 Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ ΐ ΐ ΐ 非 非 non-functionalized nano tube. The surface of the nanotube will absorb the analyte, which can be used to indicate the electrical properties of the tube, such as nanotube conductivity or capacitance. In this method, the nanotubes can absorb the food of the special wealth on the surface, such as the transfer, the impurity, and the change of the capacitance. ', can use a nano sensor to detect a specific known molecule valentini et al. Appl. Phys Lett Vol. 82 No. 6

Ca2rb〇3 )^,SenS〇rS ί〇Γ Sub~PPm N02 Gas Detection Based on on Nanotube Thin Rims”。因此,本發明之特定實施 態樣係為利輸_編卿嫩度_疋獅1之一 2.-4·功能化奈采管 ϋ奈料施加於表面產絲米組顺,可於溶财將奈米 i 以增加官對表面之接合及/或致使與分析物之接合或 乎典=ΓΓ因此本發明之特定實施例之一目的在利用個別奈 奈米組織前即將之功能化。本發明之特定實施例之另一 此等魏化奈米管產生奈米感測器,尤其是藉由將奈 米,、且、哉樣式化為特定外型為之。 ^利用^米管產生奈米組織前,可於懸浮液令將奈米管功能 仆太在!㈣前可將鱗功能狀管儲存於主财。駐體-功能 σ ί ί官Γ與原始奈来管混合產生部分功能化奈米組織。可將不 二f功能化奈米管溶液合併產生奈m合物以製作混合功 Ί组?。可重複此程序產生具有所欲之供感測之許多異類 1能米管之奈米組織。因此可例如功能化具有DNA序列之 洛液’俾自—有興趣之特定物種之測試樣本感測,諸如僅 Μ特定病毒或僅與特定癌症型式有關者。本發明之部份實施例之 1330403 -態樣係採时米_糾制搞定抗原駐要組織相容性 複合物(MHC) /來自流體混合物之待測抗原複合物 或感染之先期警告感測器。 ' 在另-實關巾,可在施加奈米f於基板後將奈米管功能化 以產生奈雜織。在此情财,溶液献相魏化可在夺米组織 樣式化之前或之後進行。此技術將使其本身成為跨越表面之多重 空間可紐功能化事件。例如可展望_類喷墨製程喷灑不同類 型之功能化齡於基板之較區域上。_步驟可用以於相同或 不同區域施加額外魏群,使得在_基板上之奈米感測器裝置 具有區域修改感觸介。以此方式為之,可以—給定陣列感測許 夕不同•之77析物’潛在具有供既有不同分析物用之各單元 測0 心 在另-實施例中’可在主體奈米組織外之感測區域樣式化後 將奈米管功能化。(見於美國專利申請案序號1 0/341 〇〇5、 1〇/341,G55、1Q/341,Q54及娜4113Q,供魅生及樣式化組 織之例TFj細節)-完紐式化,即可將個廳域功能化以充作 特定感測器。可彻多重序列功能化或功能化.之混合來產生 一次可於樣式化奈米組織段落或許多此類段落感測不只一種分 析物之混合感測器。此性質使其本身得以自動化及併同自動機械 使用。 適當分析物包含有機與無機分子,其中包含生物分子。在一 較佳實施例中,目標分析物可為 •任何環境污染物,包含殺蟲劑、除蟲劑、毒物等; •一化學物或多種化學物,包含溶劑、聚合物、有機材料等; •或多類冶療性分子,包含治療性及濫用之藥物、抗生素等; •-或多類生物分子,包含韻蒙、細胞f、蛋白f、脂質、碳氮 化物、細胞膜抗原及受體(神經、荷爾蒙、營養及細胞表面受體) 1330403 或其配體等; •整體細胞’包含原核生物(諸如病源細菌)及真核細胞,包 乳動物腫瘤細胞; •病毋,包含逆轉濾過性病毒、皰殄病毒、腺病毒、慢性病毒等· 及 •孢子等。 、例如潛在分析物分子包含核酸、寡聚核甘酸、核甘酸及其語 法上之等效物,以及在此技藝中已知之任何及所有修改物及其類 似物,包含例如氨基或硫代基修改之核甘酸,即具有交替背之 核甘酸’或包含一或多種羰基糖,見於例如Beaucage等人在 Tetrahedron,,第 49 卷第 10 號第 1925 頁(1993); JenWns 等人 於Chem. Soc_ Rev.第169_176頁(1995)。因此,具有至少兩 共價連結之核甘酸分子相當一般化可為潛在分析物。此外,潛在 分析物之類別包含單股及雙股核酸’以及包括單股及雙股序列兩 者之部分之核酸。類似地,潛在核酸分析物可為DNA (包含基 因組或cDNA)、RNA或混合體,其中核酸包含去氧核糖 (deoxyribo-)及核糖(ribo)核酸之任意組合,以及包含尿。密 。定(uracil)、腺嗓呤(adenine)、胸腺嘧啶(thymine)、胞嘴咬 (cytosine)、鳥糞。票呤(gUanine)、肌核酸(jn〇sine)、黃嗓呤 (xathanine)、次黃嘌呤(hypoxathanine)等之基底之任意組 合。上述任一種之擬態化合物亦可充作潛在分析物。在類似型態 中,潛在分析物包含蛋白質、寡聚縮氨酸、縮氨酸及其類似物, 包含具非天然生成之氨基酸及氨基酸類似物之蛋白質,以及類縮 氨酸結構。 熟悉此技#者將了解可利用本發明之各實施例檢測大量分 析物。可利用本發明之各實施例之方法及物件製成之鍵結配體檢 測此處所述之任何目標分析物。 1330403 可利用奈米壓印微影作為施加功能化媒介於奈米組織之個· 別部份之方法,㈣產生蝴奈米感翻。此方法主要供聲作且 別〇〇奈料型之大量陣顺用。可喷墨印製技術施加;;力 施化,介於奈米組織之個別部份,以於一給定晶圓上產生分離的 感測器。JT利用喷墨印製自動完成個別奈米感測器單元之功能 化’不論藉由直接施加功能化媒介於奈米組織單元或藉由施加功 能化奈米管於單元將留滯於基板上之區域皆可。噴墨印製係 擊性之點辦印製技術,其中墨滴或在此情況下為奈米管溶液, 均係自小孔健接” f,於表面或齡上之狀健來敍歸。 研究者已描述一種將蛋白質停滯於奈米管上特定位置處之 方法。見於丨· Banerjee等人於Nan0 Lett第3卷第3 283-287 頁(2003 )之”L〇cati〇rvSpedfic 邮㈣㈣Ca2rb〇3)^, SenS〇rS 〇Γ 〇Γ Sub~PPm N02 Gas Detection Based on on Nanotube Thin Rims". Therefore, a specific embodiment of the present invention is one of the benefits of _ _ _ _ _ _ _ _ lion 1 2.-4· Functionalized Nai Cai pipe is applied to the surface of the silk rice group, which can be used to increase the bonding of the official surface to the surface and/or to the bonding with the analyte. Accordingly, one of the specific embodiments of the present invention is intended to be functionalized prior to the utilization of individual nano-needles. Another such Wei-Nei tube of a particular embodiment of the present invention produces a nanosensor, particularly by The nano, and, and 哉 are styled into a specific shape. ^Before using the rice tube to produce the nano-tissue, the function of the nano-tube can be made in the suspension! (4) Stored in the main wealth. The body-function σ ί ί officially mixes with the original Nai tube to produce a partially functionalized nano-tissue. The f-f functionalized nanotube solution can be combined to produce a na-m composition to make a hybrid work. This procedure can be repeated to produce a nano tissue of many heterogeneous 1 meter tubes with the desired sensing. This may, for example, be functionalized with test sample sensing of a particular species of interest having a DNA sequence, such as only a specific virus or only a particular cancer pattern. 1330403 - Part of the present invention - The pattern is taken by the time meter _ rectification of the antigen resident histocompatibility complex (MHC) / the antigen complex from the fluid mixture or the early warning sensor of the infection. After applying nano-f to the substrate, the nanotube is functionalized to produce naphthene. In this case, the solution-dedicated Weihua can be carried out before or after the rice-synthesizing tissue is styled. This technique will make itself Multi-space across the surface can be used to functionalize events. For example, it is possible to spray different types of functional ageing on the substrate. The steps can be used to apply additional Wei groups to the same or different regions, so that The nanometer sensor device on the substrate has a region-modified sensory interface. In this way, it is possible to give a sense of a different array of 77 analytes that are potentially different for each of the different analytes. Measuring 0 heart In another embodiment, the nanotube can be functionalized after characterization of the sensing region outside the bulk nanostructure. (See U.S. Patent Application Serial No. 1 0/341 〇〇5, 1〇/341, G55, 1Q/341, Q54 and Na 4113Q, for the TFj details of the enchantment and styling organization) - complete the new, you can functionalize the area to serve as a specific sensor. Can be multi-sequence functional or The combination of functionalization produces a hybrid sensor that can sense more than one analyte in a styled nano tissue segment or many such segments. This property allows itself to be automated and used in conjunction with automated machinery. Contains organic and inorganic molecules that contain biomolecules. In a preferred embodiment, the target analyte can be any environmental pollutant, including pesticides, insecticides, poisons, etc.; • a chemical or chemicals, including solvents, polymers, organic materials, etc.; • or a variety of therapeutic molecules, including therapeutic and abusive drugs, antibiotics, etc.; • or a variety of biomolecules, including rhyme, cells f, protein f, lipids, carbonitrides, cell membrane antigens and receptors ( Nerve, hormone, nutrient and cell surface receptors) 1330403 or its ligands; • Whole cells 'containing prokaryotes (such as pathogenic bacteria) and eukaryotic cells, mammalian tumor cells; • Diseases, including retroviral viruses , vesicular prion, adenovirus, chronic virus, etc. and spores. For example, potential analyte molecules comprise nucleic acids, oligoribonucleic acids, nucleotides, and grammatical equivalents thereof, as well as any and all modifications and analogs thereof known in the art, including, for example, amino or thio modifications. Nucleic acid, i.e., having alternating back-nucleotide' or containing one or more carbonyl sugars, see, for example, Beaucage et al., Tetrahedron, Vol. 49, No. 10, pp. 1925 (1993); Jen Wns et al., Chem. Soc_ Rev Pp. 169_176 (1995). Thus, a nucleotide molecule having at least two covalent linkages is quite general and can be a potential analyte. In addition, classes of potential analytes include single-stranded and double-stranded nucleic acids' and nucleic acids including portions of both single-stranded and double-stranded sequences. Similarly, the latent nucleic acid analyte can be DNA (including genomic or cDNA), RNA or a mixture, wherein the nucleic acid comprises any combination of deoxyribo- and ribo nucleic acids, as well as urine. Secret. Urocil, adenine, thymine, cytosine, bird droppings. Any combination of bases of gUanine, jn〇sine, xathanine, hypoxantine, and the like. A mimetic compound of any of the above may also be used as a potential analyte. In a similar form, the potential analyte comprises proteins, oligopeptides, peptides and analogs thereof, proteins comprising non-naturally occurring amino acids and amino acid analogs, and peptide-like structures. Those skilled in the art will appreciate that a wide variety of analytes can be detected using various embodiments of the present invention. Any of the analytes of interest described herein can be detected using the methods of the various embodiments of the invention and the bonding ligands made from the articles. 1330403 It is possible to use nanoimprint lithography as a method of applying a functional medium to the other parts of the nanostructure, and (4) to produce a butterfly nanometer. This method is mainly used for sounding and is not suitable for a large number of arrays. Applyable by inkjet printing technology; force applied to individual parts of the nanostructure to create separate sensors on a given wafer. JT uses inkjet printing to automate the functionalization of individual nanosensor units' whether it is left on the substrate by applying a functionalized medium directly to the nanostructure unit or by applying a functionalized nanotube. All areas are available. Inkjet printing is the point of printing technology, in which the ink droplets or in this case the nanotube solution, are connected from the small hole "f, on the surface or the age of the health to return. Researchers have described a method of stagnating proteins at specific locations on the nanotubes. See 丨· Banerjee et al., Nan0 Lett, Vol. 3, pp. 3, 283-287 (2003). “L〇cati〇rvSpedfic (4) (4)

Functionalization on Nanotubes: Attachment to Proteins at theFunctionalization on Nanotubes: Attachment to Proteins at the

Ends of Nanotubes Using Au Nanocrysta丨 Masks”。本發明之特 J實施例採用Banerjee之教導並據以利用將蛋白質滞留於奈米 管末端而製作奈米感測器來感測互補物種。根據此方法,施加金 之奈米晶體於奈米管側壁’並將㈣素(avidjn)吸_奈米管 之整個表面上。施行化學蝕刻程序以移除金奈米晶體,亦因而移 · 除金奈米晶體上之㈣素,健下附接於奈綺末端之㈣^馨 因此本發明之特定實施例之一態樣利用此程序製造奈米感測器 並將蛋白質留滯於奈米感測單元、物件及構件中使用之夺米管末 端。 感測器應暴露於分析物,為完全或近乎完全暴露系統之一部 ,或密封系統之一部份,藉此以受控方式引-入分析物。例如可將 氣體感測裔之奈米組織完全暴露於空氣中,但可將DNA感測器 之奈米組織密封於複合微流體分析物引入機械裝置内。關於後 者’見於 PCT 公開案 W〇 00/62931”The Use of Microfluidic 1330403 systems in the 日 ectrochemical Detection 〇f Target Ana_S”。在此PCT文件中,發明人描述一感測器系統,因此 藉由微通道將含分析物之流體引入感測腔中。可藉中其他微通道 將選用儲存腔及單元細胞溶解腔連接至該系統。本發明之特定實 施例之一目的為在此類微流體系統中使用奈米組織感測器。 另一種此類微流體分析物遞送系統述如Kayyem之美國專利 第6,290,839號,其中檢測表面包括具有單層傳導寡聚物 (oligomer)之檢測電極,以及視需要包括可與目標分析物鍵結 之捕捉鍵結配體。目標分析物直接或間接與捕捉鍵結配體鍵結形 成鍵結複合物。鍵結複合物進一步包括至少一電子轉移份額。 用檢測電極檢測電子轉移份額之存在與否。因此本發明之特定實 施例之一目的在根據Kayyem之,839專利,利用奈米組織 器作為裝置中之感測器構件。 " 根據本發明之特定實施例之之奈米感測器亦可充作 She丨h之美國專利第6|361 958號所揭原理之檢測器。咖 結微流體裝置與具有分雜域之微通道,_分祕域且有 特定鍵結對組如鍵結至製於微通道中之多孔聚合物播 =DNA或。RNA。微通道可由塑膠製成,並操作連結流體推2 件與檢·。因此本發日狀特定實關之—祕 ^ 併入Sheih之獅專利之系統巾。 Μ礼、且織 根據本《月之特疋貫施例之奈米感測器亦併同所引用灸 考文件中触之奈米流觀道供分析物遞送及㈣之^ , 2·非共價功能化 第二型感,_之奈米組織構件中,奈料表面係非 工此匕。此使得多種陽離子、陰離子、金屬 ϋEnds of Nanotubes Using Au Nanocrysta丨Masks". The special J embodiment of the present invention uses the teachings of Banerjee and makes a nanosensor to make a complementary sensor by retaining the protein at the end of the nanotube. According to this method, Applying gold nanocrystals to the sidewall of the nanotube and absorbing the avidjn on the entire surface of the tube. A chemical etching procedure is performed to remove the crystal of the nanocrystal, thereby removing the crystal of the nanocrystal. The above (4) element is attached to the end of the na[iota], and is thus used in this embodiment to make a nanometer sensor and to retain protein in the nano sensing unit and object. And the end of the rice tube used in the component. The sensor should be exposed to the analyte, either completely or nearly completely exposed to one part of the system, or part of the sealing system, whereby the analyte is introduced in a controlled manner. For example, the gas sensing nano-tissue tissue can be completely exposed to the air, but the DNA structure of the DNA sensor can be sealed in the composite microfluidic analyte introduction mechanical device. The latter is found in the PCT publication W〇00 /62931 The Use of Microfluidic 1330403 systems in the ectrochemical Detection 〇f Target Ana_S". In this PCT document, the inventors describe a sensor system whereby the analyte-containing fluid is introduced into the sensing chamber by microchannels. The storage chamber and unit cell lysis chamber can be connected to the system by other microchannels. One of the specific embodiments of the present invention is to use a nanostructure sensor in such a microfluidic system. The fluid analyte delivery system is described in U.S. Patent No. 6,290,839 to Kayyem, wherein the detection surface comprises a detection electrode having a single layer of conducting oligomers and, if desired, a capture bonding ligand that can bind to the analyte of interest. The target analyte directly or indirectly binds to the capture bond to form a bond complex. The bond complex further includes at least one electron transfer share. The presence or absence of the electron transfer share is detected by the detection electrode. One of the embodiments is based on the Kayyem, 839 patent, which utilizes a nano organizer as a sensor component in the device. &quo The nanosensor according to the specific embodiment of the present invention can also be used as a detector of the principle disclosed in US Pat. No. 6-361,958, the entire disclosure of which is incorporated herein by reference. Microchannels, _ sub-domains and groups of specific bond pairs, such as bonded to the porous polymer in the microchannel broadcast = DNA or RNA. Microchannels can be made of plastic, and operate the connecting fluid to push 2 pieces and check Therefore, this issue is specific to the day--the secret ^ is incorporated into the system towel of Sheih's lion patent. Μ 、, and weaving according to the "Natural sensor of the month" is also the same as the cited moxibustion In the test file, the nanometer flow is used for analyte delivery and (4)^, 2. Non-covalent functionalized second type, and the surface of the nanostructure is not working. This makes a variety of cations, anions, metals

及蛋白質可交互作用。 』刀于、DN/V 非共價魏化優點在於分子對奈米管側壁之非共價鍵結,而 1330403 實質保留奈米管之化學結構及電氣特徵。奈米感職置之優點在· 於此類功能化奈米管增加,或可能將奈㈣鍵結至分析物分子或 原子三奈米組織可藉由添加祐琳(pyren⑻或其他已知鍵結於 奈米官或;5墨德學物❿被非共價祕化。例如在有機溶劑如乙 烷甲酿胺(dimethy丨formaide)或曱醇(methano丨)中之啉 丁烧酸(1-pyrenebutanoic acid)及琥珀硫亞氨酯(sucdni.midy| ester)均可用以產生琥珀硫亞氨功能化奈米管。此方法優點在 於芘啉群與奈米管側壁之交互作用,同時產生與親核酸性 (nucleophilic)替代物高度反應之琥珀酯群,此係藉由見於大 · 部分蛋白豸與縮氣酸及許多藥物及藥物前化合物之表面之主妻 及次要胺類,其中”藥物前”為例如在人體中藉由正常新陳代謝過 程轉換為活性型式之藥物之非活性前置物。此功能化機制用以留. 滯蛋白質及多種其他生物分子於SWNT側壁上,且較佳為感測 結合或鍵結該等留滯分子之分子。例如可將抗生蛋白鏈菌素 (streptavidin)吸附於奈米管表面上,俾供免疫組織化學感測之 用。見於Chen等人於丄Am. Chem_ Soc.第123卷第3838-39 頁(2001)之’’Non-covalent Sidewall Functionalization of Single Walled Carbon Nanotubes for Protein Immobilization”。利用此 _ 類奈米感測益與分析物檢測糸統相容’其中避免非特定鍵結。見 於例如Star等人於Nano. Lett.第3卷第4號第459-63頁(2003) 之"Electronic Detection of Specific Protein Binding Using Nanotube FET Devices”。 已知有許多供非共價功能化奈米管用之方法。見於例如丄And proteins can interact. The advantage of knives and DN/V non-covalent Wei is that the molecules are non-covalently bonded to the sidewalls of the nanotubes, while 1330403 essentially retains the chemical structure and electrical characteristics of the nanotubes. The advantages of nano-sensory presence in such functionalized nanotubes may increase, or may bind nai (tetra) to analyte molecules or atomic nano-nanostructures by adding yuen (pyren (8) or other known bonds) Nami official or; 5 Mede ❿ is secreted by non-covalent. For example, in the organic solvent such as dimethy丨formaide or methano oxime (1-pyrenebutanoic) Acid) and amber thiosemicarbamate (sucdni.midy| ester) can be used to produce amber sulphide functionalized nanotubes. The advantage of this method is the interaction between the porphyrin group and the side wall of the nanotube, and the production of nucleic acid A nucleophilic alternative to the highly reactive succinic ester group, which is found in the pro- and diamines on the surface of large and partially peptones and acetal acids and many pharmaceutical and prodrug compounds, among which "pre-drug" An inactive precursor for, for example, a drug that is converted to an active form by a normal metabolic process in the human body. This functionalization mechanism is used to retain the lag protein and various other biomolecules on the SWNT sidewall, and preferably for sensing binding or Bonding Molecular molecules. For example, streptavidin can be adsorbed on the surface of a nanotube and used for immunohistochemical sensing. See Chen et al. Chem. Soc. Vol. 123, No. 3838- ''Non-covalent Sidewall Functionalization of Single Walled Carbon Nanotubes for Protein Immobilization' on page 39 (2001). Use this _-like nanosensitivity to measure analyte compatibility with analytes' where non-specific bonding is avoided. See for example Star et al., "Neo. Lett. Vol. 3, No. 4, pp. 459-63 (2003) "Electronic Detection of Specific Protein Binding Using Nanotube FET Devices". A number of known non-covalently functionalized nanotubes are known. Method. See, for example, 丄

Kong 等人於 Science 第 287 卷第 622-25 頁(2000.1.28) 之”Nanotube Molecular Wires as Chemical Sensors” ; Kelley 等人之美國專利第6,528,020號及美國專利申請案第 2002/0172963 號之”DNA-Bridged Carbon Nanotube Arrays”。 1330403 例如^顯示於奈米管塗佈p_A (聚甲基甲基丙烯使得 =體敏感,並已顯示奈米管之金裝飾,使其對硫 :卜、—(10 )裔氣之存在敏感敏感,見於美國專利第6,528,020 號。貫際上由於奈米管維持與石磨片類似性質,近乎任何適於非 共價功能化;5墨之方法均可用贿奈米管功能化。 3·共價功能化 第二型感測器採用共價衍生奈米管表面上允許任何交互作 用之奈米組織構件。 已利用共價化學鍵結方法將奈米管功能化·例如包含重氮化 合物(diazonium)鹽類。見於」L Bahr等人於」Am Chem"Nanotube Molecular Wires as Chemical Sensors" by Kong et al., Science, Vol. 287, pp. 622-25 (2000.1.28); U.S. Patent No. 6,528,020 to Kelley et al., and U.S. Patent Application Serial No. 2002/0172963 -Bridged Carbon Nanotube Arrays". 1330403 For example, ^ is shown in the nanotube coating p_A (polymethyl methacrylate makes = body sensitive, and has shown the gold decoration of the nanotube, making it sensitive to the presence of sulfur: Bu, - (10) See U.S. Patent No. 6,528,020. In contrast, since the nanotubes maintain similar properties to the stone plate, almost any suitable for non-covalent functionalization; 5 ink methods can be functionalized with bribe nanotubes. The functionalized second type sensor uses a nanostructure member that allows any interaction on the surface of the covalently derivatized nanotube. The nanotube has been functionalized by covalent chemical bonding methods, for example, including diazonium salts. Class. Seen in "L Bahr et al." Am Chem

Soc.第 123 卷第 27 號第 6536-42 頁(2001)之”Functionalization of Carbon Nanotubes by 日ectrochemical Reduction of Aryl Diazonium Salts: A Bucky Paper 日ectrode” ;丄 L. Bahr 等人 於Chem· Mater.第 13 卷第 11 號第 3823-24 頁(2001)之”HighlySoc. Vol. 123, No. 27, pp. 6536-42 (2001) "Functionalization of Carbon Nanotubes by ectrochemical Reduction of Aryl Diazonium Salts: A Bucky Paper ectrode"; 丄L. Bahr et al., Chem. Mater. 13 Volume No. 11 3823-24 (2001) "Highly

Functionalized Carbon Nanotubes Using in Situ Generated Diazonium Compounds”。其他工作者已採用無溶劑方法如單戊 烷基硝酸鹽中之苯胺。見於例如C. A. Dyke等人於J. Am. Chem.Functionalized Carbon Nanotubes Using in Situ Generated Diazonium Compounds. Other workers have employed solventless processes such as aniline in monopentyl nitrates. See, for example, C. A. Dyke et al. at J. Am. Chem.

Soc·第 125 卷第 5 號第 1156-57 頁(2003)之”Solvent-Free Functionalization of Carbon Nanotubes”。尚有其他已採用氧化 製程於單罐反應中將奈米管功能化,其中反應發生於單一反摩容 器中。見於例如M· G. C. Kahn等人於Nano· Lett·第2卷第11 號第 1215-18 頁(2002 )之”Solubilization of Oxidized Single-Walled Carbon Nanotubes in Organic and Aqueous Solvents through Organic Derivatization” ° 仍有其他對單壁碳奈 米管具共價鍵結縮氨酸核酸序列者。見於例如K. A. Williams等 人於 Nature 第 420 卷第 761 頁(2002)之”Carbon Nanotubes with DNA Recognition”。 1330403 μ I t I: #人之_ —種提供共償功能化奈米管夺 恤織之=合奈細___ _ nude丨c咖PMA,未飽和之_類似物)及以互補_ 些巨分子線纽,使縣米,_之觸_合併隱之特定分 子識別外型。此使得DNA魅化奈賴_由以朗為基之组 置中’並可藉由序列物付接,綱奈米組織 作為生物祕之探針i _合共做PNA之奈倾織之技術 包含超音波縮短奈米組織繩i小時於濃度比為3:1之H2 HN〇3混合物中。依序暴露於1M Hc丨產生豐f的碳氧基端群了 此材料接著散佈於乙烷甲醯胺(DMF,99 5% )並於2mM之卜 乙基-3-(3-二甲基氨基丙醋)碳基二硫亞氨氯化氫及5_之咚氫 氧玻巧,氨(NHS)溫育3〇分鐘,以形成奈雜義聯之㈣ 酯。接著藉由此材料於DMF中與過量PNA反應彳小時,形成 PNA 加合物(序列:NH2_au_G丁gctcatggtg c〇nh2,其 中Glu為谷氨酸殘餘物,中間區塊則代表核酸基)。ρΝ>Δ;衍生化 奈米組織轉換為水並散佈於05%之十二烷基磺酸鈉 dodecyl sulphate)水溶液中。為檢驗dNa氫化於此修改之組 碑,具雙月又DNA之片段,其12基對、單股”黏膠”端與所採用之 PNA序列互補。這些片段係由切割具限制酵素之雙股DNA並將 產物束成單股寡聚核甘酸產生。此黏膠性DNA氫化於水中之 PNS-奈米組織’與5mM MgCI2沉積於新分裂之雲母上。將該表 面洗濯並烘乾。可接著·記錄DNA/PNA-奈米組織混合物之原子力 顯"敵照相。此衍生化複合物之抗感測性質可用於生物應用中,例 如生物感測器。 這些方法可了解及測量具直接藉由共價鍵結添加之特定配 份或感測媒介之奈米管之功能化。結果,功能化奈米管成為反應 性化學物本身’可進一步施行其他化學反應造成此等充作奈米管 1330403 之多樣物種’該等奈米管具有奈米晶體及無機化合物。見於例如 S. Banerjee 等人於 Nano. Lett.第 2 卷第 1 號第 49-53 頁(2002) 之 Functionalization of Carbon Nanotubes with aSoc. 125, No. 5, pp. 1156-57 (2003) "Solvent-Free Functionalization of Carbon Nanotubes". Others have used oxidation processes to functionalize nanotubes in a single tank reaction where the reaction takes place in a single anti-capacitor. See, for example, M. GC Kahn et al., Nano. Lett. Vol. 2, No. 11 1215-18 (2002) "Solubilization of Oxidized Single-Walled Carbon Nanotubes in Organic and Aqueous Solvents through Organic Derivatization" ° For a single-walled carbon nanotube with a covalently bonded peptide nucleic acid sequence. See, for example, "Carbon Nanotubes with DNA Recognition" by K. A. Williams et al., Nature, Vol. 420, 761 (2002). 1330403 μ I t I: #人之_ - A kind of co-payment of functionalized nanotubes to win the woven fabric = 奈奈细___ _ nude丨c coffee PMA, unsaturated _ analogs) and to complement _ some giant Molecular line, so that the county meters, _ touch _ merge hidden specific molecular recognition appearance. This makes the DNA enchanting Nai _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The sonic-short nanostructured rope was i hr in a mixture of H2 HN〇3 at a concentration ratio of 3:1. Sequential exposure to 1M Hc 丨 produces a fluorinated carbonyl end group. This material is then dispersed in ethaneformamide (DMF, 99 5%) and in 2 mM ethyl-3-(3-dimethylaminopropyl) Vinegar) Carbon-based dithioiminohydrogen chloride and 5 咚 Hydroxide, and ammonia (NHS) is incubated for 3 minutes to form the naphthyl ester. This material is then reacted with excess PNA in DMF for a few hours to form a PNA adduct (sequence: NH2_au_G butyl gctcatggtg c〇nh2, where Glu is a glutamic acid residue and the middle block represents a nucleic acid group). ρΝ>Δ; Derivatization The nanostructure was converted to water and dispersed in an aqueous solution of 05% sodium dodecyl sulphate. To test the hydrogenation of dNa in this modified group, a two-month, DNA fragment with a 12-base, single-stranded "viscose" end complementary to the PNA sequence employed. These fragments are produced by cutting the double-stranded DNA that binds the enzyme and bundles the product into a single oligo-nucleotide. The PNS-nanostructures in which the viscose DNA was hydrogenated in water and 5 mM MgCI2 were deposited on the newly split mica. Wash and dry the surface. It is then possible to record the atomic force of the DNA/PNA-nano tissue mixture " enemy photography. The anti-sensing properties of this derivatized complex can be used in biological applications, such as biosensors. These methods allow for the understanding and measurement of the functionalization of nanotubes with specific components or sensing media added directly by covalent bonding. As a result, the functionalized nanotubes become reactive chemicals themselves' can be further subjected to other chemical reactions resulting in such diverse species of nanotubes 1330403. These nanotubes have nanocrystals and inorganic compounds. See, for example, S. Banerjee et al., Nano. Lett. Vol. 2, No. 1, pp. 49-53 (2002), Functionalization of Carbon Nanotubes with a

Meta丨-Containing Molecular Complex” ; S. Banerjee 等人於 Nano· Lett.弟 2 卷弟 3 號第 195-200 頁(2002)之”Synthesis andMeta丨-Containing Molecular Complex”; S. Banerjee et al., Nano· Lett. 2, Volume 2, pp. 195-200 (2002), “Synthesis and

Characterizaiton of Carbon Nanotube-NanocrystalCharacterizaiton of Carbon Nanotube-Nanocrystal

Heterostructure”; S. Banerjee 等人於丄 Am_ Chem. Soc.第 124 卷第 30 號第 8490-48 頁(2002 )之”StructuralHeterostructure"; S. Banerjee et al., Am. Chem. Soc. Vol. 124, No. 30, pp. 8490-48 (2002) "Structural

Characterization, Optical Properties, and Improved Solubility of Carbon Nanotubes Functionalized with Wilkinson'sCharacterization, Optical Properties, and Improved Solubility of Carbon Nanotubes Functionalized with Wilkinson's

Catalyst”。可利用多種可得之化學作用修改這些功能化奈米管建 構區塊’俾賦予為欲感測之近乎任何化學或生物媒介所需之群及 配體。 如在此具非共價功能化之情況,共價功能化奈米管可以三種 方式產生奈米感測器。可將奈米管個別功能化並施加於一基板 上,例如利用旋轉塗佈方法或其他應用方法。在另一實施例中, 可將^米組織施加於基板上,並接著在樣式化前共價功能化。在 另貝例中,可在產生奈米組織並樣式化後將奈米組織功能 化。此二種方法本身均可產生包含一或多型功能化奈米管之奈米 ^織」不論具有原始奈米管與否皆然,端視所期感測器應用而' 疋。一旦成功產生包含適當功能配份集之奈米管來源, 各種方法製造奈米感測器。 4_混合 第四型感測為採用兩或三種前述類型之混合。利用此混合, 以,在可檢測多重分析物及分析侧型之多重鍵結位置類^產 米感測器。在將奈米管施加於基板前,可產生表面功能 不米官之許多不同可能組成,藉以允許可同時觀察各分析物之 1330403 感測部件之混合。 性實施例之方法 圖4 (A) - (ρ)集體闡示以產生類似圖3 (a)或部分十 (見於例如以下圖4 (Ν,)所述)圖2 (D)之例示性奈米I 器之例示性方法期間產生之各種中間結構。 、、 提供具絕緣或氧化物層4G2之秒晶圓基板4.或者可以適 用於微影侧及電子往㈣健作基板,氧聽❹丨可為任 適备絕緣體。氧化物層402具有上表面4〇4。氧化物層4〇2較 佳厚數奈米,但可厚至!微米。樣式化及侧祕物層4〇 = ,胸賴 4(Α) 之中間結構 ,从况代孜何叻s,空洞406寬度可窄至約…笊本驭 化視可知之微景彡樣式化麵而定。但空洞寬些或窄些皆可 應用及所減之製造方法而定。剩餘氧錄材料界定空洞⑽ 任W則上之支撐體410。下電極412沉積於空洞4〇6中。可自 任何適當導體或半導體選擇f極材料。若需要,將下電極化 平坦化使其上表面與上表面4Q4實質等高,形成圖4⑻之 間結構414。或者下電極412可為預製之接觸检(咖㈣_、 或介層洞⑽)。亦可以其他方式沉積或製造下· 412 在基板400表面上形成在内。.. . 0 沉積氮化物層416 (或任何適當絕緣體)於中間結構414表 面,形成圖4 (C)之竹曰,結構418。氮化物層416且有上 42^。對G.18微米基本規則⑽)而言,氮化物厚度之非限制 性實例為近乎20奈米。氮化物厚度可隨所期最終產品之基本規 = 彡f卩撕否細額域揮發性,_ 響\/。。及V。#電Μ。 接著樣式化與_氫化物層416產生對應於實質位於下電極 1330403 :=卡管主動區422之尺寸外型之空洞。剩餘氮化· 區域中,_湖4(d)之中騎構‘ 儿牙貝犧牲層428於中間結構426表面上,形成圖4 中間結構430。可製成犧牲層428之材料之非限制性 ^ 刻(必辦)本發日狀蚊實_之其他^ =可適當材料均可制。犧牲層42δ厚度之雜制性 數1級在100至200奈米。 数< 平坦化中間結構430之上表面’使得剩餘多晶石夕層432 面與剩餘氮化物層424之上表面實質等高,因而形成θ圖 、 之中間結構434。 於中間.結構434絲上施加或形成奈米管組織们6,因而形 =4 (G)之中間結構438。施加此组織之非限制性方法為旋 轉塗佈、氣溶膠施加、沉浸或化學氣相沉積,如以上所列及引用 之參考文件所述。 施加光阻層440於中間結構438表面,形成圖4 中 間結構442。 如圖4 (I)所示,奈米管組織區447 (如虛線所示)較藉由 一微影樣式化光阻層440樣式化之奈米管主動區422 (見圖4 (D))大,形成具暴露之奈米組織部446與樣式化光阻層448 之中間結構444。接著移除暴露之奈米管組織446,形成圖4(」) 之中間結構450。一種樣式化奈米管組織之非限制性方法為電漿 灰化。 利用任何適當方法如剝除來移除樣式化光阻層448,形成圖 4 (Κ)之中間結構452。結構452具有基本上對應於圖4⑴ 之奈米管組織區447之樣式化奈米管組織4Μ。 沉積多晶矽456於中間結構452表面.,形成圖4 ( L )之中 間結構458。多晶矽層456厚度之非限制性範圍介於約2〇至50 1330403 J 4 (M) < 。剩餘多日官動區422上之剩餘多晶石夕層部 422 -' 之方向圖,之結㈣ (f) 440 組織部餘光阻層449,啊暴露奈米管 光阻# 449 Λ /夕層457於暴露之奈米管部447及剩餘 如f (未顯示);^露之;米管=多= 並描述如後。 人步私概繪如圖4 (N,) 構^積上電極材_於爐 之任何金屬或導體選擇電極材料464之自^於電子部件用 所製裝置之特定用途而為絕緣體,例如若3 材料可視 :亦可將上、”界定為線或孔働.或其 =】=* 極構之電 多晶石夕層部460及剩餘多晶石夕^ 弟·^極,刻剩餘 。中間結構476在剩餘多晶梦 07 )之中間結構. 管組織仍及_ 474。提供岐謎提Catalyst". A variety of available chemistries can be used to modify these functionalized nanotube building blocks' to impart the desired group and ligand for almost any chemical or biological medium to be sensed. In the case of functionalization, covalently functionalized nanotubes can be used to generate nanosensors in three ways. The nanotubes can be individually functionalized and applied to a substrate, for example using a spin coating method or other application methods. In one embodiment, the tissue can be applied to the substrate and then covalently functionalized prior to styling. In another example, the nanostructure can be functionalized after the nanostructure is produced and styled. Both methods can produce nanowires containing one or more types of functionalized nanotubes, regardless of whether they have original nanotubes or not, depending on the sensor application. Once the source of the nanotube containing the appropriate functional component set is successfully produced, various methods are used to fabricate the nanosensor. 4_Mixing The fourth type of sensing is a mixture of two or three of the foregoing types. This mixing is utilized to detect multiple analyte locations in multiple analytes and analytical side profiles. Before the application of the nanotubes to the substrate, a number of different possible compositions of the surface function can be created, thereby allowing the mixing of the 1330403 sensing components of the analytes to be observed simultaneously. Method of the embodiment Figure 4 (A) - (ρ) collective illustration to produce an exemplary Nana like Figure 3 (a) or part X (see, for example, Figure 4 below) Various intermediate structures produced during the exemplary method of the meter. Providing a 4G2 second wafer substrate with an insulating or oxide layer 4. Alternatively, it can be applied to the lithography side and the electrons to the (4) substrate, and the oxygen cymbal can be any suitable insulator. The oxide layer 402 has an upper surface 4〇4. The oxide layer 4〇2 is preferably a few nanometers thick, but it can be thick! Micron. The styling and side secret layer 4〇=, the middle structure of the chest lag 4 (Α), from the condition of the 孜 叻 , s, the width of the cavity 406 can be narrowed to about ... 笊 驭 视 可 微 微 微 微 微 微 微 微 微 微 微 微And set. However, the wider or narrower voids can be applied and reduced. The remaining oxygen recording material defines a support (410) on the cavity (10). The lower electrode 412 is deposited in the cavity 4〇6. The f-pole material can be selected from any suitable conductor or semiconductor. If necessary, the lower electrode is planarized so that the upper surface thereof is substantially equal to the upper surface 4Q4 to form the structure 414 between Fig. 4 (8). Alternatively, the lower electrode 412 can be a prefabricated contact inspection (coffee) or via (10). It may also be deposited or fabricated in other ways. 412 is formed on the surface of the substrate 400. . . . 0 deposits a nitride layer 416 (or any suitable insulator) on the surface of the intermediate structure 414 to form the bamboo crucible of FIG. 4(C), structure 418. The nitride layer 416 has an upper layer 42. For the G. 18 micron basic rule (10)), a non-limiting example of nitride thickness is approximately 20 nanometers. The thickness of the nitride can be determined according to the basic rules of the final product of the final product = 彡f卩 torn the fine area volatility, _ ring \ /. . And V. #电Μ. Subsequent styling and hydride layer 416 produces voids corresponding to the dimensions of the lower electrode 1330403: = card active region 422. In the remaining nitriding region, the _ lake 4(d) rides the ‘the dentate sacrificial layer 428 on the surface of the intermediate structure 426 to form the intermediate structure 430 of FIG. The material of the sacrificial layer 428 can be made as a non-restrictive ^ engraving (must do) the hair of the Japanese mosquitoes _ other ^ = can be made of suitable materials. The heterogeneity of the sacrificial layer 42 δ thickness is in the order of 100 to 200 nm. The number < flattening the upper surface of the intermediate structure 430' causes the remaining polycrystalline layer 432 surface to be substantially equal to the upper surface of the remaining nitride layer 424, thereby forming an intermediate structure 434 of the θ diagram. The intermediate structure 438 is applied or formed in the middle of the structure 434 wire, and thus the shape = 4 (G). A non-limiting method of applying this tissue is spin coating, aerosol application, immersion or chemical vapor deposition, as described in the references listed above and incorporated by reference. A photoresist layer 440 is applied to the surface of the intermediate structure 438 to form the intermediate structure 442 of FIG. As shown in Figure 4 (I), the nanotube tissue region 447 (shown in phantom) is compared to the nanotube active region 422 patterned by a lithographically patterned photoresist layer 440 (see Figure 4 (D)). Large, an intermediate structure 444 having an exposed nanostructure portion 446 and a patterned photoresist layer 448 is formed. The exposed nanotube structure 446 is then removed to form the intermediate structure 450 of Figure 4 ("). A non-limiting method of styling nanotube structures is plasma ashing. The patterned photoresist layer 448 is removed by any suitable method, such as stripping, to form the intermediate structure 452 of FIG. Structure 452 has a patterned nanotube structure 4 that substantially corresponds to the nanotube tissue region 447 of Figure 4(1). A polycrystalline germanium 456 is deposited on the surface of the intermediate structure 452 to form an intermediate structure 458 of Figure 4 (L). The non-limiting range of thickness of the polysilicon layer 456 is between about 2 Å to 50 1330403 J 4 (M) < The remaining polycrystalline stone layer 422 -' on the remaining multi-day official zone 422, the knot (4) (f) 440 tissue residual photoresist layer 449, ah exposed nanotube photoresist # 449 Λ / eve Layer 457 is exposed to the nanotube portion 447 and the remainder such as f (not shown); ^ exposed; meter tube = more = and is described below. Figure 4 (N,) constructs the electrode material _ any metal or conductor selection electrode material 464 in the furnace is an insulator for the specific use of the device made of the electronic component, for example, if Visible material: can also be defined as "line or hole 働. or its =] = * pole structure of the electric polycrystalline stone layer 460 and the remaining polycrystalline stone Xi ^ ^ ^ pole, engraved remaining. Intermediate structure 476 in the middle of the remaining polycrystalline dream 07). The tube organization is still _ 474.

I 支撐體之結構進一步示如圖式如圖5與6。 在無上4下產生L。產生或提供中間結構4〔Α/Π 亚U剩餘多晶石夕層部460與剩餘多晶石夕432,示 ), 自懸浮奈米管組織472製之懸浮奈米感測二有= 』’且如圖4 (Ν’)所示’可藉由接釘結構卿將樣 ^所 ::=ί==:Γ8。。恤物‘ 奈米組織與一電極間製作夠大之間隙距離,以避▲兩者 以性I觸’但近到足以使得電極_奈米組織交互作用可^ 以一關閉相對置放之非揮發性感測器單元。)切換裝置之 懸汗奈米組織部中張力及周圍間隙距離影響,如此處所述。’、、’入 在這些及其他實施例中,在諸多因素中,所得裝置及開關之 視電極與連接之架構及配置而定。注意下列實施例中各型電 =架構,做為這些裝置及多種潛在賴之彈性指標。例如部分 ^置共用在不只一個奈米組織物件間之共用電極(例如兩奈米組 =切換構件文—相同翻電極影響)。其他裝置具有分別影響奈 =組織行為之個別電極。每一奈米組織物件可採用一或多個電極 控,制該物件’如所引用之參考文件所述,其名稱 為 Electromechanical Three-Trace Junction Devices”。 圖5顯示可自圖4 (P)之結構476製作之金屬化機制。結 構=76中奈米感測器已為絕緣材料51〇所封至少部分,並具間 隙阿度520 ’形成結構500。在部份實施例中,間隙高度520為 ,如犧牲多晶矽層432厚度之函數。見於上圖4 (〇)。奈米組 ,偏折即可接觸下電極412,形成根據凡得瓦(van der Waa|s ) 人互作用*得之穩定接面,並||以造成非揮發性開關。 1330403 圖6顯示圖4 (P)之中間結構476之平面圖。氧化物層支 撐奈米組織472,氮化物層616支撐電極468。顯示剖面A_A,、 B·^與C-C’位置供參。 圖7係在圖6所示剖面A-A’之中間結構476之透視圖,圖 8-9係與圖5之中間結構5〇〇類似之分別在圖6所示剖面β七, /、CC之懸浮奈米感測裔結構8〇〇之透視圖(結構與結構 500類似,但為簡明之故,移除上絕緣層 > 在圖8 (a)中,基 板層400支撐氧化物層402。下電極412位於奈米組織仍之 觸,奈米組織472固定於絕緣層424。絕緣層⑽ 與510支撐電極材料468。 a 不依本發明之—實施例之懸浮奈緋則器 圖。在此剖面之奈米組織472看夾失盥杠•甘 如圖5所示,夺米έ且織石雀膏应未與f何其他構件接觸,但 層424 (未干與未顯不之其他構件接觸-例如絕緣 :成(未 )大圖(示如虛線)顯示基板400、难 j層402、絕緣層424及電極412與糊之 大 米組織472之位置,參考前述構件。 _以及奈 與用以提供與測量所需之電極接觸之奈米 細節·圖(N,)之結構SC 用中V如後述。利;兩;轉極接觸之應 小。以在室溫下、在水中平均分‘===之大 %之聚乙二醇(PEG)與平均分子量為10,_且^ = %之聚乙稀亞胺之混合物處理包含原始單壁碳=刀比1〇 織-整仪。此步驟所需實際濃度及時間量會隨不米組 之尺寸及密度而變。此外,注音太 ς置斤而示米組織 處理勸及奈米組織观’騎㈣乾而非lilt 1330403 ίί:爐中縣奈奸闕,不論具有氧氣與否皆可 。在水中完 全,4後,奈米組織在室溫下歷經—整夜之15刚生物素城 硫緣旨溶液。在整夜於奈纽織上衍生化自由胺基群 HI 物塗佈且非放祕方式__te)之奈米組 f之^\力,其係在室溫下歷經〇_魏緩衝鹽(pH74) =之2·5_抗生蛋白鏈菌素溶液。只要測量電壓夠低,即可於 Ϊ1 丁時,附接電氣接觸。比較,,預職”(未添加抗生 =綠軸抗终自_雜結之奈雜織之電氣 特被’以描述鍵結情況。 粒鍵結之抗生蛋_时歧鍵結份額之總 二w或AFM計算奈米組織之給定區域之微粒,以 =特4颜w之敏紐大小讀量^由於歧生化可於 易於產生具有極窄範圍™^^ 組織感測咨(大小超過4個數量級或更多)。 承之ί實施例之奈米f感測器之方法無需使用可 i又m 。但亦可採用此基板。較佳實施例之感測 ^般係由具有備援傳導奈米管之奈米管組織構成;這些組織可 ,CVD產生’或藉由此處所述及引用之參考文件之室溫操作 ,之。在此備援感測器中,若一感測奈米管損壞,裝置將可因各 感測裔中之備援傳導構件而維持作業。由於此處 了於室溫下製作,故近乎可採肺減板,包含高彈性材 膠均可。 根據本發明之特定實施例之奈米感測器易於利用半導體業 界中可見之標準技術如旋轉塗佈及微雜造。各奈域測器之夕卜 型大小可由鄕或沉積決定。由於湘崎標準技術 測器it整體成本、良率及陣列大小會較以其他已知技術生ί 感測器高。根據本發明之特定實施例之奈米感測器單元可用於大 1330403 * 量平行陣列中並可利用標準CMOS相容感測放大器及控制邏輯· 而多工。 根據本發明之實施例之奈米感測器與高解析度接觸印刷法 相容。見於H. Li.等人於Nano Lett第2卷第4號第347-49頁 (2002)之’’High-resolution Printing with Dendrimers,,。可於基 板上產生樣式化奈米組織(如下述及引用之參考文件),可夢由 適當接觸印刷法將該等樣式化奈米管轉移至案二基板上。參^如 洛解率及鍵結親和力係在選擇適當基板之重要考量因素。戋者 以1同方式轉移功能化之樣式化奈料。採賴觸印刷技術 -替代為施加魏化浙之樣式於樣式化奈纽織上之 例如在不同奈米組織感測器單元上。 也 、本發明人考量標準半導體測試設備可用於併同组 包含晶圓探針。丁織標準測試設傷之實例 本發明之健實_之奈米制器可於可承受cVD 應====利用旋轉塗佈或‘ 衍^後 ====___ 使得二S ’ H電極·例如本翻之特相示 =奈米組織材料形成。在部分實施例中Λ有'^身 組織構件472而非金屬電極 二有位於可移動奈米 物件可自上電極下移動犧牲 =^哉帶或其他奈米組織 米組織材料,以移動犧牲材料4:°二J位於犧牲層上之奈 織材料形成下電極2〇8。 、、 右有所期,可由奈米組 前揭實施例中所示及所述裝置及物件僅供闡示之用,可 ,他技術產生相同或其等效品。此外,可利用其他類型材料置換 _用不同幾何外雜改所示物件。例如上述,並雜用金雷 =接本發明之雜實補可_奈米錄或包含奈料之傳導互 附加^極可提供對铺本描述建冑之切換制器或非切換 感測器或裝置之額外㈣。例如圖3 (A) _ (c)包含呈有推及/ 或拉奈米組織段之兩不同電極之結構。對一給定參數集而t 隙距離在献敍是料㈣性或轉雜m ° 熟,此技藝者將知可產生其他電極連接位置與幾何外型。 為藉由感測器遞送待檢視之樣本,可採用微流體遞送系統。 =血液、體液、化學轉樣本射人或饋人織體遞送系統中。 ^系統可經由-微流體毛細衫統移動簡,縣之泵至感測 盗处。見於例如PCT公開案w〇oo,62931 ”The Use 〇fThe structure of the I support is further illustrated in Figures 5 and 6. L is produced without top 4. Producing or providing an intermediate structure 4 [Α/Π sub-U residual polycrystalline layer 460 and remaining polycrystalline eve 432, shown), self-suspended nanotube tissue 472 suspension nanometer sensing two have = 』' And as shown in Fig. 4 (Ν'), it can be sampled by the nail structure::=ί==:Γ8. . The 'near tissue' is made with a gap between the nano-structure and the one electrode to avoid the slickness of the two. But it is close enough that the interaction of the electrode-nano-structure can be used to close the non-volatile relative arrangement. Sexy detector unit. The effect of tension and surrounding gap distance in the hang-hang tissue portion of the switching device, as described herein. In these and other embodiments, depending on a number of factors, the resulting device and the apparent electrode of the switch and the structure and configuration of the connection. Note the various types of electrical architectures in the following examples, as these devices and a variety of potential elastic indicators. For example, a portion of the common electrode shared between more than one nano-tissue object (for example, two nanometer groups = switching member text - the same flip electrode effect). Other devices have individual electrodes that affect the behavior of the tissue = tissue. Each nanostructured article may be controlled by one or more electrodes, which are described as "Electromechanical Three-Trace Junction Devices" as described in the referenced reference. Figure 5 shows that it can be from Figure 4 (P) The metallization mechanism of the structure 476. The structure = 76 nanometer sensor has been sealed for at least part of the insulating material 51, and has a gap 520' to form the structure 500. In some embodiments, the gap height 520 is As a function of the thickness of the sacrificial polysilicon layer 432. See Figure 4 above (〇). In the nano-group, the deflection can contact the lower electrode 412 to form a stable according to the interaction of van der Waa|s. Junction, and || to cause a non-volatile switch. 1330403 Figure 6 shows a plan view of the intermediate structure 476 of Figure 4 (P). The oxide layer supports the nanostructure 472, and the nitride layer 616 supports the electrode 468. The profile A_A is displayed. Fig. 7 is a perspective view of the intermediate structure 476 of the section A-A' shown in Fig. 6, and Fig. 8-9 is similar to the intermediate structure 5 of Fig. 5. In the section shown in Figure 6, respectively, β, /, CC suspended nanometer sensing of the structure of the 〇〇 〇〇 透视The figure (structure is similar to structure 500, but for the sake of brevity, the upper insulating layer is removed). In Fig. 8(a), the substrate layer 400 supports the oxide layer 402. The lower electrode 412 is located in the nanostructure still, The rice structure 472 is fixed to the insulating layer 424. The insulating layer (10) and 510 support the electrode material 468. a non-independent embodiment of the suspension of the present invention. The nanostructure 472 in this section looks at the collapsed crowbar. As shown in Figure 5, the stalked stalk and the garzed plaster should not be in contact with other components, but layer 424 (not dry and in contact with other components not visible - such as insulation: into (not) large image (shown as The dotted line shows the position of the substrate 400, the hard layer 402, the insulating layer 424, and the electrode 412 and the paste rice tissue 472, with reference to the aforementioned members. _ and the nanometer and the figure for providing contact with the electrode required for measurement. The structure of (N,) SC is as follows, which is described later. Li; two; the contact of the pole should be small. The polyethylene glycol (PEG) with a large percentage of '=== at room temperature in water The mixture of polyethyleneimine having an average molecular weight of 10, _ and ^ = % was treated to contain the original single wall carbon = knife ratio 1 woven fabric. The actual concentration and amount of time required for the step will vary with the size and density of the non-meter group. In addition, the phonetic is too sturdy and the meter is treated to persuade the nano-tissue view to ride (four) dry instead of lilt 1330403 ίί: in the furnace County traitor, whether it is oxygen or not. In water completely, after 4, the nano-tissue experienced at room temperature - overnight 15 biotin sulphur sulphur solution. The derivatized free amine group HI coated and non-secret mode __te) of the nano group f ^ ^ force, which is at room temperature through the 〇 _ Wei buffer salt (pH 74) = 2 · 5 _ antibiotic Streptomycin solution. As long as the measured voltage is low enough, the electrical contact can be attached when the voltage is too high. Comparison, pre-employment" (no anti-antibiotic = green axis anti-final self-hybrid Nylon weaving electrical special is used to describe the bonding situation. The total bond of the particle-bonded anti-eating egg _ time-distribution bond share w Or AFM calculates the particles in a given area of the nano-tissue, and reads the amount of the sensitive area of the nano-small w. Because of the biochemistry, it can be easily produced with a very narrow range of TM^^ tissue sensing consultation (more than 4 orders of magnitude in size) Or more. The method of the nanometer f sensor of the embodiment does not need to use i and m. However, the substrate can also be used. The sensing of the preferred embodiment is performed by having a relayed nanometer. Tube nanotube structure; these tissues can be CVD generated or operated by room temperature as described and referenced herein. In this backup sensor, if a nanotube is sensed If it is damaged, the device will be able to maintain the operation due to the spare conductive members of each sensing person. Since it is made at room temperature, it can be used for almost all of the lungs, including high-elastic rubber. According to the present invention. The nanosensor of a particular embodiment is readily adaptable to standard techniques found in the semiconductor industry, such as spin coating And the size of each nanometer detector can be determined by 鄕 or deposition. Because the overall cost, yield and array size of the Xiangsaki standard technology tester will be higher than other known technologies. The nanosensor unit in accordance with certain embodiments of the present invention can be used in a large 1330403* parallel array and can be multiplexed using standard CMOS compatible sense amplifiers and control logic. The meter sensor is compatible with high resolution contact printing. See H. Li. et al., Nano Lett, Vol. 2, No. 4, pp. 347-49 (2002), 'High-resolution Printing with Dendrimers,. Patterned nanostructures can be produced on the substrate (as referenced below and cited), and the patterned nanotubes can be transferred to the second substrate by appropriate contact printing methods. The affinity of the knot is an important factor in the selection of the appropriate substrate. The latter uses the same way to transfer the functionalized na[iota]. The printing technique is used instead of applying the style of Weihuazhuang to the styled nai. Sensing in different nanostructures Also, the inventor considers that standard semiconductor test equipment can be used in the same group to include wafer probes. Example of Ding Weaving Standard Test Injury The present invention can be used to withstand cVD === == Using spin coating or 'derivation ====___ to make the two S 'H electrodes, for example, the special phase of the present turn = nano tissue material formation. In some embodiments, there is a 'body structure member 472' The non-metal electrode 2 is located in the movable nano object and can be moved from the upper electrode to sacrifice the sacrificial band or other nanometer tissue structure material to move the sacrificial material 4:°2J under the sacrificial layer The electrodes 2〇8, 、, right, can be illustrated by the nano group before the embodiment and the device and the object are for illustrative purposes only, but the technology produces the same or equivalent. In addition, other types of materials can be used to replace the objects shown with different geometrical modifications. For example, the above-mentioned, and miscellaneous use of Jin Lei = connected to the invention of the invention can be used to provide a switch or non-switching sensor for the description of the shop. Additional (4) of the device. For example, Figure 3 (A) _ (c) contains structures with two different electrodes with push and / or a nano-tissue segment. For a given set of parameters and the t-gap distance is familiar in the narrative (four) or transmissive m °, the skilled artisan will know that other electrode connection locations and geometric shapes can be produced. To deliver a sample to be inspected by a sensor, a microfluidic delivery system can be employed. = blood, body fluids, chemical transfer samples are injected or fed into the body delivery system. ^ The system can be moved via the microfluidic capillary system to the county's pump to sense the theft. See, for example, the PCT publication w〇oo, 62931 "The Use 〇f

Anal〇t U^,C SyStemS 'n the E,ectroch®mical Detection of Target —本發明之特定實施例提供—種混合技術電路 1000,如圖 10 4斤不。利用上述奈米組織建構核心奈米感測器單元陣列1〇〇4, 。亥核心為形成X與γ位址解碼器湖6與彻8、χ與丫緩衝器 =10, 1012、控制邏輯1014及輸出緩衝器1〇16之半導體電 所環繞。環繞奈米感測核心之控制電路系統可供習知介面功能 用’包含以適當次數提供讀取電流及_輸出賴。其他實施例 可包含各麵紅賴,細適當次數分析輸出。 在特定實施例中,可利用奈米管核心(僅具奈米感測器單元 3具奈米感測裔單元與定址邏輯)及施行採用場可程式化閘極陣 列之周遭電路系統之混合電路1〇〇〇。 依本發明之另-實施例,與圖1〇之結構類似,以氣體輸入 1330403 手段1102取代微流體分離器1002,如圖Ή之結構ι1〇〇所示。. 依本發明之特定實施例之感測器之部分優點包含施行大型 應用與整合之能力。此外,-電路晶片可供感測器及來自感測器 之資訊處理及感測器控制用。此係籍由具有CMOS相容製造處 理所促進。圖22藉由顯示可置放感測器構件之接觸孔陣列而闡 示可定址感測器構件之大型陣列之可行性。 .下述特定實施例闡示利用電流鏡感測法檢測電性如奈米感 測器電各或電阻中變化之方法’見於例如Bake「等人於”Anal〇t U^, C SyStemS 'n the E, ectroch® mical Detection of Target - A particular embodiment of the present invention provides a hybrid technology circuit 1000, as shown in Figure 10. The core nano sensor cell array 1〇〇4 is constructed by using the above nano tissue. The core of the hex is surrounded by semiconductors forming the X and γ address decoders Lake 6 and the 88, χ and 丫 buffers = 10, 1012, control logic 1014, and output buffers 〇16. The control circuitry surrounding the nanosense core is available for the conventional interface function to include the read current and the _ output on the appropriate number of times. Other embodiments may include redfaces for each face, and analyze the output in a fine appropriate number of times. In a particular embodiment, a nanotube core (only nanosensor unit 3 with nanosensing unit and addressing logic) and a hybrid circuit employing a surrounding circuitry of the field programmable gate array can be utilized 1〇〇〇. In accordance with another embodiment of the present invention, similar to the structure of FIG. 1A, the microfluidic separator 1002 is replaced by a gas input 1330403 means 1102, as shown in the structure ι1〇〇 of FIG. Some of the advantages of the sensor in accordance with certain embodiments of the present invention include the ability to perform large applications and integrations. In addition, the circuit chip is available for sensor and information processing and sensor control from the sensor. This family is promoted by CMOS-compliant manufacturing processes. Figure 22 illustrates the feasibility of a large array of addressable sensor components by showing an array of contact holes in which the sensor components can be placed. The following specific embodiments illustrate the use of current mirror sensing to detect electrical properties such as variations in the electrical or electrical resistance of nanosensors. See, for example, Bake " et al."

Circuit Design, Layout,and Simulation”第 427-33 頁(1998)。Circuit Design, Layout, and Simulation, pp. 427-33 (1998).

研究者已顯示奈米管束及單一碳奈米管電極之電化學性質可靠 性足以使得此等束及個別管可充做電容器中電極,見於丄HResearchers have shown that the electrochemical properties of the nanotube bundles and single carbon nanotube electrodes are sufficiently reliable that these bundles and individual tubes can be used as electrodes in capacitors. See 丄H

Chen 等人於日ectrochem. Soc·,Proc.第 11 卷第 362 頁(2001) 之 ’’Electrochemistry of Carbon Nanotubes and theirChen et al. ectrochem. Soc., Proc. Vol. 11, p. 362 (2001) ’’Electrochemistry of Carbon Nanotubes and their

Applications in Batteries and Supercapacitors” ; Y. Tu 等人於 Nano Lett 第 3 卷第 1 號第 107-09 頁(2003)之”NanoelectrodeApplications in Batteries and Supercapacitors"; Y. Tu et al., Nano Lett, Vol. 3, No. 1, pp. 107-09 (2003), Nanoelectrode

Arrays Based on Low Site Density Aligned Carbon Nanotubes”。本發明人已顯示單一奈米管之電性在奈米組織中 明顯維持(見於引用之參考文件)。 圖12 (A)顯示耦合至電容檢測結構之電容調變結構12〇〇 剖面圖,電容器CDET 1201包括構件1202、彳204與1206。將 電容器CDET 1201加至基板-例如半導體晶片-具有已置放之傳導 互連接或具有在形成電容器CDET 1201後始置放之傳導互連 接。更特別5之’在此實例中,將電容器C〇et 1201加至已完成 之半導體結構之絕線層1218 (例如Si3N4薄膜)之上表面。絕 緣層1218沉積於絕緣體1220上。絕緣層1218支撐電容器Cdet 1201。傳導墊1202形成以奈米組織為基之電容器之底板;絕緣 體1204充作電容器介電層,及奈米管組織1206形成電容器之 1330403 頂板。奈米管組織1206藉由以傳導墊1208而電氣接觸,傳導 墊1208使用介層洞1212而接觸墊1214。墊1202與1214間 區域為部分介電層1216填充’其可由例如Si〇2組成。塾1214 .借由垂直立柱彳222連接至共用參考線彳224 (其可為接地線), 傳‘塾1202、電容器Cdet 1201之下板藉由垂直立柱1225連 接至N型半導體基板1228中之N+擴散區1226。擴散區1226 與1232及閘極1230形成PFET,其係電容器〇沉7檢測電路之 一部分。 奈米管組織1206具有栓至碳奈米管之分析物鍵結分子 1210,形成奈米組織/分析物鍵結分子複合物。可選擇鍵結分子 本質以允許特定檢測分析物(.包含分子物種、氣體、液體化學物、 蛋白質及其他已知彼此反應或鍵結之生物分子,詳如上述)之 用。奈米管組織1206為多孔,-般奈米管僅佔整體面積之約5 % (其他約95%由空洞組成)。分析物分子124〇形成傳導層及 奈米組織/分析物鍵結分子複合物。.分析物鍵結分子之非限^性 實例包含生物素’生物素特定鍵結分子之非限制性實例為印白素 ^抗生蛋白_素。此等分析物分子124Q藉由與奈米管或分析 物鍵結分子121G或甚至於奈料讀生化群而填充介於太 米管間之㈣,增加傳導墊12〇2與奈米管組織12〇6間之電^ 搞合區,及增加電容器CDET 1201之電容。電容器Cdet 12〇1 =如因而自無鍵結分子之最大值5%增加2〇倍至所有空洞均 才料填充時之最大值。對]毫米乘]毫米之編合區且寬度 $ 10奈米之Si02介電膜(絕緣體)12〇4而言,可能之组織條 件、相_合區及根據推估之SWNT電容值推估之電容值之二 ΐΞιΙΛΙΜ提供之數⑽供啦^,雜健視所採二 SWNT成伤以及例如處理與衍生化或功能化條件而變。 1330403Arrays Based on Low Site Density Aligned Carbon Nanotubes. The inventors have shown that the electrical properties of a single nanotube are clearly maintained in the nanostructure (see references cited therein). Figure 12 (A) shows coupling to a capacitance sensing structure. Capacitor modulation structure 12 〇〇 cross-sectional view, capacitor CDET 1201 includes a member 1202, 彳 204 and 1206. The capacitor CDET 1201 is applied to a substrate - such as a semiconductor wafer - with a conductive interconnect that has been placed or has been formed after forming a capacitor CDET 1201 Conductive interconnection of the initial placement. More specifically 5' In this example, a capacitor C〇et 1201 is applied to the upper surface of the completed semiconductor structure of the ground layer 1218 (e.g., Si3N4 film). The insulating layer 1218 is deposited on On the insulator 1220. The insulating layer 1218 supports the capacitor Cdet 1201. The conductive pad 1202 forms a bottom plate of a capacitor based on a nanostructure; the insulator 1204 serves as a capacitor dielectric layer, and the nanotube structure 1206 forms a 1330403 top plate of the capacitor. The tube tissue 1206 is in electrical contact with the conductive pad 1208, and the conductive pad 1208 contacts the pad 1214 using the via 1212. The area between pads 1202 and 1214 Part of the dielectric layer 1216 is filled with 'which may be composed of, for example, Si〇2. 塾1214. Connected to the common reference line 224 (which may be the ground line) by the vertical column 222, passing the '塾1202, the lower plate of the capacitor Cdet 1201 The vertical pillar 1225 is connected to the N+ diffusion region 1226 in the N-type semiconductor substrate 1228. The diffusion regions 1226 and 1232 and the gate 1230 form a PFET that is part of the capacitor sinking detection circuit. The nanotube structure 1206 has a plug to The analyte of the carbon nanotubes binds the molecule 1210 to form a nanostructure/analyte binding molecule complex. The nature of the binding molecule can be selected to allow specific detection of the analyte (including molecular species, gases, liquid chemicals, proteins) And other biomolecules known to react or bond with each other, as described above. The nanotube structure 1206 is porous, and the nanotubes only account for about 5% of the total area (other about 95% consist of voids) The analyte molecule 124A forms a conductive layer and a nanostructure/analyte binding molecule complex. An example of a non-limiting example of an analyte binding molecule comprising a biotin' biotin-specific bonding molecule is a non-limiting example of素素^抗蛋白_素. These analyte molecules 124Q are filled between the rice tubes by the biochemical group with the nanotube tube or the analyte binding molecule 121G or even the biochemical group, and the conductive pad 12 is added. 〇2 and the nanotubes are organized into 12〇6 electric junctions, and increase the capacitance of the capacitor CDET 1201. Capacitor Cdet 12〇1 = as such, the maximum value of 5% from the unbonded molecules is increased by 2 times to all The voids are all the maximum when filled. For the SiO 2 dielectric film (insulator) 12〇4 with a width of 10 mm and a width of 10 nm, possible tissue conditions, phase-combined regions and estimated values of SWNT capacitance based on estimation The number of capacitors provided by the two capacitors (10) is used for the control of the two SWNTs and the conditions such as processing and derivatization or functionalization. 1330403

條件. 袓關耦合區 電容 僅有NT組織 5% 0.17nF 部分填滿空洞 25% 0.86nF 部分填滿空洞 50% 1.72nF 部分填滿空洞 75% 2.59nF 完全填滿空洞 100% 3.45nF 表1 :電容值為仏轉充之函數 之雷相对於參考電容器Cr#電容測量—12〇1 半導ί結構1203〉閣*包含參考電容器^ 1250之已完成之 立、、° 之剖面。檢測器電容器CDET1201及參考電容 器CREF 1250兩者均為相同半導體結構之一部份。如圖12⑻ 二斤不’利用圖12⑷所示CDET Ί201電容器結構1200形成 ref 250去除刀析物鍵結分子(例如生物素)Dio,並於其 位置處加入保護性介電層12Q7。其他結構則無需改變。’、 口 13閣示測置(檢測)電容(〇〇Ετ)之電路135〇。電路1350 &併利用NFET電流鏡形成之電流源’其設定在pM〇s電流源 鏡之電流㈣定受控電流對CDET充電。這些電流鏡組態係基於Conditions. The coupling coupling area capacitor only has NT organization 5% 0.17nF Part fills the cavity 25% 0.86nF Part fills the cavity 50% 1.72nF Part fills the cavity 75% 2.59nF Completely fills the cavity 100% 3.45nF Table 1: The capacitance value is the function of the 仏 turn-on function. Compared with the reference capacitor Cr# capacitance measurement—12〇1 semi-conductor ί structure 1203> 阁* contains the reference capacitor ^ 1250's completed stand, ° section. Both the detector capacitor CDET1201 and the reference capacitor CREF 1250 are part of the same semiconductor structure. As shown in Fig. 12 (8), the CDET Ί 201 capacitor structure 1200 shown in Fig. 12 (4) is used to form ref 250 to remove the cleavage bond molecule (e.g., biotin) Dio, and a protective dielectric layer 12Q7 is added at the position. Other structures do not need to be changed. ’, the 13th cabinet shows the circuit 135〇 for measuring (detecting) the capacitance (〇〇Ετ). Circuit 1350 & and uses a current source formed by an NFET current mirror' which sets the current at the pM〇s current source mirror (4) to control the current to charge CDET. These current mirror configurations are based on

Bake「等人於 CMOS Circuit Design,Layout, and Simulation’,第 427-33頁(1998)所述基本電流鏡原理。吒丁電流鏡原理係基 於維持NFET電晶體T1與T2及pM〇s電晶體丁3與丁4於飽 和,’其中FET電流丨α (vGS-VTH) 2,VGS為FET閘極對源極 電壓,VTH則為FET臨限電壓,NFET與PFE丁電晶體兩者之 FET電流與FET源極與汲極間電壓Vds無關。電阻器r及電壓 V、Vss與橫跨電阻器R之VGS之值決定電流卜此應用之半導 體技術無需為最尖端者;1或2微米CMOS技術即適於製造所 需電路。為電晶體間及電晶體參數控制之追縱,所採通道長度較 1330403 最短通道長度長。對V=2.5伏特、Vss=-2_5伏特、VGS=1伏特* 及電晶體T1長度I_1(LEFF)=5微米且寬度νν·ι=15微米(Wi/L|=3) 之之電源值而言,R值=400歐姆將造成1〇微安培之電晶體丁1 電流。由於電流鏡原理,若電晶體T2亦設計為W/L=3,亦即 Wi/i_1 = Ws/U,則電晶體丁2中電流丨亦為1〇微安培。隨著電 晶體T2提供PFET電流鏡電晶體T3之電流源,電流|亦流經 電晶體T3,電晶體T3係PMOS電晶體且其通道電子遷移率遠 低於NMOS電晶體T2。PMOS電晶體T3因而設計為實質寬度 較大’以補償NMOS與PMOS電晶體間遷移率差異。對pM〇s 通道長度I~3 (Leff) =5微东而言,支援1〇微安培電流之通道寬 度W3=70微米。若將電.晶體T4設計為WVU = W3/L3,則電晶 體丁4中電流亦將為丨=1〇微安培。此電流將對檢測器電容器 充電。若開關S1與S2關閉-段時間τ,則儲存於電容写c 上之電荷Q為㈣叮。跨越電容器Cde丁之· v〇uT=t 如V0UT=Q/C。可藉由測量V〇UT決定電容變化。計算施加1〇微 安培1微秒之V0UT值對表1之電容值,並摘如下表2 :The basic current mirror principle described by Bake et al., CMOS Circuit Design, Layout, and Simulation, pp. 427-33 (1998). The principle of the galvanic current mirror is based on maintaining NFET transistors T1 and T2 and pM〇s transistors. D3 and D4 are saturated, 'where FET current 丨α (vGS-VTH) 2, VGS is FET gate-to-source voltage, VTH is FET threshold voltage, NFET and PFE D-cell FET current Independent of the FET source-drain voltage Vds. Resistor r and voltage V, Vss and the value of VGS across resistor R determine the current semiconductor technology for this application need not be the most sophisticated; 1 or 2 micron CMOS technology That is, it is suitable for manufacturing the required circuit. For the tracking between the transistors and the control of the transistor parameters, the length of the channel is longer than the shortest channel length of 1330403. For V=2.5 volts, Vss=-2_5 volts, VGS=1 volts* and In the case of the power supply value of the transistor T1 length I_1 (LEFF) = 5 μm and the width ν ν · ι = 15 μm (Wi/L | = 3), the R value = 400 ohms will cause 1 〇 micro ampere of the transistor D 1 Current. Due to the current mirror principle, if the transistor T2 is also designed to have W/L=3, ie Wi/i_1 = Ws/U, the current in the transistor 丨2 It is 1 〇 micro amp. As the transistor T2 provides the current source of the PFET current mirror transistor T3, the current | also flows through the transistor T3, the transistor T3 is a PMOS transistor and its channel electron mobility is much lower than that of the NMOS transistor. T2. PMOS transistor T3 is thus designed to have a substantially larger width to compensate for the difference in mobility between NMOS and PMOS transistors. For pM〇s channel length I~3 (Leff) = 5 micro-east, support 1 〇 microamperes The channel width of the current is W3 = 70 microns. If the transistor T4 is designed to be WVU = W3/L3, the current in the transistor 4 will also be 丨 = 1 〇 microamperes. This current will charge the detector capacitor. When switches S1 and S2 are off for a period of time τ, the charge Q stored on the capacitor write c is (four) 叮. Crossing the capacitor Cde · v〇uT=t such as V0UT=Q/C can be determined by measuring V〇UT Capacitance change. Calculate the capacitance value of Table 1 by applying a V UT value of 1 μm microamperes for 1 microsecond, and extract it as shown in Table 2 below:

條件 電容 v〇ut 僅有NT組織 〇.17nF 58.9mV 部分填滿空洞 0.86nF 11.6mV 部分填滿空洞 1_72nF 5.8TmV 部分填滿空洞 2.59nF 3.86mV 完全填滿空洞 3.45nF 2.90mV 表2 · V〇ut為電谷Cdet之函數 圖14顯示測量(檢測)電容CDET與參考電容cREF間電位 差Δνουτ之電路1450,以提升測量敏感度·。電路145〇操作原 1330403 理與電路1350相同。電晶體丁4以電流丨=1〇微安终對c 電,已加入額外電晶體丁5供應|=10微安培至^丁口。林= 流I至CDET,設計電晶體T5使得取5 =做4 =取3。、g埴 ,50Π洞之NT組織而言,設計參考電容器c啦使得 ^REF=CDET (表1)。電路1450之差分輸出電壓^_摘如下表Conditional capacitance v〇ut only NT organization 17.17nF 58.9mV Partially filled cavity 0.86nF 11.6mV Partially filled cavity 1_72nF 5.8TmV Partially filled cavity 2.59nF 3.86mV Completely filled cavity 3.45nF 2.90mV Table 2 · V〇 Ut is a function of the electric valley Cdet. Figure 14 shows a circuit 1450 for measuring (detecting) the potential difference Δνουτ between the capacitance CDET and the reference capacitance cREF to improve the measurement sensitivity. The circuit 145 〇 operates the original 1330403 and is identical to the circuit 1350. The transistor D4 is charged with current 丨=1〇μA, and has been added to the additional transistor D5 supply|=10 microamperes to ^but. Lin = stream I to CDET, design transistor T5 so that 5 = do 4 = take 3. For the NT organization of 50 Π holes, design the reference capacitor c so that ^REF=CDET (Table 1). The differential output voltage of circuit 1450 ^_ is as follows

條件 電容· △ V〇ut 僅有NT組織 0.17nF -53.1 mV 部分填滿空洞 0.86nF -5.79mV 部分填滿空洞 1.72nF OmV 部分填滿空洞 2.59nF 1.96mV 完全填滿空洞 3.45nF 2.91 mV 表3· △ν〇υτ為電容Cdet之函數 點當輸出電壓ΔΝ/οπΟ時,填充5〇%空洞,作為一便利參考 失考圖雷= 貝示測量(檢測)電容CDET1、C啦與Cd一對於 cREF間電位差△ v〇UT之電路,550。利用開關S3、別 T6盥i別選擇電容Cdeti、Cdet2與cdet3。已加入額外電晶體 人I 7。該操作係根據所述電流鏡原理。設計電晶體丁6與丁7Conditional capacitance · △ V〇ut Only NT tissue 0.17nF -53.1 mV Partially filled cavity 0.86nF -5.79mV Partially filled cavity 1.72nF OmV Partially filled cavity 2.59nF 1.96mV Completely filled cavity 3.45nF 2.91 mV Table 3 · △ν〇υτ is the function of the capacitance Cdet. When the output voltage ΔΝ/οπΟ, fill 5〇% of the cavity, as a convenient reference, the loss of the test chart = the measured capacitance (detection) capacitance CDET1, C and Cd - for cREF Circuit of potential difference Δ v〇UT, 550. Use switches S3 and T6盥i to select capacitors Cdeti, Cdet2 and cdet3. Additional transistor human I 7 has been added. This operation is based on the current mirror principle. Design transistor D6 and Ding 7

^^得 W成7 = W6/U = W5/U = W4/U =取3 ’ 導致 PFET 扩以兄中戶斤有電晶體提供充電電流丨=川微安培。電路1550中 ^ 電容器CDET1、CDET2與CDET3之輸出電位差AV溆 表\針對電路1450中所述相同。 L、 圖。^ 16 (Α)顯示加入半導體晶片之電阻檢測結構rdet剖面 Θ。电阻rdet係於已完成之半導體結構之例如&"4薄膜之絕 1330403 緣層1218之上表面加上,形成電阻調變結構_。表面絕緣 層1218沉積於絕緣體]22〇上,並支撐電阻器&。傳導塾棚2 奈米管電阻器之一接觸’與選用第二奈米管組織接觸 1608A之-接觸’奈米管組織12Q6則構成電阻組織^丁。藉 由金屬塾1214電連絲綺賤 接觸1_。奈米組織遍具有栓至碳奈米管之細 ^1210 > 1206 , =物咖一分析物鍵結分切咖性實例為生 物素,互補/刀析物之一非限制性實例為抗生蛋白鍵菌素。在氣體 ί分檢敎航下,奈綠織可不需渺卜分析物鍵結分 Γ 2共價或非共價衍生化或其原始型式,可感測特定分析 物。不米官組織1206為多孔’―般奈米管僅佔整體面積之約5 %、(其他岭洞組成)。多孔性之精確百分比可控制且可調整, 端視應用及所歡健與整合魏喊。此處_奈米組織產生 ΪΪίΓΐ考文件’本發明人展望是需要以少量或許多奈米管 1作奈米組織。分析物分子124〇形成傳導層,填充在奈 之空洞中,減少RDET之傳導物件内之電阻。電阻R啦將自不^ 一導電材料填咖之最低值。電阻範 一可直接檢測或相對於參考電阻rref測量電阻r〇et。圖彳6( Β ㉝示包含蒼考電阻rref之已S成之半導體結構湖3之刊 圖。檢測器電阻RDET與參考電m Rref兩者均為相同半導體、制 史-部份。圖16⑻所示Rref係利關16⑷所示% 電阻結構形成。去除分析物鍵結分子121〇,並加人保護 : 層1607。其他結構不變。 电 圖17顯示用以檢測RDET值之電路175〇之運作。設計與 作之電流鏡财基本上與圖13之電路135Q所採用者相同了以 1330403 RDET 取代 Cdet。 圖18顯示用以檢測RDET與Rref間電位差Δνουτ之電路 1850之運作。設計與運作之電流鏡原理基本上與圖14之電路 1450所採用者相同’以Rdet取代Cdet,並以Rref取代Cref 0 圖19顯示用以檢測RDET與Rref間電位差Δνουτ之電路 1950之運作。設計與運作之電流鏡原理基本上與圖15之電路 1550所採用者相同,以RDETi取代CDET1,RDET2取代CDET2, RdET3 取代 CdeT3,並以 Rref 取代 Cref。 圖20 (A)顯示感測組織之框架部份及其產生方法。此一框 架組織可藉由在基板2004上提供組織2002而產生,如中間結 構2000所示,以適當覆蓋材料2012覆蓋組織2002,如中間結 構2010所示,並微影樣式化及移除一段覆蓋材料2〇彳2,留下 .感測組織周圍之,,框架”,如中間結構202〇所示。此一束缚方法 更充份描述於所引用之參考文件”N〇n_v〇|atj|e^^得 W成7 = W6/U = W5/U = W4/U = take 3 ′ causes the PFET to expand to the middle of the household with a transistor to provide the charging current 丨 = Chuan microamperes. In circuit 1550, the output potential difference AV of the capacitors CDET1, CDET2 and CDET3 is the same as described in circuit 1450. L, figure. ^ 16 (Α) shows the resistance detection structure rdet profile 加入 added to the semiconductor wafer. The resistor rdet is applied to the surface of the finished semiconductor structure, for example, the <4<4> film 1330403 edge layer 1218, forming a resistance modulation structure. A surface insulating layer 1218 is deposited on the insulator 22 and supports the resistor & Conductive shed 2 One of the nanotube resistor contacts 'Contacts the second nanotube tissue contact 1608A-contact' Nanotube tissue 12Q6 constitutes the resistance structure. The metal 塾1214 is connected to the wire 接触 to contact 1_. The nano-tissue has a fine plug of 1210 > 1206, = the object of the analyte-analyte bond is a biotin, and one of the non-limiting examples of the complementary/knife is the antibiotic Keyin. Under the gas 分 敎 , , , , , , 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 分析 分析 分析 分析 分析 分析 分析 分析 分析 分析 分析 分析 分析 分析 分析 分析 分析 分析 分析 分析 分析 分析 分析 分析 分析The non-dimension organization 1206 is a porous '--nano tube, which only accounts for about 5% of the total area (composed of other ridges). The exact percentage of porosity is controllable and adjustable, looking at the application and the vibrancy and integration. Here, the nano tissue is produced as a reference document. The inventors of the present invention envisioned the need to use a small amount or a plurality of nanotubes 1 as a nanostructure. The analyte molecule 124 is formed into a conductive layer that is filled in the void of the Nai to reduce the electrical resistance within the conductive object of the RDET. The resistance R will not be the lowest value of a conductive material. The resistance can be directly detected or measured relative to the reference resistor rref. Fig. 6 (Β 33 shows the publication of the semiconductor structure lake 3 including the Sigaku resistance rref. The detector resistance RDET and the reference electric m Rref are both the same semiconductor, history-part. Figure 16 (8) The structure of Rref is shown in Figure 16 (4). The structure of the resistor is formed. The analyte bond molecule is removed and protected by a layer: 1607. The other structures are unchanged. Figure 17 shows the operation of the circuit 175 for detecting the RDET value. The design and operation of the current mirror is basically the same as that used in the circuit 135Q of Figure 13. The Cdet is replaced by 1330403 RDET. Figure 18 shows the operation of the circuit 1850 for detecting the potential difference Δνουτ between RDET and Rref. The mirror principle is basically the same as that employed in circuit 1450 of Figure 14 'replace Cdet with Rdet and Cref 0 with Rref. Figure 19 shows the operation of circuit 1950 for detecting the potential difference Δνουτ between RDET and Rref. Design and operation of current mirror The principle is basically the same as that used in circuit 1550 of Figure 15, replacing CDET1 with RDETi, CDET2 with RDET2, CdeT3 with RdET3, and Cref with Rref. Figure 20 (A) shows the frame of the sensing organization The method of generating the framework can be produced by providing a tissue 2002 on the substrate 2004, as shown by the intermediate structure 2000, covering the tissue 2002 with a suitable covering material 2012, as shown in the intermediate structure 2010, and lithographically patterning and Remove a piece of cover material 2〇彳2, leaving the area around the sensing tissue, as shown in the middle structure 202〇. This binding method is more fully described in the referenced document “N〇n_v〇” |atj|e

Electromechanical Field Effect Transistors and Methods of Forming Same”。覆蓋材料可為傳導性,且可用以改變整個樣式 化組織之電性,或其可為半導或絕緣。當僅開啟暴露組織之窗口 時,在奈米組織上之束缚層之材料應可選擇性蝕刻。可選擇性蝕 =配置於奈米組織與覆蓋層間之中間層上之覆蓋層之材料。在此 情況下,當細及樣式化覆蓋層時,中間層可充作餘刻阻絕。 舜—圖20⑻顯示樣式化感測組織,其中未形成框架,以s形成 设盍層之-組未連接段代之。未連接段可為電極,1 調變檢測結構之特別有用之應用。樣式化中間結、、Ά 極2042,如中間結構2〇4〇所示。 Ίϋ形成笔 圖21顯示樣式化奈米組織電容感測器之另—方法。 包含在中闕21Q4上可選擇性侧之覆蓋材料2106。 料2106較佳為金屬,中間層2iQ4較佳為半導體_例如界=何 1330403 之。將㈣層⑽置於奈米組織歷與 層2106間。在此情況下之中間層2彻 式化覆蓋層2106時之蝴_。ώ咖* 保 樣 型之樣式化覆蓋層2112,==;=2110顯示具框架外 π#。^ _何樣式均可,端視最終產物需求 Μ 91 πλ # -羞經退火步驟,使得覆蓋層2112與中間 2^120此層2122·例如金屬石夕化物-以產生結構 最终產而定充作編料極或其他接觸或定址構件,端視 其他實施例 細奈之外’可見到其他具有適於賴切之電子與 =性質之材料。這些材料具有與碳奈米管類似之性質,伸展 ^度不同並可能降低。對設計來使用或致能電機切換之實施例而 r用於碳奈米管中之·之伸展張力無著能須在可允 雙穩態及可接受容限内之電機切換性f之範_。 ° —舉一使用異於碳奈米管之材料實例,可注意可將奈米感測雷 容器之組織魏全狄絲f,或可可自關成分之奈米^ -例如石夕奈米線-或者該組織可為奈米管與奈米線之組成。此類f 米線及合雜織之赶,共充分描述於顺人之參考案國^ 時專利申請案,名稱為”Patterning of Nanoscopic Articles: 〇 〇〇 遞送至感測器構件供分析物檢測用之流體樣本可包含液雕 與氣體兩者,並可包含各種型式分析物,如财於流之ς 分微粒物質。 Η 此外’某些上述g樣如混合電路及定址用之奈米管技術 用於個別奈米管(例如直接長成技術等)或奈米管帶。此〆 採用之術語如”奈米結構集,,或,,奈米管集,,一般均分別包括 ^ 米結構或奈米管,及潛藏之其他物質,與是否任何特定电成: 之組成具有特定品質或區隔或以特定方式配置之考量均無涉5。不 1330403 奈米組織感測器可充作電容器中之電極。研究者已顯示奈米 官束與單一碳奈米管電極之電化學性質可靠性夠,使得此類束及 個別管可充作電容器中之電極。見於」H· Chen等人於Electromechanical Field Effect Transistors and Methods of Forming Same". The covering material may be conductive and may be used to alter the electrical properties of the entire patterned tissue, or it may be semi-conductive or insulating. When only opening the window of exposed tissue, The material of the tie layer on the rice structure should be selectively etchable. Selectively etched = material disposed on the cover layer on the intermediate layer between the nanostructure and the cover layer. In this case, when the cover layer is thinned and patterned The middle layer can be used as a hindrance block. 舜—Fig. 20(8) shows the styling sensing structure, in which no frame is formed, and the unconnected segment of the set layer is formed by s. The unconnected segment can be an electrode, 1 A particularly useful application of the variable detection structure is the styling intermediate junction, the gate 2042, as shown in the intermediate structure 2〇4〇. Ίϋ forming the pen Figure 21 shows another method of styling the nanostructure capacitive sensor. The cover material 2106 is selectively selectable on the middle 21Q4. The material 2106 is preferably a metal, and the intermediate layer 2iQ4 is preferably a semiconductor such as a boundary=he 1330403. The (four) layer (10) is placed between the nanometer tissue and the layer 2106. In this case, the middle layer 2 singulates the cover layer 2106. The scented cover layer 2112, ==; = 2110 shows the frame outside the π#. ^ _ , depending on the final product demand Μ 91 πλ # - shame annealing step, so that the cover layer 2112 and the middle 2 ^ 120 of this layer 2122 · such as metal lithium - to produce the structure of the final production is used as a braid or other contact Or addressing the components, other than the other embodiments, can be seen as other materials having electrons and properties suitable for the coating. These materials have similar properties to carbon nanotubes, and the stretching is different and may be reduced. For the embodiment designed to use or enable motor switching, r is not used in the carbon nanotubes. The tension of the motor must be within the allowable bistable and acceptable tolerances. °—As an example of using a material different from carbon nanotubes, note that the tissue of the mine can be used to sense the structure of the thunder container, or the nano-cocoa of the cocoa-based component. - Or the organization can be a combination of nanotubes and nanowires. Such f-meters and woven fabrics In the case of the Shun Ren's reference case, the patent application, entitled "Patterning of Nanoscopic Articles": The fluid sample delivered to the sensor component for analyte detection may include liquid engraving and gas. And can contain a variety of types of analytes, such as the flow of particulate matter. Η In addition, some of the above-mentioned g-like technologies such as hybrid circuits and addressing are used for individual nanotubes (such as direct growth technology, etc.) or nanotubes. The terminology used herein, such as "nanostructure sets, or, nanotube sets, generally include ^ m structures or nanotubes, and other materials that are hidden, and whether or not any specific electroforming: The specific quality or interval or configuration in a specific way is not involved in 5. No 1330403 nano tissue sensor can be used as an electrode in the capacitor. Researchers have shown the electrification of nano-beam and single carbon nanotube electrode The reliability of the study is sufficient, so that such bundles and individual tubes can be used as electrodes in capacitors. See "H. Chen et al.

Electrochem. Soc.,Proc.第 μ 卷第 362 頁(2001 ) 之 Electrochemistry 〇f Carbon Nanotubes and their Apphcat丨ons in Batteries and Supercapacitors” ; Y Tu 等人於Electrochem. Soc., Proc. pp. 362 (2001) Electrochemistry 〇f Carbon Nanotubes and their Apphcat丨ons in Batteries and Supercapacitors”; Y Tu et al.

NanoLett 第 3 卷第 1 號第 107·〇9 頁(2〇〇3)之”Nan〇e|ectr〇deNanoLett Volume 3 Number 1 107·〇9 (2〇〇3) by NanNe|ectr〇de

Arrays Based on Low Site Density Aligned CarbonArrays Based on Low Site Density Aligned Carbon

Nanotubes。本發明人已顯示單一奈米管之電性在奈米組織中 明顯維持(見於引用之參考文件)。_匕,本發明之特定實施例 之目的在以奈米組織為電容財之電極供奈米制器使用。 祕/^,奈米組織之間隙在測量電容差時特別有用’因為奈米組 ,缚析航合物顯現之電容與單獨組織❹指之電容不 電容差異部份歸因於單獨奈米組織之表面積較大,與具有 束缚分析物之奈米組織相反。 b處所用之術化一般包含奈米管之共價與非丑價修 幺之f價修改。因此,魏μ 或份額非共價轉換為具不同功能群 介式㈣W 思味包含任何對奈米#或奈歸表面之變 品:行生1^Γ生化_產生具不同物理或電氣特徵之產 ,可包含無機原子與分子及有機分子。=生 含縮氨酸、核酸、抗原(包含聚縮氨 氦酸核酸。 匕、、·伯试®文抗原)及縮 將進一步瞭解本發明之範嘴不限於 馭附之申請辜利所界定者為限,這、T構件,而係由 f。月專利靶園將包含對已描 1330403 述之改善及修改。 【圖式簡單說明】 在圖式中: 圖1係顯示配置於實質水平日圓 向懸^ 測Λ置 示依本發明之特定實施例之奈米管組織易 感:器广(C)闡示依本發明之特定實施例之奈米管組错 測器Γ置)閣示依本發明之特定實施例製作垂直奈米感 奈米她咖谢鞭特定實施例之 娜㈣翻雜置, =。9^二圖6之奈米管感測11裝置之剖面圖; 陣^實施例,其中奈米感測器 電容un) - (Β)閣示依本發明之特定實施例之奈米管組織 電路0圖1Γ15闡不依本發明之特定實施例之NFET-pFET電流鏡 電阻器裝置; ;_不依本發明之特定實施例之奈米管組織 電路圖圖1;7 19闊不依本發明之特定實施例之NFET_PFET電流鏡 1330403 圖20 (A) - (B)與21闡示建構化或樣式化感測組織結構 及其創造方法; 圖22係接觸孔陣列之掃描電子顯微圖,其中可置放感測器 構件以形成大型陣列。 【主要元件符號說明】 200 平臺 201 奈米組織構件 202 奈米組織構件/物件 204 支撐體 206 支撐體 208 電極 210 間隙距離 220 奈米感測器單元 222 非金屬材料 224 接釘結構 226 奈米感測器單元 230 支樓體材料 304 下電極 306 上電極 314 結構 400 石夕晶圓基板 402 絕緣層/氧化物層 404 上表面 406 空洞 408 中間結構 410 支撐體Nanotubes. The inventors have shown that the electrical properties of a single nanotube are clearly maintained in the nanostructure (see references cited therein). _ 匕, the purpose of a particular embodiment of the invention is to use a nanometer as a capacitor for the nanometer. Secret / ^, the gap between the nano-structure is particularly useful when measuring the difference in capacitance 'because of the nano-group, the difference between the capacitance of the bound composition and the capacitance of the individual tissue fingers is partly due to the individual nanostructures. The surface area is large, as opposed to nanostructures with bound analytes. The physicochemical used in b generally includes the f-price modification of the covalent and non-ugly repairs of the nanotubes. Therefore, Wei μ or share non-covalent conversion to a different functional group medium (4) W Sense contains any variation on the surface of Nano # or Naigui: 养生1^Γ生物_ produces different physical or electrical characteristics It can contain inorganic atoms and molecules as well as organic molecules. = contains peptides, nucleic acids, antigens (including polyaminoacridic acid nucleic acids. 匕,,············································· To this extent, this, T component, and by f. The monthly patent target park will contain improvements and modifications to the described 1330403. BRIEF DESCRIPTION OF THE DRAWINGS In the drawings: Fig. 1 is a diagram showing the configuration of a nanometer to a suspension in a substantially horizontal manner to show the susceptibility of a nanotube according to a specific embodiment of the present invention: A particular embodiment of the present invention is directed to a nano-tube nanometer in accordance with a particular embodiment of the present invention. 9^2, FIG. 6 is a cross-sectional view of a device for sensing a nanotube; an embodiment of the nanosensor, wherein the nanometer sensor is un---------------------------------- FIG. 1 is a diagram showing an NFET-pFET current mirror resistor device not according to a specific embodiment of the present invention; FIG. 1 is a circuit diagram of a nanotube structure not according to a specific embodiment of the present invention; FIG. 1 is not a specific embodiment of the present invention. NFET_PFET Current Mirror 1330403 Figure 20 (A) - (B) and 21 illustrate the construction or styling of the sensing tissue structure and its creation method; Figure 22 is a scanning electron micrograph of the contact hole array in which the sensible sensing can be placed Components to form a large array. [Main component symbol description] 200 Platform 201 Nanostructure member 202 Nanostructure member/object 204 Support 206 Support 208 Electrode 210 Gap distance 220 Nano sensor unit 222 Non-metallic material 224 Stud structure 226 Nano sense Detector unit 230 fulcrum material 304 lower electrode 306 upper electrode 314 structure 400 shi wa wafer substrate 402 insulating layer / oxide layer 404 upper surface 406 void 408 intermediate structure 410 support

49 1330403 412 下電極 414 中間結構 416 氮化物層 418 中間結構 420 上表面 422 奈米管主動區 424 剩餘氮化物層 426 中間結構 428 犧牲層 430 中間結構 432 剩餘多晶矽層 434 中間結構 436 奈米管組織 438 中間結構 440 光阻層· 442 中間結構 444 中間結構 445 中間結構 446 暴露之奈米管組織· 447 奈米管組織部 448 樣式化光阻層 449 剩餘光阻層 450 中間結構 451 中間結構 452 中間結構 454 樣式化奈米管組織 456 多晶矽層 1330403 457多晶矽層 458'中間結構 460剩餘多晶矽層部 462 中間結構 464 電極材料 466 中間結構 468 電極 470 :中間結構 472 懸浮奈米管組織 474 氣隙 476 中間結構 480 結構 482 結構 500結構 510 絕緣材料 520 間隙高度 616 氮化物層 1000混合技術電路 1002微流體分離器 1004核心奈米感測器單元陣列 1006 X位址解碼器 1008 丫位址解碼器 1010 X缓衝器 1012 丫緩衝器 1014控制邏輯 1016輸出緩衝器 1100混合技術電路 1102 氣體輸入手段 1200 電容調變結構 1201 電容器 1202 構件/傳導墊 1203 半導體結構 1204 構件/絕緣體 1206 構件/奈米管組織< 1207 保護性介電層 1210 分析物鍵結分子 1212 介層洞 1214 墊 1216 介電層 1218 絕緣層 1220 絕緣體 1222 垂直立柱 1224 共用參考線 1225 垂直立柱 1226 N+擴散區 1228 N-型半導體基板 1230 閘極 1232 N+擴散區 1240 分析物分子 1250 參考電容器 1350 電路 1450 •電路 1550 電路 1601 電阻調變結構 1330403 1602 傳導墊 1603 半導體結構 1607 保護性介電層 1608A 選用第二奈米管組織接觸 1608B 選用第二奈米管組織接觸 1750 電路 1850 電路 1950 電路 2000 中間結構 2002 組織 2004 基板 2010 中間結構 2012 覆蓋材料 2020 中間結構 2040 中間結構 2042 電極 2104 中間層 2106 覆蓋層/覆蓋材料 2110 中間結構 2112 覆蓋層 2120 結構 2122 傳導合成層49 1330403 412 Lower electrode 414 Intermediate structure 416 Nitride layer 418 Intermediate structure 420 Upper surface 422 Nanotube active region 424 Residual nitride layer 426 Intermediate structure 428 Sacrificial layer 430 Intermediate structure 432 Residual polysilicon layer 434 Intermediate structure 436 Nanotube structure 438 Intermediate structure 440 Photoresist layer · 442 Intermediate structure 444 Intermediate structure 445 Intermediate structure 446 Exposed nanotube structure · 447 Nano tube organization 448 Patterned photoresist layer 449 Residual photoresist layer 450 Intermediate structure 451 Intermediate structure 452 Middle Structure 454 Styled Nanotube Structure 456 Polycrystalline Layer 1330403 457 Polycrystalline Layer 458' Intermediate Structure 460 Residual Polycrystalline Layer 462 Intermediate Structure 464 Electrode Material 466 Intermediate Structure 468 Electrode 470: Intermediate Structure 472 Suspension Nanotube Structure 474 Air Gap 476 Middle Structure 480 Structure 482 Structure 500 Structure 510 Insulation Material 520 Gap Height 616 Nitride Layer 1000 Hybrid Technology Circuit 1002 Microfluidic Separator 1004 Core Nanosensor Cell Array 1006 X Address Decoder 1008 丫 Address Decoder 1010 X Slow Punch 1012 buffer 1014 Logic 1016 Output Buffer 1100 Hybrid Technology Circuit 1102 Gas Input Means 1200 Capacitor Modulation Structure 1201 Capacitor 1202 Member / Conductor Pad 1203 Semiconductor Structure 1204 Member / Insulator 1206 Component / Nanotube Tissue < 1207 Protective Dielectric Layer 1210 Analysis Bonding molecule 1212 via 1214 pad 1216 dielectric layer 1218 insulating layer 1220 insulator 1222 vertical column 1224 common reference line 1225 vertical column 1226 N+ diffusion region 1228 N-type semiconductor substrate 1230 gate 1232 N+ diffusion region 1240 analyte molecule 1250 Reference Capacitor 1350 Circuit 1450 • Circuit 1550 Circuit 1601 Resistance Modulation Structure 1330403 1602 Conductive Pad 1603 Semiconductor Structure 1607 Protective Dielectric Layer 1608A Selects Second Nanotube Tissue Contact 1608B Selects Second Nanotube Tissue Contact 1750 Circuit 1850 Circuit 1950 Circuit 2000 Intermediate Structure 2002 Organization 2004 Substrate 2010 Intermediate Structure 2012 Covering Material 2020 Intermediate Structure 2040 Intermediate Structure 2042 Electrode 2104 Intermediate Layer 2106 Cover Layer/Cover Material 2110 Intermediate Structure 2112 Cover Layer 2120 Structure 2122 Conductive Synthetic Layer

Claims (1)

1330403 、申凊專利範圍: 1· 一種感測器平臺,包括 之樣式化集並具一 電氣特徵; 感測器構件’其包括—複數個奈米管 -支撑結構,其支撐該感測器構件使 中;及 體 控制電路系統’其電氣感測該感測 俾可檢測一相應分析物之存在。W、。冓件之该電氣特徵 2.如申請專利_第彳項之感翻 件亦包括至少一奈米線。 v、中w亥感測器才J 3·如申μ專利範圍第”項之感測 米管之樣式化㈣-微影界定之概财歸袭 件且專Γ範㈣1項之_器平臺,其中該感測_ 件具有一對遠相應分析物之親合力。 , 5.如中請專利_第4項之感測器平臺,其中該感測器構 件包括至少一原始奈米管。 6 _如申請專利範圍第4項之感測器平臺,其中該感測器構 件包括至少一衍生化而具有或增加該親和力之奈米管。 7‘如申請專利範圍第4項之感測器平臺,其中該感測器構 件包括至少一功能^匕而具有或增加該親和力之奈米管。 8. 如申請專利範圍第1項之感測器平臺,其中該感測器構 件具有一對至少兩分析物之親合力,及其中該複數個奈米管包 含至少兩類奈米管,一第一類具有一對一第一分析物之親合力 及一第二類具有一對一第二分析物之親合力。 9. 如申請專利範圍第4項之感測器平臺,其中該支撐結構 包含一通道及其中該感測器構件懸浮以延伸該通道。 構包含項之感靡平臺,其巾該支獅 庳於独=中之傳導電極,及其中該感測器構件可響 5、則二二电路系統而偏折以接觸該電極,俾可電氣檢測在該 感測裔構射之該等奈来管之-閘效應。 仂料1*如申明專利細第1〇項之感測器平臺,進一步包括一 位於该感測器構件上方之上電極。 ,、目如申請專利範圍第1項之_11平臺,包含一與該感 "f 2:賴通連以遞送—可能具有該分析物之流體分離器。 姓;0 3·如申5月專利聋巳圍S 1項之感測器平臺’其中該感測器 構件平置於該支撐結構上。 14.如申請專利範圍苐,項之感測器平臺,其中該感測器 件在暴露於該相應分析物後可再使用,藉由施加—電麗,該 感測器構件得以實質上_至其暴露前狀態。 、土 15.如申請專利範圍第彳項之感測器平臺,進—步包括— =離該感,器構件之傳導構件,使得該傳導構件與該感測器構 件具一電容關係。 16.如申請專利範圍第15項之感測器平臺,其中該感測哭 構件位於-絕緣層之-側上,及該傳導構件位於該絕 。 —側上。 17·如申請專利範圍第15項之感測器平臺,1令今 路系統包括電流鏡電路系統,以允許測量—與該傳導二2 感測器構件有關之電容。 久成 18·如申請專利範圍第17項之感測器平臺,其中 路系統包括一參考電谷态,以允許測量與該參考電容哭 ^ 容有關之該感測器構件與該傳導構件相關之該電态之該電 19.如申請專利範圍第18項之感測器平臺,其中爷泉考带 1330403 容器包括-第二奈米管集和一與該第二· 導構件,使得該第二奈求管集與該第離之第二傳 20. 如申請專利範圍第i項之 平 =具一電容關係。 於一第-點與該感測器構件接觸之第一二=進—步包括-點與該感測器構件接觸之第二傳n-於-第二 該第-與第二料構件間之該_輯件知—電流得以行經 21. 如申請專利範圍第2〇項之 路系統包括電流鏡電路系統,’其中該控制電 間之該電阻。 允相J里该苐一與第二接觸點 22. 如申請專利範圍第21項之測 路系統包括-參考電阻器,以^旦 ^,其中該控制電 該第-與第二接觸點間之該電阻。、里人〜考電阻器相關之 23. 如中請專利範圍第2 阻器包括一第二奈米管集和 射該參考電 三與第四傳導構件,使得一心感測器構件接觸之第 件間之該第二奈米管集。·⑽传以行經該第三與第四傳導構. 24. 一種感測器平台之大 數個感測器平臺單元,各單元勹括歹彳其中5亥陣列包含大量複 感測裔構件,:句杯—, 電氣特徵; ’、 ⑯數個奈米管之樣式化集並具- 中:及 支撐結構’其支撐該感測器構件使之可暴露於一流體 控制電路系統,里带# 徵,俾可檢測—相應分^一感測器構件之該電氣特 件包園第2;之大型陣列,其中該感測器構 26, •種感測器平臺,包括 電氣特彳^^减件,其包括/魏個奈米管之樣式化集並具- —支撐該感測器構件之支撐結構; 導構件感測11構件⑽成—結構之傳導構件,其中該傳 人遠感測器構件具一電容關係;及 傳導ill1路系統,其電氣細—反映—與該感·構件及該 等構件有關之電容之電氣值。 構件^7i=f26l^>w臺’其中該感測器 構件:8二 = 範圍第:6:員之感測器平臺,其概測器 之另-側上中該傳導構件係-位於該絕緣層 構件軸_ ?6項之感測砰臺,其㈣感測器 體之^技:..,支擇結構材料所環繞,使其實質上未暴露於與流 收<1旎接觸。 心。十室早疋,其各包括 電氣特ff·測器構件’其包括—複數個奈米f之樣式化集並具一 一 ^擇該感測轉件之支揮結構; 導麻^離補測器構件以形成一結構之傳導構件,其中該傳 與亥感測器構件具一電容關係;及 導播电路系統,其電氣感測—反映與該感測器構件及該傳 ¥構件有關之該電容之電氣值。 31.如申4專利範圍第3Q項之大型陣列,其中該感測器構 件包括至少一奈米線。 .32.—種感測器平臺,包括 電氣特if/職構件,其包括—絲财米管之樣式化集並具一 —支撐該感測器構件之支撐結構; 件 及 於隔離位置處與該感卿構件翻u第二傳導構 構件夕控制電路祕,其1氣_—反映—與經過至少該感測器 部分之該等傳導構件間之電流通路有關之電阻之值。 構件32項之感湘平臺,其_該感測器 槎杜^4.如申請專利範圍第32項之感測器平臺,其中該感測器 ,件貫壯為支縣騎觸魏,使其料上未暴露於與流 如'之可能接觸。 35·-種感測器平臺之大型陣列,其中該陣列包含複數個 域剩器平臺單元,其各包括 -感測器構件,其包括-複數個奈米管之樣式化集並呈一 電氣特徵; /、 一支撐該感測器構件之支撐結構; 件 及 於隔離位置處與該感測器構件接觸之第一與第二傳導構 控制電路系統,其電氣感測-反映-與經過至少該感測器 冓件之-部分之該等傳導構件間之電流通路有關之電阻之值。 36.如申請專利範圍第35項之大型陣列,其中該感測器構 件包括至少一奈米線。 37· —種製作一感測|§之方法,包括: U彷一丞板之支撐結構; 於板上提供—複數個奈米管集; 構件 界定-該奈米管翻之樣式二’ ; 使侍雜式對應於一感測器 移除該集之-部份,使得該集之 板上,形成-感測器構件,^化挪維持於該基 並具一電驗,·: 細目奈槪樣式化集 提供控制電m以t氣❹ 徵,俾可檢測-相應分析物之存在。㈣件之錢氣特 括至==專#嶋371 ㈣器構件包 有-*===項之方法’其中該感測器構件具 伽其⑽之該感測器 播杜二·如申請專利範圍第39項之方法,其中所得之該感测器 霉件包括至少-衍生化而具有或增加該親和力之奈米管… 2’士申。月專利範圍第39項之方法,其中所得之該感測器 件包括至少一功能化而具有或增加該親和力之奈米管。 43.如申請專利範圍第37項之方法,其中該感測器構件具 對至少兩分析物之親合力,及其t該複數個奈米管包含至 二兩類奈米管’—第—類具有-對-第-分析物之親合力及-第二類具有一對一第二分析物之親合力。 44·如申請專利範圍第39項之方法,其中該支撐結構包含 —通道及其中該感測器構件懸浮以延伸該通道。 45.如申請專利範圍第44項之方法,其中該支撐結構包含 1330403 -位於誠射之料電極,及射該勤讀應於該 =電路系統而偏折以接觸該電極,俾可電氣撿測在該感測器 構件中之該等奈米管之一閘效應。 46·如申請專利範圍第45項之方法,進一步包括一位於該 感測器構件上方並與之隔離之上電極。 47.如申請專利範圍第37項之方法, ,器構件流體通連以遞送一可能具有該分:二離 置於專利範圍第37項之方法,其中該感測器構件平 49. 如申請專利賴第39項之方法 暴露於該相應分析物後可再使用,=勒構件在 構件得以實質上喊至其仏加—縣,該感測器 50. 如申請專利範圍第37 用一^劑,藉由在該基板上長成該奈米管集集係利 51. 如申請專利範圍第5〇項之方法, ,’將該等奈米管一有一對:相== 52. 如申請專利範圍第5〇項之方 i ,,將該等奈米管功能化而具有令相應 53. 如_請專利範圍第37項之方法, 奈米官之溶液於該基板上而形成該奈米管集/叫一懸浮 54. 如申凊專利範圍第53項 管以具有—對—相應分析物之親合力。姑化該等奈求 跖如㈣專利範園第53項之方法,射功能化讀等 丄 Μϋ4〇3 官以具有一對一相應分析物之親合力。 56.如申請專利範圍第37項之方法,其中該感測器構件係 由預衍生化奈米管製成。 57·如申請專利範圍苐37項之方法,其中該感測器構件係 由預功能化奈米管製成。 58. 如申請專利範圍第37項之方法,進一步包括衍生化至 少該奈米管之預樣式化集之一部分。 59. 如申請專利範圍第37項之方法’進一步包括功能化至. 少該奈米管之預樣式化集之一部分。 60. 如申請專利範圍第37項之方法,進一步包括衍生化至 少保留在該基板上之該奈米管之預樣式化集之一部分。 61如申請專利範圍第37項之方法,進一步包括功能化至 少保留在該基板上之該奈米管之預樣式化集之一部分。 62.如申請專利範圍第37項之方法’進一步包括 提供一層覆蓋材料於一奈米管集之一側上;及 移除一部份該覆蓋材料以暴露一部份該集。 63_如申請專利範圍第37項之方法,進一步包括 提供一第一覆蓋材料之一第一層於一奈米管集之一側上; 提供一第二覆蓋材料之一第二層於一奈米管集之一側上; 移除一部分該第二覆蓋材料;及 將部分該第一與第孚覆蓋材料退火。 64. 如申请專利範圍苐37項之方法,進一步包括提供一與 該感測器構件遠離之傳導構件,使得該感測器構件與該傳導構 件具一電容關係。 65. 如申請專利範圍第64項之方法,進一步包括提供一在 該傳導構件與該感測構件間之絕緣層。 66·如申請專利範圍第64項之太本甘士 —以土A 包括電流鏡電路系統,以允方f,其中雜制電路系統 構件有關之電容。 允相與該傳導構件及該感測器 考電f 64項<方法,進—步包括提供一參 器構件與該料構感測 件,使得該第二奈米管集盥該第一二?集隔離之第二傳導構 叫請專利範圍第4:==:= 一第—點與該感測器構件接觸之第皇步^k供於 二點與該感測賴件接觸之第 紐及提供一於一第 經該第-絲二料,餅—電流得以行 如申請專利: 包括電流鏡電路系統’以允許^ ^猶制電路系統 電阻。 里違弟—與弟二接觸點間之該 71_如申請專利範圍第69項 考電阻器,以允許測量與該炎考 進步包括“供一參 第-與第二傳導構件間之該感測】相關之行經該 72.如申請專利範圍第71項之 電流有關之該電阻。 括-第二奈米管集和於隔離點轉:’其尹該參考電阻器包 傳導構件與一第四傳導構件,使得^ = ^管集接觸之一苐三 四傳導構件間之該感測器構件。"机彳亏以行經該第三與第 73.-_作—€容、轉之方法 提供一具一基板之支撐結構; . 於。亥支推結構上提供—複數個奈米警集; 1330403 構件界定-縣米雜内之樣式,使得該樣式對應於—感測器 移除該集之-部份’使得該集 該傳其中 器構電容路系統’以電氣感測-與該傳導構件及該感測 括至專利卿73⑽法,其_測器構件包 75·如申請專利範圍第73項之 於該料構件與該感測器構件間之絕緣層。4私供-介 76·如申請專利範圍第73項之方法 感測器構件接觸之覆蓋材 ^括鈇供與该 接觸。 便具貝負上不暴露與流體之可能 77.—種製作一電阻結構之方法,包括·· 提供一具一基板之支撐結構; 於該基板上提供一複數個奈米管集; 構件界定-該奈料集内之樣式,使得雜式對應於一感測器 移除轉之—部份,鋪之樣式化部份_於 上’以形成一感測器構件,其包括一複數個夺 ;< 土板 並具一電氣特徵; 1之樣式化集 導構件提Γ睛位置處與該感測器構件接觸之第—與第二像 提供控制電路系姘7恭> 測器構件之-部分之該等僂Hf1卜反映—與經過至少該感 值。 冓件間之電流通路有關之電阻之 括至m她财77項之找,射蝴器構件包 79. 如申請專利範圍第 感測器構件接觸之覆蓋材料、: ^提供與該 接觸。 十使其貝質上未暴露與流體之可能 80. —種感測器平臺,包括 電氣特7測11構件’其包括—複數财錄之樣式化集並具-及支U冓其支撐該感剛器構件使之可暴露於一流體; 俾可糊剛綱氣特徵, 軸平臺 ’其中該感測器 夺乎^⑽項之感測器平臺,其中該複數個 mint—=料仅触财雜之樣式化集。 構件具有-‘相‘析Γ之力感測器平臺,其中該感測器 構件:臺’綱感測器 85. 如申請專利範圍第83項之感剛器平臺,其該 構件包括至少-衍生化而具有或增加該親和力之;米二、。 86. 如申請專利範圍第83項之感測器平臺,其中該感測器 構件包括至少—功能化而具有或增加魏和力之奈米線。 87_如申請專利範圍第8Q項之感·平臺,其中該感測器 構件具有-對至少兩分析物之親合力,及其中該複數個奈米線·. 包含至t兩類奈米線,一第一類具有一對一第一分析物之親合 力及-第二類具對—第二分析物之親合力。 _ 88.如申凊專利範圍第83項之感測器平臺,其中該支撐結 構包含-通道及其中該感測器構件懸浮以延伸該通道。、° 89·如申請專利範圍第88項之感測器平臺,其中該支撐結 構包含-位於該通道中之傳導電極,及其中該感測器構件可纟 · 應於該控制電路系統而偏折以接觸該電極,俾可電氣檢測在該 感測器構件中之該等奈米線之一閘效應。 90. 如申請專利範圍第89項之感測器平臺,進一步包括一 位於5亥感測器構件上方之上電極。 91. 如申請專利範圍第8〇項之感測器平臺,包含一與該感 測器平臺流體通連以遞送-可能具有該分析物之流體分離器 92·如申請專利範圍第8〇項之感測器平臺,其中該感測器 構件平置於該支撐結構上。 $ 错在=·如申請專利範圍第8〇項之感測器平臺’其中該感測器 毒=暴露於該減分析物後可再制,糾施加-電壓,該 感測益構件得以實質上回復至其暴露前狀態。 94·如申請專利範圍第8〇項之感測器^臺,進一步包括一 亥感剛器構件之傳導構件,使得該傳導構件與該感測器構 件具一電容關係。 95·如申讀專利範圍第94項之感測器平臺,其中該感測器 冓牛< 於絕緣層之一側上,及該傳導構件位於該絕緣層之另 一側上。 1330403 96.如申請專利範圍第94項之感測器平臺,发 路系統包括電流鏡電路系統,以允許測量—與今〃、中該控制電 感測器構件有關之電容。 專導構件及該 97_如申請專利範圍第96項之感測器平臺,苴上 路系統包括一參考電容器,以允許測量與該=考二=該控制電 谷有關之該感測器構件與該傳導構件相關之兮雨办谷器之5亥電 98. 如申請專利範圍第97項之感測器平臺,其 容器包括一第二奈米線集和一與該第二奈米^隹:★中該參考電 導構件,使得該第二奈米線集與該第二傳導構件旦j之第二傳 99. 如申請專利範圍第80項之感測器平臺厂――電容關係。 於一第一點與該感測器構件接觸之第—傳導 J二步包括一 點與該感測器構件接觸之第二傳導構件,使於-第二 該第一與第二傳導構件間之該感測器構件。$镇得以行經 1〇0如申請專利範圍第的項 電路系統包括電流鏡電路孚% ^,其中該控制 點間之該電阻。路系、,充置該第一與第二接觸 101·如申請專利範圍第1〇〇項之感測* 電路系統包括—參考電阻器,以允許測考ς控制 電阻相關之該第一與第二接觸點間之該電阻Γ考電阻器之該 1〇2·如申請專利範圍第彻項之感測A 電阻器包括一第二奈志、 至/、中S亥爹考 第讀第四傳導構:集隔離點與該感測器構件接觸之 使得,A得以行經該第三與第四傳導 構件間之·》亥弟一奈米線集。 103.-種感測器平台之大型陣列,其中該 數個感測好臺單元,各單元包括 匕3大里複 -感測器構件’其包括—複數個奈米線之樣式化集並具一 1330403 電氣特徵; 一支樓結構’其·^撐該感測H構件使之可暴露於-流體 中;及 控制電路系統,其電氣感測至少-感測器構件之該電氣特 徵,俾可檢測一相應分析物之存在。 104. 如申請專利範圍第1〇3項之大型陣列,其 構件包括至少一奈米管。. Θ 105. —種感測器平臺,·包括 一感測器構件’其包括一複數個奈米線之樣式化 電氣特徵; ”及具一 一支撐§亥感測器構件之支撐結構; -遠離該感測轉件以形成—結構之傳導構件,該 之該傳導構件與該感測器構件具—電容隱;及 ° 控制電路系統,其電氣感測一反映一與該感測器 傳導構件有關之電容之電氣值。 次5亥 106‘如申請專利範圍第,〇5項之感測器平臺, 器構件包括至少一奈米管。 玄硖測 哭m!°7·如申請專利範圍第105項之感測器平臺,其中讀感:則 i之另中’及該傳導構件係—位於讀絕緣 哭棰Γ,!:申請專利範圍第1。5項之感測11平臺,其中該感測 流體支撐結構材料職繞,使其實質上未暴露於與 感域測器平臺之大猶列,其中該陣列包含複數個 。。十®早元,其各包括 —感測器構件,其包括一複數個奈米線之樣式化集並具— 電氣特徵; —支撐該感測器構件之支撐結構; —遠離該感測ϋ構件以形成—結構 導構件與該感測麵具件’纖中 控制電路系統,其電氣感測一 ^ 導構件有關之該電容之魏值。測减件及該傳 構件===圍請項之大型陣列 ’其中該感測器 111. 一種感測器平臺,包括 電氣=測器構件,其包括一複數個奈米線之樣式化集並具- 一支撐該感測器構件之支撐結構; . 件丨及於隔離位置處與該感測器構件接觸之第一與第二傳導構 構件 119丄1 4傳導構件間電流通路有關之電阻之值。 ΊΊ2.如申請專利範圍第彳彳彳項戍 # 器構件包括至少—奈米管。《❹^千室,其中销測 器構二C圍第:11項之感測器平臺,其中該感測 流體之繞,使其上未暴露於與 感測:測:ίΓ型陣列,其中該陣列包含複數個 帝二感測ϋ構件’其包括-複數個奈親之樣式化集並具— 毛氣特徵; —支撐該感測器構件之支撐結構; 與第二傳導構 於隔離位置處與該感測器構件接觸之第— 件;及 抆制电路系統’其電氣感測一反映一與經過至少 構件之一部分之該等傳導構件間之電流通路有關之電阻i值。。 構件圍第114項之大型陣列,其中該感測器 116.—種製作一感測器之方法,包括: 提供一具一基板之支撐結構; 於該基板上提供一複數個奈米線集; 界定一該奈米線集内之樣式,使得該樣式對應於一感測器 構件; 移除該集之-部份,使得雜之-樣式鱗份維持於該基 板亡’以$成-感測器構件’其包括—複數個奈米線之樣式化 集並具一電氣特徵;以及 Μ提供控制電路系統’以電氣感測該感測器構件之該電氣特 徵,俾可檢測一'相應分析物之存在。 117·如申請專利範圍第116項之方法,其中該感測器構件 包括至少一奈米管。 118. 如申請專利範圍第116項之方法,其中該感測器構件 具有一對該相應分析物之親合力。 119. 如申請專利範圍第118項之方法,其中該等奈米線係 原始奈米線。 ^彳20·如申清專利範圍第118項之方法,其中將該等奈米線 衍生化而具有或增加該親和力。 a 121.如申請專利範圍第彳18項之方法,其中將該等奈米線 功能化而具有或增加該親和力。 1330403 122.如申請專利範圍第1彳6項之方法’其中該感測器構件 具有一對至少兩分析物之親合力,及其中該複數個奈米線包含 至夕兩顯奈米線,一弟一類具有一對一第一分析物之親合力及 一第二類具有一對一第二分析物之親合力。 _ 123·如申請專利範圍第118項之方法,其中該支撐結構包 含一通道及其中該感測器構件懸浮以延伸該通道。 • 124.如申請專利範圍第123項之方法,其中該支撐結構包 含一位於該通道中之傳導電極,及其中該感測器構件可響應於 該控制電路系統而偏折以接觸該電極,使可電氣檢測在該感測 器構件中之該等奈米線之一閘效應。 心 125•如申請專利範圍第124項之方法,進一步包括一位於 5亥感測器構件上方並與之隔離之上電極。 126. 如申請專利範圍第116項之方法,進一步包含界定一 與该感測器構件流體通連以遞送一可能具有該分析物之流體分 離器。 127. 如申凊專利範圍第彳16項之方法,其中該感測器構件 平置於該基板上。 128. 如申請專利範圍第118項之方法,其中該感測哭構件 在暴露於仙齡析物後可再使用,藉由施加—輕^感測 器構件得以實質上回復至其暴露前狀態。 129. 如申請專利範圍帛116項之方法,其中該奈米線集係 利用一催化劑,藉由在該基板上長成該奈米線集而形成。 徽如申請專利範_129項之方法,其中在長成該奈米 線集期間’將該等奈米線触化而具有—對—相應物之親 合力。 131.如申請專利範圍第129項之方法,其巾在長成該奈米 1330403 線集期間,將該等奈米線功能化而具有一對一相應分析物之親· 合力。 132‘如申請專利範圍第116項之方法,其中藉由沉積一懸 浮奈米線之洛液於該基板上而形成該奈米線集。 133. 如申請專利範圍第132項之方法,其中衍生化該等奈 米線以具有一對一相應分析物之親合力。 134. 如申請專利範_132項之方法,其中功能化該等奈 米線以具有一對一相應分析物之親合力。 135. 如申請專利範圍帛116項之方法,其中該感測器構件 係由預衍生化奈米線製成。 136. 如申請寻利範圍第116項之方法,其中該感測器構件 係由預功能化奈米線製成。 137·如申請專利範圍帛116項之方法,進一步包括衍生化 至少該奈米線集之一部分。 138. 如申請專利範圍第116項之方法,進一步 至少該奈米線集之一部分。 139. 如申請專利範圍帛m項之方法,進一步包括衍生化 維持在該基板上之該奈米線之樣式化集。 做如申請專利範圍帛抓項之方法,進 維持在該毅±之絲糕樣式鱗6 ^ 141·如申請專利範圍第116項之方法,進—步包括 提供一層覆蓋材料於一奈米線集之一側上;及 移除一部份該覆蓋材料以暴露一部份該集。 =2.如申請專利範圍第彳16項之方法,進—步包括 .提供一第一覆蓋材料之一第一層於一感測器構件之一側 1330403 上;提供一第二覆蓋材料之-第二層於—感測器構件之一側. 移除一部分該第二覆蓋材料;及 將部分該第一與第二覆蓋材料退火。 143. 如申請專利範圍第彳彳6項之方法,進一牛 與該感測II構件遠離之傳導構件,使得該‘二提供一 144. 如申請專利範圍第143項之方法 在該傳導構件與該感測構件間之絕緣層。 ν匕括提供- 145. 如申請專利範圍第143項之方法,苴 統包括電流鏡電路系統,以允許測量一轉值=控制電路系 器構件有關之電容。 寻導構件及該感測 146. 如申請專利範圍第143項之方法 參考電容器,以允許測量與該參考電容器之;括提供-測杰構件與該傳導構件相關之該電容。 X電各有關之該感 七紅14Ι.如申請專利範圍第146項之方法,发中^ 包括一弟二奈米線集和-與該第二奈米線隹亥參考電容器 件,t鄕二奈鱗集無第二傳二傳導構 ,如申請專利範圍㈣6項之方法,淮一電合關係。 於第-點與該感測器構件接觸之第一 ^包括提供- 第二點與該感測器構件接觸之第二傳導構件供一於— 似^ 一鄉二傳導構件間之該感測器構件卜電流得以 如申請專利範圍第148項之 統包括電流鏡電路系统,以允許測量該第一=該控㈣路系 該電阻。 弟。弟二接觸點間之 150·如申請專利範圍第148項之方法,進―步包括提供— 72 參考電阻器,以分% θ 該第-盥第與該參考電阻器之該電阻相關之行經 阻。弟一傳m件間之職測m件之電流錢之該電 包括-第項之方法,其中該參考雜器 三傳導構件與一第;點奈米線集接觸之-第 第四傳導構恢崎崎經該第三與 作1容結構之方法,包括·· 徒供一具-基板之切結構; 結構上提供一複數個奈米線集; 構件;丨4米線Μ之樣式,使得雜式對應於-感測器 上,份轉於該基板 並具-電轉徵;〃 ⑬數個奈料之樣式化集 提供一遠離該感測器構件之傳導 該傳導搆件舆該感測器構件具—電容關^/及域-結構’其中 器構件提有mi祕^㈣測—綠料構件及該感測 包括利瓣152項之方法,其器構件 154.如申請專利範圍第彳52項之方法,進 介於該傳導構件與該感測器構件間之絕緣層。 ki、- 做如申請專利範圍第152項之方法:進一 _測_件麵之覆蓋材料,使其 ^ 可能接觸。 路孓興机體之 73 » 1=6.-種製作—電阻結構之方法,包括: 提供一支撐結構; 於,支撐結構上提供-複數個奈米線集; 構件;’ —I鱗集内之樣式,使得該樣式對應於-感測器 上,部份’使得雜之樣式⑽份轉於該基板 並具一電如構件’其包括—複數個奈米線之樣式化集 導構隔離位置處與該感測器構件接觸之第一與第二傳 制電路系統,以電氣感測—反映—與經過至少节爲 構件之一部分之該等傳導構件間之電流通路有關之電;^ 4^專利範圍第156項之方法,其中該感測器辦 包括至少一奈米管。 158•如中請專利範圍第156項之方法,進—步包括提彻 #亥,心構件_之覆蓋材料,使其實質上未暴露於與流體4 巧*能接觸。 測器 值 741330403, claim patent range: 1. A sensor platform comprising a styling set and having an electrical feature; a sensor component comprising: a plurality of nanotube-support structures supporting the sensor component And the body control circuitry 'electrically senses the sense 俾 to detect the presence of a corresponding analyte. W,. The electrical characteristics of the component 2. The translating member of the patent application _ 彳 亦 亦 亦 亦 亦 亦 亦 亦 亦 亦 。 。 。 。 。 。 v, the middle w sensor is only J 3 · such as the scope of the patent range of the application of the "the scope of the application of the meter" (four) - the definition of the micro-investment of the micro-investment and the special (four) 1 item _ platform, Wherein the sensing component has an affinity for a pair of remote analytes. 5. The sensor platform of claim 4, wherein the sensor component comprises at least one original nanotube. 6 _ The sensor platform of claim 4, wherein the sensor member comprises at least one nanotube that is derivatized to have or increase the affinity. 7', as in the sensor platform of claim 4, Wherein the sensor component comprises at least one function of a nanotube having or increasing the affinity. 8. The sensor platform of claim 1, wherein the sensor component has a pair of at least two analyses Affinity of the substance, wherein the plurality of nanotubes comprises at least two types of nanotubes, a first type having affinity for a first analyte and a second type having a second analyte Affinity. 9. The sensor platform of claim 4, wherein the support The structure comprises a channel and the sensor member is suspended to extend the channel. The sensing platform comprising the item has a conductive electrode of the lion, and wherein the sensor member can ring 5. Then, the two or two circuit systems are deflected to contact the electrode, and the thyristor can be electrically detected in the sense of the sinusoidal structure of the sensor. The material 1* is sensed as claimed in claim 1 The platform further includes an electrode above the sensor member. The platform of the _11, which is the first item of the patent application scope, includes a feeling associated with the "f2: Lai Tong" to deliver - possibly having The fluid separator of the analyte. The surname; 0 3. The sensor platform of the S1 item of the patent of May 5, wherein the sensor component is placed flat on the support structure. The sensor platform of the item, wherein the sensing device can be reused after being exposed to the corresponding analyte, and the sensor member can be substantially _ to its pre-exposure state by applying the electricity. 15. As described in the sensor platform of the scope of the patent application, further steps include = the sense of the conductive member of the device member, such that the conductive member has a capacitive relationship with the sensor member. 16. The sensor platform of claim 15 wherein the sensing crying member is located - insulated The layer-side, and the conductive member is located on the side. 17. As in the sensor platform of claim 15, the current system includes a current mirror circuit system to allow measurement - and The capacitance of the second 2 sensor component is transmitted. Jiucheng 18. The sensor platform of claim 17, wherein the road system includes a reference electric valley state to allow measurement to be related to the reference capacitor crying The sensor component is electrically connected to the electrical component of the conductive member. 19. The sensor platform of claim 18, wherein the spring tube 1330403 container comprises a second nanotube set and a The second guiding member is configured such that the second set of the second tube is connected to the second portion of the second portion. The first two-steps in contact with the sensor member at a first-point include a second pass between the point-contacting the sensor member and the second portion between the second and second member members The _ series knows that the current can be passed. 21. The road system of the second aspect of the patent application includes a current mirror circuit system, where the resistance of the control room. The phase-measurement system of the first and second contact points of the phase 21 is included in the phase-by-side system. The circuit-measurement system of claim 21 includes a reference resistor, wherein the control electrode is between the first and second contact points. The resistor. In the case of a person-receiving resistor, the second resistor includes a second set of nanotubes and a third conductive member that is directed to the third conductive member so that the first sensor member contacts the first member. The second set of nanotubes. (10) passing through the third and fourth conductive structures. 24. A plurality of sensor platform units of a sensor platform, each of which includes a plurality of complex sensing components, wherein: Sentence cup—, electrical characteristics; ', 16 sets of nano tube styled sets - medium: and support structure' which supports the sensor component to be exposed to a fluid control circuit system, with #征,俾 Detectable—corresponding to a large array of the electrical component package 2 of the sensor component, wherein the sensor structure 26, • a sensor platform, including electrical specials ^^ minus, The utility model comprises: a styling set of / Wei nanotubes and a supporting structure for supporting the sensor component; the guiding member sensing 11 member (10) into a structural conducting member, wherein the transmitting distal sensor member has a Capacitance relationship; and conduction ill1 system, the electrical details - reflect - the electrical value of the capacitance associated with the component and the components. Member ^7i=f26l^>w station' wherein the sensor member: 8 2 = range number: 6: the sensor platform of the member, the other side of the detector is the conductive member system - located in the The sensing member axis _6 of the sensing platform, (4) the sensor body::., the surrounding structural material is surrounded, so that it is not substantially exposed to the contact with the flow <1旎. heart. Ten rooms are early, each of which includes an electrical ff-detector member' which includes a plurality of morphological sets of nanometers f and has a one-to-one control structure of the sensed transfer member; The member is configured to form a conductive member of the structure, wherein the transfer has a capacitive relationship with the sensor member; and the conductive circuitry is electrically sensed - reflecting the capacitance associated with the sensor member and the transfer member The electrical value. 31. The large array of claim 3, wherein the sensor component comprises at least one nanowire. .32. A sensor platform comprising an electrical special if/employment component comprising: a styling set of silk financial tubes and having a support structure supporting the sensor component; The sensing member turns the second conductive member to control the circuit, and the gas is responsive to the value of the electrical resistance associated with the current path between the conductive members passing through at least the sensor portion. The sensor platform of item 32, which is the sensor platform of the 32nd item of the patent application scope, wherein the sensor is a member of the county. The material is not exposed to possible contact with the flow. 35. A large array of sensor platforms, wherein the array comprises a plurality of domain remnant platform units each comprising a sensor component comprising a plurality of patterned sets of nanotubes and exhibiting an electrical characteristic And a support structure supporting the sensor member; and the first and second conductive structure control circuit systems in contact with the sensor member at the isolation position, the electrical sensing-reflecting-and passing at least The value of the resistance associated with the current path between the conductive members of the sensor component. 36. The large array of claim 35, wherein the sensor component comprises at least one nanowire. 37. A method of making a sensing|§, comprising: U-like support structure of a seesaw; providing a plurality of sets of nanotubes on the board; component defining - the shape of the nanotubes is turned into two's; The whisker corresponds to a sensor that removes the portion of the episode so that the panel is formed on the panel, and the sensor component is maintained on the base and has a test. The styling set provides control power m with t gas enthalpy, 俾 detectable - the presence of the corresponding analyte. (4) The money of the piece is specifically included to ==Special#嶋371 (4) The method of the component is packaged with the method of -*===, wherein the sensor component has the sensor of the gamma (10). The method of claim 39, wherein the sensor mold piece obtained comprises at least a derivatized nanotube having or increasing the affinity... 2' Shishen. The method of claim 39, wherein the resulting sensing device comprises at least one nanotube that is functionalized to have or increase the affinity. 43. The method of claim 37, wherein the sensor member has an affinity for at least two analytes, and wherein the plurality of nanotubes comprises two or two types of nanotubes - the first type The affinity for the pair-to-analyte and the second class have the affinity for the one-to-one second analyte. 44. The method of claim 39, wherein the support structure comprises a channel and the sensor member is suspended to extend the channel. 45. The method of claim 44, wherein the support structure comprises 1330403 - located at the ejective material electrode, and the diligent reading should be deflected to contact the electrode in the circuit system, and the electrical connection can be electrically measured. One of the gates of the nanotubes in the sensor component. 46. The method of claim 45, further comprising an electrode positioned above and isolated from the sensor member. 47. The method of claim 37, wherein the member fluid is circulated to deliver a method that may have the sub-division: the second is in the scope of claim 37, wherein the sensor member is flat. The method of Lai 39 can be reused after being exposed to the corresponding analyte, and the component is substantially shouted to the county, the sensor 50. If the application scope is 37, a dose is used. By growing the nanotube assembly system on the substrate 51. As in the method of claim 5, 'there are a pair of such nanotubes: phase == 52. In the fifth aspect, the nanotubes are functionalized to have the corresponding 53. As in the method of claim 37, the solution of the nanomanufacture is formed on the substrate to form the set of nanotubes. / Call a suspension 54. For example, the 53rd tube of the patent scope of the application has the affinity for the corresponding analyte. Such as Naihua (4) Patent Method No. 53 method, functional reading, etc. 丄 〇 4〇3 Officials have the affinity of one-to-one corresponding analytes. 56. The method of claim 37, wherein the sensor component is made from a pre-derivatized nanotube. 57. The method of claim 37, wherein the sensor component is made of a pre-functionalized nanotube. 58. The method of claim 37, further comprising derivatizing at least one portion of the pre-patterned set of the nanotubes. 59. The method of claim 37 of the patent scope further comprises functionalizing one part of the pre-patterned set of the nanotubes. 60. The method of claim 37, further comprising derivatizing a portion of the pre-patterned set of the nanotubes remaining on the substrate. 61. The method of claim 37, further comprising functionalizing at least one portion of the pre-patterned set of the nanotubes retained on the substrate. 62. The method of claim 37, further comprising providing a layer of cover material on one side of the nanotube set; and removing a portion of the cover material to expose a portion of the set. 63. The method of claim 37, further comprising providing a first layer of the first covering material on one side of the one set of nanotubes; providing a second layer of the second covering material in the first layer One side of the rice tube set; a portion of the second covering material is removed; and a portion of the first and second refractory materials are annealed. 64. The method of claim 37, further comprising providing a conductive member remote from the sensor member such that the sensor member has a capacitive relationship with the conductive member. 65. The method of claim 64, further comprising providing an insulating layer between the conductive member and the sensing member. 66. If the scope of the application for patents is 64, the current is a singularity. The earth A includes a current mirror circuit system to allow for the capacitance of the component of the circuit system. Having a phase with the conductive member and the sensor, and the method includes: providing a component member and the material sensing member such that the second nanotube assembly is the first two ? The second conduction structure of the isolation is called the patent scope 4:==:= a first point and the first step of the contact with the sensor component is provided for the second point and the second contact with the sensing device. Providing one-to-one through the first-filament material, the pie-current can be patented as follows: including a current mirror circuit system to allow the circuit system resistance. In the absence of the brother--the second point of contact with the younger brother, such as the application of the patent scope of the 69th test resistor, to allow measurement and the progress of the test include "for the sensing of the first-and second conductive members 】 related to the current through the 72. The current related to the current of the scope of the application of the scope of the 71. The second-negative tube set and the isolation point: 'Yin Yin the reference resistor package conduction member and a fourth conduction The member is such that the ^=^ tube set contacts one of the three or four conductive members of the sensor member. " machine loss is provided by the third and the 73.-_ Supporting structure with a substrate; . providing a plurality of nano-alarms on the structure of the Hei push structure; 1330403 member-defining the style of the county, so that the pattern corresponds to - the sensor removes the set - The portion 'to make the set of the device's capacitive circuit system' electrically sensed - and the conductive member and the sensing are included in the patent of the patent of 73 (10), the detector component package 75 · as claimed in the 73rd article The insulating layer between the material member and the sensor member. 4 private supply - Jie 76 · Ru Shen Please contact the cover material of the method of the method of the 73th method of the patent range to provide contact with the contact material. The possibility of not exposing the fluid to the shell is provided. 77. A method for fabricating a resistor structure, including a support structure with a substrate; a plurality of sets of nanotubes are provided on the substrate; the component defines a pattern within the set of materials, so that the hybrid corresponds to a sensor removal-partial, paving The styling portion is _ upper to form a sensor member, which includes a plurality of smashes; < the earth plate has an electrical feature; 1 the styling concentrating member raises the eye position and the sensing The first and second image-providing control circuit systems 姘7->the portion of the detector member--the Hf1--reflects the electrical resistance associated with the current path between the components. Included in the 77 items of the her husband, the component of the squirting device 79. If the covering material of the sensor component is in contact with the patent scope, the contact material is provided: ^ Providing contact with the ninth. The possibility of not exposing the fluid to the shellfish 80. A sensor platform, including electrical special 7 measurement 1 1 member 'which includes a styling set of plural financial records and has a support member that supports the sensible member so as to be exposed to a fluid; 俾 糊 刚 纲 特征 , , , , , , , The sensor platform of the item (10) is obtained, wherein the plurality of mint-= material only touches the genre pattern set. The component has a force sensor platform of 'phase' analysis, wherein the sensor component : A platform sensor 85. The sensor platform of claim 83, wherein the member includes at least - derivatization with or increases the affinity; m.2, 86. A sensor platform, wherein the sensor component comprises a nanowire that is at least functionalized to have or increase Wei and force. 87_. The sensory platform of claim 8Q, wherein the sensor component has an affinity for at least two analytes, and wherein the plurality of nanowires. A first type has an affinity for the one-to-one first analyte and - a second type has a pair of - the affinity of the second analyte. The sensor platform of claim 83, wherein the support structure comprises a channel and wherein the sensor member is suspended to extend the channel. The sensor platform of claim 88, wherein the support structure comprises a conductive electrode located in the channel, and wherein the sensor member is deflectable from the control circuit system In order to contact the electrode, the gate can electrically detect a gate effect of the nanowires in the sensor component. 90. The sensor platform of claim 89, further comprising an electrode above the 5 liter sensor member. 91. The sensor platform of claim 8 wherein said sensor platform is fluidly coupled to the sensor platform for delivery - a fluid separator 92 that may have the analyte - as claimed in claim 8 A sensor platform, wherein the sensor member lies flat on the support structure. $ 错 = = · As claimed in the scope of claim 8 of the sensor platform 'where the sensor poison = exposed to the analyte can be re-made, correcting the application - voltage, the sensory component can be substantially Revert to its pre-exposure state. 94. The sensor device of claim 8, further comprising a conductive member of the inner bridge member such that the conductive member has a capacitive relationship with the sensor member. 95. The sensor platform of claim 94, wherein the sensor yak is on one side of the insulating layer and the conductive member is on the other side of the insulating layer. 1330403 96. The sensor system of claim 94, wherein the delivery system comprises a current mirror circuitry to allow measurement - capacitance associated with the control of the electrical sensor component. A dedicated component and the sensor platform of the 96th patent application scope, the on-road system includes a reference capacitor to allow measurement of the sensor component associated with the control grid The 5th electrical device of the conductive member related to the raining device. 98. The sensor platform of claim 97, the container includes a second nanowire set and a second nanometer: The reference conductive member is such that the second nanowire set and the second conductive member are second pass 99. The sensor platform factory-capacitor relationship of claim 80 of the patent application. The first conductive J-step in contact with the sensor member at a first point includes a second conductive member in contact with the sensor member such that the second first and second conductive members Sensor component. The town can pass the 1〇0 as claimed in the patent scope. The circuit system includes the current mirror circuit, where the resistance is between the control points. The first and second contacts 101 are filled with the first and second contacts 101. The sensing system of the first aspect of the patent application includes: a reference resistor to allow the first and the first of the test control resistors to be related The resistance between the two contact points refers to the 1〇2 of the resistor. The sensing A resistor as in the scope of the patent application includes a second Naizhi, to /, and the middle of the S. The collection point is in contact with the sensor member such that A can pass through the set of "Hai-Ni" lines between the third and fourth conductive members. 103. A large array of sensor platforms, wherein the plurality of sensing stations are united, each unit comprising a 大3 large ridge complex-sensor component comprising: a plurality of patterned sets of nanowires and having a 1330403 Electrical characteristics; a building structure 'which supports the H component to be exposed to the fluid; and a control circuit system that electrically senses at least the electrical characteristics of the sensor component, 俾 detectable The presence of a corresponding analyte. 104. A large array of claims 1 to 3, the components of which comprise at least one nanotube. Θ 105. A sensor platform, comprising a sensor component that includes a plurality of patterned nanowires; and a support structure that supports the sensor components; Moving away from the sensing transducer to form a conductive member of the structure, the conductive member and the sensor member are capacitively hidden; and the control circuitry is electrically sensed by a sensor and a conductive member The electrical value of the capacitor. The 5th Hai 106's as claimed in the patent scope, the sensor platform of the 5th item, the device component includes at least one nanometer tube. Xuanzang test cry m! °7·If the patent application scope 105 sensor platform, in which the reading: then the other 'i and the conductive member system - located in the reading insulation crying!!: Patent application No. 1. 5 sensing 11 platform, which sense The fluid-measuring support structure material is wound so that it is substantially unexposed to the sensory platform, wherein the array comprises a plurality of. The ten-year-old elements each include a sensor component, including a styling set of multiple nanowires - electrical a support structure for supporting the sensor member; - remote from the sense member to form a structure guide member and the sensing mask member in the fiber control circuit system, the electrical sensing of the control member The value of the capacitor. The reduction component and the transmission member === large array of enclosures' wherein the sensor 111. A sensor platform comprising an electrical = detector component comprising a plurality of nanometers The patterned set of wires - a support structure supporting the sensor member; and the first and second conductive members 119 丄 14 between the conductive members in contact with the sensor member at the isolated position The value of the resistance related to the current path. ΊΊ 2. If the scope of the patent application is 彳彳彳 戍 器 器 器 器 器 器 器 器 奈 。 。 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈a detector platform, wherein the sensing fluid is wound so that it is not exposed to and sensed: the array is comprised of a plurality of dipole-sensing embarrassing members, which include - a plurality of naval styles Integrating with - hair characteristics; - supporting the sensing a support structure of the member; a first member in contact with the sensor member at the isolated position at the isolated position; and a circuit system 'electrically sensed to reflect the conduction with the portion passing through at least one of the members The resistance i value of the current path between the components. The large array of the 114th member of the component, wherein the sensor 116. is a method for fabricating a sensor, comprising: providing a support structure with a substrate; Providing a plurality of nanowire sets on the substrate; defining a pattern in the set of nanowires such that the pattern corresponds to a sensor component; removing the portion of the set to make the miscellaneous-style scale Maintaining the substrate as a "sensor-sensor component" comprising a plurality of patterned sets of nanowires and having an electrical feature; and providing a control circuitry to electrically sense the sensor component The electrical characteristic, 俾 can detect the presence of a 'corresponding analyte'. 117. The method of claim 116, wherein the sensor component comprises at least one nanotube. 118. The method of claim 116, wherein the sensor member has a pair of affinity for the respective analyte. 119. The method of claim 118, wherein the nanowires are raw nanowires. The method of claim 118, wherein the nanowires are derivatized to have or increase the affinity. A. The method of claim 18, wherein the nanowires are functionalized to have or increase the affinity. 1330403. The method of claim 1, wherein the sensor member has an affinity for a pair of at least two analytes, and wherein the plurality of nanowires comprise a line of two nanowires, one One class has an affinity for a one-to-one first analyte and a second type has an affinity for a one-to-one second analyte. The method of claim 118, wherein the support structure comprises a channel and the sensor member is suspended to extend the channel. The method of claim 123, wherein the support structure comprises a conductive electrode located in the channel, and wherein the sensor member is deflectable in response to the control circuitry to contact the electrode, such that A gate effect of the nanowires in the sensor component can be electrically detected. The core 125. The method of claim 124, further comprising an upper electrode disposed above and separated from the upper electrode member. 126. The method of claim 116, further comprising defining a fluid communication with the sensor component to deliver a fluid separator that may have the analyte. 127. The method of claim 16, wherein the sensor component is placed flat on the substrate. 128. The method of claim 118, wherein the sensing crying member is reusable after exposure to the ageing analyte, and substantially restored to its pre-exposure state by applying the light sensor component. 129. The method of claim 116, wherein the nanowire collection is formed using a catalyst by growing the set of nanowires on the substrate. The emblem is the method of applying for the patent _ 129, wherein during the period of growing the nanowire set, the nanowires are touched to have the affinity for the corresponding objects. 131. The method of claim 129, wherein the nanowires are functionalized to have a one-to-one affinity for the corresponding analyte during the growth of the nanometer 1330403 line set. 132. The method of claim 116, wherein the set of nanowires is formed by depositing a suspension of nanowires on the substrate. 133. The method of claim 132, wherein the nanowires are derivatized to have an affinity for a one-to-one corresponding analyte. 134. The method of claim 23, wherein the nanowires are functionalized to have an affinity for a one-to-one corresponding analyte. 135. The method of claim 116, wherein the sensor component is made from a pre-derivatized nanowire. 136. The method of claim 116, wherein the sensor component is made of pre-functionalized nanowires. 137. The method of claim 116, further comprising derivatizing at least a portion of the set of nanowires. 138. As in the method of claim 116, further at least one part of the nanowire set. 139. The method of claim 帛m, further comprising derivatizing a patterned set of the nanowires maintained on the substrate. To do the method of applying for the patent scope, and to maintain the method of the silk cake style scale 6 ^ 141. If the method of claim 116 is applied, the step further includes providing a layer of covering material in a nanowire set. One side; and a portion of the cover material is removed to expose a portion of the set. = 2. The method of claim 16, wherein the method further comprises: providing a first layer of a first covering material on one side 1330403 of a sensor member; providing a second covering material - The second layer is on one side of the sensor member. A portion of the second cover material is removed; and a portion of the first and second cover materials are annealed. 143. The method of claim 6, wherein the method of inducing a member of the sensing member is further away from the conductive member, such that the method of claim 143 is provided in the conductive member and the method Sensing the insulation between the components.匕 提供 提供 提供 145 145 145 如 如 如 145 145 145 145 145 145 145 如 145 145 如 如 145 145 145 如 如 如 如 如 如 如 如 145 145 如 如 如 如 如 申请 申请 申请 申请. The finder member and the sensing 146. The method of claim 143, wherein the capacitor is referenced to allow measurement with the reference capacitor; and the capacitor is provided to the conductive member. X-electricity is related to the feeling of seven red 14 Ι. For example, the method of claim 146, the hair ^ includes a set of two nanowires and - with the second nanowire 隹hai reference capacitor parts, t鄕 two There is no second transmission and two conduction structures in the Nike scale, such as the method of applying for the patent scope (4), and the Huaiyi electric connection relationship. The first contact with the sensor member at the first point includes providing - the second conductive member of the second point in contact with the sensor member for the sensor between the two conductive members The component current is included in the current mirror circuit system as in the scope of claim 148 to allow measurement of the first = the control (four) circuit of the resistor. younger brother. 150 between the two contact points, as in the method of claim 148, further includes providing - 72 reference resistors to divide % θ. The first-th order is related to the resistance of the reference resistor. . The electric current of the electric meter of the m-part of the m-part is included in the method of the first item, wherein the reference three-conducting member is in contact with the first; the nanowire structure is in contact with the fourth conduction structure. The method of the third and the first volume structure of Sakizaki, including the singular structure of a substrate-substrate; the structure provides a plurality of nanowire sets; the member; the 丨4 meter line , style makes the miscellaneous Corresponding to - on the sensor, the part is transferred to the substrate and has an electrical sign; 〃 13 sets of a plurality of linings provide a conductive member away from the sensor member, the sensor member - Capacitance off ^ / and domain - structure 'the device member is provided with Mi Mi ^ (4) measurement - green material member and the method of sensing including the lobes 152, the device member 154. If the patent application scope is 52 The method is to enter an insulating layer between the conductive member and the sensor member. Ki,- As in the method of applying for the scope of the patent, item 152: Into the _ test _ cover material, so that ^ may be in contact. Lu Xing Xing's 73 » 1=6.- Kind of production - resistance structure method, including: providing a support structure; on the support structure to provide - a plurality of nanowire sets; components; '-I scale set The pattern is such that the pattern corresponds to the sensor, and the portion 'turns the pattern (10) of the hybrid pattern onto the substrate and has an electric component such as a component' which includes a plurality of nanowires. And the first and second transfer circuitry in contact with the sensor member electrically sensed-reflected--electrically related to a current path between the conductive members passing through at least one of the members; ^ 4^ The method of claim 156, wherein the sensor apparatus comprises at least one nanotube. 158 • The method of claim 156 of the patent scope, including the stepping of the material of the core member, so that it is substantially not exposed to contact with the fluid. Detector value 74
TW93113553A 2003-05-14 2004-05-14 Sensor platform using a horizontally oriented nanotube element TWI330403B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US47037103P 2003-05-14 2003-05-14
US47041003P 2003-05-14 2003-05-14
US50309803P 2003-09-15 2003-09-15

Publications (2)

Publication Number Publication Date
TW200514250A TW200514250A (en) 2005-04-16
TWI330403B true TWI330403B (en) 2010-09-11

Family

ID=45074565

Family Applications (2)

Application Number Title Priority Date Filing Date
TW093113552A TWI346202B (en) 2003-05-14 2004-05-14 Sensor platform using a non-horizontally oriented nanotube element and methods of making sensor,capacitive structure and resistive structure
TW93113553A TWI330403B (en) 2003-05-14 2004-05-14 Sensor platform using a horizontally oriented nanotube element

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW093113552A TWI346202B (en) 2003-05-14 2004-05-14 Sensor platform using a non-horizontally oriented nanotube element and methods of making sensor,capacitive structure and resistive structure

Country Status (1)

Country Link
TW (2) TWI346202B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716730B (en) * 2018-02-03 2021-01-21 美商伊路米納有限公司 Apparatus for biological or chemical analysis and method using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009085356A2 (en) * 2007-10-01 2009-07-09 University Of Southern California Usc Stevens Methods of using and constructing nanosensor platforms
TWI424160B (en) * 2009-06-17 2014-01-21 Univ Nat Chiao Tung Sensing element integrating silicon nanowire gated-diodes, manufacturing method and detecting system thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716730B (en) * 2018-02-03 2021-01-21 美商伊路米納有限公司 Apparatus for biological or chemical analysis and method using the same
US11565252B2 (en) 2018-02-03 2023-01-31 Illumina, Inc. Cartridge with laminated manifold

Also Published As

Publication number Publication date
TW200514250A (en) 2005-04-16
TW200525144A (en) 2005-08-01
TWI346202B (en) 2011-08-01

Similar Documents

Publication Publication Date Title
US7780918B2 (en) Sensor platform using a horizontally oriented nanotube element
White et al. Label-free DNA sensing platform with low-voltage electrolyte-gated transistors
US8236595B2 (en) Nanowire sensor, nanowire sensor array and method of fabricating the same
Bof Bufon et al. Self-assembled ultra-compact energy storage elements based on hybrid nanomembranes
Penner Chemical sensing with nanowires
Ishikawa et al. A calibration method for nanowire biosensors to suppress device-to-device variation
Ishikawa et al. Importance of controlling nanotube density for highly sensitive and reliable biosensors functional in physiological conditions
Noyce et al. Electronic stability of carbon nanotube transistors under long-term bias stress
Bueno Common principles of molecular electronics and nanoscale electrochemistry
Zandbergen et al. Sculpting nanoelectrodes with a transmission electron beam for electrical and geometrical characterization of nanoparticles
Zhao et al. Narrower nanoribbon biosensors fabricated by chemical lift-off lithography show higher sensitivity
EP1212795A1 (en) Sensing devices using chemically-gated single electron transistors
Cao et al. Electronic sensitivity of carbon nanotubes to internal water wetting
TWI330403B (en) Sensor platform using a horizontally oriented nanotube element
Scaini et al. Electron transfer mediating properties of hydrocarbons as a function of chain length: a differential scanning conductive tip atomic force microscopy investigation
Gao et al. Buffered Oxide Etchant Post-Treatment of a Silicon Nanofilm for Low-Cost and Performance-Enhanced Chemical Sensors
Zaffino Development of a nano sensor for direct-electric free-label detection of DNA’s hybridization and single nucleotide polymorphism
Wohlgamuth Temperature dependent DNA charge transport in self-assembled monolayers monitored with electrochemical techniques
Massey Next Generation Non-Invasive Biomarker Testing in Saliva: The Organic Electrolyte Gated Field Effect Transistor Aptasensor System
White Label-Free, Microfluidic Biosensors with Printed, Floating-Gate Transistors
Iqbal An electrical framework for detection and characterization of DNA using nanoscale silicon based sensors
Sorgenfrei Carbon nanotube field-effect sensors for single-molecule detection
Park Nanowire sensor for real-time chemical and biological detection
Ming et al. Polypeptides Based Molecular Electronics
Shin Micro-and Nanotechnology-Based Platforms to Study Biology at Small Scale: From DNAs to Single Cells