TWI329027B - Multi-mode neural micro-stimulator device - Google Patents

Multi-mode neural micro-stimulator device Download PDF

Info

Publication number
TWI329027B
TWI329027B TW95146105A TW95146105A TWI329027B TW I329027 B TWI329027 B TW I329027B TW 95146105 A TW95146105 A TW 95146105A TW 95146105 A TW95146105 A TW 95146105A TW I329027 B TWI329027 B TW I329027B
Authority
TW
Taiwan
Prior art keywords
micro
electric
signal
current
neuro
Prior art date
Application number
TW95146105A
Other languages
Chinese (zh)
Other versions
TW200824742A (en
Inventor
Chua Chin Wang
Cheng Mu Wu
Original Assignee
Univ Nat Sun Yat Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Sun Yat Sen filed Critical Univ Nat Sun Yat Sen
Priority to TW95146105A priority Critical patent/TWI329027B/en
Publication of TW200824742A publication Critical patent/TW200824742A/en
Application granted granted Critical
Publication of TWI329027B publication Critical patent/TWI329027B/en

Links

Landscapes

  • Electrotherapy Devices (AREA)

Description

1329027 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種微電刺激裝置,尤其係關於一種多模 式微電刺激裝置。 【先前技術】 人體中負責神經系統的細胞稱之為神經元(Neur〇n)。神 經元係以電化學的方式來傳送訊息,也就是將化學能轉換 成電能,以產生一動作電位,使神經元細胞得以與其他細 胞的互相聯絡。當神經元細胞受損,導致無法傳送動作電 位時,人體的中央神經系統就會發生動作失序的情形,在 這個情況下,醫療人員可以使用微電刺激的方式來產生人 工的動作電位,代替中央神經系統來傳遞控制訊號給肢體 或器官。電流式的微電刺激器,使用電流做為其輸出之訊 號類別,在輸出的電流經過神經的阻抗之後,即可在神經 的兩端得到一個電位差’達成代替十央神經系統傳輸控制 訊號的功能。 習知之微電刺激系統請參考中華民國專利公告第 0047771 1號、中華民國專利公告第00330152號、中華民國 專利公告第M289068號。參考圖1,其顯示習知之微電刺 激系統之示意圖。該習知之微電刺激系統10包括複數個微 電刺激器111、112、113及複數個電流方向切換器121、 122 、 123 〇 每一微電刺激器用以接收一電流控制訊號,以產生一神 經微電刺激訊號。其中,第一微電刺激器111用以接收一 H3772.doc 1329027 第電/;IL大小控制訊號,以產生一第一神經微電刺激訊號 至該第一電流方向切換器121 ,以對第一神經131進行電刺 激,第一微電刺激器112用以接收一第二電流大小控制訊 號,以產生一第二神經微電刺激訊號至該第二電流方向切 換器122,以對第二神經131進行電刺激;第三微電刺激器 113用以接收一第三電流大小控制訊號,以產生一第三神 經微電刺激訊號至該第三電流方向切換器12 3,以對第三 神經133進行電刺激。 因此,在習知微電刺激系統10中,各個微電刺激器僅能 針對一個頻道的神經進行微電刺激。由於人體中有各種不 同的神經,而一般微電刺激器通常僅對特殊的神經細胞進 行設計,在使用上缺乏彈性,若需將微電刺激器應用於其 他部位的神經,則需重新修改微電刺激器的設計,甚至對 於病人重新進行外科手術,除了曠日費時之外,無形中也 增加研發成本與病患之痛苦。 因此,有必要提供一種創新且具進步性的多模式微電刺 激裝置,以解決上述問題。 【發明内容】 本發明之目的在於提供一種多模式微電刺激裝置,其包 括:複數個微電刺激器、複數個訊號方向切換器及複數個 開關。每一微電刺激器用以接收一控制訊號,以產生一神 經微電刺激訊號。該等訊號方向切換器用以接收該等神經 微電刺激訊號,並切換該等神經微電刺激訊號之方向。該 等開關分別設置於該等微電刺激器及該等電流方向切換器 113772.doc 1329027 之間’用以控制輸入至該等訊號方向切換器之該等神經微 電刺激訊號之複數個模態。 因此’本發明之多模式神經微電刺激裝置利用該等開關 控制單一電流路徑或相鄰電流路徑之導通與否,以產生複 數個模態之神經微電刺激訊號至相對應之目標神經,可提 供不同大小之神經微電刺激訊號至不同之目標神經,以提 升應用範圍及具應用彈性。 【實施方式】 參考圖2,其顯示本發明之多模式神經微電刺激裝置之 示意圖。本發明之多模式神經微電刺激裝置20包括:複數 個微電刺激器211、212、213、複數個訊號方向切換器 231、232、233及複數個開關 221、222、223 ' 224、225。 每一微電刺激器用以接收一控制訊號,以產生一神經微電 刺激訊號。本發明以三個微電刺激器說明,例如:第一微 電刺激器211用以接收一第一電流大小控制訊號,以產生 一第一神經微電刺激訊號;第二微電刺激器212用以接收 一第二電流大小控制訊號,以產生一第二神經微電刺激訊 號;第三微電刺激器213用以接收一第三電流大小控制訊 號,以產生一第三神經微電刺激訊號。在本實施例中,該 等微電刺激器係為電流式微電刺激器,該等神經微電刺激 訊號為電流訊號。 該等訊號方向切換器231、232、233用以接收該等神經 微電刺激訊號,並切換該等神經微電刺激訊號之方向,輸 出至相對應之目標神經。其中,第一微電刺激器211及第 113772.doc 1329027 M304之二倍,以提供四倍之單位參考電流,以此類推, 可提供一、二、四、八、十六倍數之單位參考電流。 該等控制電晶體M311、M312、M313、M314、M315分 別控制該等刺激電流電晶體組之刺激電流,再依據該第一 電流大小控制訊號,控制該等控制電晶體M311、M3 12、 M313、M314、M3 15之導通與否,以決定該第一微電刺激 器211之該第一神經微電刺激之電流訊號大小。 參考圖4,其顯示本發明開關之電路示意圖。以第一開 關221為例說明,該第一開關221為一 NMOS電晶體M401, 用以依據一開關控制訊號,控制該NMOS電晶體M401之導 通與否,以控制該第一開關22 1之導通與否。假設電流的 方向為由上往下,當開關控制訊號為VDD時,則電流則流 經M401,全數通過;而當開關控制訊號為接地時,則電 流無法通過M401電晶體,因此往下流出之電流大小趨近 於0。 參考圖5,其顯示本發明訊號方向切換器之電路示意 圖。每一訊號方向切換器之輸出端連接至一目標神經。以 第一訊號方向切換器23 1為例說明,第一訊號方向切換器 231之輸出端XA及XB連接至該第一神經241。該第一訊號 方向切換器231包括一第一 PMOS電晶體M501、一第二 PMOS電晶體M502、一第一 NMOS電晶體M503及一第二 NMOS電晶體M504,二PMOS電晶體M501、M502分別接收 一正向控制訊號(DIR)及一反相控制訊號(DIRN),二NMOS 電晶體M503 ' M504分別接收一正向控制訊號(DIR)及一反 113772.doc -12- 1329027 相控制訊號(DIRN)。第一 PMOS電晶體M501與第一 NMOS 電晶體M503串接,第二PM0S電晶體M502與第二NM0S電 晶體M504串接,該第一神經241之二端分別連接於二 PMOS電晶體及二NMOS電晶體之串接端XA及XB。 當正向控制訊號(DIR)為1時,則反相控制訊號(DIRN)為 0,此時會導致第一 PMOS電晶體M501與第二NMOS電晶體 M504不導通,第二PMOS電晶體M502與第一 NMOS電晶體 M503導通,因此神經微電刺激訊號進入該第一訊號方向 切換器231後,將先經過第二PMOS電晶體M502,並由XB 流出,在對第一神經241進行微電刺激後,由XA流回該第 一訊號方向切換器23 1,並經過第一 NMOS電晶體M503引 導至地。 當正向控制訊號(DIR)為0時,則反相控制訊號(DIRN)為 1,此時會導致第一 PMOS電晶體M501與第二NMOS電晶體 M504導通,第二PMOS電晶體M502與第一 NMOS電晶體 M503不導通,因此神經微電刺激訊號進入該第一訊號方 向切換器231後,將先流經第一 PMOS電晶體M501,由XA 流出並對第一神經241進行微電刺激後,由XB流回該第一 訊號方向切換器231,並經過第二NMOS電晶體M504引導 至地。 惟上述實施例僅為說明本發明之原理及其功效,而非限 制本發明。因此,習於此技術之人士對上述實施例進行修 改及變化仍不脫本發明之精神。本發明之權利範圍應如後 述之申請專利範圍所列。 113772.doc •13· 1329027 【圖式簡單說明】 圖1顯示習知之微電刺激系統之示意圖; 圖2顯示本發明多模式神經微電刺激裝置之示意圖; 圖3顯示本發明微電刺激器之電路示意圖; 圖4顯示本發明開關之電路示意圖;及 圖5顯示本發明訊號方向切換器之電路示意圖。 【主要元件符號說明】1329027 IX. Description of the Invention: [Technical Field] The present invention relates to a micro-electric stimulation device, and more particularly to a multi-mode micro-electric stimulation device. [Prior Art] The cells responsible for the nervous system in the human body are called neurons (Neur〇n). The neuron transmits information electrochemically, that is, converts chemical energy into electrical energy to generate an action potential that allows neuronal cells to communicate with other cells. When the neuronal cells are damaged and the action potential cannot be transmitted, the central nervous system of the human body will be out of order. In this case, the medical personnel can use the micro-electric stimulation to generate the artificial action potential instead of the central. The nervous system transmits control signals to the limbs or organs. The current type micro-electric stimulator uses the current as the signal type of its output. After the output current passes through the nerve impedance, a potential difference can be obtained at both ends of the nerve to achieve the function of replacing the ten-yang nervous system transmission control signal. . For the micro-electric stimulation system, please refer to the Republic of China Patent Notice No. 0047771, the Republic of China Patent Notice No. 03030152, and the Republic of China Patent Notice No. M289068. Referring to Figure 1, there is shown a schematic diagram of a conventional micro-electric stimulation system. The conventional micro-electric stimulation system 10 includes a plurality of micro-electric stimulators 111, 112, 113 and a plurality of current direction switches 121, 122, 123. Each micro-electric stimulator receives a current control signal to generate a nerve. Micro-electric stimulation signal. The first micro-electric stimulator 111 is configured to receive a H3772.doc 1329027 first power/; IL size control signal to generate a first neural micro-electric stimulation signal to the first current direction switch 121 to The nerve 131 is electrically stimulated, and the first micro-electric stimulator 112 is configured to receive a second current magnitude control signal to generate a second neural micro-electric stimulation signal to the second current direction switch 122 to the second nerve 131. The third micro-electric stimulator 113 is configured to receive a third current-sense control signal to generate a third neural micro-electric stimulation signal to the third current-direction switch 12 3 to perform the third nerve 133 Electrical stimulation. Thus, in the conventional micro-electric stimulation system 10, each micro-electric stimulator can only perform micro-electric stimulation for the nerves of one channel. Since there are various nerves in the human body, the general micro-electric stimulators are usually designed only for special nerve cells, and lack flexibility in use. If the micro-electric stimulator is applied to nerves in other parts, it needs to be re-modified. The design of the electrical stimulator, even for the patient to re-surgery, in addition to the time-consuming time, invisibly increases the cost of research and development and the suffering of patients. Therefore, it is necessary to provide an innovative and progressive multi-mode micro-electric stimulation device to solve the above problems. SUMMARY OF THE INVENTION It is an object of the present invention to provide a multi-mode micro-electric stimulation device comprising: a plurality of micro-electric stimulators, a plurality of signal direction switches, and a plurality of switches. Each micro-electric stimulator is configured to receive a control signal to generate a neuro-electric stimulation signal. The signal direction switches are configured to receive the neural micro-electric stimulation signals and switch the directions of the neuro-micro-electric stimulation signals. The switches are respectively disposed between the micro-electric stimulators and the current direction switches 113772.doc 1329027 to control a plurality of modalities of the neuro-micro-electric stimulation signals input to the signal direction switches . Therefore, the multi-mode neuro-micro-electric stimulation device of the present invention uses the switches to control the conduction of a single current path or an adjacent current path to generate a plurality of modal neuro-electrical stimulation signals to the corresponding target nerves. Different sizes of neuro-micro-electric stimulation signals are provided to different target nerves to enhance the application range and application flexibility. [Embodiment] Referring to Figure 2, there is shown a schematic diagram of a multi-mode neuro-micro-electric stimulation device of the present invention. The multi-mode neuro-micro-electric stimulation device 20 of the present invention comprises a plurality of micro-electric stimulators 211, 212, 213, a plurality of signal direction switches 231, 232, 233 and a plurality of switches 221, 222, 223 '224, 225. Each micro-electric stimulator is configured to receive a control signal to generate a neuro-micro-stimulation signal. The present invention is illustrated by three micro-electric stimulators, for example, the first micro-electric stimulator 211 is configured to receive a first current-sense control signal to generate a first neural micro-electric stimulation signal; and the second micro-electric stimulator 212 is used. Receiving a second current magnitude control signal to generate a second neural micro-electric stimulation signal; the third micro-electric stimulator 213 is configured to receive a third current magnitude control signal to generate a third neural micro-electric stimulation signal. In this embodiment, the micro-electric stimulators are current-type micro-electric stimulators, and the neuro-micro-electric stimulation signals are current signals. The signal direction switches 231, 232, 233 are configured to receive the neuromechanical stimulation signals and switch the directions of the neuromechanical stimulation signals to the corresponding target nerves. Wherein, the first micro-electric stimulator 211 and the 113772.doc 1329027 M304 are twice as large as to provide four times the unit reference current, and so on, and can provide a unit reference current of one, two, four, eight, sixteen multiples. . The control transistors M311, M312, M313, M314, M315 respectively control the stimulation currents of the stimulation current transistor groups, and then control the control transistors M311, M3 12, M313 according to the first current magnitude control signals. Whether the M314 and M3 15 are turned on or not to determine the current signal size of the first neuro-micro-electric stimulation of the first micro-electric stimulator 211. Referring to Figure 4, there is shown a circuit diagram of the switch of the present invention. Taking the first switch 221 as an example, the first switch 221 is an NMOS transistor M401 for controlling the conduction of the NMOS transistor M401 according to a switch control signal to control the conduction of the first switch 22 1 . Whether or not. Assume that the direction of the current is from top to bottom. When the switch control signal is VDD, the current flows through M401 and passes all the way. When the switch control signal is grounded, the current cannot pass through the M401 transistor, so the current flows downward. The current magnitude approaches zero. Referring to Figure 5, there is shown a circuit schematic of the signal direction switch of the present invention. The output of each signal direction switch is connected to a target nerve. Taking the first signal direction switch 23 1 as an example, the output terminals XA and XB of the first signal direction switch 231 are connected to the first nerve 241. The first directional transistor 231 includes a first PMOS transistor M501, a second PMOS transistor M502, a first NMOS transistor M503, and a second NMOS transistor M504. The two PMOS transistors M501 and M502 receive respectively. A forward control signal (DIR) and an inverting control signal (DIRN), the two NMOS transistors M503 'M504 receive a forward control signal (DIR) and a reverse 113772.doc -12-1329027 phase control signal (DIRN) ). The first PMOS transistor M501 is connected in series with the first NMOS transistor M503, the second PMOS transistor M502 is connected in series with the second NMOS transistor M504, and the two ends of the first nerve 241 are respectively connected to the two PMOS transistors and the two NMOSs. The serial terminals XA and XB of the transistor. When the forward control signal (DIR) is 1, the inverted control signal (DIRN) is 0, which causes the first PMOS transistor M501 and the second NMOS transistor M504 to be non-conductive, and the second PMOS transistor M502 and The first NMOS transistor M503 is turned on. Therefore, after the neuromechanical stimulation signal enters the first signal direction switch 231, it will first pass through the second PMOS transistor M502 and flow out from XB to perform micro-electric stimulation on the first nerve 241. Thereafter, the XA flows back to the first signal direction switch 23 1, and is guided to the ground through the first NMOS transistor M503. When the forward control signal (DIR) is 0, the inverted control signal (DIRN) is 1, which causes the first PMOS transistor M501 and the second NMOS transistor M504 to be turned on, and the second PMOS transistor M502 and the second An NMOS transistor M503 is not turned on. Therefore, after the neuromechanical stimulation signal enters the first signal direction switch 231, it will first flow through the first PMOS transistor M501, flow out from the XA, and perform micro-electric stimulation on the first nerve 241. The XB flows back to the first signal direction switch 231 and is directed to the ground via the second NMOS transistor M504. However, the above-described embodiments are merely illustrative of the principles of the invention and its effects, and are not intended to limit the invention. Therefore, those skilled in the art can make modifications and changes to the above embodiments without departing from the spirit of the invention. The scope of the invention should be as set forth in the appended claims. 113772.doc •13· 1329027 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a conventional micro-electric stimulation system; FIG. 2 is a schematic view showing a multi-mode neuro-micro-electric stimulation device according to the present invention; BRIEF DESCRIPTION OF THE DRAWINGS Fig. 4 is a circuit diagram showing the switch of the present invention; and Fig. 5 is a circuit diagram showing the signal direction switch of the present invention. [Main component symbol description]

10 習知之微電刺激系統 111 第一微電刺激器 112 第二微電刺激器 113 第三微電刺激器 121 第一電流方向切換器 122 第二電流方向切換器 123 第三電流方向切換器 131 第一神經 132 第二神經 133 第三神經 20 本發明多模式神經微 211 第一微電刺激Is 212 第二微電刺激器 213 第三微電刺激器 221 第一開關 222 第二開關 223 第三開關 113772.doc 1329027 224 第四開 關 225 第五開 關 231 第- -電 流方 向 切換 器 232 第二 二電 流方 向 切換 器 233 第i L電 流方 向 切換 器 241 第- -神 經 242 第二 二神 經 243 第i L神 經 113772.doc 15-10 conventional micro-electric stimulation system 111 first micro-electric stimulator 112 second micro-electric stimulator 113 third micro-electric stimulator 121 first current direction switch 122 second current direction switch 123 third current direction switch 131 First nerve 132 second nerve 133 third nerve 20 multi-mode neuromicro 211 of the invention first micro-electric stimulation Is 212 second micro-electric stimulator 213 third micro-electric stimulator 221 first switch 222 second switch 223 third Switch 113772.doc 1329027 224 fourth switch 225 fifth switch 231 first - current direction switcher 232 second two current direction switcher 233 i-th current direction switcher 241 - - nerve 242 second second nerve 243 i L nerve 113772.doc 15-

Claims (1)

第095146105號專利申請案 丨 . ' 中文申請專利範圍替換本(99年3彳月二> /孑: 十、申請專利範圍: .........:::Ί 1. 一種多模式神經微電刺激裝置,包括: 複數個微電刺激器,每一微電刺激器用以接收一控制 訊號,以產生一神經微電刺激訊號; 複數個訊號方向切換器,用以接收該等神經微電刺激 訊號,並切換該等神經微電刺激訊號之方向;及 複數個開關,分別設置於該等微電刺激器及該等電流 方向切換器之間,用以控制輸入至該等訊號方向切換器 之該等神經微電刺激訊號之複數個模態,其中該等開關 分別設置於一微電刺激器及一訊號方向切換器之間,用 以控制微電刺激器及訊號方向切換器之導通與否,且該 等開關分別設置於相鄰微電刺激器之一輸出端之間,用 以控制相鄰微電刺激器之輸出端導通與否,用以控制輸 入至該等訊號方向切換器之該等神經微電刺激訊號之大 /J、〇 2. 如請求項1之多模式神經微電刺激裝置,其中該等微電 刺激器係為電流式微電刺激器,該等神經微電刺激訊號 為電流訊號。 3·如請求項2之多模式神經微電刺激裝置,其中該微電刺 激器包括一偏壓電晶體、複數個刺激電流電晶體組及複 數個控制電晶體,該偏壓電晶體用以接收一偏壓電壓, 並產生一單位參考電流,每一刺激電流電晶體組依據該 單位參考電流,以產生不同倍數之刺激電流,該等控制 電晶體分別控制該等刺激電流電晶體組之刺激電流,依 113772-AMD-990308.doc 據電流控制訊號’決定該神經微電刺激之電流訊號。 4. 如請求項1之多模式神經微電刺激裝置,其中每一訊號 方向切換器之輸出端連接至一目標神經。 5. 如請求項4之多模式神經微電刺激裝置,其中該訊號方 向切換器包括一第一 PMOS電晶體、一第二PMOS電晶 體、一第一 NMOS電晶體及一第二NMOS電晶鱧,二 PMOS電晶體分別接收一正向控制訊號及一反相控制訊 號,二NMOS電晶體分別接收一正向控制訊號及一反相 控制訊號,第一 PMOS電晶體與第一 NMOS電晶體串接, 第二PMOS電晶體與第二NMOS電晶體串接,該目標神經 之二端分別連接於二PMOS電晶體及二NMOS電晶體之串 接端。 6·如請求項1之多模式神經微電刺激裝置,其中該開關為 一 NMOS電晶體,用以依據一開關控制訊號,控制該 NMOS電晶體之導通與否,以控制該開關之導通與否。 1 如請求項1之多模式神經微電刺激裝置,其中該等模態 包括單一神經微電刺激訊號及複數倍神經微電刺激訊 號。 113772-AMD-990308.doc 2-Patent application No. 095146105 丨. 'Chinese patent application scope replacement (99 years 3 months 2) / 孑: X. Patent application scope: .........:::Ί 1. One more The mode neuromechanical stimulation device comprises: a plurality of micro-electric stimulators, each micro-electric stimulator for receiving a control signal to generate a neural micro-electric stimulation signal; and a plurality of signal direction switches for receiving the nerves Micro-electrically stimulating the signal and switching the direction of the neuro-micro-electric stimulation signals; and a plurality of switches respectively disposed between the micro-electric stimulators and the current direction switches for controlling input to the signals a plurality of modalities of the neuromechanical stimulation signals of the switch, wherein the switches are respectively disposed between a micro-electric stimulator and a signal direction switch for controlling the micro-electric stimulator and the signal direction switch Turning on or off, and the switches are respectively disposed between the output ends of the adjacent micro-electric stimulators for controlling whether the output terminals of the adjacent micro-electric stimulators are turned on or not to control the input to the signals The magnitude of the neuromechanical stimulation signals of the transducer/J, 〇 2. The multi-mode neuro-micro-electric stimulation device of claim 1, wherein the micro-electric stimulators are current-type micro-electric stimulators, and the neuro-micro-stimulators The electrical stimulation signal is a current signal. 3. The multi-mode neuro-micro-electric stimulation device of claim 2, wherein the micro-electric stimulator comprises a bias transistor, a plurality of stimulation current transistor groups, and a plurality of control transistors, The biasing transistor is configured to receive a bias voltage and generate a unit of reference current, each of the stimulation current transistors according to the unit reference current to generate different multiples of stimulation currents, the control transistors respectively controlling the stimulations The stimulating current of the current transistor group determines the current signal of the neuro-micro-electric stimulation according to the current control signal of 113772-AMD-990308.doc. 4. The multi-mode neuro-micro-electric stimulation device of claim 1, wherein each signal The output of the direction switch is connected to a target nerve. 5. The multi-mode neuro-micro-electric stimulation device of claim 4, wherein the signal direction switch comprises a first PMOS a second PMOS transistor, a first NMOS transistor and a second NMOS transistor, the two PMOS transistors respectively receive a forward control signal and an inverted control signal, and the two NMOS transistors respectively receive a positive To the control signal and an inversion control signal, the first PMOS transistor is connected in series with the first NMOS transistor, the second PMOS transistor is connected in series with the second NMOS transistor, and the two ends of the target nerve are respectively connected to the second PMOS The serial connection of the crystal and the two NMOS transistors. The multi-mode neuro-micro-electric stimulation device of claim 1, wherein the switch is an NMOS transistor for controlling the conduction of the NMOS transistor according to a switch control signal. Whether or not to control the conduction of the switch. 1 The multi-mode neuro-micro-electric stimulation device of claim 1, wherein the modalities comprise a single neuro-micro-electric stimulation signal and a plurality of neural micro-electric stimulation signals. 113772-AMD-990308.doc 2-
TW95146105A 2006-12-08 2006-12-08 Multi-mode neural micro-stimulator device TWI329027B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95146105A TWI329027B (en) 2006-12-08 2006-12-08 Multi-mode neural micro-stimulator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95146105A TWI329027B (en) 2006-12-08 2006-12-08 Multi-mode neural micro-stimulator device

Publications (2)

Publication Number Publication Date
TW200824742A TW200824742A (en) 2008-06-16
TWI329027B true TWI329027B (en) 2010-08-21

Family

ID=44771614

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95146105A TWI329027B (en) 2006-12-08 2006-12-08 Multi-mode neural micro-stimulator device

Country Status (1)

Country Link
TW (1) TWI329027B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8527061B2 (en) 2011-05-13 2013-09-03 National Chiao Tung University Load-adaptive bioelectric current stimulator
US8892202B2 (en) 2011-12-30 2014-11-18 National Chiao Tung University Current stimulator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116407761A (en) * 2021-12-29 2023-07-11 精能医学股份有限公司 Electrical stimulation method and device, external control device and computer readable storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8527061B2 (en) 2011-05-13 2013-09-03 National Chiao Tung University Load-adaptive bioelectric current stimulator
US8892202B2 (en) 2011-12-30 2014-11-18 National Chiao Tung University Current stimulator

Also Published As

Publication number Publication date
TW200824742A (en) 2008-06-16

Similar Documents

Publication Publication Date Title
Ning et al. Fourth-generation biomedical materials
US8706238B2 (en) Current generation architecture for an implantable stimulator device having coarse and fine current control
ES2732734T3 (en) Transespinal field direct current modulation systems
EP0229449B1 (en) Multichannel electrical stimulator with improved channel isolation
Chiolerio et al. Coupling resistive switching devices with neurons: state of the art and perspectives
D Leon-Salas et al. A dual mode pulsed electro-magnetic cell stimulator produces acceleration of myogenic differentiation
CN105164920A (en) Current sensing multiple output current stimulators with fast turn on time
CN102917639A (en) Apparatus for measuring interfacial impedance between the body and a simulating electrode
TWI329027B (en) Multi-mode neural micro-stimulator device
Chen et al. Bioinspired artificial motion sensory system for rotation recognition and rapid self-protection
CN107080894A (en) A kind of portable multichannel acupoint stimulation system
Zhu et al. An artificial remote tactile device with 3D depth-of-field sensation
Bruno et al. From neuromorphic to neurohybrid: transition from the emulation to the integration of neuronal networks
CN104411359A (en) Neurostimulation system for enabling magnetic field sensing with a shut-down hall sensor
Nguyen et al. A wearable assistive device for the blind using tongue-placed electrotactile display: Design and verification
KR20200025535A (en) System and method for providing electrical stimulation on a cell
Kostić et al. Design and development of OECT logic circuits for electrical stimulation applications
KR20170091935A (en) Electrical Body Stimulation System
KR102031768B1 (en) Massage Apparatus Using Magnetic Field and Anion
JP2018038514A (en) Electric therapeutic apparatus
Wang Neuro-WiFi: A novel neuronal connection underlies the potential interventional target
JP2014076195A5 (en)
Zhang et al. Soft integration of a neural cells network and bionic interfaces
Sun et al. A sensory–neuromorphic interface capable of environmental perception, sensory coding, and biological stimuli
KR102523910B1 (en) Method and apparatus for applying electrical stimulation to microfluidic cells

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees