TWI328592B - Gas-barrier nanocomposite composition and article using the same - Google Patents

Gas-barrier nanocomposite composition and article using the same Download PDF

Info

Publication number
TWI328592B
TWI328592B TW094123845A TW94123845A TWI328592B TW I328592 B TWI328592 B TW I328592B TW 094123845 A TW094123845 A TW 094123845A TW 94123845 A TW94123845 A TW 94123845A TW I328592 B TWI328592 B TW I328592B
Authority
TW
Taiwan
Prior art keywords
composition
weight ratio
nylon
nano
ethylene
Prior art date
Application number
TW094123845A
Other languages
Chinese (zh)
Other versions
TW200609275A (en
Inventor
Myung Ho Kim
Minki Kim
Youngchul Yang
Jaeyong Shin
Original Assignee
Lg Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020050047116A external-priority patent/KR100789240B1/en
Application filed by Lg Chemical Ltd filed Critical Lg Chemical Ltd
Publication of TW200609275A publication Critical patent/TW200609275A/en
Application granted granted Critical
Publication of TWI328592B publication Critical patent/TWI328592B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Description

17430pif.doc 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種氣體阻絕性奈米組成的組成物 與其物品之製造方法,且特別是有關於一種具優越的阻絕 性與可塑性的之奈米組成物,以乾式混合一聚烯烴樹脂、 包括一具阻絕性之樹脂與一具阻絕性之奈米組成物的一熔 化混合,以及一相容劑;以及產品製造方法。 【先前技術】 本申請承繼在韓國智財局申請之韓國專利No. 10-2004-0056996 號申請之於 2004 年 7 月 21 日、No. 10-2005-0029580 號申請於 2005 年 4 月 8 日、與 No. 10-2005-0047116號申請於2005年6月2日,所揭露之相 關訊息作爲本發明之參考資料。 一般使用目的的樹脂例如聚乙烯、聚丙烯,等具優越 的可塑性、機械性、與阻絕水氣的特質,因此被使用於許 多領域。然而這些樹脂也受限使用作爲農化、食品業之包 裝或容器等要求具有優越化學與氧氣阻絕特性之產業。 一乙烯-乙烯醇共聚物【ethylene_vinyl alc〇h〇1 (EV〇H) copolymer】與聚酿胺樹脂【p〇iyamideresins】具透明與良 好的氣體阻絕性。然而,因爲這些樹脂較一般用途之樹脂 昂貴,在產品的含量就會受到限制。 所以’爲了降低費用’一具阻絕特性之混合樹脂,例 如乙嫌乙烯醇共聚物【(EVOH)】與聚醯胺【polyamide 1328592 17430pi£doc resins】,以及不貴的烯烴類因此被提出。然而並未獲得預 期滿意的阻絕特性。 爲了改進阻絕特性,一完全片狀剝落、或部份剝落、 插入、或部分插入奈米組成的方式是藉著於聚合物基質中 擴散一奈米大小的插入式黏土。 當一被調整的物件被生產時,使用上述奈米組成’該 奈米組成會維持其型態並具有阻絕特性甚至在被塑形之 後,且其可塑性優越容易生產成片狀或薄膜型式’例如容 器。 【發明內容】 本發明的目的就是在提供一種奈米組成物包含優越的 機械強度,以及阻絕氧氣,有機溶劑與水氣的特性’兼具 良好的可塑性。 本發明的再一目的是提供一種從具有阻絕性的奈米組 成物生產之物品。 依據本發明之一目的,本發明提供一乾式混合組成 物,包括:30到95重量比的烯烴樹脂;0.5到60重量比的 熔化混合物包括至少一具阻絕性樹脂,選擇自由乙烯-乙烯 醇共聚物【ethylene-vinyl alcohol (EVOH) copolymer】、與 聚酿胺【polyamide resins】、一離子體(ionomer )與一聚 乙烯醇(PVA)所組成之族群,以及至少一具阻絕性奈米組成 物選自由一乙烯-乙烯醇(EVOH)共聚物/插入式黏土型奈 米組成、一聚醯胺/插入式黏土型奈米組成、一離子體 (ionomer) /插入式黏土型奈米組成、以及一聚乙烯醇/插 17430pif.doc 入式黏土型奈米組成所組成之族群;以及1到30重量比的 —相溶劑(compatibilizer)。 在本發明之一實施例中,具阻絕特性樹脂與具阻絕特 性奈米組成可被熔化-混合以一重量比從25 : 75到75 : 25。 在本發明之其他實施例中,具阻絕特性樹脂與具阻絕 特性奈米組成使用一共-旋轉(co-rotation)雙螺桿(twin screw)壓出機或一單螺桿壓出機在樹脂的熔點或更高溫度 可執行熔化-混合。 依據本發明之其他實施例,一包含奈米組成之組成物 所製造的物品也被提出。 在本發明之一實施例中,該物品可以透過吹拉機成型 法(blow molding)、壓出成型法(extrusion molding)、模 壓成形法(pressure molding)或射出成形(injecti〇n molding) 等方法生產製造。 在本發明之其他實施例中,該物品可以是一具阻絕特 性之容器、薄片、管、或薄膜等》 爲讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 【實施方式】 本發明將續後續更詳細解釋。 先前已經申請的韓國專利申請No. 2002-76575,揭露 奈米組成混合之組成物包括:重量比1到97的烯烴樹脂; 重量比1到95的具阻絕特性奈米組成,選自由乙烯-乙烯 1328592 17430pif.doc 醇共聚物【ethylene-vinyl alcohol (EVOH) copolymer】、與 聚醯胺【polyamide resins】、一離子體(ionomer)與一聚 乙烯醇(PVA)所組成之族群,以及至少一具阻絕性奈米組成 物選自由一乙烯-乙烯醇(EVOH)共聚物/插入式黏土型奈 米組成、一聚醯胺/插入式黏土型奈米組成、一離子體 (ionomer) /插入式黏土型奈米組成、以及一聚乙烯醇/插 入式黏土型奈米組成所組成之族群;以及1到95 —重量比 的一相溶劑(compatibilizer),以完成本發明。 依據本發明之一實施例,一具阻絕特性奈米組成之組 成物是乾式-混合一具阻絕特性之熔化混合樹脂與一具阻 絕特性奈米組成、聚烯烴樹脂與一相容劑所得到的。 因此該奈米組成之組成物是一乾式混合組成物包括: 30到95重量比的聚烯烴樹脂;0.5到60重量比的熔化混 合,其包括至少一具阻絕特性樹脂,選自由乙烯-乙烯醇共 聚物【ethylene-vinyl alcohol (EVOH) copolymer】、與聚醯 胺【polyamide resins】、一離子體(ionomer )與一聚乙稀 醇(PVA)所組成之族群,以及至少一具阻絕性奈米組成 物,選自由一乙烯-乙烯醇(EVOH)共聚物/插入式黏土型 奈米組成、一聚醯胺/插入式黏土型奈米組成、一離子體 (ionomer) /插入式黏土型奈米組成、以及一聚乙烯醇/插 入式黏土型奈米組成所組成之族群;以及1到3〇重量比 的一相溶劑(compatibilizer)。 該聚烯烴樹脂可以是至少一選自一高密度聚乙烯 (HDPE)、一低密度聚乙烯(LDPE)、一直鏈之低密度聚乙 17430pif.doc 稀(LLDPE)、一乙嫌-丙烯共聚體、金屬芳香類(metaU〇cene) 以及一聚丙烯所組成之族群。該聚丙烯可以是至少一化合 物選自由一同相聚合物之聚丙烯、一共聚合物之聚丙稀、 金屬芳香類(metallocene)聚丙烯所組成之族群,以及一 組成物樹脂藉著添加滑石(talc)、防火材質(flame retardant) 等到一聚丙嫌之同相聚合物或共聚合物以改善物理性質。 該聚烯烴樹脂的含量較佳是從30到95重量比,以及 更佳是從70到90重量比。如果該聚烯烴樹脂的含量少於 30重量比’成型會困難。如果該聚烯烴樹脂的含量大於9〇 重量比,阻絕特性不好。 該樹脂/奈米組成的熔化混合的製備可以從該具阻絕 特性樹脂先形成一剝落或部分剝落之具阻絕特性奈米組成 與該插入式黏土,然後熔解-混合該奈米組成與具阻絕特性 的樹脂。特別是,該樹脂/奈米組成的熔化混合可以採熔化 混合至少一種具阻絕特性樹脂,選自由乙烯-乙烯醇共聚物 【ethylene-vinyl alcohol (EVOH) copolymer】、與聚酿胺 【polyamide resins】、一離子體(ionomer )與一聚乙燦醇 (PVA)所組成之族群,與至少一具阻絕特性奈米組成,選自 由一乙烯·乙烯醇(EVOH)共聚物/插入式黏土型奈米組成、 —聚醯胺/插入式黏土型奈米組成、一離子體(ionomer) / 插入式黏土型奈米組成、以及一聚乙烯醇/插入式黏土型奈 米組成所組成之族群。 該具阻絕特性樹脂被加入到插入式黏土以形成一奈米 尺寸之剝落或部份剝落的奈米組成物。因爲此一奈米組成 1328592 17430pif.doc 的型態’該氣體與液體在樹脂內之通路被擴展,所以樹脂 本身的水氣與液體阻絕特性被改善,以及聚烯烴之熔化強 度因插入式黏土而增強,在吹拉機成型(bl〇w molding)中 預防塑胚(parison)的掉落。 該具阻絕特性樹脂相對於插入式黏土之重量比,在該 奈米組成是58.0: 42.0到99.9: 0.1,與較佳是85.0: 15.0到 99.0 : 1.0。如果該具阻絕特性樹脂的重量比相對於插入式 黏土少於58.0 : 42.0,該插入式黏土凝聚與擴散都是困難 的。如果該具阻絕特性樹脂的重量比相對於插入式黏土大 於99.9 : 0.1,則對於該阻絕特性的改善可以被忽略。 因爲使用奈米組成與具阻絕特性樹脂的熔化混合,該 製程溫度的範圍在成型步驟較寬。所以,混合物組成可以 被選擇且混合比例可以被調整,依製程溫度狀況以製備所 需的成型物品。 爲獲得該具阻絕特性的樹脂/奈米組成的熔化混合,該 溶解-混合步驟較佳是在175-270°C環境下執行。 該插入式黏土較佳的是有機插入式黏土。該插入式黏 土的有機物質的含量較佳是從1到45 %重量百分比。當該 有機物質含量少於1 %重量百分比,該插入式黏土與具阻 絕特性樹脂的相容性是不好的。當有機物質含量大於45 % 重羹百分比,具阻絕特性樹脂的剝落是困難的。 該插入式黏土包括至少一物質選自由蒙脫土(蒙脫 土)、膨潤土( bentonite )、高嶺土( kaolinite )、電晶體雲 母片(mica )、鋰皂土( hectorite )、氟化鋰皂土 10 17430pif.doc (fluorohectorite)、皂石(saponite)、貝地拉石(beidelite)、 囊脫石(nontronite )、錢滑潤石(stevensite )、經石 (vermiculite )、哈羅賽石(hallosite )、佛康司過石 (volkonskoite)、琥珀(suconite)、美加地石(magadite) 與肯雅石(kenyalite);以及有機材料其中最好包括—官能 基’官能基選自由一級錶到四級銨、憐鹽(phosphonium )、 馬來酸(maleate )、琥拍酸(succinate)、丙嫌酸(acrylate)、 氫甲基苯(benzylic hydrogen)、噁唑啉(〇xaz〇line)與雙 甲基雙硬脂酸錢(dimethyldistearylammonium)所組成的族 群。 該具阻絕特性樹脂與該具阻絕特性奈米組成之較佳熔 化-混合的重量比從25 : 75到75 : 25。如果該具阻絕特性 樹脂之量太大,則無法改善其阻絕特性。如果該具阻絕特 性樹脂之量太小,最後所塑型的物件的耐衝擊強度會降低。 如果一乙烯-乙烯醇(EVOH)共聚合物包括該奈米組 成,該乙烯-乙烯醇(EVOH)共聚合物之乙烯含量較佳是從 摩爾百分比1〇到50 %。如果乙烯含量摩爾百分比少於1〇 %,因爲製程性較差,熔化塑型變的較困難。如果乙烯含量 超過摩爾百分比50 %,氧氣與液體的阻絕特性較不足。 如果聚醯胺包括該奈米組成,該聚醯胺可以是尼龍 4.6、尼龍6、尼龍6.6 '尼龍6.10、尼龍7、尼龍8、尼龍 9 '尼龍11、尼龍12、尼龍46、MXD6、一非結晶型聚醯 胺、包括至少兩個前述物質的一共聚合化聚醯胺,或包括 至少兩個前述物質的一混合物。 1328592 17430pif.doc 該非結晶型聚醯胺相當於一結晶度不足的聚醯胺,所 以’當以微差掃描熱量儀【differential scanning calorimetry (DSC)(機型ASTM D-3417,10°C/min)】量測時,並沒有 一吸熱的結晶高峰値。 一般而言,該聚醯胺之製備可以使用雙胺類與雙羧 酸。例如該雙胺類包括乙烯雙胺(六亞甲基diamine)、2-甲 基五甲 基二胺 基乙烷 (2-methylpentamethylenediamine)、2,2,4-三甲基六甲基二 胺基乙烷(2,2,4-trimethyl六亞甲基diamine)、雙(4-胺基環 己院基)甲院【bis(4-aminocyclohexyl)methane】、2,2-雙(4- 胺基環己烷基)異丙基雙烯 【2,2-bis(4-aminocyclohexyl)isopropylidene】、1,4-雙胺基環 己院(1,4-diaminocyclohexane )、1,3-雙胺基環己院 (1,3-diaminocyclohexane )、雙胺-間二甲苯 (meta-xylenediamine ) 、 1,5-雙胺基戊院 (1,5-diaminopentane ) 、 1,4-雙胺基丁院 (1,4-diaminobutane ) 、 1,3-雙胺基丙院 (l,3-diaminopropane )、2-乙院基雙胺基丁院 (2-ethyldiaminobutane )、1,4-雙胺基甲院基環己院 (1,4-diaminomethylcyclohexanes )、甲垸-二甲苯 (methane-xylenediamine)、院基-取代或未取代的雙胺-間 二甲苯與對-苯二胺(p-phenylenediamine)等。例如雙殘酸 包括烷基-取代或未取代的間苯二甲酸(間苯二甲酸)、對 苯二甲酸(terephthalic acid )、己二酸(adipic acid )、癸二 12 1328592 17430pif.doc 酸(sebacic acid)、丁院雙竣酸(butanedicarboxylic acid) 等。 由脂肪族雙胺類與脂肪族雙羧酸製備的聚醯胺是一般 的半結晶型聚醯胺【也被認定是結晶型尼龍(crystamne nylon】而不是非結晶型聚醯胺。由芳香族雙胺類與芳香族 雙羧酸製備的聚醯胺並不容易使用一般熔化製程來處理^ 所以’當被使用的雙胺與雙羧酸其中之一是芳香族且 其中之一疋目θ肪族’是非結晶型聚釀胺較佳的製備方式。 脂肪族官能基在非結晶型聚醯胺較佳的是之脂肪族 或C4-C8脂環族烷基。非結晶型聚醯胺之芳香族官能基之較 佳是以CVC6單-或雙環芳香族官能基取代。然而,所有上 述非結晶型聚醯胺在本發明並非最佳狀況。例如,在熱塑 化過程或當定位向過程,間二甲苯雙胺,己胺(adipamide) 容易結晶化,並非較佳狀況。 較佳的非結晶型聚醯胺範例包括六亞甲基雙胺異苯二 甲醯亞胺、六亞甲基雙胺異苯二甲醯亞胺/間苯二胺之間聚 合物的間苯二甲酸/對苯二甲酸(間苯二甲酸/對苯二甲酸) 比例從99/1到60/40,2,2,4-與2,4,4-三甲基六甲烯雙胺 間苯二甲醯亞胺之混和物’ 一六甲烯雙胺之共聚合物或2_ 甲基五亞甲基雙胺以及一間苯二甲酸,對苯二甲酸或其混 合物。當該聚醯胺是基於六甲烯雙胺異苯二甲醯亞胺/間苯 二甲醯胺,具有高度對苯二甲酸含量,是有用的,可以被 13 1328592 17430pif.doc 與其他雙胺類混和,例如2-甲基五亞甲基二胺以產生—非 結晶型聚醯胺來執行製程》 只包含前述單體的前述非結晶型聚醯胺可能含有一小 量的內醯胺(lactam),例如己內醯胺(capr〇lactam)或月 桂基內醯胺(lauryl內醯胺),視爲共單體(coin〇nomer)。 很重要的是該聚醯胺是非晶體(amorphous)。所以,任何未 結晶化的聚醯胺可以被使用作爲共單體(comonomer)。約 10 wt%或更少的液態或固態塑化劑,例如甘油 (glycerole )、山梨醇(sorbitol )、或甲苯磺胺類 【toluenesulfoneamide (Santicizer 8 monsanto)】也可以被 包括在該非結晶型聚醯胺。針對大部分的應用,一非結晶 型聚醯胺之玻璃轉化溫度Tg (在乾燥狀態下量測,例如含 水量約重量百分比之0.12 %或更少)在約7(M70°C,且較 佳在約80-160°C。該未混和之非結晶型聚醯胺,在乾燥狀 態下具有一玻璃轉化溫度Tg約125°C。該玻璃轉化溫度 (Tg)較低限制並不明確,但是70°C大約是一較低限制。 該玻璃轉化溫度(Tg)之較高限制也並不明確。無論如何, 當使用一玻璃轉化溫度(Tg)約170°C或更高之聚醯胺,熱 塑型較爲困難。然而,具有一酸與一具芳香族官能基胺的 聚醯胺,因爲玻璃轉化溫度(Tg)太高而無法被熱塑型, 所以並不合適本發明之目的。 該聚醯胺也可是一半結晶聚醯胺。該半結晶聚醯胺一 般使用內醯胺來製備,例如尼龍6或尼龍11,或一胺基酸, 或以濃縮雙胺來製備,例如六亞甲基六亞甲基雙胺,與二 1328592 17430pif.doc 鹽基性酸類(dibasic acid),例如號拍酸(succinic acid) ' 己一酸(adipic acid )、癸二酸(sebacic acid )。該聚釀胺可 以是一共聚合物或一三聚合物(terpolymer)例如一六亞甲 基雙胺/己二酸以及己內醯胺(caprolactam)(尼龍6,66)之 共聚合物。一種混和兩個或更多結晶化的聚酸胺亦可以被 使用。該半結晶與非結晶型聚醯胺之製備是藉著濃縮聚合 化的習知技術。 • 如果—離子體被包含在該奈米組成,該離子體之較佳 的一丙烯酸(acrylic acid)與乙烯之共聚合物,其熔點參 數是介於 0.1 到 10 g/10 min (190°C,2,160 g)。 熔化混合之含量較佳是從0.5到60重量比,且更佳是 • 從8到30重量比。如果該熔化混合含量重量比少於〇.5, 則改善阻絕特性的效果會被忽略。如果該熔化混合含量大 於60重量比,製程會發生困難。 該相容劑改善該聚烯烴樹脂與具阻絕特性之樹脂/該 奈米組成之相容性以形成一穩定的組成物。 參 該相容劑可以是具極性官能基之碳氫聚合物。當一具 極性官能基之碳氫聚合物被使用時,該碳氫聚合物部分增 加對相容劑對該聚烯烴樹脂與對該具阻絕特性/該奈米組 成樹脂親和力’以獲得一穩定的組成物。 該相容劑包括一化合物,選自由一環氧化物-調整的聚 本乙嫌共聚合物、一乙嫌·乙儲肝-丙釀酸(ethylene-ethylene anhydride-acrylic acid)共聚合物、一乙烯·乙烯丙醯酸脂 (ethylene-ethyl acrylate)共聚合物、一乙烯·烷基丙醯酸酯· 15 1328592 17430pif.doc 丙醯酸(ethylene-alkyl-acrylate-acrylic acid)共聚合物、一馬 來酸酐調整過的(支鏈)高密度聚乙烯、一馬來酸酐調整過的 (支鏈)直鏈低密度聚乙烯、一乙烯-烷基甲基丙醯酸酯-甲 基丙醯酸共聚合物、一乙烯·丁基丙醯酸酯共聚合物、一乙 烯-乙烯醋酸酯共聚合物、一馬來酸酐調整過的(支鏈)乙烯· 乙烯醋酸酯共聚合物,以及調整過的類似物。 該相容劑的含量較佳是從1到30重量比,且更佳是從 2到20重量比。若該相容劑之重量比爲1,該組成物的可 塑性物品的機械性質較差。如果該相容劑的含量之重量比 大於30,該組成物可塑性較困難。 當一環氧化物-調整過的聚苯乙烯共聚合物使用以作 爲該相容劑,一共聚合物包含一主鏈重量比包括70到99 的苯乙烯,與重量比1到30的環氧基化合物,以分子式1 爲代表,且支鏈包括重量比組成1到80的丙烯酸的單體, 較佳的是: -R-CH-CH-R'17430pif.doc IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a composition of a gas-resistant nano-composite and a method for producing the same, and in particular to a method having superior barrier properties and plasticity. The nano composition is a dry blend of a polyolefin resin, including a melt-mixing of a barrier resin and a barrier nano composition, and a compatibilizing agent; and a method of producing the product. [Prior Art] This application is filed on July 21, 2004, and the application of the Korean Patent No. 10-2004-0056996, filed on Jan. 21, 2004, filed on April 8, 2005. The related information disclosed in the No. 10-2005-0047116 application on June 2, 2005 is incorporated herein by reference. Resins for general use such as polyethylene, polypropylene, etc. have excellent plasticity, mechanical properties, and resistance to moisture, and are therefore used in many fields. However, these resins are also restricted to use in industries such as agrochemicals, food packaging or containers that require superior chemical and oxygen barrier properties. One ethylene-vinyl alcohol copolymer [ethylene_vinyl alc〇h〇1 (EV〇H) copolymer] and polyacrylamide resin [p〇iyamideresins] have transparent and good gas barrier properties. However, since these resins are more expensive than general-purpose resins, the content of the products is limited. Therefore, in order to reduce the cost, a mixed resin having a barrier property, such as a vinyl alcohol copolymer [(EVOH)] and a polyamide (polyamide 1328592 17430pi), and an inexpensive olefin are proposed. However, the resistance characteristics expected to be satisfactory were not obtained. In order to improve the barrier properties, a completely exfoliated, or partially exfoliated, inserted, or partially inserted nanocomposite is formed by diffusing a nanometer-sized plug-in clay in a polymer matrix. When an adjusted object is produced, the above nano composition is used. 'The nano composition maintains its shape and has a barrier property even after being shaped, and its plasticity is superior and easy to produce into a sheet or film type'. container. SUMMARY OF THE INVENTION An object of the present invention is to provide a nano composition having excellent mechanical strength and a property of blocking oxygen, organic solvent and moisture, and having good plasticity. A further object of the present invention is to provide an article produced from a barrier composition having a nanostructure. According to one aspect of the present invention, the present invention provides a dry mixed composition comprising: 30 to 95 by weight of an olefin resin; 0.5 to 60 by weight of the molten mixture comprising at least one barrier resin, selected from ethylene-vinyl alcohol copolymerization a group consisting of ethylene-vinyl alcohol (EVOH) copolymer, polyamide resins, ionomers and polyvinyl alcohol (PVA), and at least one resistive nano-composition Free ethylene-vinyl alcohol (EVOH) copolymer/inserted clay nano composition, polyamine/inserted clay nano composition, ionomer/inserted clay nano composition, and a group consisting of a polyvinyl alcohol/insert 17430pif.doc-incorporated clay type nano-composite; and a 1 to 30-weight ratio compatibilizer. In one embodiment of the present invention, the resin having a barrier property and the composition having a barrier property can be melt-mixed in a weight ratio of from 25:75 to 75:25. In other embodiments of the present invention, the resin having a barrier property and the composition having a barrier property are formed using a co-rotation twin screw extruder or a single screw extruder at the melting point of the resin or Melting-mixing can be performed at higher temperatures. According to other embodiments of the present invention, an article made of a composition comprising a nano composition is also proposed. In an embodiment of the present invention, the article may be subjected to blow molding, extrusion molding, pressure molding, or injection molding. manufacturing. In other embodiments of the present invention, the article may be a container, sheet, tube, or film having a resistive property. The above and other objects, features and advantages of the present invention will become more apparent and obvious. The preferred embodiment, in conjunction with the drawings, is described in detail below. [Embodiment] The present invention will be explained in more detail later. The Korean Patent Application No. 2002-76575, which has been previously filed, discloses that the composition of the nano-composite composition comprises: an olefin resin having a weight ratio of from 1 to 97; a composition having a weight-reducing characteristic of from 1 to 95, selected from ethylene-ethylene 1328592 17430pif.doc Alcohol copolymer [ethylene-vinyl alcohol (EVOH) copolymer], with polyethers [polyamide resins], ionomer (ionomer) and a polyvinyl alcohol (PVA) group, and at least one The barrier nano composition is selected from the group consisting of an ethylene-vinyl alcohol (EVOH) copolymer/plug-in clay type nano-polyamide/plug-in clay type nano-ionomer/ionomer/plug-in clay The type of nano-composition, and a group consisting of a polyvinyl alcohol/inserted clay type nano composition; and a 1 to 95-weight ratio of a compatibilizer to complete the present invention. According to an embodiment of the present invention, a composition having a barrier property nano composition is a dry-mixed melt-blending resin having a resistive property and a nano-resistance composition, a polyolefin resin and a compatibilizing agent. . Therefore, the composition of the nano composition is a dry mixed composition comprising: 30 to 95 by weight of a polyolefin resin; 0.5 to 60 by weight of a melt mixture comprising at least one resin having a barrier property selected from ethylene-vinyl alcohol Copolymer [ethylene-vinyl alcohol (EVOH) copolymer], a group consisting of polyamide resins, ionomers and polyglycols (PVA), and at least one resistive nanoparticle The composition is selected from the group consisting of an ethylene-vinyl alcohol (EVOH) copolymer/inserted clay type nanometer, a polyamidamide/inserted clay type nano-composite, an ionomer (ionomer)/inserted clay type nanometer. Composition, and a group consisting of a polyvinyl alcohol/inserted clay type nano composition; and a 1 to 3 weight ratio of a compatibilizer. The polyolefin resin may be at least one selected from the group consisting of a high density polyethylene (HDPE), a low density polyethylene (LDPE), a straight chain low density polyethylene 17430 pif. doc thin (LLDPE), and a propylene-propylene copolymer. , a metal aromatic (metaU〇cene) and a group of polypropylene. The polypropylene may be at least one compound selected from the group consisting of a polypropylene of a co-phase polymer, a polypropylene of a co-polymer, a metallocene polypropylene, and a composition resin by adding talc (talc). , flame retardant, etc. A polyacrylic in-phase polymer or copolymer is added to improve physical properties. The content of the polyolefin resin is preferably from 30 to 95 by weight, and more preferably from 70 to 90 by weight. If the content of the polyolefin resin is less than 30% by weight, molding may be difficult. If the content of the polyolefin resin is more than 9 Torr, the barrier properties are not good. The melt/mixing of the resin/nano composition may be formed by forming a peeling or partially exfoliating resistive characteristic nano composition from the plugging clay, and then melting-mixing the nano composition and resisting characteristics. Resin. In particular, the melt/mixing of the resin/nano composition may be melted and mixed with at least one resin having a barrier property selected from the group consisting of ethylene-vinyl alcohol (EVOH) copolymer and polyamide resins. a group consisting of an ionomer and a polyacetal (PVA), and at least one nanostructure consisting of a barrier property selected from the group consisting of an ethylene vinyl alcohol (EVOH) copolymer/inserted clay type nanometer Composition, polyamine/inserted clay type nano composition, ionomer/insert clay type nano composition, and a polyvinyl alcohol/inserted clay type nanocomposite. The barrier-resistance resin is added to the plug-in clay to form a nano-sized exfoliated or partially exfoliated nano-composition. Because this nanometer constitutes the type of 13285592 17430pif.doc 'the gas and liquid passage in the resin is expanded, the moisture and liquid resistance properties of the resin itself are improved, and the melting strength of the polyolefin is due to the plug-in clay. Enhanced to prevent the fall of the parison in the bl〇w molding. The weight ratio of the resin having a barrier property to the insert clay is 58.0: 42.0 to 99.9: 0.1, and preferably 85.0: 15.0 to 99.0: 1.0 in the nano composition. If the weight ratio of the resin having the barrier property is less than 58.0: 42.0 with respect to the plug-in clay, the plug-in clay is difficult to aggregate and diffuse. If the weight ratio of the resin having the barrier property is greater than 99.9 : 0.1 with respect to the plug-in clay, the improvement of the barrier property can be ignored. Since the nano composition is melt-mixed with a resin having a barrier property, the range of the process temperature is wide in the molding step. Therefore, the composition of the mixture can be selected and the mixing ratio can be adjusted to prepare the desired shaped article in accordance with the process temperature conditions. In order to obtain the melt mixing of the resin/nano composition having the barrier property, the dissolution-mixing step is preferably carried out at an environment of 175 to 270 °C. The insert clay is preferably an organic insert clay. The content of the organic substance of the insert type clay is preferably from 1 to 45% by weight. When the content of the organic substance is less than 1% by weight, the compatibility of the insert type clay with the resin having a barrier property is not good. When the organic matter content is more than 45% by weight, the peeling of the resin having a barrier property is difficult. The insert clay comprises at least one substance selected from the group consisting of montmorillonite (montmorillonite), bentonite, kaolinite, crystal mica, hectorite, lithium bentonite 10 17430pif.doc (fluorohectorite), saponite, beidelite, nontronite, stevensite, vermiculite, hallosite, buddha Volkonskoite, aconite, magadite and kenyalite; and organic materials preferably including a functional group functional group selected from a primary to a quaternary ammonium salt (phosphonium), maleate, succinate, acrylate, benzylic hydrogen, oxazoline (〇xaz〇line) and bis-di-bis-stearyl A group of dimethyldisteary lammonium. The weight ratio of the resin having the barrier property to the preferred melting-mixing composition of the barrier nano-structure is from 25:75 to 75:25. If the amount of the resin having a barrier property is too large, the barrier property cannot be improved. If the amount of the barrier resin is too small, the impact resistance of the finally molded article is lowered. If the ethylene-vinyl alcohol (EVOH) copolymer comprises the nanostructure, the ethylene content of the ethylene-vinyl alcohol (EVOH) copolymer is preferably from 1% to 50% by mole. If the ethylene content is less than 1% by mole, the melt molding is difficult because of poor processability. If the ethylene content exceeds 50% by mole, the barrier properties of oxygen and liquid are insufficient. If the polyamine comprises the nano composition, the polyamine may be nylon 4.6, nylon 6, nylon 6.6 'nylon 6.10, nylon 7, nylon 8, nylon 9 'nylon 11, nylon 12, nylon 46, MXD6, one non- A crystalline polyamine, a copolymerized polyamine comprising at least two of the foregoing, or a mixture comprising at least two of the foregoing. 1328592 17430pif.doc The amorphous polyamine is equivalent to a polyamylamine with insufficient crystallinity, so 'differential scanning calorimetry (DSC) (model ASTM D-3417, 10 ° C / min) )] When measuring, there is no peak of crystallization of endothermic crystallization. In general, the polyamines can be prepared using diamines and dicarboxylic acids. For example, the diamines include ethylene diamine (hexamethylene diamine), 2-methylpentamethylenediamine, 2,2,4-trimethylhexamethyldiamine. Ethane (2,2,4-trimethylhexamethylene diamine), bis(4-aminocyclohexyl)methane, 2,2-bis(4-amino group) Cyclohexyl)isopropyl diene [2,2-bis(4-aminocyclohexyl)isopropylidene], 1,4-diaminocyclohexane, 1,3-diamino ring 1,3-diaminocyclohexane, meta-xylenediamine, 1,5-diaminopentane, 1,4-diaminobutyline (1 , 4-diaminobutane ), 1,3-diaminopropane, 2-ethyldiaminobutane, 1,4-diaminocarbyl ring 1,4-diaminomethylcyclohexanes, methane-xylenediamine, fen-substituted or unsubstituted bis-m-xylene and p-phenylenediamine. For example, the double residual acid includes an alkyl-substituted or unsubstituted isophthalic acid (isophthalic acid), terephthalic acid, adipic acid, and a 1212328592 17430pif.doc acid ( Sebacic acid), butanedicarboxylic acid, etc. Polyamines prepared from aliphatic diamines and aliphatic dicarboxylic acids are general semi-crystalline polyamines [also known as crystamne nylon rather than amorphous polyamines. Polyamines prepared from diamines and aromatic dicarboxylic acids are not easily handled by a general melting process. Therefore, when one of the diamines and dicarboxylic acids used is aromatic, one of them is a 'It is a preferred preparation method of amorphous polyamine. The aliphatic functional group is preferably an aliphatic or C4-C8 alicyclic alkyl group in the amorphous polyamine. The aromatic of the amorphous polyamine Preferably, the functional group is substituted with a CVC6 mono- or bicyclic aromatic functional group. However, all of the above non-crystalline polydecylamines are not optimal in the present invention, for example, during the thermoplasticization process or when positioning to the process, Xylene diamine, adipamide is easily crystallized, which is not preferred. Examples of preferred amorphous polyamines include hexamethylene bisamine isophthalimide and hexamethylene diamine. Between the polymers of isophthalimide/m-phenylenediamine Phthalic acid/terephthalic acid (isophthalic acid/terephthalic acid) ratio from 99/1 to 60/40, between 2,2,4- and 2,4,4-trimethylhexamethylenediamine a mixture of xylyleneimine's a copolymer of hexamethylenediamine or 2-methylpentamethylenediamine and an isophthalic acid, terephthalic acid or a mixture thereof. When the polyamine It is based on hexamethylene bisamine isophthalimide/m-xylamine, which is highly terephthalic acid. It is useful to be mixed with other diamines by 13 1328592 17430pif.doc, for example 2- Methylpentamethylenediamine is used to produce a non-crystalline polyamine. The aforementioned amorphous polyamine containing only the aforementioned monomers may contain a small amount of lactam, for example, Caprolamine or caprylain (lauryl) is considered to be a co-monomer. It is important that the polyamine is amorphous. Therefore, any uncrystallized The polyamine can be used as a comonomer. About 10 wt% or less of a liquid or solid plasticizer, such as glycerol , sorbitol, or toluenesulfoneamide (Santicizer 8 monsanto) can also be included in the amorphous polyamine. For most applications, the glass transition temperature Tg of an amorphous polyamine ( Measured in a dry state, such as a moisture content of about 0.12% by weight or less, at about 7 (M 70 ° C, and preferably at about 80-160 ° C. The unmixed amorphous polyamine, It has a glass transition temperature Tg of about 125 ° C in a dry state. The lower limit of the glass transition temperature (Tg) is not clear, but 70 ° C is about a lower limit. The higher limit of the glass transition temperature (Tg) is also unclear. In any case, when a polyamine having a glass transition temperature (Tg) of about 170 ° C or higher is used, the thermoplastic type is difficult. However, polyamines having an acid and an aromatic functional amine are not suitable for the purpose of the present invention because the glass transition temperature (Tg) is too high to be thermoplastic. The polyamine can also be a half crystalline polyamine. The semi-crystalline polyamines are generally prepared using indoleamine, such as nylon 6 or nylon 11, or an amino acid, or prepared by concentrating a diamine, such as hexamethylene hexamethylene diamine, with two 1328592 17430pif.doc Dibasic acid, such as succinic acid 'adipic acid', sebacic acid. The polyamine can be a co-polymer or a terpolymer such as a copolymer of hexamethylenediamine/adipic acid and caprolactam (nylon 6,66). A mixture of two or more crystallized polyamines can also be used. The preparation of the semicrystalline and amorphous polyamines is a conventional technique by concentration polymerization. • If the ion body is contained in the nanocomposite, a preferred copolymer of acrylic acid and ethylene having a melting point of 0.1 to 10 g/10 min (190 ° C) , 2,160 g). The content of the melt mixing is preferably from 0.5 to 60 by weight, and more preferably from 8 to 30 by weight. If the melt mixture content ratio is less than 〇.5, the effect of improving the barrier properties is neglected. If the melt mixing content is more than 60% by weight, the process may be difficult. The compatibilizer improves the compatibility of the polyolefin resin with the resin/residual composition of the barrier properties to form a stable composition. The compatibilizer may be a hydrocarbon polymer having a polar functional group. When a polar functional group hydrocarbon polymer is used, the hydrocarbon polymer portion increases the affinity of the compatibilizing agent to the polyolefin resin and the resistive property/the nanocomposite resin to obtain a stable Composition. The compatibilizer comprises a compound selected from the group consisting of an epoxide-adjusted poly-ethylene copolymer, a polyethylene-ethylene anhydride-acrylic acid copolymer, and an ethylene. ·ethylene-ethyl acrylate copolymer, ethylene-alkyl propionate · 15 1328592 17430pif.doc ethylene-alkyl-acrylate-acrylic acid copolymer, one horse Anhydride-adjusted (branched) high-density polyethylene, monomaleic anhydride-adjusted (branched) linear low-density polyethylene, monovinyl-alkylmethylpropionate-methylpropionic acid Polymer, monoethylene-butyl propionate copolymer, monoethylene-ethylene acetate copolymer, monomaleic anhydride-adjusted (branched) ethylene·ethylene acetate copolymer, and adjusted analog. The content of the compatibilizer is preferably from 1 to 30 by weight, and more preferably from 2 to 20 by weight. If the weight ratio of the compatibilizer is 1, the plastic article of the composition is inferior in mechanical properties. If the content ratio of the compatibilizer is more than 30, the composition is plastically difficult. When an epoxide-adjusted polystyrene copolymer is used as the compatibilizer, the co-polymer comprises a stearyl group having a main chain weight ratio of 70 to 99, and an epoxy compound having a weight ratio of 1 to 30. a monomer represented by the formula 1, and the branch includes acrylic acid having a weight ratio of 1 to 80, preferably: -R-CH-CH-R'

* I 其中每一 R與R’是獨立的一 脂肪族官能基或 —C5-C2()芳香族官能有雙鍵,尾端有雙鍵。 -CH2—CH-* I wherein each R and R' are independent of an aliphatic functional group or - the C5-C2() aromatic function has a double bond and a double bond at the end. -CH2—CH-

c=o I CH, (2) 1328592 17430pif.d〇c 每一馬來酸酐調整過的(支鏈)高密度聚乙烯,馬來酸酐 調整過的(支鏈)直鏈低密度聚乙烯,與馬來酸酐調整過的 (支鏈)乙烯-乙烯醋酸酯共聚合物較佳支鏈包括重量比從 〇.1到ίο的馬來酸酐,以主鏈1〇〇做爲重量比。當該馬來 酸酐重量比含量少於少於ο·1重量比,並不是做爲相容劑’ 當該馬來酸酐含量大於1〇重量比’並非較佳狀況因爲味道 並不討人喜歡。 依據本發明,依具阻絕特性之容器可以被生產’藉著 鑄造該具阻絕特性奈米組成之組成物。因爲該乾式混合奈 米組成組成物,該具阻絕特性奈米組成型態可以被維持在 一具良好阻絕特性的鑄造成型之物品。 該鑄造成型的物品可以透過一般吹拉機成型法(blow molding)、壓出成型法(extrusion molding)、模壓成开多法 (pressure molding)或射出成形(injection molding)等方法 生產製造。 另外該具阻絕特性的容器,具阻絕特性的薄片或薄膜 等也能被生產。 該容器或具阻絕特性的薄片可以是多層的容器,或該 薄膜更包括一附著層與一聚烯烴層。 例如’該具阻絕特性的容器可以由一具5-層的薄膜製 成’ 5-層的薄膜包括高密度聚乙烯(HDPE)/附著劑/本發明之 奈米組成之組成物/附著劑/高密度聚乙烯(HDPE)。 後續,本發明將以範例描述更多細節。後續之範例僅 用以說明本發明但並不用於限制本發明。 17 1328592 17430pif.doc 範例: 所使用之範例如下列所述: 乙烯-乙烯醇(EVOH) : E105B (Kuraray,Japan) 非結晶性尼龍:SELAR 2072 (Dupont,USA) 尼龍 6,12 : Zytel 158L (Dupont, USA) 尼龍 6 : ΕΝ 500 (KP Chemicals) 高密度聚乙烯(HDPE)-g-MAH :相容劑,PB3009 (CRAMPTON) 高密度聚乙烯(HDPE) : ME6000 (LG CHEM) 離子體:SURLYN 8527 (Dupont,USA) 黏土: Closite 30B (SCP) 熱安定劑:IR 1098 (Songwon Inc.) 製備範例1 (製備乙烯-乙烯醇(EVOH)/插入式黏土之奈米組成) 重量百分比97 %之一乙烯-乙烯醇(EVOH)共聚合物; E-105B (乙嫌含量:44 mol % ; Kuraray,Japan);熔化參數: 5.5 g/10 min ;密度:1.14 g/cm3)被置放於該主要的送料斗 之一雙螺桿壓出機(SM Platek共-旋轉雙螺桿壓出機; φ40)。之後,重量百分比爲3%的有機蒙脫土 (montmorillonite)(南方插入式黏土產品,USA ; C2〇A)當 作一插入式黏土與0.1重量比的IR 1098當做一熱安定 劑,以100做爲乙烯-乙烯醇(EVOH)共聚合物總重量比基 準,同時該有機蒙脫土(montmorillonite)被分別置入該雙螺 17430pif.doc 桿壓出機之一側進料器以分離製備出形成九狀的一乙烯-乙烯醇(EVOH)/具奈米組成之插入式黏土。該擠壓成形溫度 條件包括180-190-200-200-200-200-200°C,螺桿旋轉轉速 在300 i*pm,且釋放條件在15 kg/hr。 製備範例2 (尼龍6/插入式黏土奈米組成製備) 重量百分97 %之一聚醯胺(尼龍6)被置放於該主要 的送料斗之一雙螺桿壓出機(SM Platek共-旋轉雙螺桿壓出 機;φ4〇)。之後,重量百分比爲3%的有機蒙脫土 (montmorillonite)(南方插入式黏土產品,USA ; C20A)當 作一插入式黏土與0.1重量比的IR 1098當做一熱安定 劑’以1〇〇做爲聚醯胺總重量比基準,同時該有機蒙脫土 (montmodllonite)被分別置入該雙螺桿壓出機之一側進料 器以分離製備出形成九狀的一尼龍6/具奈米組成之插入式 黏土 。 該擠壓成形溫度條件包括 220-225-245-245-245-245-2456C,該螺桿旋轉轉速在 300 rpm,且釋放條件在40 kg/hr。 製備範例3 (尼龍6,12/具奈米組成之插入式黏土之製備)c=o I CH, (2) 1328592 17430pif.d〇c Each maleic anhydride-adjusted (branched) high-density polyethylene, maleic anhydride-adjusted (branched) linear low-density polyethylene, and Preferred branches of the maleic anhydride-adjusted (branched) ethylene-ethylene acetate copolymer include maleic anhydride in a weight ratio of from 0.1 to ίο, with a weight ratio of the main chain of 1 。. When the maleic anhydride weight ratio is less than less than ο·1 by weight, it is not used as a compatibilizer. 'When the maleic anhydride content is more than 1 〇 by weight' is not preferred because the taste is not pleasing. According to the present invention, a container having a barrier property can be produced by casting a composition comprising the barrier property nano. Because of the dry mixed composition of the nano composition, the nano-composition type of the barrier property can be maintained in a cast molded article having good barrier properties. The cast-formed article can be produced by a method such as blow molding, extrusion molding, pressure molding, or injection molding. Further, the container having the barrier property can be produced by a sheet or film having a barrier property. The container or the sheet having the barrier property may be a multi-layered container, or the film further includes an adhesive layer and a polyolefin layer. For example, the container having the barrier property can be made of a 5-layer film. The 5-layer film comprises a high density polyethylene (HDPE)/adhesive agent/the composition of the nano composition of the invention/adhesive agent/ High density polyethylene (HDPE). In the following, the present invention will describe more details by way of example. The following examples are merely illustrative of the invention but are not intended to limit the invention. 17 1328592 17430pif.doc Example: The examples used are as follows: Ethylene-vinyl alcohol (EVOH): E105B (Kuraray, Japan) Non-crystalline nylon: SELAR 2072 (Dupont, USA) Nylon 6,12: Zytel 158L ( Dupont, USA) Nylon 6 : ΕΝ 500 (KP Chemicals) High Density Polyethylene (HDPE)-g-MAH : Compatibilizer, PB3009 (CRAMPTON) High Density Polyethylene (HDPE) : ME6000 (LG CHEM) Ion: SURLYN 8527 (Dupont, USA) Clay: Closite 30B (SCP) Thermal stabilizer: IR 1098 (Songwon Inc.) Preparation Example 1 (Preparation of ethylene-vinyl alcohol (EVOH)/insert clay composition) 97% by weight Ethylene-vinyl alcohol (EVOH) copolymer; E-105B (ethyl content: 44 mol%; Kuraray, Japan); melting parameters: 5.5 g/10 min; density: 1.14 g/cm3) One of the main feed hoppers is a twin-screw extruder (SM Platek co-rotating twin-screw extruder; φ40). Thereafter, 3% by weight of organic montmorillonite (Southern insert clay product, USA; C2〇A) was treated as a plug-in clay with 0.1 weight ratio of IR 1098 as a heat stabilizer, made at 100 It is the basis of the total weight ratio of ethylene-vinyl alcohol (EVOH) copolymer, and the organic montmorillonite is separately placed into one side feeder of the double screw 17430pif.doc rod extruder to separate and prepare. Nine-shaped ethylene-vinyl alcohol (EVOH)/inserted clay composed of nanometers. The extrusion temperature conditions include 180-190-200-200-200-200-200 ° C, the screw rotation speed is 300 i*pm, and the release condition is 15 kg/hr. Preparation Example 2 (Preparation of nylon 6/inserted clay nano composition) One hundredth of a weight percent of polyamine (nylon 6) was placed in one of the main feed hoppers of a twin screw extruder (SM Platek - Rotating twin-screw extruder; φ4〇). Thereafter, 3% by weight of organic montmorillonite (Southern insert clay product, USA; C20A) was treated as a plug-in clay with 0.1 weight ratio of IR 1098 as a heat stabilizer. For the total weight ratio of polyamide, the organic montmorolonite is placed in one side feeder of the twin-screw extruder to separate and form a nylon 6/nano composition. Plug-in clay. The extrusion temperature conditions include 220-225-245-245-245-245-2456C, the screw rotation speed is 300 rpm, and the release condition is 40 kg/hr. Preparation Example 3 (Preparation of nylon 6,12/inserted clay composed of nanometer)

重量百分比95 %之一聚醯胺(尼龍6,12)被置放於該 主要的送料斗之一雙螺桿壓出機(SM Platek共-旋轉雙螺桿 壓出機;φ40)。之後,重量百分比爲5%的有機蒙脫土 (montmorillonite)當作一插入式黏土與〇.1重量比的IR 1328592 17430pif.doc 1098當做一熱安定劑,以100做爲聚醯胺總重量比基準, 同時該有機蒙脫土(montmorillonite)被分別置入該雙螺桿 壓出機以製備出形成九狀的一尼龍6,12/具奈米組成之插入 式黏土 。該擠壓成形溫度條件包括 225-245-245-245-245-245-240°C,該螺桿旋轉轉速在 300 rpm,且釋放條件在40 kg/hr。 製備範例4 (非結晶性尼龍/具奈米組成之插入式黏土之製備) 重量百分比95 %之一聚醯胺(非結晶性尼龍)被置放 於該主要的送料斗之一雙螺桿壓出機(SM I>latek共-旋轉 雙螺桿壓出機;φ40)。之後,重量百分比爲5%的有機蒙脫 土(montmorillonite)當作一插入式黏土與0.1重量比的IR 1098當做一熱安定劑,以100做爲聚醯胺總重量比基準, 同時該有機蒙脫土(montmorillonite)被分別置入該雙螺桿 壓出機以製備出形成九狀的一非結晶性尼龍/具奈米組成 之插入式黏土。該擠壓成形溫度條件包括 215-225-235-235-235-235-230°C,該螺桿旋轉轉速在 300 rpm,且釋放條件在40 kg/hr。 製備範例5 (離子體/具奈米組成之插入式黏土之製備) 重量百分比95 %之一離子體被置放於該主要的送料斗 之一雙螺桿壓出機(SM Platek共-旋轉雙螺桿壓出機; 20 1328592 17430pif.doc φ40)。之後,重量百分比爲5%的有機蒙脫土 (montmorillonite)當作一插入式黏土與〇·1重里比的IR 1098當做一熱安定劑,以1〇〇做爲離子體總重量比基準, 同時該有機蒙脫土被分別置入該雙螺桿壓出機以製備出形 成九狀的一離子體/具奈米組成之插入式黏土。該擠壓成形 溫度條件包括220-230-235-235-235-235-230°C ’該螺桿旋 轉轉速在300 rpm,且釋放條件在40 kg/hr。 範例1 重量比爲40的乙烯-乙烯醇(EVOH)奈米組成以製備 範例1方法,同時60重量比的乙烯-乙烯醇(EVOH)被熔化 -混合以一溫度條件爲190-200-210-210-210-200°C來執行熔 化混合製備一乙烯-乙烯醇(EVOH)奈米組成/乙烯乙烯醇 (EVOH)。重量比爲20的該熔化混合以乾式混合重量比爲 70的高密度聚乙烯(HDPE)與重量比爲10的一相容劑(馬來 酸酐調整過的(支鏈)高密度聚乙烯(HDPE-g-MAH,uniroyal chemical,USA,PB3009 (1% ΜΑΗ 含量),熔化參數:5 g/10 min,密度:0.95 g/cm3)。之後,進行吹拉機成型製程而製 成一l〇〇〇mL之容器。同時,溫度條件爲 180-195_195-195-195-190°C,且該螺桿旋轉轉速在 22 rpm。 同時,該乾式混合以擠壓成型生產一厚度30娜之薄膜。 同時,溫度條件包括185-195-195-195-195-190°C,且該螺 桿旋轉轉速在16 rpm。 21 1328592 17430pif.doc 範例2 重量比爲40的乙烯-乙烯醇(EVOH)奈米組成以製備 範例1方法,同時60重量比的尼龍6被熔化·混合以一溫 度條件爲215-220-210_210-210-200°C來執行熔化混合製備 一乙烯·乙烯醇(EVOH)奈米組成/尼龍6。重量比爲20的 該熔化混合以乾式混合重量比爲70的高密度聚乙烯(HDPE) 與重量比爲10的一相容劑。之後,進行該吹拉機成型製程 而製成一1000mL之容器。同時,溫度條件爲 190-225-225-220-210°C,且該螺桿旋轉轉速在23 rpm。同 時,該乾式混合以擠壓成型生產一厚度30卿之薄膜。同 時,溫度條件包括220-235-235-235-235-235t:,且該螺桿 旋轉轉速在16 rpm。 範例3 重量比爲40的乙烯_乙烯醇(EVOH)奈米組成以製備 範例1方法,同時60重量比的尼龍6,12被熔化-混合以一 溫度條件爲225-235-245-245-245-240°C來執行熔化混合製 備乙烯-乙烯醇(EVOH)奈米組成/尼龍6,12。重量比爲20 的該熔化混合以乾式混合重量比爲70的高密度聚乙烯 (HDPE)與重量比爲1〇的一相容劑。之後,進行吹拉機成型 製程而製成一 lOOOmL之容器。同時,溫度條件爲 200-220-230-225_210°C,且該螺桿旋轉轉速在21 rpm。同 時,該乾式混合以擠壓成型生產一厚度30⑽之薄膜。同 22 1328592 17430pif.doc 時,溫度條件包括220-235-235-235-235-235°C,且該螺桿 旋轉轉速在16 rpm。 範例4 重量比爲40的乙烯-乙烯醇(EVOH)奈米組成以製備 範例1方法,同時60重量比的非結晶性尼龍被熔化-混合 以一溫度條件爲225-235-:245-245-245-240。(:來執行熔化混 合製備一乙烯-乙烯醇(EVOH)奈米組成/非結晶性尼龍。重 量比爲20的該熔化混合以乾式混合重量比爲70的高密度 聚乙烯(HDPE)與重量比爲1〇的一相容劑。之後,進行該吹 拉機成型製程而製成一 1000 mL之容器。同時,溫度條件 爲185-200-210-200-190°C,且該螺桿旋轉轉速在22卬m。 同時,該乾式混合以擠壓成型生產一厚度30 /μ之薄膜。 同時,溫度條件包括220-235-235-235-235-235°C,且該螺 桿旋轉轉速在16 rpm。 範例5 重量比爲40的乙烯-乙烯醇(EVOH)奈米組成以製備 範例1方法,同時60重量比的一離子體被熔化-混合以一 溫度條件爲225-235-245-245-245-240°C來執行熔化混合製 備一乙烯-乙烯醇(EVOH)奈米組成/離子體。重量比爲20 的該熔化混合以乾式混合重量比爲7〇的高密度聚乙烯 (HDPE)與重量比爲1〇的一相容劑。之後,進行該吹拉機成 型製程而製成一 1〇〇〇 mL之容器。同時,溫度條件包括 23 1328592 17430pif.doc 190-210-225-220-210°C,且該螺桿旋轉轉速在23 rPm。同 時,該乾式混合以擠壓成型生產一厚度30㈣之薄膜。同 時,溫度條件包括220-235-235-235-235-235°C ’且該螺桿 旋轉轉速在14 rpm。 範例6 重量比爲40的尼龍6奈米組成以製備範例2方法, 同時60重量比的乙烯·乙烯醇(EVOH)被熔化-混合以一溫 度條件爲220-235-245-245-245-240°C來執行熔化混合製備 一尼龍6奈米組成/乙烯-乙烯醇(EVOH)。重量比爲20的 該熔化混合以乾式混合重量比爲70的高密度聚乙烯(HDPE) 與重量比爲10的一相容劑。再進行吹拉機成型製程而製成 一 1000mL 容器。同時,溫度條件爲 185-195-225-215-200°C,且該螺桿旋轉轉速在14 rpm。同 時,該乾式混合以擠壓成型生產一厚度30輝之薄膜。同 時,溫度條件包括220-235-235-235-235-235°C,且該螺桿 旋轉轉速在13 rpm。 範例7 重量比爲40的尼龍6奈米組成以製備範例2方法,同 時60重量比的尼龍6採熔化-混合被熔化-混合以一溫度條 件爲220-235-245-245-245_240°C來執行熔化混合製備一尼 龍6奈米組成/尼龍6。重量比爲20的該熔化混合以乾式 混合重量比爲70的高密度聚乙烯(HDPE)與重量比爲10的 24 1328592 17430pif.doc 一相容劑。再進行吹拉機成型製程而製成一 1000 mL容 器。同時,溫度條件爲195-215-220-215-200。(3,且該螺桿 旋轉轉速在24 rpm。同時’該乾式混合以擠壓成型生產一 厚度30卿之薄膜。同時,溫度條件包括 220-245-245-245-245-240°C ’ 且該螺桿旋轉轉速在 13 rpm。 範例8 Φ 重量比爲40的尼龍6奈米組成以製備範例2方法,同 時60重量比的尼龍6,12採熔化-混合被熔化·混合以一溫度 條件爲230-240-245-245-245-235°C來執行熔化混合製備一 尼龍6奈米組成/尼龍6,12。重量比爲20的該熔化混合以 - 乾式混合重量比爲7〇的高密度聚乙烯(HDPE)與重量比爲 10的一相容劑。再進行吹拉機成型製程而製成一 1000 mL 容器。同時,溫度條件爲195-225-225-215-200°C,且該螺 桿旋轉轉速在24 rpm。同時,該乾式混合以擠壓成型生產 一厚度30 之薄膜。同時,溫度條件包括 220-235-235-245-245-245°C,且該螺桿旋轉轉速在 13 rpm。 範例9 重量比爲40的尼龍6奈米組成以製備範例2方法,同 時60重量比的非結晶性尼龍採熔化-混合被熔化-混合以一 溫度條件爲230-240-245-245-245-235°C來執行熔化混合製 備一尼龍6奈米組成/非結晶性尼龍。重量比爲20的該熔 化混合以乾式混合重量比爲70的高密度聚乙烯(HDPE)與 25 1328592 17430pif.doc 重量比爲10的一相容劑。再進行吹拉機成型製程而製成一 1000 mL 容器。同時,溫度條件爲 185-220-220-215-200°C, 且該螺桿旋轉轉速在24 rpm。同時’該乾式混合以擠壓成 型生產一厚度30 /an之薄膜。同時,溫度條件包括 220-235-235-235-235-235°C,且該螺桿旋轉轉速在 15 rpm。 範例10 重量比爲40的尼龍6奈米組成以製備範例2方法’同 時60重量比的離子體採熔化-混合被熔化-混合以一溫度條 件爲210-225-235-235-235-230°C來執行熔化混合製備一尼 龍6奈米組成/離子體。重量比爲20的該熔化混合以乾式 混合重量比爲7〇的高密度聚乙烯(HDPE)與重量比爲10的 一相容劑。再進行吹拉機成型製程而製成一 1000 mL容 器。同時,溫度條件爲185-235-235-235-235-230°C ’且該 螺桿旋轉轉速在21 rpm。同時,該乾式混合以擠壓成型生 產一厚度30聊之薄膜。同時,溫度條件包括 220-235-235-235-240-240°C,且該螺桿旋轉轉速在 12pm ° 範例11 重量比爲40的尼龍6,12奈米組成以製備範例3方 法,同時60重量比的乙烯-乙烯醇(EVOH)採熔化-混合被熔 化-混合以一溫度條件爲220-235-245-245-245-240°C來執行 熔合混合製備一尼龍6,12奈米組成/乙烯-乙烯醇 (EVOH)。重量比爲20的該溶化混合以乾式混合重量比爲 26 1328592 17430pif.doc 70的高密度聚乙烯(HDPE)與重量比爲10的一相容劑。再 進行吹拉機成型製程而製成一 1〇〇〇 mL容器。同時,溫度 條件爲185-225-225-215-20CTC,且該螺桿旋轉轉速在21 rpm。同時,該乾式混合以擠壓成型生產一厚度30哪之薄 膜。同時,溫度條件包括215-225-235-235-235-240°C,且 該螺桿旋轉轉速在15ρπ^ 範例12 重量比爲40的尼龍6,12奈米組組成以製備範例3方 法,同時60重量比的尼龍6採熔化-混合被熔化-混合以一 溫度條件爲220-235-245-245-245-240°C來執行熔化混合製 備一尼龍6,12奈米組成/尼龍6。重量比爲20的該熔化混 合以乾式混合重量比爲70的高密度聚乙烯(HDPE)與重量 比爲10的一相容劑。再進行吹拉機成型製程而製成一 1000 mL容器。同時,溫度條件爲185-245-245-245-240°C且該 螺桿旋轉轉速在23 rpm。同時,該乾式混合以擠壓成型生 產一厚度30㈣之薄膜。同時,溫度條件包括 205-225-235-240-240-245°C,且該螺桿旋轉轉速在 12 rpm。 範例13 重量比爲40的尼龍6,12奈米組成以製備範例3方 法,同時60重量比的尼龍6,12採熔化-混合被熔化_混合以 一溫度條件爲220-235-245-245-245-240°C來執行熔化混合 製備一尼龍6,12奈米組成/尼龍6,12。重量比爲2〇該溶化 27 1328592 17430pif.doc 混合式以乾式混合重量比70的高密度聚乙烯(HDPE)與重 量比爲10的一相容劑。再進行吹拉機成型製程而製成一 lOOOmL容器。同時,溫度條件爲 190-215-230-230-225-210°C 且該螺桿旋轉轉速在24 rpm。同時,該乾式混合以擠壓成 型生產一厚度30娜之薄膜。同時,溫度條件包括 210-225-245-245-245-245°C,且該螺桿旋轉轉速在 13 rpm。 範例14 重量比爲40的尼龍6,12奈米組成以製備範例3方 法,同時60重量比的非結晶性尼龍採熔化_混合被熔化-混 合以一溫度條件爲220-235-235-235-235-230°C來執行熔化 混合製備一尼龍6,12奈米組成/非結晶性尼龍。重量比爲 20的該熔化混合以乾式混合重量比爲70的高密度聚乙烯 (HDPE)與重量比爲10的一相容劑。再進行吹拉機成型製程 而製成一 l〇〇〇mL容器。同時,溫度條件爲 190-220-225-215-200°C且該螺桿旋轉轉速在 24 rpm 〇 同 時,該乾式混合以擠壓成型生產一厚度30卿之薄膜。同 時,溫度條件包括220-235-235-235-235-235°C,且該螺桿 旋轉轉速在12 rpm。 範例15 重量比爲40的尼龍6,12奈米組成以製備範例3方 法,同時60重量比的離子體採熔化-混合以一溫度條件爲 215-235-245-245-245-240°C來執行熔化混合製備一尼龍 28 1328592 17430pif.doc 6,12奈米組成/離子體。重量比爲20的該熔化混合以乾式 混合重量比爲7〇的高密度聚乙烯(HDPE)與重量比爲10的 一相容劑。再進行吹拉機成型製程而製成一 1〇〇〇 mL容 器。同時,溫度條件爲195-225-225_225-200°C且該螺桿旋 轉轉速在22 rpm。同時,該乾式混合以擠壓成型生產一厚 度 30 娜之薄膜。同時,溫度條件包括 225-235-235-235-235_240°C,且該螺桿旋轉轉速在 13 rpm。 範例16 重量比爲40的非結晶性尼龍奈米組成以製備範例4方 法,同時60重量比的乙烯-乙烯醇(EVOH)採熔化-混合以 一溫度條件爲205-215-215-215-215-210°C來執行熔化混合 製備一非結晶性的尼龍奈米組成/乙烯-乙烯醇(EVOH)。重 量比爲20的該熔化混合以乾式混合重量比爲70的高密度 聚乙烯(HDPE)與重量比爲10的一相容劑。再進行吹拉機成 型製程而製成一 1000 mL容器。同時,溫度條件爲 l85-205-215-210-200°C且該螺桿旋轉轉速在22 rpm。同 時,該乾式混合以擠壓成型生產一厚度30挪之薄膜。同 時,溫度條件包括220-235-235-235-235-235°C,且該螺桿 旋轉轉速在13 rpm。 範例17 重量比爲40的非結晶性尼龍奈米組成以製備範例4方 法’同時60重量比的尼龍6採熔化-混合以一溫度條件爲 29 1328592 17430pif.doc 225-235-235-235-235-230°C來執行熔化混合製備非結晶性 尼龍奈米組成/尼龍6。重量比爲20的該熔化混合以乾式混 合重量比70的高密度聚乙烯(HDPE)與重量比爲10的一相 容劑。再進行吹拉機成型製程而製成一1000 mL容器。同 時,溫度條件爲195-215-220-215-20(TC且該螺桿旋轉轉速 在22 rpm。同時,該乾式混合以擠壓成型生產一厚度30 /M 之薄膜。同時,溫度條件包括220-235-235-235-235-240°C, 且該螺桿旋轉轉速在13 rpm。 範例18 重量比爲40的非結晶性尼龍奈米組成以製備範例4方 法,同時60重量比的尼龍6,12採熔化-混合以一溫度條件 爲225-240-240-240-240-235°C來執行熔化混合製備非結晶 性尼龍奈米組成/尼龍6,12。重量比爲20的該熔化混合以 乾式混合重量比爲70的高密度聚乙烯(HDPE)與重量比爲 10的一相容劑。再進行吹拉機成型製程而製成一1000 mL 容器。同時,溫度條件爲200-220-225-215-205°C且該螺桿 旋轉轉速在22 rpm。同時,該乾式混合以擠壓成型生產一 厚度 30 /μ之薄膜。同時,溫度條件包括 215-225-235-235-235-240°C,且該螺桿旋轉轉速在 12 rpm。 範例19 重量比爲40的非結晶性尼龍奈米組成以製備範例4方 法,同時60重量比的非結晶性尼龍採熔化-混合以一溫度 30 1328592 17430pif.docOne hundred percent by weight of polyamine (nylon 6,12) was placed in one of the main feed hopper twin screw extruders (SM Platek co-rotating twin screw extruder; φ40). Thereafter, 5% by weight of organic montmorillonite is used as a plug-in clay and 〇.1 by weight of IR 1328592 17430pif.doc 1098 as a thermal stabilizer, with 100 as the total weight ratio of polyamine Benchmark, at the same time, the organic montmorillonite was placed in the twin-screw extruder to prepare a nylon-shaped 6,12/nano-type plug-in clay. The extrusion temperature conditions include 225-245-245-245-245-245-240 ° C, the screw rotation speed is 300 rpm, and the release condition is 40 kg/hr. Preparation Example 4 (Preparation of non-crystalline nylon/inserted clay composed of nanometer) 95% by weight of polyamine (non-crystalline nylon) was placed in one of the main feed hoppers Machine (SM I>latek co-rotating twin screw extruder; φ40). Thereafter, 5% by weight of organic montmorillonite is used as a plug-in clay and 0.1 weight ratio of IR 1098 as a thermal stabilizer, with 100 as the weight ratio of polyamine, and the organic The montmorillonite was separately placed in the twin-screw extruder to prepare a non-crystalline nylon/inserted plug-type clay which was formed into a nine-shape. The extrusion temperature conditions include 215-225-235-235-235-235-230 ° C, the screw rotation speed is 300 rpm, and the release condition is 40 kg / hr. Preparation Example 5 (Preparation of ionomer/inserted clay composed of nanometer) 95% by weight One ion body was placed in one of the main feed hoppers of a twin screw extruder (SM Platek co-rotating twin screw) Extrusion machine; 20 1328592 17430pif.doc φ40). Thereafter, 5% by weight of organic montmorillonite is used as a plug-in clay and 10·1 liter ratio of IR 1098 as a thermal stabilizer, using 1 〇〇 as the total weight ratio of the ion, while The organic montmorillonite was separately placed in the twin-screw extruder to prepare a plug-form clay which was formed into a nine-shaped ion/nano. The extrusion molding temperature conditions included 220-230-235-235-235-235-230 °C', the screw rotation speed was 300 rpm, and the release condition was 40 kg/hr. Example 1 An ethylene-vinyl alcohol (EVOH) nano composition having a weight ratio of 40 was prepared by the method of Preparation Example 1, while 60 parts by weight of ethylene-vinyl alcohol (EVOH) was melted-mixed at a temperature of 190-200-210- An ethylene-vinyl alcohol (EVOH) nano composition/ethylene vinyl alcohol (EVOH) was prepared by performing melt mixing at 210-210-200 °C. The melt blending at a weight ratio of 20 is a dry blended weight ratio of 70 high density polyethylene (HDPE) to a weight ratio of 10 compatibilizer (maleic anhydride adjusted (branched) high density polyethylene (HDPE) -g-MAH, uniroyal chemical, USA, PB3009 (1% ΜΑΗ content), melting parameter: 5 g/10 min, density: 0.95 g/cm3). Thereafter, a blow molding process is performed to make a l〇〇 At the same time, the temperature condition is 180-195_195-195-195-190 ° C, and the screw rotation speed is 22 rpm. At the same time, the dry mixing is extruded to produce a film having a thickness of 30 Å. The temperature conditions include 185-195-195-195-195-190 ° C, and the screw rotation speed is 16 rpm. 21 1328592 17430 pif.doc Example 2 Ethylene-vinyl alcohol (EVOH) nano composition with a weight ratio of 40 to prepare The method of the first example, while 60 weight ratio of nylon 6 is melted and mixed to perform a melt mixing at a temperature of 215-220-210_210-210-200 ° C to prepare an ethylene vinyl alcohol (EVOH) nano composition / nylon 6 The melt ratio of the weight ratio of 20 to dry mix weight ratio of 70 high density polyethylene (HDPE) and weight A compatibilizer having a ratio of 10. After that, the blow molding process is carried out to form a 1000 mL container. At the same time, the temperature condition is 190-225-225-220-210 ° C, and the screw rotation speed is 23 At the same time, the dry mixing is extruded to produce a film having a thickness of 30 angstroms. At the same time, the temperature conditions include 220-235-235-235-235-235t: and the screw rotation speed is 16 rpm. A composition of 40 ethylene-vinyl alcohol (EVOH) nanometer was prepared to prepare the method of Example 1, while 60 weight ratio of nylon 6,12 was melted-mixed at a temperature of 225-235-245-245-245-240 ° C. To perform melt-mixing to prepare an ethylene-vinyl alcohol (EVOH) nano composition/nylon 6,12. The melt-mixed weight ratio of 20 is a dry mix weight ratio of 70 high density polyethylene (HDPE) to a weight ratio of 1〇. After a blowing agent molding process, a 1000 mL container is prepared, and the temperature condition is 200-220-230-225_210 ° C, and the screw rotation speed is 21 rpm. Mix and produce a film with a thickness of 30 (10) by extrusion. The same temperature as 22 1328592 17430pif.doc Conditions include 220-235-235-235-235-235 ° C, and the screw rotation speed is 16 rpm. Example 4 An ethylene-vinyl alcohol (EVOH) nano composition having a weight ratio of 40 was prepared by the method of Preparation Example 1, while 60 parts by weight of the amorphous nylon was melt-mixed at a temperature of 225-235-:245-245- 245-240. (: To perform melt-mixing to prepare an ethylene-vinyl alcohol (EVOH) nano composition/non-crystalline nylon. The weight ratio of the melt-mixed high-density polyethylene (HDPE) to weight ratio of 70 in a dry mix ratio A compatibilizer of 1 Torr. Thereafter, the blow molding process is carried out to form a 1000 mL container. At the same time, the temperature condition is 185-200-210-200-190 ° C, and the rotation speed of the screw is At the same time, the dry mixing was extruded to produce a film having a thickness of 30 / μ. Meanwhile, the temperature conditions included 220-235-235-235-235-235 ° C, and the screw rotation speed was 16 rpm. Example 5 Ethylene-vinyl alcohol (EVOH) nanocomb composition with a weight ratio of 40 to prepare the method of Example 1, while a 60 weight ratio of an ion body was melt-mixed at a temperature of 225-235-245-245-245- An ethylene-vinyl alcohol (EVOH) nanocomposite/ionic body was prepared by melt-mixing at 240 ° C. The melt-mixed weight ratio of 20 was a dry mix weight ratio of 7 〇 high density polyethylene (HDPE) to weight ratio. Is a compatibilizer of 1 。. After that, the blow molding process is performed to make a 1 〇〇〇 mL At the same time, the temperature conditions include 23 1328592 17430 pif.doc 190-210-225-220-210 ° C, and the screw rotation speed is 23 rPm. At the same time, the dry mixing is extruded to produce a film having a thickness of 30 (four). At the same time, the temperature conditions include 220-235-235-235-235-235 ° C ' and the screw rotation speed is 14 rpm. Example 6 The weight ratio of 40 nylon 6 nanometer composition to prepare the example 2 method, while 60 weight ratio The ethylene vinyl alcohol (EVOH) was melt-mixed to perform a melt mixing at a temperature of 220-235-245-245-245-240 ° C to prepare a nylon 6 nano composition/ethylene vinyl alcohol (EVOH). The melt mixture of weight ratio of 20 is dry mixed with a high density polyethylene (HDPE) having a weight ratio of 70 and a compatibilizer having a weight ratio of 10. Then, a blow molding machine is formed to form a 1000 mL container. The temperature condition is 185-195-225-215-200 ° C, and the screw rotation speed is 14 rpm. At the same time, the dry mixing is extruded to produce a film having a thickness of 30 glazing. Meanwhile, the temperature conditions include 220-235-235. -235-235-235 ° C, and the screw rotation speed is 13 rpm. Example 7 Weight A nylon 6 nanometer composition of 40 was prepared by the method of Preparation Example 2, while 60 weight ratio of nylon 6 was melt-mixed, melt-mixed, and subjected to melt mixing preparation at a temperature of 220-235-245-245-245-240 °C. A nylon 6 nm composition / nylon 6. The melt blending at a weight ratio of 20 is a dry blending weight ratio of 70 high density polyethylene (HDPE) to a weight ratio of 24 1328592 17430 pif.doc a compatibilizer. The blow molding process is then carried out to make a 1000 mL container. At the same time, the temperature conditions are 195-215-220-215-200. (3, and the screw rotation speed is 24 rpm. At the same time, the dry mixing is extruded to produce a film having a thickness of 30 qing. Meanwhile, the temperature condition includes 220-245-245-245-245-240 ° C ' and The screw rotation speed was 13 rpm. Example 8 Φ A weight ratio of 40 nylon 6 nanometer composition to prepare the method of Example 2, while 60 weight ratio of nylon 6,12 was melted-mixed and melted and mixed at a temperature of 230- 240-245-245-245-235 ° C to perform melt mixing to prepare a nylon 6 nanometer composition / nylon 6,12. The weight ratio of 20 of the melt mixing to - dry mix weight ratio of 7 〇 high density polyethylene (HDPE) and a compatibilizer with a weight ratio of 10. A blow molding machine molding process is then carried out to make a 1000 mL container. At the same time, the temperature condition is 195-225-225-215-200 ° C, and the screw rotates. The rotation speed was 24 rpm. At the same time, the dry mixing was extruded to produce a film having a thickness of 30. Meanwhile, the temperature conditions included 220-235-235-245-245-245 ° C, and the screw rotation speed was 13 rpm. 9 weight ratio of 40 nylon 6 nanometer composition to prepare the method of Example 2, while 60 weight ratio of non-crystal Nylon mining melt-mixing is melted-mixed to perform a melt mixing at a temperature of 230-240-245-245-245-235 ° C to prepare a nylon 6 nanometer composition/non-crystalline nylon. The weight ratio is 20 Melt and mix to dry mix a high density polyethylene (HDPE) of 70 by weight with a compatibilizer of weight ratio of 25 1328592 17430 pif.doc of 10. A blow molding machine is then formed to form a 1000 mL container. The temperature condition is 185-220-220-215-200 ° C, and the screw rotation speed is 24 rpm. At the same time, the dry mixing is extruded to produce a film having a thickness of 30 / an. Meanwhile, the temperature conditions include 220-235. -235-235-235-235 ° C, and the screw rotation speed is 15 rpm. Example 10 A weight ratio of 40 nylon 6 nanometer composition to prepare the sample 2 method 'at the same time 60 weight ratio of ionic melt-mixing Melt-mixing is carried out by melt-mixing at a temperature of 210-225-235-235-235-230 ° C to prepare a nylon 6 nanometer composition/ionic body. The weight ratio of the melt mixing is 20 in dry mixing ratio. 7 〇 high density polyethylene (HDPE) with a weight ratio of 10 compatibilizer. Stretch blow molding machine process to prepare a 1000 mL container. At the same time, the temperature condition was 185-235-235-235-235-230 ° C 'and the screw rotation speed is 21 rpm. At the same time, the dry mixing is produced by extrusion to produce a film having a thickness of 30 inches. At the same time, the temperature conditions include 220-235-235-235-240-240 ° C, and the screw rotation speed is 12 pm ° Example 11 weight ratio of 40 nylon, 12 nm composition to prepare the sample 3 method, while 60 weight The ratio of ethylene-vinyl alcohol (EVOH) to melt-mixing is melted-mixed to a temperature of 220-235-245-245-245-240 ° C to perform fusion mixing to prepare a nylon 6,12 nm composition / ethylene - Vinyl alcohol (EVOH). The melt mixing in a weight ratio of 20 is a dry blending weight ratio of 26 1328592 17430 pif.doc 70 of high density polyethylene (HDPE) to a compatibilizer of weight ratio of 10. Further, a blow molding process was carried out to prepare a 1 〇〇〇 mL container. At the same time, the temperature condition was 185-225-225-215-20 CTC, and the screw rotation speed was 21 rpm. At the same time, the dry mixing produces a film having a thickness of 30 by extrusion molding. At the same time, the temperature conditions include 215-225-235-235-235-240 ° C, and the screw rotation speed is 15 π π ^ Example 12 weight ratio of 40 nylon, 12 nm group composition to prepare the example 3 method, while 60 The weight ratio of nylon 6 was melted-mixed, melted-mixed, and subjected to melt mixing at a temperature of 220-235-245-245-245-240 ° C to prepare a nylon 6,12 nm composition/nylon 6. The melt mixture in a weight ratio of 20 was a dry blending weight ratio of 70 high density polyethylene (HDPE) to a compatibilizer having a weight ratio of 10. The blow molding process is then carried out to make a 1000 mL container. At the same time, the temperature condition was 185-245-245-245-240 ° C and the screw rotation speed was 23 rpm. At the same time, the dry mixing produces a film having a thickness of 30 (four) by extrusion molding. At the same time, the temperature conditions include 205-225-235-240-240-245 ° C, and the screw rotation speed is 12 rpm. Example 13 A nylon 6,12 nm composition having a weight ratio of 40 was prepared to prepare the method of Example 3, while 60 parts by weight of nylon 6,12 was melt-mixed and melted-mixed at a temperature of 220-235-245-245- A nylon 6,12 nm composition/nylon 6,12 was prepared by performing melt mixing at 245-240 °C. The weight ratio is 2 〇 the melted 27 1328592 17430 pif.doc mixed with a dry mix weight ratio of 70 high density polyethylene (HDPE) to a compatibilizer with a weight ratio of 10. Then, a blow molding machine molding process was carried out to prepare a lOOOOmL container. At the same time, the temperature conditions were 190-215-230-230-225-210 °C and the screw rotation speed was 24 rpm. At the same time, the dry mixing produces a film having a thickness of 30 Å by extrusion molding. Meanwhile, the temperature conditions include 210-225-245-245-245-245 ° C, and the screw rotation speed is 13 rpm. Example 14 A nylon 6,12 nm composition having a weight ratio of 40 was prepared to prepare the method of Example 3, while 60 parts by weight of the amorphous nylon was melted-mixed and melted-mixed at a temperature of 220-235-235-235- A nylon 6,12 nm composition/amorphous nylon was prepared by performing melt mixing at 235-230 °C. The melt blending at a weight ratio of 20 is a dry blend of a high density polyethylene (HDPE) having a weight ratio of 70 and a compatibilizer having a weight ratio of 10. Then, a blow molding process is carried out to make a l〇〇〇mL container. Meanwhile, the temperature condition was 190-220-225-215-200 ° C and the screw rotation speed was 24 rpm ,, and the dry mixing was extrusion-molded to produce a film having a thickness of 30 qing. At the same time, the temperature conditions include 220-235-235-235-235-235 °C, and the screw rotation speed is 12 rpm. Example 15 A nylon 6,12 nm composition having a weight ratio of 40 was prepared to prepare the method of Example 3, while a 60 weight ratio of the ion body was melt-mixed at a temperature of 215-235-245-245-245-240 ° C. Perform a melt mixing to prepare a nylon 28 1328592 17430 pif.doc 6, 12 nm composition / ion body. The melt blending at a weight ratio of 20 was a dry blending weight ratio of 7 Å high density polyethylene (HDPE) to a compatibilizer having a weight ratio of 10. The blow molding process is then carried out to make a 1 〇〇〇 mL container. At the same time, the temperature conditions were 195-225-225_225-200 ° C and the screw rotation speed was 22 rpm. At the same time, the dry mixing is extruded to produce a film having a thickness of 30 Å. At the same time, the temperature conditions include 225-235-235-235-235_240 ° C, and the screw rotation speed is 13 rpm. Example 16 A non-crystalline nylon nanostructure having a weight ratio of 40 was prepared to prepare the method of Example 4, while 60 parts by weight of ethylene-vinyl alcohol (EVOH) was melt-mixed at a temperature of 205-215-215-215-215. A non-crystalline nylon nano composition/ethylene-vinyl alcohol (EVOH) was prepared by performing melt mixing at -210 °C. The melt mixture having a weight ratio of 20 was dry mixed with a high density polyethylene (HDPE) having a weight ratio of 70 and a compatibilizer having a weight ratio of 10. Then, a blow molding machine was used to form a 1000 mL container. At the same time, the temperature condition was l85-205-215-210-200 ° C and the screw rotation speed was 22 rpm. At the same time, the dry mixing was extruded to produce a film having a thickness of 30 Å. At the same time, the temperature conditions include 220-235-235-235-235-235 °C, and the screw rotation speed is 13 rpm. Example 17 A non-crystalline nylon nanostructure having a weight ratio of 40 was prepared by the method of Preparation Example 4 while a 60 weight ratio of nylon 6 was melted-mixed at a temperature of 29 1328592 17430 pif.doc 225-235-235-235-235 A non-crystalline nylon nano composition/nylon 6 was prepared by performing melt mixing at -230 °C. The melt blending at a weight ratio of 20 was dry blended with a high density polyethylene (HDPE) in a weight ratio of 70 and a compatibilizer in a weight ratio of 10. The blow molding process is then carried out to make a 1000 mL container. At the same time, the temperature condition is 195-215-220-215-20 (TC and the screw rotation speed is 22 rpm. At the same time, the dry mixing is extruded to produce a film having a thickness of 30 / M. Meanwhile, the temperature condition includes 220- 235-235-235-235-240 ° C, and the screw rotation speed is 13 rpm. Example 18 A weight ratio of 40 amorphous nylon nano composition to prepare the method of Example 4, while 60 weight ratio of nylon 6,12 Melt-mixing is carried out at a temperature of 225-240-240-240-240-235 ° C to perform melt mixing to prepare a non-crystalline nylon nano composition / nylon 6,12. The melt mixture is dry at a weight ratio of 20. A high-density polyethylene (HDPE) with a weight ratio of 70 and a compatibilizer with a weight ratio of 10. A blow molding machine is used to form a 1000 mL container. At the same time, the temperature condition is 200-220-225- 215-205 ° C and the screw rotation speed is 22 rpm. At the same time, the dry mixing is extruded to produce a film having a thickness of 30 / μ. At the same time, the temperature conditions include 215-225-235-235-235-240 ° C And the screw rotation speed is 12 rpm. Example 19 The weight ratio of 40 is made of amorphous nylon nano Method of Example 4, while the non-crystalline nylon 60 by weight ratio of mining melt - mixed to a temperature of 30 1328592 17430pif.doc

條件⑶···2.24^2.235。^來執行雜混合製備非結 Β曰&尼龍奈米組成/非結晶性尼龍。冑量匕匕爲2〇的該熔化 混合以乾式混合重量比爲70的高密度聚乙烯(HDpE)與重 量比爲10的一相容劑。再進行吹拉機成型製程而製成一 1000 mL 谷器。同時’溫度條件爲 190 205_215_205_195<>C 且該螺桿旋轉轉速在24 rpn^同時,該乾式混合以擠壓成 型生產一厚度30卿之薄膜。同時,溫度條件包括 φ 200-215_215_215-215-22〇°C,且該螺桿旋轉轉速在 13 rpm。 範例20 重量比爲40的非結晶性尼龍奈米組成以製備範例4方 法,同時60重量比的離子體採熔化-混合以—溫度條件 225-240-240-240-240-235°C來執行熔化混合製備非結晶性 ' 尼龍奈米組成/離子體。重量比爲20的該熔化混合以乾式 混合重量比爲70的高密度聚乙烯(HDPE)與重量比爲10的 一相容劑。再進行吹拉機成型製程而製成一1000 mL容 參 器。同時,溫度條件爲195-215-220-215-205°C且該螺桿旋 轉轉速在22 rpm。同時,該乾式混合以擠壓成型生產一厚 度 30 娜之薄膜。同時,溫度條件包括 220-235-235-235-235-240°C,且該螺桿旋轉轉速在 12 rpm。 範例21 重量比爲40的離子體奈米組成以製備範例5方法,同 時60重量比的乙烯-乙烯醇(EVOH)採熔化-混合以一溫度 31 1328592 17430pif.doc 條件225_235-235-240-240-235t:來執行熔化混合製備一離 子體奈米組成/乙烯-乙烯醇(EVOH)。重量比爲20的該熔化 混合以乾式混合重量比爲70的高密度聚乙烯(HDPE)與重 量比爲10的一相容劑。再進行吹拉機成型製程而製成一 1000 mL 容器。同時,溫度條件爲 190-215-220-215-200°C 且該螺桿旋轉轉速在24 rpm。同時,該乾式混合以擠壓成 型生產一厚度30卿之薄膜。同時,溫度條件包括 210-225-235-235-235-240t:,且該螺桿旋轉轉速在 14 rpm。 範例22 重量比爲40的離子體奈米組成以製備範例5方法,同 時60重量比的尼龍6採熔化-混合以一溫度條件 225-240-245-245-245-240°C來執行熔化混合製備一離子體 奈米組成/尼龍6。重量比爲20的該熔化混合以乾式混合重 量比爲70的高密度聚乙烯(HDPE)與重量比爲10的一相容 劑。再進行吹拉機成型製程而製成一 1000 mL容器。同時, 溫度條件爲195-215-225-220-210°C且該螺桿旋轉轉速在23 rpm。同時,該乾式混合以擠壓成型生產一厚度30厚之薄 膜。同時,溫度條件包括220-235-235-235-235-240°C,且 該螺桿旋轉轉速在13 rpm。 範例23 重量比爲40的離子體奈米組成以製備範例5方法,同 時60重量比的尼龍6,12採熔化-混合以一溫度條件 32 1328592 17430pif.doc 225-245-245-245-245-240°C來執行熔化混合製備一離子體 奈米組成/尼龍6,12。重量比爲20的該熔化混合以乾式混 合重量比爲70的高密度聚乙烯(HDPE)與重量比爲10的一 相容劑。再進行吹拉機成型製程而製成一 1〇〇〇 mL容器。 同時,溫度條件爲225-245-245-245-245-240°C且該螺桿旋 轉轉速在23 rpm。同時,該乾式混合以擠壓成型生產一厚 度 30 卿之薄膜。同時,溫度條件包括 220-235-235-235-235-240°C,且該螺桿旋轉轉速在 14 rpm。 範例24 重量比爲40的離子體奈米組成以製備範例5方法,同 時60重量比的非結晶性尼龍採熔化·混合以一溫度條件 215-230-235-235-235-230°C來執行熔化混合製備一離子體 奈米組成/非結晶性尼龍。重量比爲20的該熔化混合以乾 式混合重量比爲7〇的高密度聚乙烯(HDPE)與重量比爲10 的一相容劑。再進行吹拉機成型製程而製成一 1000 mL容 器。同時,溫度條件爲185-215-220-215-200°C且該螺桿旋 轉轉速在24 rpm。同時,該乾式混合以擠壓成型生產一厚 度 30 卿之薄膜。同時,溫度條件包括 215-235-235-235-235-240°C,且該螺桿旋轉轉速在 15 rpm。 範例25 重量比爲40的離子體奈米組成以製備範例5方法’同 時60重量比的離子體採熔化-混合以一溫度條件 33 1328592 17430pif.doc 215-235-235-235-235-240°C來執行熔化混合製備一離子體 奈米組成/離子體。重量比爲20的該熔化混合以乾式混合 重量比爲70的高密度聚乙烯(HDPE)與重量比爲10的一相 容劑。之後,該奈米組成組成物以吹拉機成型製程而製成 一 5-層結構【高密度聚乙烯(HDPE)/附著劑/奈米組成組成 物/附著劑/高密度聚乙烯(HDPE)】之一 1000 mL容器。 同時,溫度條件爲195-225-225-225-215°C且該螺桿旋轉轉 速在23 rpm。同時,該乾式混合以擠壓成型生產一 5-層結 構【高密度聚乙烯(HDPE)/附著劑/奈米組成組成物/附著劑/ 高密度聚乙烯(HDPE)】厚度30仰1之薄膜。同時,溫度條 件包括220-235-235-235-235-240T:,且該螺桿旋轉轉速在 15 rpm。 範例26 重量比爲40的尼龍6奈米組成以製備範例2方法, 同時60重量比的非結晶性尼龍採熔化-混合以一溫度條件 230-240-245-245-245-235°C來執行熔化混合製備一尼龍6 奈米組成/非結晶性尼龍。重量比爲4的該熔化混合以乾式 混合重量比爲94的高密度聚乙烯(HDPE)與重量比爲2的一 相容劑已得到一奈米組成之組成物。之後,該奈米組成組 成物以吹拉機成型製程而製成一 5-層結構【高密度聚乙烯 (HDPE)/附著劑/奈米組成組成物/附著劑/高密度聚乙烯 (HDPE)】之一 1000 mL容器。同時,溫度條件爲 195-225-225-225-215°C且該螺桿旋轉轉速在23 rpm。同 34 1328592 17430pif.doc 時,該乾式混合以擠壓成型生產一 5-層結構【高密度聚乙 烯(HDPE)/附著劑/奈米組成組成物/附著劑/高密度聚乙烯 (HDPE)】厚度30邱1之薄膜。同時,溫度條件包括 220-235-235-235-235-240°C,且該螺桿旋轉轉速在 12 rpm。 範例27 重量比爲40的尼龍6奈米組成以製備範例2方法, 同時60重量比的非結晶性尼龍採熔化-混合以一溫度條件 230-240-245-245-245_235°C來執行熔化混合製備一尼龍6 奈米組成/非結晶性。重量比爲60的該熔化混合以乾式混 合重量比爲35的高密度聚乙烯(HDPE)與重量比爲5的一相 容劑以獲得一奈米組成組成物。之後,該奈米組成組成物 以吹拉機成型製程而製成一 5-層結構【高密度聚乙烯 (HDPE)/附著劑/奈米組成組成物/附著劑/高密度聚乙烯 (HDPE)】之一 1000 mL容器。同時,溫度條件爲 195-225-225-225-215°C且該螺桿旋轉轉速在23 rpm。同 時,該乾式混合以擠壓成型生產一 5-層結構【高密度聚乙 烯(HDPE)/附著劑/奈米組成組成物/附著劑/高密度聚乙烯 (HDPE)】厚度30 μη之薄膜。同時,溫度條件包括 220-235-235-235-235-240°C,且該螺桿旋轉轉速在 12 rpm。 比較範例1 重量比爲70的高密度聚乙烯(HDPE),重量比爲10的 —相容劑以及重量比爲20的乙烯-乙烯醇(EVOH)共聚合物 35 1328592 17430pif.doc 被混合且進行吹拉機成型製程而製成一 lOOOmL容器。同 時,溫度條件爲180-190-19(M85-180°C且該螺桿旋轉轉速 在22 rpm。同時,該混合以擠壓成型生產一厚度30 /M之薄 膜。同時,溫度條件包括220-235-235-235-235-240°C,且 該螺桿旋轉轉速在14 rpm。 比較範例2 重量比爲70的高密度聚乙烯(HDPE),重量比爲10的 一相容劑以及重量比爲20的尼龍6被混合且進行吹拉機 成型製程而製成一 l〇〇〇mL容器。同時,溫度條件爲 210-220-225-215-200°C且該螺桿旋轉轉速在21 rpm。同 時,該混合以擠壓成型生產一厚度30邱之薄膜。同時,溫 度條件包括220-235-235-235-235-240°C,且該螺桿旋轉轉 速在13 rpm。 比較範例3 重量比爲70的高密度聚乙烯(HDPE),重量比爲10的 一相容劑以及重量比爲20的尼龍6,12被混合且進行吹拉機 成型製程而製成一 l〇〇〇mL容器。同時,溫度條件爲 215-225-230-215-205°C且該螺桿旋轉轉速在22 rpm。同 時,該混合以擠壓成型生產一厚度30之薄膜。同時,溫 度條件包括220-235-240-240-240-245°C ’且該螺桿旋轉轉 速在12 rpm。 比較範例4 36 1328592 17430pi£doc 重量比爲70的高密度聚乙烯(HDPE),重量比爲l〇的 一相容劑以及重量比爲20的離子體被混合且進行吹拉機 成型製程而製成一 1〇〇〇 mL容器。同時,溫度條件爲 205-215-225-220-215°C且該螺桿旋轉轉速在22 rpm»同 時,該混合以擠壓成型生產一厚度30哪之薄膜。同時,溫 度條件包括220-235-235-235-235-240°C,且該螺桿旋轉轉 速在14 rpm。 採吹拉機成型製程生產之容器與薄膜,在範例1-27與 比較範例1-4,其阻絕特性均被測試且結果呈現在表1與2。 實驗範例 甲苯與M15 (— 85%甲苯/異辛烷(50/50)與15%甲醇之 混合物)被置於容器以範例1-27與比較範例1-4方式生產。 重量改變的量測在置於50°C烘箱15天後執行。 該薄膜生產以範例卜27以及比較範例1-4方式製備置 ψ 放於在溫度23°C與一相對濕度50%環境下達1天。然後該 氣體穿透率也被量測(Mocon OX-TRAN 2/20, U.S.A)。 37 1328592 17430pif.doc 表1容器之阻絕特性Condition (3)···2.24^2.235. ^ To perform heteromixing to prepare non-junction & nylon nylon composition/non-crystalline nylon. The melt was mixed at a mass ratio of 2 Torr to a dry blending weight ratio of 70 high density polyethylene (HDpE) to a compatibilizer having a weight ratio of 10. A blow molding machine molding process is then performed to make a 1000 mL hopper. At the same time, the temperature condition is 190 205_215_205_195 <>C and the screw rotation speed is 24 rpn^, and the dry mixing produces a film of thickness 30 mils by extrusion molding. At the same time, the temperature conditions include φ 200-215_215_215-215-22 〇 ° C, and the screw rotation speed is 13 rpm. Example 20 A composition of a non-crystalline nylon nanoparticle having a weight ratio of 40 to prepare the method of Example 4, while a 60-weight ratio of ionic body melt-mixing was performed at a temperature condition of 225-240-240-240-240-235 °C. Melt mixing to prepare a non-crystalline 'nylon nano composition/ion body. The melt blending at a weight ratio of 20 was a dry blending weight ratio of 70 high density polyethylene (HDPE) to a compatibilizer having a weight ratio of 10. A blow molding machine molding process is then performed to make a 1000 mL susceptor. At the same time, the temperature conditions were 195-215-220-215-205 ° C and the screw rotation speed was 22 rpm. At the same time, the dry mixing is extruded to produce a film having a thickness of 30 Å. At the same time, the temperature conditions include 220-235-235-235-235-240 ° C, and the screw rotation speed is 12 rpm. Example 21 A ionic nanocomposite having a weight ratio of 40 to prepare the method of Example 5, while 60 weight ratio of ethylene-vinyl alcohol (EVOH) was melted-mixed to a temperature of 31 1328592 17430 pif.doc condition 225_235-235-240-240 -235t: To perform melt mixing to prepare an ion nano composition/ethylene-vinyl alcohol (EVOH). The melt ratio of a weight ratio of 20 was a dry blending weight ratio of 70 high density polyethylene (HDPE) to a compatibilizer having a weight ratio of 10. The blow molding process is then carried out to make a 1000 mL container. At the same time, the temperature conditions were 190-215-220-215-200 ° C and the screw rotation speed was 24 rpm. At the same time, the dry mixing produces a film of thickness 30 mils by extrusion molding. At the same time, the temperature conditions include 210-225-235-235-235-240t: and the screw rotation speed is 14 rpm. Example 22 A ionic body composition having a weight ratio of 40 to prepare the method of Example 5, while 60 parts by weight of nylon 6 was melt-mixed to perform melt mixing at a temperature condition of 225-240-245-245-245-240 °C. An ion nano composition/nylon 6 was prepared. The melt mixture having a weight ratio of 20 was mixed with a high density polyethylene (HDPE) having a dry weight ratio of 70 and a compatibilizer having a weight ratio of 10. The blow molding process is then carried out to make a 1000 mL container. At the same time, the temperature conditions were 195-215-225-220-210 ° C and the screw rotation speed was 23 rpm. At the same time, the dry mixing was extruded to produce a film having a thickness of 30 thick. At the same time, the temperature conditions include 220-235-235-235-235-240 ° C, and the screw rotation speed is 13 rpm. Example 23 A ionic nano-composition with a weight ratio of 40 to prepare the method of Example 5, while 60 weight ratios of nylon 6,12 were melt-mixed to a temperature condition of 32 1328592 17430 pif.doc 225-245-245-245-245- An ion nanostructure/nylon 6,12 was prepared by performing melt mixing at 240 °C. The melt mixture having a weight ratio of 20 was dry mixed with a high density polyethylene (HDPE) having a weight ratio of 70 and a compatibilizer having a weight ratio of 10. Then, a blow molding machine molding process was carried out to prepare a 1 〇〇〇 mL container. At the same time, the temperature conditions were 225-245-245-245-245-240 ° C and the screw rotation speed was 23 rpm. At the same time, the dry mixing was extruded to produce a film of 30 cm thick. At the same time, the temperature conditions include 220-235-235-235-235-240 ° C, and the screw rotation speed is 14 rpm. Example 24 A ionic nano-composition having a weight ratio of 40 to prepare the method of Example 5, while 60 parts by weight of amorphous nylon was melted and mixed at a temperature condition of 215-230-235-235-235-230 ° C. Ionic nanostructure/non-crystalline nylon was prepared by melt mixing. The melt blending at a weight ratio of 20 was dry blended with a high density polyethylene (HDPE) of 7 Torr and a compatibilizer having a weight ratio of 10. The blow molding process is then carried out to make a 1000 mL container. At the same time, the temperature conditions were 185-215-220-215-200 ° C and the screw rotation speed was 24 rpm. At the same time, the dry mixing was extruded to produce a film of 30 cm thick. At the same time, the temperature conditions include 215-235-235-235-235-240 ° C, and the screw rotation speed is 15 rpm. Example 25 Ionic Nanoparticle Composition with a Weight Ratio of 40 to Prepare the Method of Example 5' Simultaneous 60 Weight Ratio of Ion Body Melting-Mixing to a Temperature Condition 33 1328592 17430pif.doc 215-235-235-235-235-240° C is used to perform melt mixing to prepare an ion nano composition/ion body. The melt blending at a weight ratio of 20 was dry blended with a high density polyethylene (HDPE) of 70 by weight and a compatibilizer having a weight ratio of 10. Thereafter, the nano composition is formed into a 5-layer structure by a blow molding process [High Density Polyethylene (HDPE) / Adhesive / Nano Composition / Adhesive / High Density Polyethylene (HDPE) 】 One 1000 mL container. At the same time, the temperature conditions were 195-225-225-225-215 °C and the screw rotation speed was 23 rpm. At the same time, the dry mixing is produced by extrusion to produce a 5-layer structure [High Density Polyethylene (HDPE) / Adhesive / Nano Composition / Adhesive / High Density Polyethylene (HDPE)] . At the same time, the temperature conditions include 220-235-235-235-235-240T: and the screw rotation speed is 15 rpm. Example 26 A nylon 6 nanometer composition having a weight ratio of 40 was prepared to prepare the method of Example 2, while 60 weight ratio of amorphous nylon was melt-mixed and executed at a temperature condition of 230-240-245-245-245-235 °C. A nylon 6 nanocomposition/non-crystalline nylon was prepared by melt mixing. The melt blending at a weight ratio of 4 has a composition of one nanometer in a dry mix of high density polyethylene (HDPE) having a weight ratio of 94 and a compatibilizer having a weight ratio of 2. Thereafter, the nano composition is formed into a 5-layer structure by a blow molding process [High Density Polyethylene (HDPE) / Adhesive / Nano Composition / Adhesive / High Density Polyethylene (HDPE) 】 One 1000 mL container. At the same time, the temperature conditions were 195-225-225-225-215 ° C and the screw rotation speed was 23 rpm. Same as 34 1328592 17430pif.doc, the dry mixing is extruded to produce a 5-layer structure [high density polyethylene (HDPE) / adhesive / nano composition / adhesive / high density polyethylene (HDPE)] Film of thickness 30 Qiu. At the same time, the temperature conditions include 220-235-235-235-235-240 ° C, and the screw rotation speed is 12 rpm. Example 27 A nylon 6 nanometer composition having a weight ratio of 40 to prepare the method of Example 2, while 60 weight ratio of amorphous nylon was melt-mixed to perform melt mixing at a temperature condition of 230-240-245-245-245-235 °C. A nylon 6 nanocomposition/non-crystallinity was prepared. The melt mixture having a weight ratio of 60 was dry-mixed with a high-density polyethylene (HDPE) of 35 by weight and a compatibilizer of a weight ratio of 5 to obtain a composition of one nanometer. Thereafter, the nano composition is formed into a 5-layer structure by a blow molding process [High Density Polyethylene (HDPE) / Adhesive / Nano Composition / Adhesive / High Density Polyethylene (HDPE) 】 One 1000 mL container. At the same time, the temperature conditions were 195-225-225-225-215 ° C and the screw rotation speed was 23 rpm. At the same time, the dry mixing was extruded to produce a 5-layer structure [HDPE/adhesive/nano composition/adhesive/high density polyethylene (HDPE)] film having a thickness of 30 μη. At the same time, the temperature conditions include 220-235-235-235-235-240 ° C, and the screw rotation speed is 12 rpm. Comparative Example 1 High density polyethylene (HDPE) in a weight ratio of 70, a compatibilizer in a weight ratio of 10, and an ethylene-vinyl alcohol (EVOH) copolymer in a weight ratio of 20, 1 352,592, 17430 pif.doc were mixed and carried out. A blow molding machine molding process was used to make a 1000 mL container. At the same time, the temperature condition is 180-190-19 (M85-180 ° C and the screw rotation speed is 22 rpm. At the same time, the mixing is extruded to produce a film having a thickness of 30 / M. Meanwhile, the temperature conditions include 220-235 -235-235-235-240 ° C, and the rotation speed of the screw is 14 rpm. Comparative Example 2 High density polyethylene (HDPE) with a weight ratio of 70, a compatibilizer with a weight ratio of 10, and a weight ratio of 20 The nylon 6 is mixed and subjected to a blow molding process to form a l〇〇〇mL container. At the same time, the temperature condition is 210-220-225-215-200 ° C and the screw rotation speed is 21 rpm. The mixing is performed by extrusion to produce a film having a thickness of 30 sec. At the same time, the temperature conditions include 220-235-235-235-235-240 ° C, and the screw rotation speed is 13 rpm. Comparative Example 3 The weight ratio is 70 High-density polyethylene (HDPE), a compatibilizer with a weight ratio of 10, and nylon 6,12 with a weight ratio of 20 are mixed and subjected to a blow molding process to form a l〇〇〇mL container. The condition is 215-225-230-215-205 ° C and the screw rotation speed is 22 rpm. At the same time, the mixing is produced by extrusion molding. Film with a thickness of 30. At the same time, the temperature conditions include 220-235-240-240-240-245 ° C ' and the screw rotation speed is 12 rpm. Comparative Example 4 36 1328592 17430pi £doc High-density polyethylene with a weight ratio of 70 (HDPE), a compatibilizer having a weight ratio of 10 以及 and an ionomer having a weight ratio of 20 are mixed and subjected to a blow molding process to prepare a 1 〇〇〇 mL container. Meanwhile, the temperature condition is 205-215. -225-220-215 ° C and the screw rotation speed is 22 rpm» at the same time, the mixing is extruded to produce a film of thickness 30. Meanwhile, the temperature conditions include 220-235-235-235-235-240°. C, and the screw rotation speed is 14 rpm. The container and film produced by the draw molding process are tested in Examples 1-27 and Comparative Examples 1-4, and the resistance characteristics are tested and the results are shown in Tables 1 and 2. Experimental Example Toluene and M15 (a mixture of - 85% toluene/isooctane (50/50) and 15% methanol) were placed in a container to produce in the manner of Examples 1-27 and Comparative Examples 1-4. This was carried out after being placed in an oven at 50 ° C for 15 days. The film production was prepared by way of Example 27 and Comparative Examples 1-4. At a temperature of 23 ° C and a relative humidity of 50% environment released one day. The gas then transmittance was also measured (Mocon OX-TRAN 2/20, U.S.A). 37 1328592 17430pif.doc Table 1 container blocking characteristics

Toluene (損失重量%) M15 (損失重量%) 範例1 0.114 0.150 範例2 0.085 0.098 範例3 0.083 0.091 範例4 0.135 0.177 範例5 0.196 0.203 範例6 0.092 0.099 範例7 0.051 0.067 範例8 0.059 0.063 範例9 0.076 0.092 範例10 0.122 0.138 範例11 0.120 0.135 範例12 0.044 0.048 範例13 0.038 0.040 範例14 0.059 0.067 範例15 0.093 0.098 範例16 0.120 0.158 範例17 0.085 0.095 範例18 0.064 0.073 範例19 0.095 0,106 範例20 0.145 0.153 範例21 0.352 0.382 範例22 0.288 0.295 範例23 0.264 0.283 範例24 0.293 0.309 範例25 0.463 0.569 範例26 0.692 0,853 範例27 0.341 0.483 比較範例1 1.679 3.324 比較範例2 1.452 3.028 比較範例3 1.311 2.540 比較範例4 3.806 4.237 38 1328592 17430pif.doc 表2薄膜之阻勒 邑特性 氧氣穿透率(ml/m2x24hrs latm) 範例1 126.27 範例2 93.26 範例3 84.26 範例4 143.25 範例5 183.49 範例6 92.67 範例7 53.69 範例8 63.99 範例9 83.28 範例10 134.52 範例11 131.48 範例12 52.24 範例13 41.38 範例14 62.06 範例15 119.42 範例16 133.19 範例17 110.42 範例18 77.04 範例19 101.06 範例20 235.63 範例21 489.18 範例22 432.83 範例23 415.90 範例24 441.84 範例25 415.49 範例26 538.17 範例27 885.92 比較範例1 2238.19 比較範例2 1324.51 比較範例3 1255.66 比較範例4 3342.01 39 1328592 17430pif.doc 如同表1與表2所示,範例1到27之容器與薄膜所使 用的該乾式混合組成物包括一聚烯烴樹脂,一相容劑與一 具阻絕特性/奈米組成之樹脂以熔化混合產生對液體與氣 體優越的阻絕特性,同時比較該些在比較範例1到4使用 組成物包括聚烯烴樹脂,一相容劑與一樹脂具阻絕特性。 吹拉機成型的容器以範例7方法所生產之電子顯微鏡 剖面圖顯示於圖1 (χ200)與圖2 (χ5000)。如同圖1與圖2, 以具阻絕特性之奈米組成組成物所生產之該容器包括將該 奈米組成散佈在聚烯烴樹脂的持續相中以產生優越的阻絕 特性。 該奈米組成組成物依據本發明實施例具優阻絕特性與 可塑性,且該生產之品項以容器薄片或薄膜均具優越阻絕 特性。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者’在不脫離本發明之精神 和範圍內,當可作些許之更動與潤飾’因此本發明之保護 範圍當視後附之申請專利範圍所界定者爲準。 【圖式簡單說明】 圖1是依據本發明之實施例由從一奈米組成組成物依 吹拉機成型法製成之物件的電子顯微鏡(χ200)圖之剖面圖° 圖2是依據本發明之實施例由從一奈米組成組成物依 吹拉機成型法製成之物件的電子顯微鏡(χ5000)圖之剖面 圖。 40 1328592 17430pif.doc 【主要元件符號說明】Toluene (loss of weight %) M15 (loss of weight %) Example 1 0.114 0.150 Example 2 0.085 0.098 Example 3 0.083 0.091 Example 4 0.135 0.177 Example 5 0.196 0.203 Example 6 0.092 0.099 Example 7 0.051 0.067 Example 8 0.059 0.063 Example 9 0.076 0.092 Example 10 0.122 0.138 Example 11 0.120 0.135 Example 12 0.044 0.048 Example 13 0.038 0.040 Example 14 0.059 0.067 Example 15 0.093 0.098 Example 16 0.120 0.158 Example 17 0.085 0.095 Example 18 0.064 0.073 Example 19 0.095 0,106 Example 20 0.145 0.153 Example 21 0.352 0.382 Example 22 0.288 0.295 Example 23 0.264 0.283 Example 24 0.293 0.309 Example 25 0.463 0.569 Example 26 0.692 0,853 Example 27 0.341 0.483 Comparative Example 1 1.679 3.324 Comparative Example 2 1.452 3.028 Comparative Example 3 1.311 2.540 Comparative Example 4 3.806 4.237 38 1328592 17430pif.doc Table 2 Oxygen permeability (ml/m2x24hrs latm) Example 1 126.27 Example 2 93.26 Example 3 84.26 Example 4 143.25 Example 5 183.49 Example 6 92.67 Example 7 53.69 Example 8 63.99 Example 9 83.28 Example 10 134.52 Example 11 13 1.48 Example 12 52.24 Example 13 41.38 Example 14 62.06 Example 15 119.42 Example 16 133.19 Example 17 110.42 Example 18 77.04 Example 19 101.06 Example 20 235.63 Example 21 489.18 Example 22 432.83 Example 23 415.90 Example 24 441.84 Example 25 415.49 Example 26 538.17 Example 27 885.92 Comparison Example 1 2238.19 Comparative Example 2 1324.51 Comparative Example 3 1255.66 Comparative Example 4 3342.01 39 1328592 17430pif.doc As shown in Tables 1 and 2, the dry mixed composition used in the containers and films of Examples 1 to 27 includes a polyolefin resin. a compatibilizer and a resin having a resistive property/nano composition are melt-mixed to produce superior barrier properties to liquids and gases, while comparing the compositions used in Comparative Examples 1 to 4 including polyolefin resins, a compatible The agent and a resin have a blocking property. An electron microscope sectional view of the container formed by the blow molding machine by the method of Example 7 is shown in Fig. 1 (χ200) and Fig. 2 (χ5000). As with Figures 1 and 2, the container produced from the nanocomposite composition having barrier properties includes spreading the nano composition in the continuous phase of the polyolefin resin to produce superior barrier properties. The nanocomposition composition has excellent resistance properties and plasticity according to the embodiment of the present invention, and the produced article has superior resistance properties to the container sheet or film. Although the present invention has been described above in terms of the preferred embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of an electron microscope (Fig. 200) of an article formed by a blow molding machine in accordance with an embodiment of the present invention. FIG. 2 is a view of the present invention. The embodiment is a cross-sectional view of an electron microscope (χ5000) diagram of an article made of a composition of one nanometer in accordance with a blow molding process. 40 1328592 17430pif.doc [Key component symbol description]

Claims (1)

13285921328592 17430pif.doc 十、申請專利範園: 。^ 1. 一種乾式混合之奈米組成的組成物’包含: 重量比30到95之一聚烯烴樹脂; 重量比0.5到60之一熔化混合,該熔化混合包括至少 一具阻絕特性樹脂與至少一具阻絕特性奈米組成’該具阻 絕特性樹脂選自由一乙烯-乙烯醇(EV0H)共聚合物、—聚醯 胺、一離子體、以及一聚乙烯醇(PVA)所組成之族群’該具 阻絕特性奈米組成選自由一乙烯-乙烯醇(EV0H)共聚合物/ 插入式黏土奈米組成、一聚醯胺/插入式黏土奈米組成、一 離子體/插入式黏土奈米組成以及一聚乙烯醇/插入式黏土 奈米組成所組成之族群;以及 重量比1到30之一相容劑, 其中該具阻絕特性樹脂與該具阻絕特性奈米組成,兩 者以熔化-混合方式依重量比從25 : 75到75 : 25混合。 2. 如申請專利範圍第1項所述之乾式混合之奈米組成 的組成物,其中該聚烯烴樹脂至少是一化合物選自由一高 密度聚乙烯(HDPE)、一低密度聚乙烯(LDPE)、一直鏈低密 度聚乙烯(LLDPE)、一乙烯-丙烯聚合物以及一乙烯-丙烯共 聚合物所組成之族群。 3. 如申請專利範圍第1項所述之乾式混合之奈米組成 的組成物,其中該插入式黏土至少是一化合物選自由蒙脫 土、膨潤土( bentonite)、高嶺土( kaolinite) ' 電晶體雲母 片(mica )、鋰巷土( hectorite )、氟化鋰巷土 (fluorohectorite)、巷石(saponite)、貝地拉石(beidelite)、 42 1328592 17430pif.doc 囊脫石(nontronite )、鎂滑潤石(stevensite )、蛭石 (vermiculite )、哈羅賽石(hallosite )、佛康司過石 (volkonskoite)、琥珀(suconite)、美加地石(magadite) 與肯雅石(kenyalite)所組成之族群。 4.如申請專利範圍第1項所述之乾式混合之奈米組成 的組成物,其中該插入式黏土包含重量百分比1到45 %之 一有機物質。 5·如申請專利範圍第4所述之乾式混合之奈米組成的 組成物,其中該有機物質至少包含一官能基,選自由一級 銨到四級銨、磷鹽 (phosphonium)、馬來酸(maleate )、號 拍酸(succinate)、丙烯酸(acryiate)、氫甲基苯(benzylic hydrogen )、噁唑啉(〇xaz〇iine )與雙甲基雙硬脂酸銨 (dimethyldistearylammonium)所組成之族群。 6·如申請專利範圍第1項所述之乾式混合之奈米組成 的組成物’其中該乙烯-乙烯醇共聚合物包含摩爾百分比10 到50 %之乙烯。 7.如申請專利範圍第1項所述之乾式混合之奈米組成 的組成物’其中該聚醯胺選自由尼龍4.6、尼龍6、尼龍6.6、 尼龍6.10、尼龍7、尼龍8、尼龍9、尼龍11、尼龍12、尼 龍46、強化聚醯胺(MXD6)、非結晶型聚醯胺、包含至少兩 種前述物質的一共聚合化的聚醯胺、或包含至少兩種前述 物質的一混合物。 43 1328592 17430pif.doc 8. 如申請專利範圍第1項所述之乾式混合之奈米組成 的組成物,其中該離子體具有一熔化參數從0.1到10 g/10 min (190°C,2,160 g)。 9. 如申請專利範圍第1項所述之乾式混合之奈米組成 的組成物,其中該相容劑是一種或多種化合物,選自由一 乙烯-乙烯酸酐-丙烯酸共聚合物、一乙烯-丙烯酸乙酯共聚 合物、一乙烯-丙烯酸烷酯-丙烯酸共聚合物、一馬來酸酐調 整過的(支鏈)高密度聚乙烯、一馬來酸酐調整過的(支鏈)直 鏈低密度聚乙烯、一乙烯_(甲基)丙烯酸烷酯·(甲基)丙烯酸 共聚合物、一乙烯-丁基丙醯酸酯共聚合物、一乙烯-乙烯醋 酸酯共聚合物、一馬來酸酐調整過的(支鏈)乙烯-乙烯醋酸 酯共聚合物所組成之族群。 10. 如申請專利範圍第1項所述之乾式混合之奈米組成 的組成物,其中該具阻絕特性樹脂以及該具阻絕特性奈米 組成,兩者使用熔化·混合方式採共旋轉雙螺桿壓出機或單 螺桿壓出機,在該樹脂之熔點或更高溫度執行。 11. 如申請專利範圍第1項所述之乾式混合之奈米組成 的組成物,其中該具阻絕特性樹脂之重量比相對於在奈米 組成之插入式黏土是從58.0 : 42.0到99.9 : 0.1。 12. —種物品,其以如申請專利範圍第1至Π項中任 一項所述之乾式混合之奈米組成的組成物所鑄造生產° 13. 如申請專利範圍第12項所述之物品’其中之生產 方式可以透過吹拉機成型法(blow molding)、壓出成型法 1328592 17430pif.doc (extrusion molding)、模壓成形法(pressure molding)或 射出成形(injection molding)等方法生產製造。 14. 如申請專利範圍第12項所述之物品,其中該物品 可以是一具阻絕特性之容器。 15. 如申請專利範圍第12項所述之物品,其中該物品 可以是一具阻絕特性之管狀物。 16. 如申請專利範圍第12項所述之物品,其中該物品 可以是一具阻絕特性之薄片。 17. 如申請專利範圍第14項所述之物品,其中該物品 可以是一多層容器,更包括一附著層與一聚烯烴樹脂層。 18. 如申請專利範圍第16項所述之物品,其中該物品 可以是一多層薄片,更包括一附著層與一聚烯烴樹脂層。 〆 4517430pif.doc X. Apply for a patent garden: ^ 1. A dry mixed nano composition comprising 'a polyolefin resin having a weight ratio of 30 to 95; a melt blend of one of 0.5 to 60 by weight, the melt blend comprising at least one resin having at least one resistive property and at least one Resisting characteristic nano composition 'The resistive resin is selected from the group consisting of a vinyl-vinyl alcohol (EVOH) copolymer, a polyamine, an ion, and a polyvinyl alcohol (PVA) The nano-component of the barrier property is selected from the group consisting of an ethylene-vinyl alcohol (EV0H) copolymer/inserted clay nano, a polyamine/inserted clay nano, an ion/insert clay nano composition, and a a group consisting of a polyvinyl alcohol/inserted clay nano-composite; and a compatibilizer having a weight ratio of 1 to 30, wherein the resin having a barrier property is composed of the resin having a barrier property, both of which are melt-mixed The weight ratio is mixed from 25:75 to 75:25. 2. The dry-mixed nano-composition composition according to claim 1, wherein the polyolefin resin is at least one compound selected from the group consisting of a high density polyethylene (HDPE) and a low density polyethylene (LDPE). A group consisting of a chain of low density polyethylene (LLDPE), an ethylene-propylene polymer, and an ethylene-propylene copolymer. 3. The dry-mixed nano-composition composition according to claim 1, wherein the insert clay is at least one compound selected from the group consisting of montmorillonite, bentonite, kaolinite' crystal mica. Mica, hectorite, fluorohectorite, saponite, beidelite, 42 1328592 17430pif.doc nontronite, magnesium talc (stevensite), vermiculite, hallosite, volkonskoite, suconite, magadite and kenyalite. 4. The dry-mixed nano-composite composition of claim 1, wherein the insert clay comprises from 1 to 45% by weight of an organic substance. 5. The composition of the dry mixed nanometer of claim 4, wherein the organic substance comprises at least a functional group selected from the group consisting of primary ammonium to quaternary ammonium, phosphonium, maleic acid ( Maleate ), succinate, acryiate, benzylic hydrogen, oxazoline (〇xaz〇iine) and dimethyldisteary lammonium. 6. The composition of dry mixed nano-combination as described in claim 1, wherein the ethylene-vinyl alcohol copolymer comprises from 10 to 50% by mole of ethylene. 7. The dry-mixed nano composition according to claim 1, wherein the polyamine is selected from the group consisting of nylon 4.6, nylon 6, nylon 6.6, nylon 6.10, nylon 7, nylon 8, nylon 9, Nylon 11, nylon 12, nylon 46, reinforced polyamine (MXD6), amorphous polyamine, a copolymerized polyamine containing at least two of the foregoing, or a mixture comprising at least two of the foregoing. </ RTI> <RTIgt; 160 g). 9. The dry-mixed nano-composition composition of claim 1, wherein the compatibilizer is one or more compounds selected from the group consisting of an ethylene-vinyl anhydride-acrylic acid copolymer, an ethylene-acrylic acid. Ethyl ester copolymer, monoethylene-alkyl acrylate-acrylic acid copolymer, monomaleic anhydride-adjusted (branched) high-density polyethylene, monomaleic anhydride-adjusted (branched) linear low-density poly Ethylene, ethylene-alkyl (meth)acrylate, (meth)acrylic acid copolymer, monoethylene-butyl propionate copolymer, ethylene-ethylene acetate copolymer, monomaleic anhydride adjustment a group of (branched) ethylene-ethylene acetate copolymers. 10. The dry-mixed nano-composite composition according to claim 1, wherein the resistive characteristic resin and the resistive nano-composition are both melt-mixed and mixed by a twin-screw pressure. The exit or single screw extruder is performed at the melting point of the resin or higher. 11. The composition of the dry mixed nano-composite according to claim 1, wherein the weight ratio of the resin having a barrier property is from 58.0: 42.0 to 99.9: 0.1 with respect to the plug-in clay composed of nanometers. . 12. An article produced by the composition of dry-mixed nano-aliens according to any one of claims 1 to 3, wherein the article of claim 12 is as claimed in claim 12 The production method can be produced by a method such as blow molding, extrusion molding 13285592 17430 pif. doc (extrusion molding), pressure molding, or injection molding. 14. The article of claim 12, wherein the article is a container having a barrier property. 15. The article of claim 12, wherein the article is a tubular article having a barrier property. 16. The article of claim 12, wherein the article is a sheet having a barrier property. 17. The article of claim 14, wherein the article is a multi-layer container, further comprising an adhesive layer and a polyolefin resin layer. 18. The article of claim 16, wherein the article is a multi-layer sheet, further comprising an adhesive layer and a polyolefin resin layer. 〆 45
TW094123845A 2004-07-21 2005-07-14 Gas-barrier nanocomposite composition and article using the same TWI328592B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20040056996 2004-07-21
KR1020050029580A KR20060046674A (en) 2004-07-21 2005-04-08 Blocking Nanocomposite Compositions and Articles Using the Same
KR1020050047116A KR100789240B1 (en) 2004-07-21 2005-06-02 Blocking Nanocomposite Compositions and Articles Using the Same

Publications (2)

Publication Number Publication Date
TW200609275A TW200609275A (en) 2006-03-16
TWI328592B true TWI328592B (en) 2010-08-11

Family

ID=37149443

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094123845A TWI328592B (en) 2004-07-21 2005-07-14 Gas-barrier nanocomposite composition and article using the same

Country Status (6)

Country Link
KR (1) KR20060046674A (en)
CN (1) CN1989196B (en)
MX (1) MX2007000708A (en)
MY (1) MY140307A (en)
RU (1) RU2340639C2 (en)
TW (1) TWI328592B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102086292B (en) * 2010-11-26 2012-07-04 四川大学 Thermoplastic polyvinyl alcohol-soapstone composite material and preparation method thereof
EP2718097A4 (en) * 2011-06-06 2015-01-28 Essel Propack Ltd Material composition, laminate tube and method for manufacture thereof
CN102796312A (en) * 2012-08-01 2012-11-28 东莞市信诺橡塑工业有限公司 High-density polyethylene/polyamide 66 lamination barrier nano composite material and preparation method thereof
CN102796313A (en) * 2012-08-01 2012-11-28 东莞市信诺橡塑工业有限公司 High-density polyethylene/polyamide 11 laminar barrier nano composite material and preparation method thereof
CN102796311A (en) * 2012-08-01 2012-11-28 东莞市信诺橡塑工业有限公司 High-density polyethylene/polyamide 6 lamination barrier nano composite material and preparation method thereof
CN103242612A (en) * 2013-05-28 2013-08-14 上海博疆新材料科技有限公司 Polyvinyl alcohol composition and application thereof
CN105968548A (en) * 2016-05-19 2016-09-28 苏州倍力特物流设备有限公司 High barrier packaging film and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1836600A (en) * 1998-12-07 2000-06-26 Eastman Chemical Company A polymer/clay nanocomposite having improved gas barrier comprising a clay material with a mixture of two or more organic cations and a process for preparing same
CN1324886A (en) * 2000-05-24 2001-12-05 中国科学院化学研究所 Composite nanometer montmorillonoid-polyolefine material and its prepn.

Also Published As

Publication number Publication date
MX2007000708A (en) 2007-03-15
RU2007102297A (en) 2008-07-27
RU2340639C2 (en) 2008-12-10
KR20060046674A (en) 2006-05-17
CN1989196B (en) 2010-05-12
TW200609275A (en) 2006-03-16
CN1989196A (en) 2007-06-27
MY140307A (en) 2009-12-31

Similar Documents

Publication Publication Date Title
CA2574543C (en) Gas-barrier nanocomposite composition and article using the same
AU2005202978B2 (en) Nanocomposite composition having super barrier property and article using the same
AU2005310435B2 (en) Article having barrier property
JP2008506029A (en) High barrier nanocomposite composition
US20060121224A1 (en) Article having high barrier property
JP2008518076A (en) Barrier tube container
TWI328592B (en) Gas-barrier nanocomposite composition and article using the same
TWI320771B (en) Article having high barrier property
KR100789240B1 (en) Blocking Nanocomposite Compositions and Articles Using the Same