TWI328196B - Calculator of human reliability index-standard process, chrisp - Google Patents

Calculator of human reliability index-standard process, chrisp Download PDF

Info

Publication number
TWI328196B
TWI328196B TW95149574A TW95149574A TWI328196B TW I328196 B TWI328196 B TW I328196B TW 95149574 A TW95149574 A TW 95149574A TW 95149574 A TW95149574 A TW 95149574A TW I328196 B TWI328196 B TW I328196B
Authority
TW
Taiwan
Prior art keywords
unit
module
human
reliability index
basic
Prior art date
Application number
TW95149574A
Other languages
Chinese (zh)
Other versions
TW200828169A (en
Original Assignee
Atomic Energy Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atomic Energy Council filed Critical Atomic Energy Council
Priority to TW95149574A priority Critical patent/TWI328196B/en
Publication of TW200828169A publication Critical patent/TW200828169A/en
Application granted granted Critical
Publication of TWI328196B publication Critical patent/TWI328196B/en

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

1328196 1 » 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種可靠度指標計算標準化裝 置,尤指一套標準化之評估流程,讓不具人因專業之 • ㈣者能夠進行可靠度評估,以提供風險評估模式進 , 行進一步之風險量化。 【先前技術】 • *於社會對核能安全之高度重視,我國核能電廠 多年來已利用安全度評估技術(Pr0babuistic Risk1328196 1 » IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a standardization device for calculating reliability indicators, especially a standardized evaluation process, which makes it impossible for a person to be professional (4) to be reliable. Evaluate to provide a risk assessment model for further risk quantification. [Prior technology] • * The society attaches great importance to the safety of nuclear energy. China's nuclear power plants have used safety assessment technology for many years (Pr0babuistic Risk

Assessment,PRA)完整開發各廠之風險評估模式並加 應用。風險評估模式主要係由事件樹及故障樹之推 ·' 演,求解出各基本事件可能造成風險之最小切割組 〇。由於一個系統只要有人為介入之操作或維護就 無可避免有人為失誤產生之可能性’因此故障樹中必 須模擬相應之人因基本事件,來反應人為失誤所造成 • 之風險。不同於機械組件可由大量數據統計方式來反 映·》又備之了罪度,人為操作之個體主趙性及變異度使 得人為可靠度如何定量始終莫衷一是。為了解決人為 可靠度定量之難題,過去美國核能管制單位 出了許多人因分析模式,但這些模式多有其適用範圍 及條件限制,必須由具有人因專業之工程師進行評估 分析。由於各電廠使用不同之人因分析模式在電廠 間進打評估結果比對或於同行審查時造成許多困擾。 5 1328196 有鑑於此’美國 EPRI (Electric Power Research Institute )於 2002 年發展人因計算機(Human Reliability Calculator)程式,程式中以 CBDTM、HCR 及 THERP 三種在業界中較常使用之評估模式為選項,並建議電 廠使用此套工具來達成評估模式之標準化。 我國三個核能電廠多年來皆使用HCR及THERP 做為人因分析模式,但由於需要具有人因專業之工程 師進行評估分析,長期以來成為電廠風險評估模式維 護困擾之問題。過去電廠在進行設計變更或程序書修 改時,往往會討論此設計變更或修改是否會對人為操 作造成影響,但又無法立即反應在風險評估模式中探 討整體風險之變動’無法符合使用者於實際使用時之 所需》 【發明内容】 本發明之主要目的係在於,一種可讓不具人因專 業之評估者只要循序選擇合適之單元,模組便將視單 元結果進行歸類並計算所需之參數’再將參數自動代 入CBDTM、HCR及THERP等人因評估模式中’判定 出合理之可靠度指標。評估者亦可經由單元調整進行 可靠度指標之靈敏度分析’以尋求最適合之因應措施 及改善方案。 本發明之另一目的係在於,計算某一人為操作無 法滿足既定需求之機率值,提供風險評估模式量化使 6 1328.196 用。 *為達以上之目的,本發明係一種可靠度指標計算 標準化裝置,至少包含有一基本資料模組一時序分 析模組、一行為表現修正因子模組、一單元歸類及參 數單元、一可靠度指標模組、一人因基本事件與功能 "又疋P聯模組、一更名規則及人因相依性評估組合模 "且、一相依性評估單元及一相依性處理單元,其中, 鲁該時序分析模組係包含一動作徵候產生之時間單元、 :操作執行所需之時間單元及一動作需完成之時間點 單元;該動作徵候產生之時間單元係由警報、盤面資 訊及程序書指示,及熱流程式分析預估判斷、模擬器 操作判斷或經驗判斷而得;該操作執行所需之時間單 =係由信號解讀、狀況判斷、程序書執行及目標動作 完成,及訪談、模擬器操作或經驗判斷而得;該相依 性評估單元之相依性等級係分為全相依、高度相依、 • 中度相依、低度相依及零相依等5級。 【實施方式】 明參閱『第1圖』所示,係本發明之可靠度指標 "十舁程示意圖。如圖所示··本發明係一種可靠度指 標計算標準化裝置,至少包含有一基本資料模組1 2、一時序分析模組1 3、一行為表現修正因子模組 1 4、一單元歸類及參數單元1 $、一可靠度指標模 組1 6、一人因基本事件與功能設定關聯模組1 7、 7 更名規則及人因相依性評估組合 依性評估單元20及一相依性處理單一相 此流程完成各步驟之模組判定,便可一’只要依 事件分析1 1,以供風險量化使用。凡人因基本 進一步參閱『第2圓〜第5圖』所示,係八別 J 為本發明之基本資料模組之内部社 Ί别 之時序分析模組之内部結構示意圖;== •= 正因子模組之内部結構示意圖及本發明之可靠 之内部結構示意圖。如圖所示:該基本資ς 、”且2至少包含有一人因基本事件名稱單元 . 1、-動作概述單元122„事件樹單元12 . 功能設定單元124、—動作徵候單元i 2 5、一程序書編號及步驟單元i 2 6、一序 描述單兀1 2 7及一動作失敗之可能衝擊單元丄2 8 ,其中,該人因基本事件名稱單元丄2丄為評估識 • 別碼,並使用與故障樹一致之代碼才能與風險量化模 式連結;該動作概述單元i 2 2及該關聯事件樹單元 1 2 3係為此人因基本事件之簡要說明及所使用到之 事件树與後續5平估流程並無關係;該關聯功能設定單 元1 2 4係δ己錄此人因基本事件使用之功能設定並 將此記錄逐筆填入以產生該人因基本事件與功能設定 關聯模組1 7,而該人因基本事件與功能設定關聯模 組1 7係為該更名規則及人因相依性評估組合模組1 9之基本資料;該動作徵候單元i25 號及步驟單元126、該序列情境描述單元 該動作失敗之可能衝擊單元工28除 7 = 為該時序分析棋組i 3及該行為二: 組14等階段之重要參考資訊; 模 該時序分析模組13係為產生職模 ::時間參數。而該時序分析模組1 3至少包含有 生之時間單元131、一操作執行 3装:2及一動作需完成之時間點單元13 發運轉員進該=徵候產生之時間單元131係為觸 :=進=項操作之產生時間; 轉員完成所有要求程序之時 所得之時門除動作徵候產生時間點 侍之時間£間,係為運轉員執 間點單元133操作之可用時間;作需-成之時 該行為表現修正因子模組2 4係 :據,而該行為表現修正因子模 動::候形式單元141、一訓練品質匕。:有: Π::::單元143、-操作介面=4 4 #作%境單元145、—㈣ 及-心理壓力單 早TC146 行為相闕之模組選擇合適之|元由一:列與運轉員操作 彈口過之早70,並CBDTM模式決 策樹之問題及THERP模. .於這些單元r部分因 ::=別:::性質,判斷多重選擇係為加成或減 ::::單:估員操作之實_選 有之評估; σ ° 即可完成所 將該行為表現修正因早握細]/ /囚于模組14於不同人因評估 模式中扮演不同份量角辛夕你^丨留— 刀m Ί。 單^於該單元歸類 及參數5中以積點之方式決定某—模式參數之 判定結果。這些單元歸類係視CBDTM模式決策樹之 走向、HCR模式計算公式之參數、及THERp模式操 作複雜度而判定; ' μ 該可靠度指標模·组:L 6至少包含有一認知類型單 元161、一反應類型單元16 2及執行類型單元工 6 3,依上述類型歸類,並設定運轉員經驗、人機介 面〜理壓力等模式參數"該Pi認知偏差機率16 4 計算係以CBDTM模式之8個決策樹為藍本,由該行 為表現修正因子模組i 4之單元輸入與該單元歸類及 參數單元15之單元歸類決定每一個決策樹之最終狀 態及指定之機率值,最後再將所有值相加而得;該p2 反應不及機率1 6 5計算則係依據反應類型之歸類, 決疋HCR模式應代入之公式參數,並由該時序分析模 組1 3之可用時間判斷HCR模式之適用性及結果修Assessment, PRA) Completely develop risk assessment models for each facility and apply them. The risk assessment mode is mainly based on the event tree and the fault tree. It is the smallest cut group that can cause the risk of each basic event. Since a system is incapable of avoiding the possibility of human error as long as it is operated or maintained by the intervention, the risk tree must simulate the risk of the human being due to the basic event. Different from mechanical components, which can be reflected by a large number of statistical methods, the sin is also prepared. The individuality and variability of human operation make the reliability of human beings always consistent. In order to solve the problem of quantification of human reliability, in the past, there were many human factor analysis models in the US nuclear energy control unit, but these models have their scope and conditions, and must be evaluated and analyzed by human-centered engineers. Because the power plants use different people because of the analysis mode, the evaluation results are compared between the power plants or the peer review. 5 1328196 In view of the fact that the US EPRI (Electric Power Research Institute) developed the Human Reliability Calculator program in 2002, the program uses the CBDTM, HCR and THERP three evaluation modes that are more commonly used in the industry as options. It is recommended that power plants use this set of tools to achieve standardization of the evaluation model. China's three nuclear power plants have used HCR and THERP as human factors analysis models for many years. However, due to the need for evaluation and analysis by human-centered engineers, it has long been a problem for maintenance of power plant risk assessment models. In the past, when a power plant made a design change or a modification of a program, it was often discussed whether the design change or modification would affect the human operation, but it could not immediately reflect the change in the overall risk in the risk assessment mode. [Intended Use] [The Summary of the Invention] The main object of the present invention is to enable a non-human professional evaluator to select the appropriate unit in sequence, and the module classifies and calculates the visual unit result. The parameter 'automatically substitutes the parameters into the human factor evaluation mode such as CBDTM, HCR and THERP to determine a reasonable reliability index. The evaluator can also perform sensitivity analysis of reliability indicators through unit adjustments to find the most suitable response measures and improvement plans. Another object of the present invention is to provide a risk assessment mode quantification for the use of a probability value that a person cannot operate to meet a predetermined demand. For the purpose of the above, the present invention is a reliability index calculation standardization device, which comprises at least one basic data module, a time series analysis module, a behavior performance correction factor module, a unit classification and parameter unit, and a reliability. The indicator module, one person is based on the basic event and function "and the P-module module, a renaming rule and the human factor dependence evaluation combination mode" and, a dependency evaluation unit and a dependency processing unit, wherein The time series analysis module includes a time unit generated by an action sign, a time unit required for operation execution, and a time point unit required for completion of an action; the time unit generated by the action sign is indicated by an alarm, a disk surface information, and a program book. And the thermal process analysis predictive judgment, the simulator operation judgment or the empirical judgment; the time list required for the operation execution is completed by signal interpretation, status judgment, program execution and target action, and interview, simulator operation or Experience-based judgment; the dependency level of the dependency evaluation unit is divided into all-dependent, highly dependent, moderately dependent, Low-level and zero-dependent, etc. [Embodiment] Referring to the "Fig. 1", it is a reliability index of the present invention " As shown in the figure, the present invention is a reliability index calculation standardization device, which comprises at least one basic data module 2, a time series analysis module 13 , a behavior performance correction factor module 14 , a unit classification and Parameter unit 1 $, a reliability indicator module 16 , a person due to basic event and function setting association module 1 7 , 7 rename rule and human factor dependence evaluation combination evaluation unit 20 and a dependency processing unit The process completes the module determination of each step, and can be used as a risk analysis by analyzing the event 1 . The mortal is further referred to the "2nd to 5th", which is the internal structure of the internal analysis of the basic data module of the invention; == • = positive factor A schematic diagram of the internal structure of the module and a reliable internal structure of the present invention. As shown in the figure: the basic asset, "and 2 contains at least one person due to the basic event name unit. 1. Action summary unit 122" event tree unit 12. Function setting unit 124, - action sign unit i 2 5, one The program number and the step unit i 2 6. The sequence description unit 1 2 7 and a possible impact unit 丄2 8 of the failure of the action, wherein the person is identified by the basic event name unit 丄2丄, and The code consistent with the fault tree can be used to link with the risk quantification mode; the action summary unit i 2 2 and the associated event tree unit 1 2 3 are a brief description of the basic event for this person and the event tree and subsequent 5 used. It is irrelevant to the flattening process; the associated function setting unit 1 2 4 δ has recorded the function setting used by the person for the basic event and fills this record one by one to generate the human related basic event and function setting association module 1 7. The person is assessed by the basic event and function setting association module 7 as the basic data of the combination rule and the human factor dependency combination module 19; the action symptom unit i25 and the step unit 126, the sequence situation description The failure of the unit to act may affect the unit 28 except 7 = analyze the chess group i 3 and the behavior 2 for the timing: important reference information of the group 14 and other stages; the timing analysis module 13 is to generate the model:: time parameter. The timing analysis module 13 includes at least a time unit 131, an operation execution 3: 2, and a time point unit 13 to complete the operation. The time unit 131 is a touch: = the time at which the operation of the entry operation is completed; the time at which the transfer is completed when all the required procedures are completed, and the time at which the action sign is generated, is the time available for the operation of the operator's execution point unit 133; In the case of the performance correction factor module 24: according to the behavior modifier factor modulo: the candidate form unit 141, a training quality 匕. : There are: Π:::: Unit 143, - Operation interface = 4 4 #为%境单位145, - (4) and - Psychological pressure single early TC146 Behavioral module selection is appropriate | Yuan by one: column and operator operation The bullet passes too early, and the problem of the CBDTM mode decision tree and the THERP module. In these units, the r part is due to ::::::: nature, judging multiple choices as addition or subtraction:::: single: estimate The actual operation of the staff _ optional evaluation; σ ° can be completed to correct the performance of the performance due to early grip] / / prisoner in the module 14 in different human factors evaluation mode to play different weight angles Xin Xi you ^ stay — Knife m Ί. The determination result of a certain mode parameter is determined by the point of the unit in the classification of the unit and the parameter 5. These unit classifications are determined by the trend of the CBDTM mode decision tree, the parameters of the HCR mode calculation formula, and the operation complexity of the THERp mode; ' μ the reliability index module·L: at least one cognitive type unit 161, one The reaction type unit 16 2 and the execution type unit worker 6 3 are classified according to the above types, and set the mode parameter such as the operator experience, the man-machine interface and the rational pressure " the Pi cognitive deviation probability 16 4 is calculated in the CBDTM mode 8 Based on the decision tree, the unit input of the behavior modifier module i 4 and the unit classification of the unit and parameter unit 15 determine the final state of each decision tree and the specified probability value, and finally all The values are added together; the p2 response is less than the probability of 165. The calculation is based on the type of reaction, and the formula of the HCR mode should be substituted, and the HCR mode is judged by the available time of the time series analysis module 13. Applicability and result repair

Claims (1)

、申請專利範固: P岭1(月/《曰修正本 •一種可靠度指標計算標準化裝置,係包括: 一基本資料模組,係連接一人因基本事件分 析’用以記錄此人因基本事件之關聯功能設定; 一時序分析模組,係與該基本資料模組連接, 用以產生HCR模式計算所需之時間參數; 一行為表現修正因子模組,係與該基本資料模 組連接,為所有計算之核心依據,用以藉由一系列 與運轉員操作行為相關之模組選擇合適之單元,於 其中,此單元中係隱含有CBDTM模式決策樹之問 題及THERP模式操作複雜度之判定; 一單元歸類及參數單元,係與該時序分析模組 及该行為表現修正因子模組連接,用以決定某一模 式參數之判定結果,於其中,該些單元歸類係視 CBDTM模式決策樹之走向、HCR模式計算公式之 參數、及THERP模式操作複雜度而判定; 一可罪度指標模組,係與該單元歸類及參數單 元連接,分為一認知類型、一反應類型及一執行類 型,用以依上述類型歸類,並設定運轉員經驗、人 機介面及心理壓力之模式參數’於其中,該可靠度 指標模組將隱藏所有判定過程產生之階段結果,僅 提供認知偏差機率、反應不及機率及操作錯誤機率 整δ後之可罪度指標’及L〇gn〇rmal分佈之ef參 數,且判定結果若低於評估者設定之最小值,模組 將以最小值為.人為可靠度指標; 一人因基本事件與功能設定關聯模組,係與該 基本資料模組連接,用以將功能設定與人因基本事 件進行連結處理; 一更名規則及人因相依評估組合模組,係與該 人因基本事件與功能設定關聯模組連接,用以產生 更名準則之txt檔案,及人因相依性評估組合之 EXCEL試算表; 一相依性評估單元,係與該更名規則及人因相 依砰估組合模組連接,用以在產生上述EXCEL試 算表後,據以產生二階人因相依性評估單元,根據 二階人因基本事件間之主從關係,判斷人因基未事 件間之相依性等級,包括全相依、高度相依、中度 相依、低度相依及零相依共5級,藉此自動推衍出 高階人因基本事件之相依性,並將結果填入該更名 規則及人因相依評估組合模組之人因相依性評估 組合之EXCEL試算表中之相依性攔位中;以及 一相依性處理單元,係與該可靠度指標模組及 該相依性評估單元連接,用以依THERp模式之相 依性公式自動完成所有計算,提供二階人因基本事 件及更尚階人因基本事件之相依性指標,於其中, 1328196 判二係自動選取對應之單一人因基本事件可靠 度指標,並依推衍之主從關係逐級計算,計算結果 如果低於#估者設定之最小值,靠最小值為 性招標。 2 .依據申請專利範㈣丄項所述之可靠度指標計算標 準化裝置,其中,該基本資料模組至少包含有一人 因基ί事件名稱單元、—動作概述單元、—關聯事Patent application: F Ling 1 (Monthly / "曰 Revision" • A standardized device for calculating reliability indicators, including: a basic data module, connecting one person due to basic event analysis to record this human cause basic event The associated function setting is a timing analysis module connected to the basic data module for generating a time parameter required for HCR mode calculation; a behavioral performance correction factor module connected to the basic data module; The core basis of all calculations is to select the appropriate unit by a series of modules related to the operator's operational behavior, in which the problem of the CBDTM mode decision tree and the judgment of the operation complexity of THERP mode are implicit in this unit. A unit classification and parameter unit is connected with the timing analysis module and the behavior performance correction factor module to determine a determination result of a mode parameter, wherein the unit classification is determined by the CBDTM mode decision The direction of the tree, the parameters of the HCR mode calculation formula, and the operation complexity of the THERP mode are determined; a guilty indicator module is associated with the unit And the parameter unit connection is divided into a cognitive type, a reaction type and an execution type, which are classified according to the above types, and set a mode parameter of the operator experience, the human machine interface and the psychological pressure, wherein the reliability index The module will hide the results of all the stages of the decision process, and only provide the cresity index of the cognitive deviation probability, the reaction failure probability and the operation error probability δ, and the ef parameter of the L〇gn〇rmal distribution, and the determination result is low. The minimum value set by the evaluator, the module will be the minimum value. The human reliability index; one person is connected to the basic data module due to the basic event and function setting module, which is used to set the function and human factors. The event is linked; the renamed rule and the human dependent evaluation module are linked to the person's basic event and function setting association module, which is used to generate the txt file of the renaming criteria, and the human factor dependence evaluation combination EXCEL Trial calculation unit; a dependency evaluation unit is connected with the renaming rule and the human factor dependent evaluation module to generate the above After the EXCEL trial balance, a second-order human factor dependence evaluation unit is generated to determine the dependency level between human factors and base events based on the master-slave relationship between the second-order human factors, including all-dependent, highly dependent, and moderately dependent. , low-dependency and zero-dependent, a total of 5 levels, thereby automatically deriving the dependence of high-level human factors basic events, and filling the results into the human-related dependency evaluation combination of the renamed rule and the human factor-dependent evaluation module. The dependency block in the EXCEL trial balance; and a dependency processing unit are connected to the reliability index module and the dependency evaluation unit to automatically perform all calculations according to the dependency formula of the THERp mode, providing a second order Among the basic events and the more dependent indicators of the basic events, one of them, 1328196, the second line automatically selects the corresponding single person due to the basic event reliability index, and calculates the calculation according to the descendant master relationship. If the result is lower than the minimum value set by # estimator, the minimum bid is for sex bidding. 2. Calculate the standardization device according to the reliability index described in the application patent (4), wherein the basic data module includes at least one person, a base name event unit, an action summary unit, and a related event. 件祕單70、-關聯功能設定單元、一動作徵候單元、 一程序書錢及㈣單元一序列情境描述單元及 一動作失敗之可能衝擊單元。A secret order 70, an associated function setting unit, an action symptom unit, a program book money, and (4) a unit-sequence scenario description unit and a possible impact unit of an action failure. 專利範圍第1項所述之可靠度指標計算標 準裝置,其中,該時序分析模組至少包含有一動 作徵候產生之時間單元、—操作執行所需之時間單 兀及一動作需完成之時間點單元。The reliability index calculation standard device according to the first aspect of the patent, wherein the time series analysis module includes at least a time unit generated by the action sign, a time unit required for the operation execution, and a time point unit required for the action to be completed. . 4.=Γ:Γ第3項所述之可靠度指標計算標 準化裝置’其中,該動作徵候產生之時間單 其指示係包括一警報指一 序書指示。 冑面資訊才曰不及-程 5·=ΙΓ:!圍第3項所述之可靠度指標計算標 準化裝置,其中,該動作徵候產生之時間單元,係 :::流程式分析預估判斷、模擬器操作判斷及經 20 1328196 .依據申請專利範圍第3瑁所 準化F置…: 之可靠度指標計算標 括-;號㈣〜操作執行所需之時間單元係包 括一仏唬解讀、一狀況判斷、 標動作完成。 料_第3項所述之可靠度指標計算標 準化裝置《中’该操作執行所需之時間單元係可 由訪”炎到斷、模擬器操作判斷或經驗判斷。4. = Γ: 可靠 The reliability index calculation standardization device described in item 3, wherein the time list generated by the action symptom includes an alarm finger sequence instruction. The information on the face is too late - Cheng 5·=ΙΓ:! The standardization device for calculating the reliability index described in item 3, wherein the time unit of the action sign is::: Process analysis, estimation, simulation, simulation Judgment of operation and the passage of 20 1328196. According to the scope of patent application No. 3, the standardization of F:... The calculation of the reliability index is marked with -; (4) ~ The time unit required for operation execution includes a reading, a situation Judgment and standard action are completed. The reliability index calculation standardization device described in item 3 calculates the time unit required for the operation of the standardization device to be executed by the visitor, the simulator operation judgment or the empirical judgment. 8 ·依據f請專·圍第丨項所述之可靠度指標計算標 準化裝置’其中,該行為表現修正因子模組至少包 含有一動作徵候形式單元、一訓練品質單元、一程 序書操作指示單元、一操作介面單元、一操作環境 單元、一特殊要求單元及一心理壓力單元。8 · Calculate the standardization device according to the reliability index described in the article, wherein the behavioral performance correction factor module includes at least one action symptom form unit, a training quality unit, and a program operation instruction unit. An operation interface unit, an operating environment unit, a special request unit, and a psychological pressure unit. 程序書執行及一目 9·依據申請專利範圍第1項所述之可靠度指標計算標 準化裝置,其中,該人因基本事件與功能設定铀聯 模組中’一事故序列量化之〇CL檔係包含一單一事 故序列之標題組合,及該單一事故序列之功能設定。 21The execution of the program and the item 9: The standardization device is calculated according to the reliability index described in item 1 of the patent application scope, wherein the person selects the 〇CL file of the accident sequence quantification in the uranium joint module due to the basic event and function. The combination of the title of a single incident sequence and the functional settings of the single incident sequence. twenty one
TW95149574A 2006-12-28 2006-12-28 Calculator of human reliability index-standard process, chrisp TWI328196B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95149574A TWI328196B (en) 2006-12-28 2006-12-28 Calculator of human reliability index-standard process, chrisp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95149574A TWI328196B (en) 2006-12-28 2006-12-28 Calculator of human reliability index-standard process, chrisp

Publications (2)

Publication Number Publication Date
TW200828169A TW200828169A (en) 2008-07-01
TWI328196B true TWI328196B (en) 2010-08-01

Family

ID=44817588

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95149574A TWI328196B (en) 2006-12-28 2006-12-28 Calculator of human reliability index-standard process, chrisp

Country Status (1)

Country Link
TW (1) TWI328196B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198230B (en) * 2013-04-23 2017-03-08 湖南工学院 Man-machine interface detection method and system
CN107491656B (en) * 2017-09-04 2020-01-14 北京航空航天大学 Pregnancy outcome influence factor evaluation method based on relative risk decision tree model
CN109815216A (en) * 2019-01-25 2019-05-28 湖南工学院 The construction method of nuclear plant digital master control room human factor database
CN110175359B (en) * 2019-04-23 2023-05-12 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Method and device for modeling security of complex system based on business process

Also Published As

Publication number Publication date
TW200828169A (en) 2008-07-01

Similar Documents

Publication Publication Date Title
Kirwan A guide to practical human reliability assessment
JP5480033B2 (en) Quantitative risk assessment method using computer-aided top logic for nuclear power plants.
CN110417721A (en) Safety risk estimating method, device, equipment and computer readable storage medium
WO2019169768A1 (en) Centralized insurance policy auditing method, electronic device, and readable storage medium
JP2012150788A (en) System and method for prediction of frequency related to loss in future and related automatic processing of loss determination unit
TWI328196B (en) Calculator of human reliability index-standard process, chrisp
CN106327108A (en) Product quality accident classification method based on failure mechanism and domain mapping
US8521676B1 (en) System to build, analyze and manage a real world model in software of a safety instrumented system architecture for safety instrumented systems in a facility
Bani-Mustafa et al. A new framework for multi-hazards risk aggregation
CN111583067A (en) Urban underground large space construction safety early warning and emergency decision-making method and system
Likhitruangsilp et al. A BIM-enabled system for evaluating impacts of construction change orders
CN103970654B (en) Software reliability virtual test method
Baumont et al. Quantifying human and organizational factors in accident management using decision trees: the HORAAM method
TWI410884B (en) Method of rapid quantitative risk assessment for nuclear power plant with top-down logical analysis
US8954369B1 (en) Method to build, analyze and manage a safety instrumented model in software of a safety instrumented system architecture for safety instrumented systems in a facility
US11625788B1 (en) Systems and methods to evaluate application data
KR101547030B1 (en) Method and apparatus for assessing constructability of international construction projects
Eriksson et al. An integrative design analysis process model with considerations from quality assurance
CN112668783A (en) Data processing method, device and equipment based on airplane and readable storage medium
Park et al. Verification strategy for artificial intelligence components in nuclear plant instrumentation and control systems
Kim et al. Multivariate discriminant analysis for assessing residential development projects from a contractor’s perspective
Freida et al. Determinants of auditors fraud detection capability: Evidence from Malaysia
Meyers et al. The Leveled Chain Ladder Model for Stochastic Loss Reserving
Arndt Design Readiness And Maturity Assessment (DRAMA) Tool for Advanced Reactors
Halbert et al. Air Vehicle Integration and Technology Research (AVIATR). Task Order 0003: Condition-Based Maintenance Plus Structural Integrity (CBM+ SI) Demonstration (September 2012 to March 2013)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees