TWI328101B - Testing apparatus for machine cooler and its testing method - Google Patents

Testing apparatus for machine cooler and its testing method Download PDF

Info

Publication number
TWI328101B
TWI328101B TW96120389A TW96120389A TWI328101B TW I328101 B TWI328101 B TW I328101B TW 96120389 A TW96120389 A TW 96120389A TW 96120389 A TW96120389 A TW 96120389A TW I328101 B TWI328101 B TW I328101B
Authority
TW
Taiwan
Prior art keywords
water
hot gas
gas bypass
temperature
valve
Prior art date
Application number
TW96120389A
Other languages
Chinese (zh)
Other versions
TW200848675A (en
Inventor
Fujen Wang
Yujun Lin
Weiming Jiang
Original Assignee
Nat Univ Chin Yi Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chin Yi Technology filed Critical Nat Univ Chin Yi Technology
Priority to TW96120389A priority Critical patent/TWI328101B/en
Publication of TW200848675A publication Critical patent/TW200848675A/en
Application granted granted Critical
Publication of TWI328101B publication Critical patent/TWI328101B/en

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

1328101 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種水冷卻測試機,且特別是有關於 一種使用環保冷媒、與負載合為一機以及可外接負載的水 冷卻測試機。 【先前技術】 為順應全球強烈的環保意識,自1995年12月後,傳 統的氟氣碳(CFCs)冷媒已徹底地遭淘汰,目前被廣泛使 用的氫氟氯碳(HCFCs)冷媒又由於仍然帶有微量的臭氧 層破壞潛能(ozone depletion potential, ODP)值及地球暖 化潛能(global warming potentials, GWP )值,因此已於蒙 特婁(Montreal )公約中即將面臨管制停產,導致目前使 用HCFC22冷媒為主的中央空調主機及工具機冷卻器 (machine tool cooler )等冷;東空調系統帶來極嚴重的衝 擊,故全面使用氫氟碳(HFCs )新環保冷媒勢在必行。 然而,因為新環保冷媒部份屬於非共沸 (non-azeotropic )混合冷媒系列,在氣液相共存區具有溫 度滑落(temperature glide )及成份變動(Composition shift ) 現象,在系統運轉性能、系統冷媒充填或組裝維修階段之 洩漏等問題皆與純質冷媒有所不同,對系統性能將產生相 當程度之影響,因此系統有重新規劃的問題。 而目前國内工具機水冷卻器製造廠商對於非共沸混 合冷媒造成的溫度滑落現象的問題,尚無一完善的解決之1328101 IX. Description of the Invention: [Technical Field] The present invention relates to a water-cooling tester, and more particularly to a water-cooling tester using an environmentally friendly refrigerant, combined with a load, and an external load. [Prior Art] In order to comply with the global environmental awareness, since the end of December 1995, traditional fluorine-carbon carbon (CFCs) refrigerants have been completely eliminated, and the currently widely used hydrochlorofluorocarbon (HCFCs) refrigerants are still With a small amount of ozone depletion potential (ODP) and global warming potentials (GWP), it is about to be shut down in the Montreal Convention, resulting in the current use of HCFC22 refrigerant. The main central air-conditioning main engine and machine tool cooler are cold; the east air-conditioning system brings a very serious impact, so it is imperative to fully use hydrofluorocarbon (HFCs) new environmentally friendly refrigerant. However, because the new environmentally friendly refrigerant part belongs to the non-azeotropic mixed refrigerant series, it has temperature glide and composition shift in the gas-liquid phase coexistence zone, in the system running performance, system refrigerant Problems such as leakage during the filling or assembly maintenance phase are different from pure refrigerants, which will have a considerable impact on system performance, so the system has re-planning problems. At present, there is still no perfect solution to the problem of the temperature drop caused by non-azeotropic mixed refrigerants by domestic machine tool water cooler manufacturers.

1328101 道,因此,研發一匹配環保新冷媒之工具機水冷卻器是絕 對必要且相當急迫的。1328101, therefore, it is absolutely necessary and urgent to develop a machine water cooler that matches the new environmentally friendly refrigerant.

另一方面,當工具機進行高速加工作業時,由於主軸 箱軸承(headstock bearings)及齒輪傳動裝置所產生之高 熱量,導致主軸迅速溫升,當機器組成的零件間存在 之溫差時,主軸中心將發生熱變位而偏離機柱的中心位置 及主軸頭,進而嚴重影響加工精度。因此,為實現精密製 知·加工時之最佳溫控精密度,對於工具機冷卻介質溫控之 熱管理(thermal management )顯得格外重要亦即表示 工具機必需適當地搭配具有高精度溫控策略之恆溫冷卻 裝置來抑制發熱量。 目前工具機冷卻器製造廠商進行水冷卻器測試實驗 2 ’ -般是採用-台水冷卻器再額外搭配_加熱器負載設 2站’其中所需要連接之管路佔用相當大的空間,造成作On the other hand, when the machine tool performs high-speed machining operations, the spindle generates rapid temperature rise due to the high heat generated by the headstock bearings and the gear transmission. When there is a temperature difference between the components of the machine, the spindle center The thermal displacement will occur and deviate from the center position of the column and the spindle head, which will seriously affect the machining accuracy. Therefore, in order to achieve the optimal temperature control precision during precision machining and processing, the thermal management of the temperature control of the cooling machine of the machine tool is particularly important, that is, the tool machine must be properly matched with a high-precision temperature control strategy. A constant temperature cooling device to suppress heat generation. At present, the machine tool cooler manufacturer conducts a water cooler test experiment. 2 'Generally, the water-cooler is used - and the additional water heater is equipped with 2 heaters. The pipeline to be connected takes up a considerable amount of space.

=員進行實驗賴時極大料方便,增加了水冷卻器測 驗的難度此外…般測試系統之加熱器負載通常又 ,=:調變型式’對於學術單位及冷卻器製造廢商而 ^ 2換裝新環保冷職在不㈣載下之變化情形 ° 將存在一定之瓶頸。 測試^之^統㈣㈣保冷職,水冷卻器進行性能 而需要針對如果水冷卻11必須考量不㈣統元件 絲备 行更換動作時’必然需要透過非常繁 的系統處理步驟(如焊接、抽真 二 媒等),此兴尤至保漏及重灌冷 +會消耗大量的冷媒、鋼管及氧乙炔等材= It is very convenient for the staff to carry out the experiment, which increases the difficulty of the water cooler test. In addition, the heater load of the test system is usually again, =: modulation type 'for the academic unit and the cooler manufacturing waste business ^ 2 change There will be certain bottlenecks in the changes in the new environmental protection cold jobs under the conditions of (4). Test ^ ^ ^ (4) (4) to keep cold, water cooler performance and need to be targeted if water cooling 11 must not consider (four) system components wire replacement operations 'necessary need to pass very complex system processing steps (such as welding, pumping two Media, etc., this special to leak and refill cold + will consume a lot of refrigerant, steel pipe and oxyacetylene

2更將耗用許多無謂的時間、金錢及人力資源。倘若又 ·、' =正吊程序將冷媒進行回收,隨意排放冷媒的結果將嚴 重” a生物所生長的自然環境,進而對地球造成極大的傷 【發明内容】 本發明的目的在提供一種水冷卻測試機,藉由水循環 鲁 系'統與負載合為一機,經由水流量調整閥門調整閥門之開 度進而控制不同水流量,模擬測試實務應用的情形,且可 卜接外邛負載增加該水冷卻測試機之實用性。 本發明的另一目的是在提供-種水冷卻測試機,該水 冷卻測試機可提供各種環保冷媒進行性能實驗,且藉由安 裝在冷料統中的進/出口處之閥門.,可快速的更換系統元 件’進:不同系統元件之實驗’減少系統重置的缺點。更 在欠循衣系統及冷束系統上各元件進/出口處安裝檢測裝 • i ’藉由顯示系統各點之溫度與壓力裝置,即時監控水冷 卻器測試機之狀態。 本發月的又另一目的就是在提供一種水冷卻測試機 用以進行不同溫度控制之測試方法,根據熱氣旁通裝置與 内部負載之控制模式,達到精密控制循環水溫度之效果。 依照本發明之-種水冷卻測試機,m统; -水循環系統,與該冷;東系統進行熱交換,並包含一 内部負載裝置;以及 -檢測裝置,包含複數個溫度計及壓力計,該些溫度 7 1328101 計及壓力計位於該水循環系統與該冷凍系統之進出管路 • 上’用以量測管路之溫度及壓力; * 其中該内部負載裝置改變該水循環系統的熱量變 • 化’以藉由該些溫度計測試該水循環系統與該冷凍系統各 元件之進/出管路上的溫度變化。 依照本發明之_種水冷卻測試方法,其中該水冷卻測 含-冷料、統以及—水循環“,該冷;東系統包含 • 一熱氣旁通裝置,該水循環系統與該冷凍系統進行熱交 換,並包含—内部負載裝置,該測試方法包含:調整該内 P負載裝置之加熱量;設定該水循環系統之容室出口溫 度j測該水循環系統之之容室出口溫度;將該出口水溫 度回授至該冷/東系統之熱氣旁通裝置;以及調整該熱氣旁 通裝置之閥門,改變該冷凍系統之冷凍能力。 依照本發明可達到真正測試各種環保冷媒之需要,即 設計易變更且可拆卸系統元件之方式,此設計將可方便更 • 、不同J衣保冷媒系統所需的元件,以解決因實驗重置系 統所需花費的時間與人力。 【實施方式】 >’、’、第1圖,係為依照本發明之一水冷卻測試機的一 第一實施例的系統線路圖。 參照第2圖,传么# , π u 1承马第1圖中水冷卻測試機的水循環系 統的線路圖。 參照第3圖,传主@ , π u 1承马第1圖中水冷卻測試機的冷凍系統 8 1328101 的線路圖。 本發明之水冷卻測試機包含一水循環系統1〇〇、一冷 凍系統200、一檢測裝置3〇〇、一閥門裝置4〇〇以及一視 窗裝置500。 該水循環系統100 ’包含一儲水裝置11〇、一抽水幫浦 120、一水流量調節裝置13〇、一水流量計14〇、一容室15〇、 一内部負載160、一外接負載閥門部i 7〇,循環水由該儲 水裝置110經由該抽水幫浦丨2〇抽至該水流量調節裝置 130,該水流量調節裝置13〇控制其循環水流量且由該水 流1计140顯示其數值,受限制之循環水進入該容室〖5〇, 該容室150之功能為進行熱交換。該外接負載閥門部17〇 可將循%水導引至外部負載,使該水冷卻器測試機能夠迅 速切換連接至真實負載,可大幅提高實驗測試之實用性。 該冷凍系統200,包含一壓縮機21〇、一冷凝器22〇、 一儲存裝置230、一乾燥器過濾器24〇、一冷媒流量計25〇、 複數個毛細管裝置260、一熱氣旁通裝置27〇以及一蒸發 器280,該壓縮機21 〇將高溫高壓之冷媒(工作流體)排至 該冷凝器220放熱,該冷凝器22〇採氣冷式散熱,其散熱 系統可採用手動變頻以及自動變頻方式控制其風扇馬達 之轉速,不同風扇馬達之轉速將影響風扇帶動散熱之效 果,同時也影響該冷凝器22〇内部壓力之不同。 因此,可模擬該冷凝器22〇之散熱狀態測試各種不同 情形’降溫後之冷媒呈液體之型態,經由管路流至該儲存 裝置23〇(在本實施例中為一儲存槽)。該儲存裝置230經 9 由管線連接至該乾燥m謂,該乾燥ϋ職器240用 以過濾冷媒及該冷;東系統之雜f,並乾燥系統中水份該 ,燥器過濾器240後方連接該冷媒流量計25(),該冷媒流 量十5〇可顯示出冷媒之流量,冷媒流經該冷媒流量計25〇 進入複數個毛細管裝置260。 該些毛細管裝置260採用三支分路之管路,提供三種 不同尺寸之毛細管膨脹元件搭配該冷凍系統200使用,可 針對毛細f交替使料行性能之測試,亦可藉由在毛細管 裝置260的進/出口處之閥門裝置4〇〇 ’快速的更換膨脹元 牛進行不同膨脹元件之實驗,冷媒經由毛細管降壓後進 入一蒸發器280進行吸熱作用,將該容室15〇内循環水之 …、里帶走,熱交換後之冷媒為低壓低溫之氣態冷媒再度進 入°亥壓縮機210進行壓縮形成一冷康循環。 該熱氣旁通裝置270包含一第一閥門271、一第二閥 門272及一第三閥門273,該熱氣旁通裝置27〇迴路介於 該等毛細管裝置260出口與壓縮機210排氣口之間,該第 閥門271 & ON-OFF電磁閥,該第二閥門272為比例式 熱氣旁通閥,該第三閥門273為電子式熱氣旁通閥,在此, 可比較其恆溫控制精密度之優劣,隨後更可依據不同溫控 精密度之需求而採用適當的熱氣旁通閥件,因此,可藉由 控制熱氣旁通裝置,即能實現最經濟且穩定的溫控策略。 該檢測裝置300,包含複數個溫度計31〇以及複數個 壓力计320,該等溫度計310與壓力計320位於該水循環 系統100與該冷凍系統200各元件之進/出管路上,主要量 1328101 測管路之溫度與壓力。 該閥門裝置400,設置在該冷凍系統中各元件之進/出 知官路上,包括該壓縮機210、冷凝器220、儲存裝置230、 乾燥器過濾器240、冷媒流量計250、該等毛細管裝置26〇、 熱氣旁通裝置270、蒸發器280,可供該冷凍系統中各元 件之父替互換,以減少系統重置之時間,且使用不同環保 冷媒測試時,能夠快速更換適當的冷凍元件。 該視窗裝置500設置於該冷凍系統各元件之出口管路 上’包含該壓縮機210、冷凝器220、儲存裝置230、乾燥 器過滤器240、冷媒流量計250、該等毛細管裝置260、熱 氣旁通裝置270、蒸發器280’主要提供觀察管路内部冷 媒之狀態。 參照第4圖,係為本發明之水冷卻系統之内部負載控 制元件方塊圖。 設定一水循環系統之容室出口預設溫度值61〇,該預 設溫度值傳送至一比較器620比較預設溫度值與實際回授 溫度’將比較過後之一誤差訊號傳給一比例微分積分控制 器630。該比例微分積分控制器630接收該誤差訊號並進 行運算分析,然後再輸出一電流訊號(在本實施例中,該電 流訊號約4mA至約20mA之間)經由功能轉換器640至一 矽控整流器650,該矽控整流器650接收比例微分積分控 制器630之電流訊號,且矽控整流器650依該電流訊號傳 送一訊號至一加熱系統660調整加熱功率值,該加熱系統 660依該矽控整流器650之訊號進行加熱量調整動作,且 11 1328101 輸出一加熱量至恆溫受控系統670以及由功率計661顯示 加熱功率值,該恆溫受控系統67〇將溫度保持在預設範 圍’且由溫度計671顯示該水系統溫度值,一溫度感測元 件680由匣/jnL丈控系統67〇感測該水循環系統一實際回授 溫度值,並傳送該實際回授溫度值至該比較器比較62〇。 該功能切換器640亦可切換至手動輸入加熱功率值641, 該矽控整流器650接收該功能切換器64〇之訊號並且讀取 該輸入加熱功率值641,且將該功率值傳送至一加熱系統 660,該加熱系統660依該輸入加熱功率值641之功率值 開始加熱動作,且輸出一加熱量至恆溫受控系統67〇,以 及由溫度計顯示該水循環系統溫度值。 經由如此反覆的追縱實際回授的溫度訊號與設定之 水溫值以適當的控制加熱量,將能夠使系統快速且精確地 達到設定溫度之目的。 參照第5圖,係為本發明之冷凍系統之熱氣旁通裝置 控制元件方塊圖。 設定一水循環系統之容室出口水溫預設溫度值710, 該預設溫度值傳送至一功能切換器720,該功能切換器720 切換比例式控制熱氣旁通閥730或電子式控制熱氣旁通閥 731控制’且將該溫度值傳至一比較器74〇,741,當選擇比 例式控制模式730時,該比較器740比較該預設溫度值與 一實際回授溫度值,將比較過後之一誤差訊號傳至一比例 微分積分控制器750,該比例微分積分控制器750接收該2 will consume a lot of unnecessary time, money and human resources. If the refrigerant is recycled, the result of arbitrarily discharging the refrigerant will be serious. a. The natural environment in which the organism grows, and thus the earth is greatly injured. SUMMARY OF THE INVENTION The object of the present invention is to provide a water cooling The test machine is combined with the load by the water circulation system to adjust the opening of the valve through the water flow adjustment valve to control the different water flow, simulate the test application, and increase the water by the external load. The utility of the cooling test machine. Another object of the present invention is to provide a water cooling test machine which can provide various environmentally friendly refrigerants for performance experiments and which are installed in the cold storage system. The valve can quickly replace the system components 'in: experiment with different system components' to reduce the shortcomings of system reset. Install the test device at the inlet/outlet of each component in the under-coating system and the cold beam system. Instantly monitor the status of the water cooler tester by displaying the temperature and pressure devices at various points in the system. Another purpose of this month is to provide a water-cooled However, the testing machine is used for testing different temperature control, and according to the control mode of the hot gas bypass device and the internal load, the effect of precisely controlling the circulating water temperature is achieved. According to the invention, the water cooling test machine, m system; a system that performs heat exchange with the cold; east system and includes an internal load device; and - a detection device including a plurality of thermometers and pressure gauges, the temperature 7 1328101 accounting for a pressure gauge located in the water circulation system and the refrigeration system In and out of the pipeline • The upper part is used to measure the temperature and pressure of the pipeline; * wherein the internal load device changes the heat change of the water circulation system to test the water circulation system and the components of the refrigeration system by the thermometers Temperature change on the inlet/outlet line. According to the invention, the water cooling test method, wherein the water cooling comprises a cold material, a system, and a water cycle, the cold system comprises: a hot gas bypass device, The water circulation system exchanges heat with the refrigeration system, and includes an internal load device, the test method includes: adjusting the inner P load a heating amount; setting a chamber outlet temperature of the water circulation system to measure a chamber outlet temperature of the water circulation system; feeding the outlet water temperature to the hot gas bypass device of the cold/east system; and adjusting the hot gas bypass The valve of the device changes the refrigeration capacity of the refrigeration system. According to the present invention, it is possible to truly test various environmentally-friendly refrigerants, that is, to design an easy-to-change and detachable system component. This design will facilitate the replacement of components required for different J-protection refrigerant systems to solve the experimental reset. The time and labor required by the system. [Embodiment] >', ', and Fig. 1 is a system circuit diagram of a first embodiment of a water-cooling tester according to the present invention. Referring to Figure 2, pass #, π u 1 is the circuit diagram of the water circulation system of the water cooling test machine in Figure 1. Referring to Figure 3, the circuit diagram of the refrigeration system 8 1328101 of the water-cooled tester in Figure 1 is transmitted. The water cooling tester of the present invention comprises a water circulation system 1A, a freezing system 200, a detecting device 3A, a valve device 4A, and a window device 500. The water circulation system 100' includes a water storage device 11〇, a pumping pump 120, a water flow regulating device 13〇, a water flow meter 14〇, a chamber 15〇, an internal load 160, and an external load valve unit. i 7〇, the circulating water is pumped by the water storage device 110 to the water flow regulating device 130 via the pumping pump, and the water flow regulating device 13 controls its circulating water flow rate and is displayed by the water flow meter 140 The value, the restricted circulating water enters the chamber 〖5〇, and the function of the chamber 150 is for heat exchange. The external load valve unit 17〇 can guide the water to the external load, so that the water cooler test machine can be quickly switched to the real load, which can greatly improve the practicality of the experimental test. The refrigeration system 200 includes a compressor 21, a condenser 22, a storage device 230, a dryer filter 24, a refrigerant flow meter 25, a plurality of capillary devices 260, and a hot gas bypass device 27. And an evaporator 280, the compressor 21 排 discharges high temperature and high pressure refrigerant (working fluid) to the condenser 220, the condenser 22 is cooled by air, and the heat dissipation system can adopt manual frequency conversion and automatic frequency conversion. The mode controls the speed of the fan motor. The speed of the different fan motors will affect the effect of the fan driving the heat, and also affect the internal pressure of the condenser 22 . Therefore, the heat dissipation state of the condenser 22 can be simulated to test various kinds of cases. The refrigerant after cooling is in a liquid form, and flows to the storage device 23 (in this embodiment, a storage tank) via a pipe. The storage device 230 is connected to the dry m by a pipeline 9 for filtering the refrigerant and the cold, the east system, and drying the moisture in the system, and the dryer filter 240 is connected behind the dryer. The refrigerant flow meter 25 (), the flow rate of the refrigerant is ten 〇, and the flow rate of the refrigerant is displayed, and the refrigerant flows through the refrigerant flow meter 25 to enter the plurality of capillary devices 260. The capillary devices 260 employ three branches of tubing to provide three different sizes of capillary expansion elements for use with the refrigeration system 200, which can be used to test the performance of the capillary f, or by the capillary device 260. The valve device at the inlet/outlet port 4〇〇's rapid replacement of the expanded bulls for experiments with different expansion elements, the refrigerant is depressurized via a capillary tube and enters an evaporator 280 for endothermic action, circulating the water inside the chamber 15... After taking the heat exchange, the refrigerant after the heat exchange is a low-pressure low-temperature gaseous refrigerant once again enters the °H compressor 210 to be compressed to form a cold cycle. The hot gas bypass device 270 includes a first valve 271, a second valve 272 and a third valve 273. The hot gas bypass device 27 is between the outlet of the capillary device 260 and the exhaust port of the compressor 210. The first valve 271 & ON-OFF solenoid valve, the second valve 272 is a proportional hot gas bypass valve, and the third valve 273 is an electronic hot gas bypass valve, where the thermostatic control precision can be compared Advantages and disadvantages, then the appropriate hot gas bypass valve can be used according to the requirements of different temperature control precision. Therefore, the most economical and stable temperature control strategy can be realized by controlling the hot gas bypass device. The detecting device 300 includes a plurality of thermometers 31A and a plurality of pressure gauges 320. The thermometers 310 and the pressure gauges 320 are located on the inlet/outlet lines of the components of the water circulation system 100 and the refrigeration system 200, and the main quantity is 1328101. The temperature and pressure of the road. The valve device 400 is disposed on the entry/exit path of each component in the refrigeration system, and includes the compressor 210, the condenser 220, the storage device 230, the dryer filter 240, the refrigerant flow meter 250, and the capillary device. 26〇, hot gas bypass device 270, evaporator 280, can be used interchangeably for the components of the refrigeration system to reduce the time of system reset, and can quickly replace the appropriate refrigeration components when testing with different environmentally friendly refrigerants. The window device 500 is disposed on an outlet line of each component of the refrigeration system, including the compressor 210, the condenser 220, the storage device 230, the dryer filter 240, the refrigerant flow meter 250, the capillary device 260, and the hot gas bypass. The device 270 and the evaporator 280' mainly provide a state of observing the refrigerant inside the pipeline. Referring to Figure 4, there is shown a block diagram of an internal load control component of the water cooling system of the present invention. Setting a chamber outlet preset temperature value 61〇 of the water circulation system, the preset temperature value is transmitted to a comparator 620 to compare the preset temperature value with the actual feedback temperature, and the error signal is transmitted to a proportional differential integral. Controller 630. The proportional differential integration controller 630 receives the error signal and performs operational analysis, and then outputs a current signal (in the present embodiment, the current signal is between about 4 mA and about 20 mA) via the function converter 640 to a controlled rectifier. 650, the step-controlled rectifier 650 receives the current signal of the proportional-integral controller 630, and the step-up rectifier 650 transmits a signal to the heating system 660 to adjust the heating power value according to the current signal. The heating system 660 is configured to control the rectifier 650. The signal performs a heating amount adjustment operation, and 11 1328101 outputs a heating amount to the constant temperature controlled system 670 and the heating power value is displayed by the power meter 661, and the constant temperature controlled system 67 〇 maintains the temperature in a preset range 'by the thermometer 671 The water system temperature value is displayed. A temperature sensing component 680 senses the water circulation system as an actual feedback temperature value by the 匣/jnL control system 67, and transmits the actual feedback temperature value to the comparator comparison 62〇. The function switch 640 can also switch to the manual input heating power value 641, the control rectifier 650 receives the signal of the function switch 64〇 and reads the input heating power value 641, and transmits the power value to a heating system. 660. The heating system 660 starts the heating operation according to the power value of the input heating power value 641, and outputs a heating amount to the constant temperature controlled system 67A, and displays the water circulation system temperature value by the thermometer. By repeatedly tracking the actual feedback temperature signal and the set water temperature value to properly control the heating amount, the system can quickly and accurately reach the set temperature. Referring to Figure 5, there is shown a block diagram of a control element for a hot gas bypass device of the refrigeration system of the present invention. Setting a chamber outlet water temperature preset temperature value 710 of the water circulation system, the preset temperature value is transmitted to a function switch 720, and the function switch 720 switches the proportional control hot gas bypass valve 730 or the electronically controlled hot gas bypass valve The valve 731 controls 'and transmits the temperature value to a comparator 74A, 741. When the proportional control mode 730 is selected, the comparator 740 compares the preset temperature value with an actual feedback temperature value, which will be compared. An error signal is passed to a proportional differential integral controller 750, and the proportional differential integral controller 750 receives the

誤差訊號並進行運算分析,然後再輸出一電流訊號(約4mA 12 1328101 • 至2〇mA之間)至一比例式輸出器770,該比例式輪出器77〇 接收該電流訊號並將該電流訊號轉換為一步進訊號傳送 • 至一比例式輸出器760(如一步進馬達),該比例式輸出器 760接收該步進訊號且驅動一比例式熱氣旁通閥門了川, 進行微調該比例式熱氣旁通閥門770開度的控制。 當選擇電子式旁通閥溫度控制模式731時比較器接 • 741收該溫度值且比較該預設溫度值與一實際回授溫度, φ 較過後之—誤差㈣傳給—比例微分積分控^器 751,該比例微分積分控制器751接收該誤差訊號並進行 運算分析,然後再輸出一電流訊號至一電子式熱氣旁通閥 :_”71,該電子式熱氣旁通閥門771接收該電流訊號且進 打該電子式熱氣旁通閥門771開度的控制。 上述比例式熱氣旁通閥73〇或電子式熱氣旁通閥731 溫度控制藉由-怪溫受㈣統谓將溫度保持在預設範 圍,且該恆溫受控系統78〇輸出一實際循環水出口溫度 • ',如步驟781所示。利用一溫度感測元件谓感測該實 際循,水出口回授溫度值,並傳送該實際回授溫度值至該 比較器740以及741,經由如此持續的追縱實際回授的溫 ^訊號與設定之溫度值進行比較來適當的控制熱氣旁通 里,便旎夠進行精確又經濟的溫度測試實驗。 上述該水冷卻器測試機將冷凍循環系統300與内部負 載60 口為體’能使用於測試各種環保冷媒之特性以及 大幅減少測試時所需要的空間,可提供模擬不同水循環系 統之負載以進行測試,且可彈性搭配不同外部負載而進行 式實驗°為了因應實際測試之需要,在每個it件的進口 4置白°又有檢測裝置300、閥門裝置400以及視窗 ^置5〇〇,可提供即時㈣冷媒狀態(如壓力或溫度)及 的速進行變換不同m件之實驗,大幅增加實驗測試上 1更利性’更可解決因實驗更換元件時所需花費的時間及 料等I源。而内部負載i 6〇以及熱氣旁通裝置27〇控制 之迴路設計更增加溫度控制之精準性。 —雖然本發明已以一實施例揭露如上,然其並非用以限 =本發明,任何熟習此技藝者,在不脫離本發明之精神和 I巳圍内,當可作各種之更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目#、特禮文、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 第1圖係為依照本發明之一水冷卻測試機的一第一實 施例的系統線路圖。 第2圖係為第1圖中水冷卻測試機的水循環系統的線 路圖。 第3圖係為第1圖中水冷卻測試機的冷凍系統的線路 圖。 第4圖係為本發明的内部負載之元件示意方塊圖 第5圖係為本發明的熱氣旁通裝置之元件示意方塊圖 1328101The error signal is analyzed and then a current signal (about 4 mA 12 1328101 • to 2 mA) is output to a proportional output 770, and the proportional wheel 77 receives the current signal and the current The signal is converted into a stepped signal transmission to a proportional output 760 (such as a stepping motor), and the proportional output 760 receives the step signal and drives a proportional hot gas bypass valve to fine tune the proportional The hot gas bypass valve 770 is controlled by the opening degree. When the electronic bypass valve temperature control mode 731 is selected, the comparator receives the temperature value and compares the preset temperature value with an actual feedback temperature. After the φ is compared, the error (4) is transmitted to the proportional differential integral control. The proportional differential controller 751 receives the error signal and performs operational analysis, and then outputs a current signal to an electronic hot gas bypass valve: _"71, the electronic hot gas bypass valve 771 receives the current signal And enter the control of the opening degree of the electronic hot gas bypass valve 771. The above-mentioned proportional hot gas bypass valve 73〇 or electronic hot gas bypass valve 731 temperature control by - strange temperature subject (four) is to keep the temperature at the preset Range, and the thermostatically controlled system 78 〇 outputs an actual circulating water outlet temperature • ', as shown in step 781. Using a temperature sensing element to sense the actual cycle, the water outlet returns the temperature value and transmits the actual The temperature values are fed back to the comparators 740 and 741, and the temperature signals normally tracked by the tracking are compared with the set temperature values to appropriately control the hot gas bypass, so that the accurate and accurate Temperature test test. The water cooler tester described the refrigeration cycle system 300 and the internal load of 60 ports as the body's ability to test various environmentally friendly refrigerants and greatly reduce the space required for testing. It can provide simulation of different water cycles. The load of the system is tested, and the experiment can be performed elastically with different external loads. In order to meet the needs of the actual test, the inlet 4 of each piece is whitened, and the detecting device 300, the valve device 400, and the window are placed. 5〇〇, can provide instant (four) refrigerant state (such as pressure or temperature) and speed to change the experiment of different pieces of m, greatly increase the experimental test on the 1 more profitable 'more time to solve the time required to replace components due to experiments I source, and the internal load i 6〇 and the loop design of the hot gas bypass device 27〇 increase the accuracy of temperature control. In the present invention, any person skilled in the art can make various changes and retouchings without departing from the spirit and scope of the present invention. The scope of protection is subject to the definition of the scope of the patent application. [Simplified description of the drawings] The above and other objects, special gifts, advantages and embodiments of the present invention can be more clearly understood. The detailed description of the formula is as follows: Fig. 1 is a system circuit diagram of a first embodiment of a water cooling tester according to the present invention. Fig. 2 is a circuit diagram of a water circulation system of the water cooling tester of Fig. 1. Figure 3 is a circuit diagram of the refrigeration system of the water-cooled tester in Figure 1. Figure 4 is a schematic block diagram of the components of the internal load of the present invention. Figure 5 is a component of the hot gas bypass device of the present invention. Schematic block diagram 1328101

【主要元件符號說明】 100 :水冷卻系統 120 :抽水幫浦 140 :流量計 160 :内部負載裝置 200 :冷;東系統 220 =冷凝器 240 :乾燥過濾器 260 :毛細管裝置 271 :電磁閥 273:電子式熱氣旁通閥 300 :偵測裝置 320 :壓力計 500 :視窗裝置 610 :步驟 630 :比例微分積分控制器 641 :步驟 660 :加熱系統 661 :功率計 6 71 .溫度計 720 :功能切換器 740 :比較器 7 5 0 :比例微分控制器 760 :比例式輸出器 110 :儲水裝置 130 :水流量控制闊 150 :容室 170:外接負載裝置 210 :壓縮機 230 :儲存槽 250 :冷媒流量計 270 :熱氣旁通裝置 272 .比例式熱氣旁通闕 280 :蒸發器 310 :溫度計 400 :閥門裝置 620 :比較器 640 :功能切換器 650 :矽控整流器 6 7 0 . ’)·亙溫受控系統 680 :溫度感測元件 710 :步驟 730 :比例式控制模式 731 :電子式控制模式 741 :比較器 751 :比例微分控制器 770 :比例式熱氣旁通閱門 15 1328101 771 :電子式熱氣旁通閥 780 :恆溫受控系統 790 :溫度感測元件 781 :溫度計[Description of main component symbols] 100: Water cooling system 120: Pumping pump 140: Flowmeter 160: Internal load device 200: Cold; East system 220 = Condenser 240: Drying filter 260: Capillary device 271: Solenoid valve 273: Electronic hot gas bypass valve 300: detecting device 320: pressure gauge 500: window device 610: step 630: proportional differential integral controller 641: step 660: heating system 661: power meter 6 71. thermometer 720: function switcher 740 : Comparator 7 5 0 : Proportional differential controller 760 : Proportional output device 110 : Water storage device 130 : Water flow control width 150 : Capacity chamber 170 : External load device 210 : Compressor 230 : Storage tank 250 : Refrigerant flow meter 270: hot gas bypass device 272. Proportional hot gas bypass 280: evaporator 310: thermometer 400: valve device 620: comparator 640: function switch 650: 矽 controlled rectifier 6 7 0 . ') · controlled temperature System 680: Temperature Sensing Element 710: Step 730: Proportional Control Mode 731: Electronic Control Mode 741: Comparator 751: Proportional Differential Controller 770: Proportional Hot Gas Bypass Door 15 1328101 771: Electronic Hot Gas Bypass valve 780: Thermostatically controlled system 790: Temperature sensing element 781: Thermometer

1616

Claims (1)

- 99年5月5日修正替換頁 十、申請專利範固: -- h一種水冷卻測試機,包含: .- = 冷凍系統,包含一熱氣旁通裝置以及一閥門裝置, .· ^間:裝置設置在該冷來系統中各元件之進/出管路上; -水循環H與該冷;東线進行熱交換,並包含一 内部負載裝置;以及 一檢測裝置,包含複數個溫度計及壓力計,該些溫度 % D十及壓力计位於該水循環系統與該冷凍系統之進出管路 上’用以量測管路之溫度及壓力; 其中該内部負載裝置改變該水循環系統的熱量變 化,以藉由該些溫度計及壓力計測試該水循環系統與該冷 凍系統各元件之進/出管路上的溫度及壓力變化。 2.如申清專利範圍第1項所述之水冷卻測試機,其中 該水循環系統更包含 ^ 一儲水裝置; 一水流量調節裝置; 一抽水幫浦,設於該儲水裝置與該水流量調節裝置之 間; . 一水流量檢測計,連接於該水流量調節裝置; 一熱交換裝置,連接於該冷凍系統以進行熱交換;以 及 一外接負載裝置,用以導引循環水至外部負栽。 17 1328101 99年5月5日修正替換頁 3·如申請專利範圍第1項所述之水冷卻測試機,其中 該冷凍系統更包含 一工作流體; 一壓縮機; 一冷凝器’連接於該壓縮機; 一儲存裝置,連接於該冷凝器; 一乾燥過濾器•,連接於該儲存裝置; 一冷媒流量計’連接於該乾燥過濾器; 一毛細管裝置,連接於該冷媒流量計;以及 一視窗裝置連接於該壓縮機、該冷凝器、該熱氣旁通 裝置之出口端,以提供觀察管路内部冷媒。 4. 如申請專利範圍第1項所述之水冷卻測試機,其中 該熱氣旁通裝置包括一電磁閥、一比例式熱氣旁通間門以 及一電子式熱氣旁通閥門。 5. 如申請專利範圍第3項所述之水冷卻測試機,其中 該冷康系統之工作流體為環保非共沸(n〇n_aze〇tr〇pic )混 合冷媒。 6·如申請專利範圍第3項所述之水冷卻測試機,其中 該冷凍系統之冷凝器係為一氣冷式散熱系統,該氣冷弋散 熱系統包含一變頻方式控制風扇馬達。 18 1328101 ___ 99年5月5日修正替換頁 7.如申凊專利範圍第3項所述之水冷卻測試機,其中該 些毛細管裝置為三支分路之管路。 8. —種水冷卻測試機之測試方法,其中該水冷卻測試 機包含一冷凍系統以及一水循環系統,該冷凍系統包含一 熱氣旁通裝置,該水循環系統與該冷凍系統進行熱交換, 並包含一内部負載裝置’該測試方法包含: 增加該内部負載裝置之溫度; 設定該水循環系統之容室出〇水溫产. 偵測該水循環系統之容室出口水溫度; 將該水循環系統之容室出σ水溫度回授至該冷束系 統之熱氣旁通裝置;以及 調整該熱氣旁通裝置之閥門,改變該冷束系統之冷珠 能力。- Amendment page on May 5, 1999. Application for patents: -- h A water-cooling test machine, including: .- = refrigeration system, including a hot gas bypass device and a valve device, . The device is disposed on the inlet/outlet line of each component in the cold coming system; - the water cycle H and the cold; the east line performs heat exchange and includes an internal load device; and a detecting device comprising a plurality of thermometers and pressure gauges, The temperature % D and the pressure gauge are located on the water circulation system and the inlet and outlet lines of the refrigeration system to measure the temperature and pressure of the pipeline; wherein the internal load device changes the heat change of the water circulation system to These thermometers and pressure gauges test the temperature and pressure changes in the water circulation system and the inlet/outlet lines of the components of the refrigeration system. 2. The water cooling test machine according to claim 1, wherein the water circulation system further comprises: a water storage device; a water flow regulating device; a pumping pump, disposed in the water storage device and the water Between the flow regulating devices; a water flow flow meter connected to the water flow regulating device; a heat exchange device connected to the freezing system for heat exchange; and an external load device for guiding the circulating water to the outside Negative planting. The water cooling test machine of claim 1, wherein the refrigeration system further comprises a working fluid; a compressor; a condenser is connected to the compression a storage device connected to the condenser; a drying filter connected to the storage device; a refrigerant flow meter 'connected to the drying filter; a capillary device connected to the refrigerant flow meter; and a window A device is coupled to the compressor, the condenser, and the outlet end of the hot gas bypass device to provide visibility of the refrigerant inside the line. 4. The water cooling test machine of claim 1, wherein the hot gas bypass device comprises a solenoid valve, a proportional hot gas bypass door, and an electronic hot gas bypass valve. 5. The water-cooling test machine of claim 3, wherein the working fluid of the cold-cold system is an environmentally non-azeotropic (n〇n_aze〇tr〇pic) mixed refrigerant. 6. The water cooling test machine of claim 3, wherein the condenser of the refrigeration system is an air-cooled heat dissipation system, and the air-cooled heat dissipation system comprises a variable frequency control fan motor. 18 1328101 ___ Amendment page 5, May 5, 1999. 7. The water cooling test machine of claim 3, wherein the capillary devices are three branches. 8. A test method for a water cooling test machine, wherein the water cooling test machine comprises a refrigeration system and a water circulation system, the refrigeration system comprising a hot gas bypass device, the water circulation system is in heat exchange with the refrigeration system, and includes An internal load device's test method includes: increasing a temperature of the internal load device; setting a temperature and temperature of the water circulation system of the water circulation system; detecting a temperature of the outlet water of the water circulation system; and a chamber of the water circulation system The σ water temperature is fed back to the hot gas bypass device of the cold beam system; and the valve of the hot gas bypass device is adjusted to change the cold bead capacity of the cold beam system. 9.如申請制範圍第8項料之水冷卻測試機之測試 方法,其中該熱氣旁通裝置包括一雷磁 电秘閥、一比例式熱氣 旁通閥門以及一電子式熱氣旁通閥門。9. The test method of a water-cooling tester according to item 8 of the application system, wherein the hot gas bypass device comprises a lightning magnetic valve, a proportional hot gas bypass valve and an electronic hot gas bypass valve.
TW96120389A 2007-06-06 2007-06-06 Testing apparatus for machine cooler and its testing method TWI328101B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96120389A TWI328101B (en) 2007-06-06 2007-06-06 Testing apparatus for machine cooler and its testing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96120389A TWI328101B (en) 2007-06-06 2007-06-06 Testing apparatus for machine cooler and its testing method

Publications (2)

Publication Number Publication Date
TW200848675A TW200848675A (en) 2008-12-16
TWI328101B true TWI328101B (en) 2010-08-01

Family

ID=44823915

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96120389A TWI328101B (en) 2007-06-06 2007-06-06 Testing apparatus for machine cooler and its testing method

Country Status (1)

Country Link
TW (1) TWI328101B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788710A (en) * 2011-12-29 2012-11-21 中华电信股份有限公司 Real-time analysis method for running efficiency of cold and heat energy application unit
TWI655401B (en) * 2017-09-07 2019-04-01 進得展有限公司 Refrigeration device and temperature control module thereof
TWI827282B (en) * 2022-09-29 2023-12-21 復盛股份有限公司 Refrigerating performance detection device and operation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423363B (en) * 2009-10-26 2014-01-11 Nat Univ Chin Yi Technology Testing platform and method for properties of process cooling machine
TWI425909B (en) * 2011-08-05 2014-02-01 Inventec Corp Cooling system
TW201424916A (en) * 2012-12-18 2014-07-01 Gin Dai Prec Technology Co Ltd Cooling System

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788710A (en) * 2011-12-29 2012-11-21 中华电信股份有限公司 Real-time analysis method for running efficiency of cold and heat energy application unit
CN102788710B (en) * 2011-12-29 2016-01-27 中华电信股份有限公司 Real-time analysis method for running efficiency of cold and heat energy application unit
TWI583906B (en) * 2011-12-29 2017-05-21 Chunghwa Telecom Co Ltd Real - time Analysis Method of Unit Operation Performance of Cold and Heat Energy
TWI655401B (en) * 2017-09-07 2019-04-01 進得展有限公司 Refrigeration device and temperature control module thereof
TWI827282B (en) * 2022-09-29 2023-12-21 復盛股份有限公司 Refrigerating performance detection device and operation method thereof

Also Published As

Publication number Publication date
TW200848675A (en) 2008-12-16

Similar Documents

Publication Publication Date Title
TWI328101B (en) Testing apparatus for machine cooler and its testing method
Wongwises et al. Performance of the two-phase ejector expansion refrigeration cycle
US7370485B2 (en) Performance testing apparatus of refrigerating cycle
CN110887680B (en) Multifunctional water-cooling testing device and method thereof
CN105229393A (en) Refrigerating plant
Kim et al. Investigation on the optimal control of gas cooler pressure for a CO2 refrigeration system with an internal heat exchanger
CN108593328A (en) A kind of convenient refrigerator heat exchanger performance test system of flow-rate adjustment
CN103033356B (en) The Performance Test System of coaxial heat exchanger and method of testing in air conditioning for automobiles
Chen et al. Experimental investigation on mass flow characteristics of R245fa through electronic expansion valve
Zhang et al. Experimental analysis of R22 and R407c flow through electronic expansion valve
Shanwei et al. Experimental research on refrigerant mass flow coefficient of electronic expansion valve
KR101425989B1 (en) Performance Test System for Heat Pump
Tran et al. Refrigerant-based measurement method of heat pump seasonal performances
CN100492003C (en) System for testing performance of refrigerating agent containing oil
Mauro et al. Thermal-hydraulic characterization of R513A during flow boiling inside a 6.0 mm horizontal tube, comparison with R134a and development of a new correlation
RU2019137518A (en) SERVER RACK COOLING DEVICE
JP6931093B2 (en) Liquid temperature control device and method
Jiang et al. Experimental investigation for heat and mass transfer characteristics of R124-DMAC bubble absorption in a vertical tubular absorber
KR20100108056A (en) Real time performance evaluation method for ground source heat pump system and evaluation device programming the same
CN110579370B (en) Dryness fraction allotment formula heat exchanger integrated test system
CN104374591A (en) Capacity measuring device of electronic expansion valve
CN109974320B (en) High-temperature deionized water cooling device
CN107246975A (en) A kind of flow refrigerator with adjustable heat exchanger performance test system
Boewe et al. Comparative experimental study of subcritical R134a and transcritical R744 refrigeration systems for mobile applications
Toppi et al. Performance assessment of a double-lift absorption prototype for low temperature refrigeration driven by low-grade heat

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees