TWI327668B - Optical plate and backlight module using the same - Google Patents

Optical plate and backlight module using the same Download PDF

Info

Publication number
TWI327668B
TWI327668B TW95130441A TW95130441A TWI327668B TW I327668 B TWI327668 B TW I327668B TW 95130441 A TW95130441 A TW 95130441A TW 95130441 A TW95130441 A TW 95130441A TW I327668 B TWI327668 B TW I327668B
Authority
TW
Taiwan
Prior art keywords
particles
scattering particles
dot
diffusion layer
backlight module
Prior art date
Application number
TW95130441A
Other languages
Chinese (zh)
Other versions
TW200811532A (en
Inventor
Shao Han Chang
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW95130441A priority Critical patent/TWI327668B/en
Publication of TW200811532A publication Critical patent/TW200811532A/en
Application granted granted Critical
Publication of TWI327668B publication Critical patent/TWI327668B/en

Links

Landscapes

  • Planar Illumination Modules (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

1327668 九、發明說明: 【發明所屬之技術領域】 — 本發明關於一種應用於液晶顯示裝置之光學板,及採用 該光學板之背光模組。 【先前技術】 近年來,液晶顯示器由於其輕、薄、小與耗電低等特點, 得到了廣泛應用。由於液晶顯示面板本身不具備發光特性, 故需背光模組爲其提供背光源,來實現液晶顯示面板之顯示 功能。 請參閱圖1,其係習知背光模組10之分解示意圖。該 背光模組10包括一稜鏡片12、一擴散片13、一擴散板14、 複數光源15及一反射板11,該光源15、擴散板14、擴散片 13及稜鏡片12依次設置於該反射板11上方。其中,擴散板 14厚度較厚,以便提供必要之結構強度來支撐其上方之擴散 片13與稜鏡片12;其内一般含有甲基丙烯酸甲酯作爲擴散 粒子,用於使光線發生初步擴散。該擴散片13包括一透明 基片132及一設置於該透明基片132之油墨層131,該油墨 層131用於進一步細擴散光線。該稜鏡片12具有V形微稜 鏡結構121,用於提高面光源亮度。工作時,由複數光源15 産生之光線進入擴散板14後被初步擴散;爾後再經過擴散 片13來進行進一步之細擴散,以使得出射光線更均勻;光 線經過擴散片13被均勻擴散後,其繼續進入該稜鏡片12, 於稜鏡片12之V形微稜鏡結構121之作用下使出射光線發 生一定程度之聚集作用,以提高整個面光源之亮度。 1327668 上述背光模組擴散板14位於光源15正上方之部分距離 羌源15較近,對應區域内光強度較強;而位於光源15四周 之擴散板14部分距離光源15較遠,對應區域内光強度較 弱;又因爲該擴散板14爲一厚度均一之平板,擴散粒子於 •該擴散板14中均勻分散。而且該擴散片13厚度較薄,對應 ,油墨層之厚度亦均勻分佈,光線經過該擴散板14及擴散片 13後仍容易呈現明暗區域,形成光源15亮影。爲了避免光 源15亮影之出現,該擴散板14需要設置較厚之厚度或增加 >擴散板14與光源15之間之距離,從而增加了背光模組之厚 度。另,外加之擴散片13亦增加了背光模組10之厚度,並 相應增加製造成本。 【發明内容】 鑒於上述狀況,有必要提供一種具有滿足背光模組厚度 薄之要求之光學板及採用該光學板之背光模組。 一種光學板,其包括一透明基板及一擴散層,該透明基 >板包括一出光面以及一與該出光面相對之連接面,該透明基 板於該連接面形成有複數點狀凹槽,該擴散層附著於該連接 面並填充該複數點狀凹槽。 一背光模組,其包括一反射板、複數光源及一光學板, 該反射板與該光學板相對設置,該光學板包括一透明基板及 一擴散層,該透明基板包括一出光面以及一與該出光面相對 之連接面,該透明基板於該連接面形成有複數點狀凹槽,該 擴散層附著於該連接面並填充該複數點狀凹槽,該複數點光 源設置於該反射板並朝向該光學板,該複數點光源分別與該 1327668 複數點狀凹槽相對應。 ’ 相較于習知技術,該光學板於透明基板之連接面形成複 數點狀凹槽,該擴散層附著於該連接面並填充該複數點狀凹 槽,該點狀凹槽使得該擴散層具有不同之厚度。該光源設置 .於該反射板並分別與該複數點狀凹槽相對應,位於光源正上 方之光學板部分與光源之距離最小,對應區域内光強度最 大,由光源正上方朝向其四周之方向,距離越遠,光強度越 小。由於光強度最強區域對應擴散層最厚部分,光強度較弱 •區域對應擴散層較薄部分,兩者相互補償使得進入透明基板 之光線於各區域内之強度趨於一致,不需要增加光學板厚度 或增加光學板與光源之間之距離即可避免了光源亮影之出 現。且該擴散層同時具有擴散片功能,避免採用外加之擴散 片而導致背光模組厚度增加。故,該光學板具有較佳出光均 勻性,並可滿足組裝薄型化背光模組之要求。 【實施方式】 ^ 下面將結合附圖及複數實施例對本發明之光學板,以及 採用該光學板之背光模組進一步詳細說明。 ’ 請一併參閱圖2與圖3,本發明較佳實施例一提供一背 •光模組30,其包括一反射板31、複數光源35及一光學板32。 該光學板32包括一透明基板321及一擴散層322。該透明基 .板321包括一出光面3213及一與該出光面3213相對之連接 面3211,該連接面3211形成有複數陣列排佈之點狀凹槽 3215。該擴散層322附著於該連接面3211並填充該複數點 狀凹槽3215。該反射板31與該光學板32相對設置,該複數 1327668 點光源35設置於該反射板31,並朝向該光學板32之擴散層 322,向其照射光線。該複數點光源35與該複數點狀凹槽 3215——對應。 該透明基板321爲一方形板,其厚度T介於1.0毫米至 .6.0毫米之間。該透明基板321可採用包括聚碳酸酯樹脂、 亞克力樹脂、聚苯乙烯樹脂或苯乙烯-曱基丙烯酸甲酯樹脂 (Copolymer Of Methylmethacrylate and Styrene,MS)中之 一種或一種以上之混合物。 B 每一點狀凹槽3215可設計成軸對稱結構,且其軸中心 具有最大之深度。而且,每一點狀凹槽3215之深度沿中心 軸所在之中部向其四周相應遞減。本實施例中,每一點狀凹 槽3215經過其中心轴之斷面爲一等腰梯形。該點狀凹槽 3215使得該擴散層322之厚度隨著點狀凹槽3215斷面之形 狀變化而變化,對應點狀凹槽3215中心之擴散層322部分 厚度最大,由點狀凹槽3215中部向四周之方向,擴散層322 $厚度逐漸變小。 爲達到較佳之光學效果,該點狀凹槽3215之最大深度 Η限定於該透明基板321之厚度T之30%内,並依據該光學 •板32與點光源35之間之距離之大小作相應之變化。依據該 光學板32於背光模組30中之實際情況,點狀凹槽3215之 .最大寬度W及相鄰兩點狀凹槽3215之間之距離視兩相鄰點 光源35間之距離而定,惟,相鄰兩點狀凹槽3215之間之距 離應與對應兩相鄰點光源35之間之距離相同,且點狀凹槽 3215之最大寬度W不得大於對應兩相鄰點光源35之間距 9 1327668 離。 Γ 該擴散層322包括透明樹脂基材3221、以及摻雜於該 透明樹脂基材3221之第一散射粒子3223及第二散射粒子 3225。該透明樹脂基材3221係由一種清漆固化而成,其用 *於將各散射粒子分散並排佈於透明基板321之表面3211。該 清漆可採用包括丙烯酸樹脂、丙烯酸氨基樹脂或環氧樹脂中 之一種或一種以上之混合物。該第二散射粒子3225相較於 該第一散射粒子3223具有較高之折射率,該第一散射粒子 > 3223之折射率介於1.4至1.7之間,該第二散射粒子3225 之折射率大於2.0,本實施例優選2.0至2.8之折射率範圍。 該第一散射粒子3223相較第二散射粒子3225具有較大之粒 徑,該第一散射粒子3223之粒徑限定於1微米至500微米 之間,該第二散射粒子3225之粒徑限定於0.01微米至1微 米之間。 該第一散射粒子3223可將大部分之光線擴散均勻,其 >作用可類似于習知技術中之擴散板中擴散粒子之作用。該第 二散射粒子3225處於該第一散射粒子3223之間,具有輔助 該第一散射粒子3223分散均勻之作用,故其可使該第一散 射粒子3223均勻擴散光線之功能增強。另,該第二散射粒 子3225由於具有較大之折射率,而易於具有部分之繞射與 .反射功能;藉由該第二散射粒子3225之部分繞射與反射功 能,可使光強較強處之光線被進一步散射而細擴散,繼而使 得該光學板30更具有避免産生亮影之作用。 該第一散射粒子3223可爲聚苯乙烯顆粒、聚碳酸酯顆 1327668 粒、苯乙烯-丙烯腈共聚物顆粒、聚丙烯顆粒、二氧化矽顆 ’粒、聚曱基丙烯酸曱酯顆粒、玻璃微珠或石英粉顆粒中之一 -種或一種以上之混合物。該第二散射粒子3225可爲二氧化 鈦顆粒、硫酸鋇顆粒、硫化鋅顆粒、氧化鋅顆粒、氧化銻顆 .粒或碳酸鈣顆粒中之一種或一種以上之混合物。 _ 此外,爲達到較佳之光學效果,該擴散層322最小厚度 t應當限定於該透明基板321厚度T之15%内,該第一散射 粒子3223於擴散層322中之重量百分比爲第二散射粒子 籲3225於擴散層322中之重量百分比之5至100倍,該第一散 射粒子3223與第二散射粒子3225於整個擴散層322之重量 百分比爲10%至95%。 使用時,點光源35分別設置於點狀凹槽3215正下方且 點光源35中心轴線與點狀凹槽3215中心軸線重合,即複數 點光源35分別與該複數點狀凹槽3215相對應。位於點光源 35正上方之光學板30部分與點光源35之距離最小,對應區 I域内光強度最大,由點光源35正上方朝向四周之方向,距 離越遠,光強度越小。往點光源35正上方出射之部分光線 '經過經過擴散層322之最厚部分,往點光源35四周之方向 •出射之部分光線經過擴散層322之較薄之部分。由於光強度 較強區域對應擴散層322部分之最厚部分,光強度較弱區域 .對應擴散層322之較薄之部分,兩者相互補償使得進入透明 基板321之光線於各區域内之強度趨於一致,從而達到均勻 出射之目的,以避免點光源35亮影之出現,從而可大大縮 小點光源35與該光學板32之間之距離。 11 1327668 該點光源35爲一發光二極體。本發明亦可採用其他點 _光源。光學板30於背光模組使用過程中,點光源35發出可 _見光時,不可避免地會同時發出一些紫外線,該紫外線作爲 點光源能源轉換之一部分,造成整個背光模組之能效降低, .而且,射出之紫外線對液晶顯示之使用者亦造成不必要之傷 .害。故,爲了消除該紫外線影響,該擴散層322中還可加入 螢光粉粒子3227,該螢光粉粒子3227於擴散層322中之重 量百分比爲第一散射粒子3223於擴散層322中之重量百分 •比之0.1%以下,其可用以吸光線中之紫外線並轉化爲可見 光,以提高背光模組能效轉換之同時,避免紫外線對使用者 造成傷害。 請一併參閱圖4與圖5,本發明光學板較佳實施例一提 .供一光學板40,其與本發明背光模組實施例一中之光學板 32結構相似,其不同在於:該透明基板421之出光面4213 上形成有複數大小及形狀相同之球面微稜鏡423,該球面微 鲁稜鏡423爲一半球狀,且半球之底面位於透明基板421上。 該球面微稜鏡423以陣列之方式排佈於該透明基板421表 '面,兩球面微稜鏡423之間形成一定之空間間隙,且每一球 面微稜鏡423所在球之直徑Φ介於10微米至500微米之間。 該球面微稜鏡423對來自其底面之光線具有一定之聚集作 .用,其可將經過複數球面微稜鏡423對光線進行一定聚集後 再出射,達到在該光學板40 —定之正面範圍内均勻出射之 目的。 這樣,該光學板40使用於背光模組時,從點光源發出 12 1327668 之光線進入光學板40,藉由該光學板40之擴散層422將光 故擴散均勻後,該光線便直接進入基板421,經過於基板421 •内之短暫直線傳輸,該光線又直接進入該球面微稜鏡423而 發生聚集作用。如此,光線從入射光學板40至出射,其間 光線無需再經過空氣層,從而讓光線發生介面損耗之介面數 .量減少,故易於使光線能量損失降低,提高光線之利用率。 另,該光學板40將習知技術之擴散板、擴散片以及稜鏡片 之功能複合於一起,縮小了習知技術中擴散板、擴散片以及 鲁稜鏡片共同佔用之空間,故更易於滿足產品輕、薄、短、小 之市場發展需求。 請參閱圖6,本發明光學板較佳實施例二提供一光學板 50,其與本發明光學板較佳實施例一之光學板40結構相似, 其不同在於:該光學板50之球面微稜鏡523爲小於半球之 部分球狀,且相鄰兩球面微棱鏡523靠近透明基板521之邊 緣部分相互交合於一起,即相鄰兩球面微棱鏡523之兩幾何 $中心點之間之距離小於兩球面微稜鏡523所在球之半徑之 和0 可以理解,球面微稜鏡可以更換爲小於半球之其他部分 •球狀,如半球之一半等。其中任意兩球面微稜鏡可以形狀相 同,大小相同;或形狀相同,大小不同;亦可以形狀不同。 .所述形狀相同即兩者均爲規則半球狀或半球之一半等結構 形狀,所述大小相同係指對應球面微稜鏡所在球之半徑大小 相同;所述大小不同係指對應球面微稜鏡所在球之半徑大小 不同;所述形狀不同即一球面微稜鏡爲一規則半球狀而另一 13 1327668 球面微棱鏡爲一半球之一半。球面微棱鏡亦可以隨機排列之 方式排佈於透明基板表面。且球面微稜鏡亦可更換爲具有聚 •光功能之v型稜柱等其他微稜鏡結構。 請參閱圖7,本發明光學板較佳實施例三提供一光學板 —60,其與本發明光學板較佳實施例一之光學板40結構相似, 其不同在於:每一點狀凹槽6215經過其中心轴之斷面爲一 部分圓形。 請參閱圖8,本發明光學板較佳實施例四提供一光學板 籲70,其與本發明光學板較佳實施例一之光學板40結構相似, 其不同在於:每一點狀凹槽7215經過其中心軸之斷面爲一 三角形。 可以理解,本發明實施例提供之點狀凹槽中,每一點狀 凹槽經過其中心轴之斷面包括了三角形、等腰梯形及部分圓 形等形狀,其並不作爲對本發明之限制,其他如普通梯形、 多邊形以及由三角形、等腰梯形及部分圓形等構成之組合亦 φ應該包含于本發明之中。 本發明之光學板,藉由於透明基板之連接面形成複數點 '狀凹槽,該擴散層附著於該連接面並填充該複數點狀凹槽, •該點狀凹槽使得該擴散層具有不同之厚度。使用時,點光源 設置於該點狀凹槽正下方且點光源中心軸線與點狀凹槽中 .心軸線重合,位於點光源正上方之光學板部分與點光源之距 離最小,對應區域内光強度最大,由點光源正上方朝向其四 周之方向,距離越遠,光強度越小。往點光源正上方出射之 部分光線,經過擴散層之最厚之部分,往點光源四周之方向 1327668 出射之部分光線經過擴散層之較薄之部分。由於光強度最強 远域對應擴散層最厚部分,光強度較弱區域對應擴散層較薄 部分,兩者相互補償使得進入透明基板之光線於各區域内之 強度趨於一致,從而達到均勻出射之目的。該光學板用於背 光模組時,可大大縮小點光源與該光學板之間之距離,同時 亦不必增加光學板厚度即可避免點光源亮影之出現。且該擴 散層同時具有擴散片功能,避免採用外加之擴散片而導致背 光模組厚度增加。故,採用該光學板之背光模組具有厚度薄 之特點。 综上所述,本發明符合發明專利要件,爰依法提出專利 申請。惟,以上所述者僅為本發明之較佳實施例,舉凡熟悉 本案技藝之人士,在爰依本發明精神所作之等效修飾或變 化,皆應涵蓋於以下之申請專利範圍内。 【圖式簡單說明】 圖1係習知背光模組示意圖。 圖2係本發明背光模組較佳實施例一之截面示意圖。 圖3係圖2所示光學板除去擴散層之立體示意圖。 圖4係本發明光學板較佳實施例一之立體示意圖。 圖5係圖4所示光學板沿線V-V線之截面示意圖。 圖6係本發明光學板較佳實施例二之截面示意圖。 圖7係本發明光學板較佳實施例三之截面示意圖。 圖8係本發明光學板較佳實施例四之截面示意圖。 【主要元件符號說明】 (本發明) 15 13276681327668 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to an optical plate applied to a liquid crystal display device, and a backlight module using the same. [Prior Art] In recent years, liquid crystal displays have been widely used due to their characteristics of lightness, thinness, small size, and low power consumption. Since the liquid crystal display panel itself does not have the light-emitting property, the backlight module is required to provide a backlight to realize the display function of the liquid crystal display panel. Please refer to FIG. 1 , which is an exploded schematic view of a conventional backlight module 10 . The backlight module 10 includes a cymbal 12, a diffusion sheet 13, a diffusion plate 14, a plurality of light sources 15, and a reflector 11. The light source 15, the diffusion plate 14, the diffusion sheet 13, and the cymbal 12 are sequentially disposed on the reflection. Above the board 11. Wherein, the diffusion plate 14 is thicker in thickness to provide the necessary structural strength to support the diffusion sheet 13 and the ruthenium sheet 12 thereon; it generally contains methyl methacrylate as a diffusion particle for preliminary diffusion of light. The diffusion sheet 13 includes a transparent substrate 132 and an ink layer 131 disposed on the transparent substrate 132. The ink layer 131 is used for further fine diffusion of light. The cymbal 12 has a V-shaped microprism structure 121 for increasing the brightness of the surface light source. During operation, the light generated by the complex light source 15 enters the diffuser plate 14 and is initially diffused; then passes through the diffuser 13 for further fine diffusion to make the outgoing light more uniform; after the light is uniformly diffused through the diffusion sheet 13, Continuing to enter the cymbal 12, under the action of the V-shaped micro-twist structure 121 of the cymbal 12, the emitted light is concentrated to a certain extent to improve the brightness of the entire surface light source. 1327668 The portion of the backlight module diffusing plate 14 directly above the light source 15 is closer to the source 15 , and the light intensity in the corresponding region is stronger; and the portion of the diffusing plate 14 located around the light source 15 is far from the light source 15 and corresponds to the light in the region. The strength is weak; and because the diffusion plate 14 is a flat plate having a uniform thickness, the diffusion particles are uniformly dispersed in the diffusion plate 14. Moreover, the thickness of the diffusion sheet 13 is relatively thin, and the thickness of the ink layer is evenly distributed. After the light passes through the diffusion plate 14 and the diffusion sheet 13, the light and dark regions are easily formed, and the light source 15 is brightly formed. In order to avoid the occurrence of bright light of the light source 15, the diffusing plate 14 needs to be thicker or increase the distance between the diffusing plate 14 and the light source 15, thereby increasing the thickness of the backlight module. In addition, the additional diffusion sheet 13 also increases the thickness of the backlight module 10 and increases the manufacturing cost accordingly. SUMMARY OF THE INVENTION In view of the above circumstances, it is necessary to provide an optical panel having a requirement for meeting the thickness of a backlight module and a backlight module using the same. An optical plate comprising a transparent substrate and a diffusion layer, the transparent substrate comprising a light emitting surface and a connecting surface opposite to the light emitting surface, wherein the transparent substrate is formed with a plurality of dot-shaped grooves on the connecting surface The diffusion layer is attached to the connection surface and fills the plurality of dot-shaped grooves. A backlight module includes a reflective plate, a plurality of light sources, and an optical plate. The reflective plate is disposed opposite the optical plate. The optical plate includes a transparent substrate and a diffusion layer. The transparent substrate includes a light emitting surface and a light emitting surface. The transparent surface is opposite to the connecting surface, the transparent substrate is formed with a plurality of dot-shaped grooves on the connecting surface, the diffusion layer is attached to the connecting surface and fills the plurality of dot-shaped grooves, and the plurality of point light sources are disposed on the reflecting plate Toward the optical plate, the plurality of point sources respectively correspond to the 1327668 plurality of dot-like grooves. Compared with the prior art, the optical plate forms a plurality of dot-shaped grooves on the connecting surface of the transparent substrate, and the diffusion layer is attached to the connecting surface and fills the plurality of dot-shaped grooves, and the dot-shaped grooves make the diffusion layer Have different thicknesses. The light source is disposed on the reflector and corresponding to the plurality of dot-shaped grooves respectively, and the distance between the portion of the optical plate directly above the light source and the light source is the smallest, and the light intensity in the corresponding region is the largest, from the direction directly above the light source toward the periphery thereof The farther the distance, the smaller the light intensity. Since the region with the strongest light intensity corresponds to the thickest portion of the diffusion layer, the light intensity is weaker. The region corresponds to the thinner portion of the diffusion layer, and the two compensate each other so that the intensity of the light entering the transparent substrate tends to be uniform in each region, and the optical plate does not need to be added. Thickness or increase the distance between the optical plate and the light source can avoid the appearance of light source. Moreover, the diffusion layer has a diffusion sheet function at the same time, and the thickness of the backlight module is increased by avoiding the use of the additional diffusion sheet. Therefore, the optical plate has better light uniformity and can meet the requirements of assembling a thinned backlight module. [Embodiment] The optical plate of the present invention and the backlight module using the same will be further described in detail below with reference to the accompanying drawings and the embodiments. Referring to FIG. 2 and FIG. 3 together, a preferred embodiment of the present invention provides a backlight module 30 including a reflector 31, a plurality of light sources 35, and an optical panel 32. The optical plate 32 includes a transparent substrate 321 and a diffusion layer 322. The transparent substrate 32 includes a light-emitting surface 3213 and a connecting surface 3211 opposite to the light-emitting surface 3213. The connecting surface 3211 is formed with a plurality of dot-shaped grooves 3215 arranged in an array. The diffusion layer 322 is attached to the connection surface 3211 and fills the plurality of dot-shaped grooves 3215. The reflecting plate 31 is disposed opposite to the optical plate 32. The plurality of 1327668 point light sources 35 are disposed on the reflecting plate 31 and are directed toward the diffusion layer 322 of the optical plate 32 to illuminate the light. The complex point source 35 corresponds to the plurality of dot-like grooves 3215. The transparent substrate 321 is a square plate having a thickness T of between 1.0 mm and .6.0 mm. The transparent substrate 321 may be a mixture comprising one or more of a polycarbonate resin, a acryl resin, a polystyrene resin or a copolymer of Methylmethacrylate and Styrene (MS). B Each point groove 3215 can be designed as an axisymmetric structure with the largest depth in the center of the shaft. Moreover, the depth of each of the dot-like grooves 3215 is correspondingly decreased toward the periphery thereof along the middle portion of the center axis. In this embodiment, each of the dot-shaped recesses 3215 has an isosceles trapezoidal shape through its central axis. The dot-shaped recess 3215 changes the thickness of the diffusion layer 322 according to the shape of the cross-section of the dot-shaped recess 3215. The thickness of the diffusing layer 322 corresponding to the center of the dot-shaped recess 3215 is the largest, and is formed by the central portion of the dot-shaped recess 3215. In the direction of the circumference, the thickness of the diffusion layer 322 is gradually reduced. In order to achieve a better optical effect, the maximum depth 该 of the dot-shaped recess 3215 is limited to 30% of the thickness T of the transparent substrate 321 and is determined according to the distance between the optical plate 32 and the point light source 35. Change. According to the actual situation of the optical plate 32 in the backlight module 30, the maximum width W of the dot-shaped recess 3215 and the distance between the adjacent two dot-shaped recesses 3215 depend on the distance between two adjacent point light sources 35. However, the distance between the adjacent two dot-shaped grooves 3215 should be the same as the distance between the two adjacent point light sources 35, and the maximum width W of the dot-shaped grooves 3215 must not be greater than the corresponding two adjacent point light sources 35. Spacing 9 1327668 away. The diffusion layer 322 includes a transparent resin substrate 3221, and first scattering particles 3223 and second scattering particles 3225 doped on the transparent resin substrate 3221. The transparent resin substrate 3221 is formed by curing a varnish which is dispersed and arranged on the surface 3211 of the transparent substrate 321 . The varnish may be a mixture comprising one or more of an acrylic resin, an acryl resin, or an epoxy resin. The second scattering particle 3225 has a higher refractive index than the first scattering particle 3223, and the refractive index of the first scattering particle > 3223 is between 1.4 and 1.7, and the refractive index of the second scattering particle 3225 Above 2.0, this embodiment preferably has a refractive index range of 2.0 to 2.8. The first scattering particle 3223 has a larger particle diameter than the second scattering particle 3225, the particle diameter of the first scattering particle 3223 is limited to between 1 micrometer and 500 micrometer, and the particle diameter of the second scattering particle 3225 is limited to Between 0.01 microns and 1 micron. The first scattering particles 3223 can diffuse most of the light uniformly, and its action can be similar to that of the diffusion particles in the diffusion plate of the prior art. The second scattering particles 3225 are interposed between the first scattering particles 3223 and have the function of assisting the uniform dispersion of the first scattering particles 3223. Therefore, the function of uniformly diffusing the light by the first scattering particles 3223 can be enhanced. In addition, the second scattering particle 3225 has a large refractive index and is easy to have a partial diffraction and reflection function; the partial diffraction and reflection function of the second scattering particle 3225 can make the light intensity stronger. The light at the place is further scattered and finely diffused, which in turn makes the optical plate 30 more effective in avoiding the occurrence of bright shadows. The first scattering particles 3223 may be polystyrene particles, polycarbonate particles 1327668 particles, styrene-acrylonitrile copolymer particles, polypropylene particles, cerium dioxide particles, polydecyl methacrylate particles, glass micro One or a mixture of one or more of the beads or quartz powder particles. The second scattering particles 3225 may be a mixture of one or more of titanium dioxide particles, barium sulfate particles, zinc sulfide particles, zinc oxide particles, cerium oxide particles, particles or calcium carbonate particles. In addition, in order to achieve a better optical effect, the minimum thickness t of the diffusion layer 322 should be limited to 15% of the thickness T of the transparent substrate 321, and the weight percentage of the first scattering particles 3223 in the diffusion layer 322 is the second scattering particle. 5 to 100 times the weight percentage of the 3225 in the diffusion layer 322, and the weight percentage of the first scattering particles 3223 and the second scattering particles 3225 to the entire diffusion layer 322 is 10% to 95%. In use, the point light sources 35 are respectively disposed directly below the dot-shaped recesses 3215 and the central axis of the point light sources 35 coincides with the central axis of the dot-shaped recesses 3215, that is, the complex point light sources 35 respectively correspond to the plurality of dot-shaped recesses 3215. The portion of the optical plate 30 located directly above the point light source 35 has the smallest distance from the point source 35, and the light intensity in the corresponding region I is the largest, from the direction directly above the point source 35 toward the periphery, and the farther the distance is, the smaller the light intensity is. A portion of the light that exits directly above the point source 35 passes through the thickest portion of the diffusion layer 322, toward the periphery of the point source 35. • Part of the light that exits passes through the thinner portion of the diffusion layer 322. Since the region where the light intensity is strong corresponds to the thickest portion of the portion of the diffusion layer 322, the region where the light intensity is weak, corresponding to the thin portion of the diffusion layer 322, the two compensate each other such that the intensity of the light entering the transparent substrate 321 is in each region. Consistently, the purpose of uniform emission is achieved to avoid the occurrence of bright light of the point source 35, so that the distance between the point source 35 and the optical plate 32 can be greatly reduced. 11 1327668 The point source 35 is a light emitting diode. Other points - light sources can also be used in the present invention. During the use of the backlight module in the backlight module, when the point light source 35 emits light, it inevitably emits some ultraviolet rays at the same time, and the ultraviolet light is a part of the energy conversion of the point source, thereby reducing the energy efficiency of the entire backlight module. Moreover, the emitted ultraviolet rays cause unnecessary damage to the user of the liquid crystal display. Therefore, in order to eliminate the influence of the ultraviolet light, the phosphor layer particles 3227 may be added to the diffusion layer 322, and the weight percentage of the phosphor powder particles 3227 in the diffusion layer 322 is the weight of the first scattering particles 3223 in the diffusion layer 322. The ratio is less than 0.1%, which can be used to absorb ultraviolet light in the light and convert it into visible light, so as to improve the energy conversion of the backlight module and avoid ultraviolet rays from harming the user. Referring to FIG. 4 and FIG. 5 together, a preferred embodiment of the optical plate of the present invention provides an optical plate 40 which is similar in structure to the optical plate 32 of the first embodiment of the backlight module of the present invention, and the difference is that: A spherical surface 423 having a plurality of sizes and shapes is formed on the light-emitting surface 4213 of the transparent substrate 421. The spherical micro-lub 423 is a half-spherical shape, and the bottom surface of the hemisphere is located on the transparent substrate 421. The spherical micro 稜鏡 423 is arranged in an array on the surface of the transparent substrate 421, and a space gap is formed between the two spherical micro 稜鏡 423, and the diameter Φ of the ball of each spherical micro 稜鏡 423 is between Between 10 microns and 500 microns. The spherical micro-small 423 has a certain concentration of light from the bottom surface thereof, and the plurality of spherical micro-tunings 423 can be used to gather a certain amount of light and then exit to reach the frontal range of the optical plate 40. The purpose of uniform emission. In this way, when the optical plate 40 is used in the backlight module, the light from the point source is 12 1327668, and the light enters the optical plate 40. After the diffusion layer 422 of the optical plate 40 diffuses the light, the light directly enters the substrate 421. After a short linear transmission in the substrate 421, the light directly enters the spherical micro-strip 423 to cause aggregation. In this way, the light is emitted from the incident optical plate 40, and the light does not need to pass through the air layer, so that the number of interfaces for the interface loss of the light is reduced, so that the light energy loss is easily reduced, and the utilization of the light is improved. In addition, the optical plate 40 combines the functions of the diffusion plate, the diffusion sheet and the cymbal sheet of the prior art, and reduces the space occupied by the diffusion plate, the diffusion sheet and the reckless piece in the prior art, so that it is easier to satisfy the product. Light, thin, short, and small market development needs. Referring to FIG. 6, a preferred embodiment 2 of the optical plate of the present invention provides an optical plate 50 which is similar in structure to the optical plate 40 of the preferred embodiment of the optical plate of the present invention, except that the spherical surface of the optical plate 50 is micro-edge. The mirror 523 is spherically smaller than the hemisphere, and the edge portions of the adjacent two spherical microprisms 523 adjacent to the transparent substrate 521 are mutually joined together, that is, the distance between the two geometric $center points of the adjacent two spherical microprisms 523 is less than two. The sum of the radii of the spheres of the spherical micro 稜鏡 523 can be understood. The spherical micro cymbals can be replaced with less than the other parts of the hemisphere • spherical, such as one and a half of the hemisphere. Any two spherical micro-twisters may have the same shape and the same size; or the same shape and different sizes; or different shapes. The shape is the same, that is, both are regular hemispherical or semi-spherical one-half structural shapes, and the same size means that the radius of the ball corresponding to the spherical micro-small is the same; the different size refers to the corresponding spherical micro-稜鏡The radius of the ball is different; the shape is different, that is, one spherical surface is a regular hemisphere and the other 13 1327668 spherical microprism is one half of a half ball. The spherical microprisms can also be arranged on the surface of the transparent substrate in a random arrangement. The spherical surface can also be replaced with other micro-structures such as a v-shaped prism with a poly-light function. Referring to FIG. 7, a preferred embodiment 3 of the optical plate of the present invention provides an optical plate 60 which is similar in structure to the optical plate 40 of the preferred embodiment of the optical plate of the present invention, except that each dot-shaped recess 6215 passes through. The section of the central axis is partially circular. Referring to FIG. 8, a preferred embodiment of the optical plate of the present invention provides an optical plate 70 which is similar in structure to the optical plate 40 of the preferred embodiment of the optical plate of the present invention, except that each dot-shaped recess 7215 passes through. The central axis has a triangular cross section. It can be understood that, in the dot-shaped groove provided by the embodiment of the present invention, the shape of each of the dot-shaped grooves passing through the central axis thereof includes a shape of a triangle, an isosceles trapezoid, and a partial circle, which is not a limitation of the present invention. Other combinations such as ordinary trapezoids, polygons, and triangles, isosceles trapezoids, and partial circles are also included in the present invention. In the optical plate of the present invention, a plurality of dot-shaped grooves are formed by the connecting surface of the transparent substrate, the diffusion layer is attached to the connecting surface and fills the plurality of dot-shaped grooves, and the dot-shaped groove makes the diffusion layer different The thickness. In use, the point source is disposed directly below the point-like groove and the central axis of the point source coincides with the center of the point-like groove. The distance between the portion of the optical plate directly above the point source and the point source is the smallest, and the light in the corresponding area The intensity is the largest, from the direction directly above the point source to the direction around it. The farther the distance is, the smaller the light intensity is. Part of the light that exits directly above the point source passes through the thickest part of the diffusion layer, and part of the light that exits the direction of the point source, 1327668, passes through the thinner portion of the diffusion layer. Since the light intensity is the strongest, the far field corresponds to the thickest part of the diffusion layer, and the weaker light intensity area corresponds to the thinner part of the diffusion layer, and the two compensate each other so that the intensity of the light entering the transparent substrate tends to be uniform in each region, thereby achieving uniform emission. purpose. When the optical plate is used in the backlight module, the distance between the point source and the optical plate can be greatly reduced, and the thickness of the optical plate can be avoided without the occurrence of bright light of the point source. Moreover, the diffusion layer has a diffusion sheet function at the same time, and the thickness of the backlight module is increased by avoiding the use of the additional diffusion sheet. Therefore, the backlight module using the optical plate has the characteristics of thin thickness. In summary, the present invention complies with the requirements of the invention patent and submits a patent application according to law. However, the above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by those skilled in the art of the present invention should be included in the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a conventional backlight module. 2 is a schematic cross-sectional view showing a preferred embodiment 1 of a backlight module of the present invention. Figure 3 is a perspective view showing the optical plate of Figure 2 with the diffusion layer removed. Figure 4 is a perspective view of a preferred embodiment 1 of the optical plate of the present invention. Figure 5 is a schematic cross-sectional view of the optical plate of Figure 4 taken along line V-V. Figure 6 is a schematic cross-sectional view showing a preferred embodiment 2 of the optical sheet of the present invention. Figure 7 is a schematic cross-sectional view showing a preferred embodiment 3 of the optical sheet of the present invention. Figure 8 is a schematic cross-sectional view showing a preferred embodiment 4 of the optical sheet of the present invention. [Main component symbol description] (Invention) 15 1327668

背光模組 反射板 光學板 透明基板 連接面 出光面 點狀凹槽 擴散層 透明樹脂基材 第一散射粒子 第二散射粒子 螢光粉粒子 光源 球面微稜鏡 習知) 背光模組 反射板 稜鏡片 擴散片 油墨層 透明基片 擴散板 光源 30 31 32 ' 40 ' 50 ' 60 321 ' 421、521 3211 3213 、 4213 3215 、 6215 、 7215 322 ' 422 3221 3223 3225 3227 35 423 、 523 10 11 12 13 131 132 14 15 16Backlight module reflector plate optical plate transparent substrate connection surface light surface dot groove diffusion layer transparent resin substrate first scattering particle second scattering particle fluorescent powder particle source spherical micro-small knowledge) backlight module reflector plate Diffuser ink layer transparent substrate diffuser light source 30 31 32 ' 40 ' 50 ' 60 321 ' 421, 521 3211 3213 , 4213 3215 , 6215 , 7215 322 ' 422 3221 3223 3225 3227 35 423 , 523 10 11 12 13 131 132 14 15 16

Claims (1)

十、申請專利範圍 種光學板’其包括-透明基板及—擴散層,該透明基板 包括一出光面以及一與該出光面相對之連接面,其改良在 於·該透明基板於該連接面形成有複數點狀凹槽,該擴散 層附著於該連接面並填充該複數點狀凹槽。 2·如申請專利範圍第!項所述之光學板,其中該複數點狀凹 槽呈陣列排佈’每一點狀凹槽之軸中心具有最大之深度且 其深度由中部向四周之相應逐漸減小。 3·如申睛專利範®第2項所述之光學板,其巾每—點狀凹槽 經過其中心軸之斷面爲三角形、梯形和部分圓形中至少一 種。 4·如申請專利範圍第}項所述之光學板,其中該擴散層包括 有透明樹脂基材,以及摻雜於該透明樹脂基材之第一散射 粒子以及第二散射粒子,其中第二散射粒子之折射率比第 —散射粒子之折射率大。 5 ·如申明專利範圍第4項所述之光學板,其中該透明樹脂基 材之重量百分含量爲5%至90%,該第一散射粒子與第二 散射粒子之重量百分含量之和爲10%至95%,該第一散射 粒子與第二散射粒子重量百分含量之比爲5至1〇〇。 6. 如申請專利範圍第4項所述之光學板,其中該第一散射粒 子之折射率爲1.4至1.7,該第二散射粒子之折射率爲大 於等於2.0。 7. 如申請專利範圍第4項所述之光學板,其中該第一散射粒 子爲聚苯乙烯顆粒、聚碳酸醋顆粒、苯乙稀_丙稀腈共聚s] 17 1327668 _ , 1件誦>^日修正替換頁 物顆粒、聚丙烯顆粒、二氧化矽顆粒、聚曱基丙烯酸曱酯 顆粒、玻璃微珠或石英粉顆粒中之一種或一種以上之混合 ' 物。 .8.如申請專利範圍第4項所述之光學板,其中該第二散射粒 子爲二氧化鈦顆粒、硫酸鋇顆粒、硫化鋅顆粒、氧化鋅顆 粒、氧化銻顆粒或碳酸鈣顆粒中之一種或一種以上之混合 物。 9. 如申請專利範圍第4項所述之光學板,其中該擴散層還包 括複數分散摻雜於該透明樹脂基材之螢光粉粒子。 10. 如申請專利範圍第9項所述之光學板,其中該複數螢光粉 粒子於擴散層中之重量百分比爲第一散射粒子於擴散層 中之重量百分比之0.1%以下。 11. 如申請專利範圍第1項所述之光學板,其中該透明基板還 包括複數形成於該透明基板出光面之微棱鏡結構,該微稜 鏡結構陣列排佈。 12. 如申請專利範圍第11項所述之光學板,其中該微稜鏡結 構包括球面微稜鏡和V型稜柱。 • 13.—背光模組,其包括一反射板、複數光源及一光學板,該 - 反射板與該光學板相對設置,該光學板包括一透明基板及 一擴散層,該透明基板包括一出光面以及一與該出光面相 對之連接面,其改良在於:該透明基板於該連接面形成有 複數點狀凹槽,該擴散層附著於該連接面並填充該複數點 狀凹槽,該複數點光源設置於該反射板並朝向該光學板, 該複數點光源分別與該複數點狀凹槽相對應。 [S 1 18 1327668 中日修正替換頁 14. 如申請專利範圍第13項所述之背光模組,其中該複數點 狀凹槽呈陣列排佈,每一點狀凹槽之轴中心具有最大之深 度且其深度由中部向四周之相應逐漸減小。 15. 如申請專利範圍第14項所述之背光模組,其中每一點狀 凹槽經過其中心軸之斷面爲三角形、梯形和部分圓形中至 少一種。 16. 如申請專利範圍第13項所述之背光模組,其中該擴散層 包括有透明樹脂基材,以及摻雜於該透明樹脂基材之第一 散射粒子以及第二散射粒子,其中第二散射粒子之折射率 比第一散射粒子之折射率大。 17. 如申請專利範圍第16項所述之背光模組,其中該透明樹 脂基材之重量百分含量爲5%至90%,該第一散射粒子與 第二散射粒子之重量百分含量之和爲10%至95%,該第一 散射粒子與第二散射粒子重量百分含量之比爲5至100。 18. 如申請專利範圍第16項所述之背光模組,其中該第一散 射粒子之折射率爲1.4至1.7,該第二散射粒子之折射率 爲大於等於2.0。 19. 如申請專利範圍第16項所述之背光模組,其中該擴散層 還包括複數分散摻雜於該透明樹脂基材之螢光粉粒子。 20. 如申請專利範圍第19項所述之背光模組,其中該透明基 板還包括複數形成於該透明基板出光面之微棱鏡結構,該 微棱鏡結構陣列排佈。 t 19An optical plate of the patent application scope includes a transparent substrate and a diffusion layer, the transparent substrate comprising a light emitting surface and a connecting surface opposite to the light emitting surface, wherein the transparent substrate is formed on the connecting surface a plurality of dot-like grooves, the diffusion layer being attached to the connection face and filling the plurality of dot-shaped grooves. 2. If you apply for a patent range! The optical plate of the item, wherein the plurality of dot-like recesses are arranged in an array. The center of the axis of each of the dot-shaped grooves has a maximum depth and the depth thereof gradually decreases from the central portion to the periphery. 3. The optical sheet of claim 2, wherein the towel has a cross-section of the central axis through at least one of a triangular shape, a trapezoidal shape and a partial circular shape. 4. The optical sheet of claim 1, wherein the diffusion layer comprises a transparent resin substrate, and first scattering particles and second scattering particles doped to the transparent resin substrate, wherein the second scattering The refractive index of the particles is larger than the refractive index of the first scattering particles. 5. The optical sheet of claim 4, wherein the transparent resin substrate has a weight percentage of 5% to 90%, and the sum of the weight percentages of the first scattering particles and the second scattering particles The ratio of the first scattering particles to the second scattering particles is from 5 to 1% by weight of from 10% to 95%. 6. The optical sheet of claim 4, wherein the first scattering particles have a refractive index of 1.4 to 1.7, and the second scattering particles have a refractive index greater than or equal to 2.0. 7. The optical sheet of claim 4, wherein the first scattering particles are polystyrene particles, polycarbonate particles, styrene-acrylonitrile copolymerization s] 17 1327668 _ , 1 piece 诵 &gt The correction of the replacement of one or more of the granules of the sheet, the polypropylene granules, the cerium oxide particles, the polydecyl methacrylate granules, the glass microbeads or the quartz powder particles. The optical sheet of claim 4, wherein the second scattering particles are one or a type of titanium dioxide particles, barium sulfate particles, zinc sulfide particles, zinc oxide particles, cerium oxide particles or calcium carbonate particles. The above mixture. 9. The optical sheet of claim 4, wherein the diffusion layer further comprises a plurality of phosphor particles dispersed in the transparent resin substrate. 10. The optical sheet of claim 9, wherein the weight percentage of the plurality of phosphor particles in the diffusion layer is 0.1% or less of the weight percentage of the first scattering particles in the diffusion layer. 11. The optical sheet of claim 1, wherein the transparent substrate further comprises a plurality of microprism structures formed on the light exit surface of the transparent substrate, the microprism structure array being arranged. 12. The optical sheet of claim 11, wherein the micro-twist structure comprises a spherical micro-turn and a V-shaped prism. 13. A backlight module comprising a reflector, a plurality of light sources and an optical plate, the reflector being disposed opposite the optical plate, the optical plate comprising a transparent substrate and a diffusion layer, the transparent substrate comprising a light output And a surface of the connecting surface opposite to the light emitting surface, wherein the transparent substrate is formed with a plurality of dot-shaped grooves on the connecting surface, and the diffusion layer is attached to the connecting surface and fills the plurality of dot-shaped grooves, the plurality A point light source is disposed on the reflective plate and faces the optical plate, and the plurality of point light sources respectively correspond to the plurality of dot shaped grooves. The backlight module of claim 13, wherein the plurality of dot-shaped grooves are arranged in an array, and the center of each of the dot-shaped grooves has a maximum depth And its depth gradually decreases from the middle to the periphery. 15. The backlight module of claim 14, wherein each of the dot-shaped grooves has at least one of a triangular shape, a trapezoidal shape and a partial circular shape through a central axis thereof. 16. The backlight module of claim 13, wherein the diffusion layer comprises a transparent resin substrate, and first scattering particles and second scattering particles doped on the transparent resin substrate, wherein the second The refractive index of the scattering particles is larger than the refractive index of the first scattering particles. 17. The backlight module of claim 16, wherein the transparent resin substrate has a weight percentage of 5% to 90%, and the weight percentage of the first scattering particles and the second scattering particles is The sum is from 10% to 95%, and the ratio of the first scattering particles to the second scattering particles is from 5 to 100. 18. The backlight module of claim 16, wherein the first scattering particles have a refractive index of 1.4 to 1.7, and the second scattering particles have a refractive index of 2.0 or more. 19. The backlight module of claim 16, wherein the diffusion layer further comprises a plurality of phosphor particles dispersed in the transparent resin substrate. The backlight module of claim 19, wherein the transparent substrate further comprises a plurality of microprism structures formed on the light emitting surface of the transparent substrate, the microprism structure being arranged in an array. t 19
TW95130441A 2006-08-18 2006-08-18 Optical plate and backlight module using the same TWI327668B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95130441A TWI327668B (en) 2006-08-18 2006-08-18 Optical plate and backlight module using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95130441A TWI327668B (en) 2006-08-18 2006-08-18 Optical plate and backlight module using the same

Publications (2)

Publication Number Publication Date
TW200811532A TW200811532A (en) 2008-03-01
TWI327668B true TWI327668B (en) 2010-07-21

Family

ID=44767743

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95130441A TWI327668B (en) 2006-08-18 2006-08-18 Optical plate and backlight module using the same

Country Status (1)

Country Link
TW (1) TWI327668B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI484274B (en) * 2011-05-03 2015-05-11 Ultra - thin front light module

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI412793B (en) * 2010-05-26 2013-10-21 Au Optronics Corp Optical film and backlight module and display device including the same
TWI448642B (en) * 2011-07-25 2014-08-11 Hon Hai Prec Ind Co Ltd Led light source
CN112542102B (en) * 2020-12-22 2023-07-14 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Backlight module and preparation method thereof
CN113467129B (en) * 2021-06-30 2023-09-26 纳晶科技股份有限公司 Optical plate and display device comprising same
TWI806744B (en) * 2022-08-19 2023-06-21 友達光電股份有限公司 Light source module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI484274B (en) * 2011-05-03 2015-05-11 Ultra - thin front light module

Also Published As

Publication number Publication date
TW200811532A (en) 2008-03-01

Similar Documents

Publication Publication Date Title
CN101122703B (en) Optical board and the backlight module using same
CN101122704B (en) Optical board and the backlight module using same
US7611262B2 (en) Optical plate with light diffusion layer and backlight module using the same
US7553058B2 (en) Optical plate and method for manufacturing same and backlight module using same
JP4789175B2 (en) Surface light source device and display device
TWI273292B (en) Light guide plate and backlight system using the same
TWI327668B (en) Optical plate and backlight module using the same
KR100974078B1 (en) Diffuser plate comprising optical sheet having optical member and optical sheet having bead particles
TWI255356B (en) Light guide plate and plane light source using the same
TW200944840A (en) A compound type diffuser plate structure, backlight module, and liquid crystal display
TW200813556A (en) Optical multilayer film and backlight module utilizing the same
JP2004046076A (en) Optical deflecting element and surface light source unit
JP2010097034A (en) Microlens sheet and back light unit display using the same
TWI327670B (en) Optical plate and backlight module using the same
JP6167786B2 (en) Image source unit and liquid crystal display device
KR100947236B1 (en) Diffuser plate having reflection part and bead particles
TW200811533A (en) Backlight module and its optical plate
KR100978318B1 (en) Prism sheet for small backlight unit
TWI283305B (en) A backlight module and a light guide plate thereof
TWI329227B (en) Optical plate and backlight module using the same
TW200825541A (en) Optical plate
JP6544198B2 (en) Surface light source device, image source unit
TW200825559A (en) Optical plate
TW200825569A (en) Optical plate
TW200825534A (en) Optical plate

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees