TWI327250B - Electrochromic structure and manufacture method thereof - Google Patents

Electrochromic structure and manufacture method thereof Download PDF

Info

Publication number
TWI327250B
TWI327250B TW095123922A TW95123922A TWI327250B TW I327250 B TWI327250 B TW I327250B TW 095123922 A TW095123922 A TW 095123922A TW 95123922 A TW95123922 A TW 95123922A TW I327250 B TWI327250 B TW I327250B
Authority
TW
Taiwan
Prior art keywords
electrochromic
electrolyte
layer
transparent conductive
conductive substrate
Prior art date
Application number
TW095123922A
Other languages
Chinese (zh)
Other versions
TW200801759A (en
Inventor
Fu Rong Chen
Ji Jung Kai
Keng Che Cheng
Chia Ching Liao
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW095123922A priority Critical patent/TWI327250B/en
Publication of TW200801759A publication Critical patent/TW200801759A/en
Application granted granted Critical
Publication of TWI327250B publication Critical patent/TWI327250B/en

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

1327250 發明說明: 【發明所屬之技術領域】 [0001] 本發明是有關於一種電致色變元件,特別是有關於電致 色變元件之製造方法,其中電致色變層係由複數個奈米 電致色變單元所結合而成,用以在光學電致色變程序中 提供較大的反應表面面積及較快的反應速度。 【先前技術】 [0002] [0003] 電致色變(electrochromism)的概念已於1961提出,即 對電致色變材料施予外加電位時,其顏色會改變。例如 ,當電致色變元件被施予一可見光,實質上電致色變元 件會阻止某特定波長之光穿透,藉此,以防止過度的光 線穿過電致色變元件,可用以調節不同波長光之入射量 。傳統之電致色變元件包含一第一透明導電基材,一電 致色變層、一離子儲存層、一電解質層及一第二透明導 電基材。電解質層係配置於電致色變層及離子儲存層之 間,而電致色變層係用被施予一預設電位差,藉由上述 方式,使電致色變元件達成想要的之光學特性。 典型的第一透明導電基材及第二透明導電基材係由玻璃 所製造而成,但是在一些特殊的應用上亦利用塑膠材料 作為透明導電基材。電致色變層可以有機化合物實現, 如Viologen或Pyrodine,或是以無機化合物來實現, 例如無機過渡金屬化合物W0Q、M〇0。或。另一方面, ο 〇 Zb 電解質層可用一已添加鋰氯化物及高氣酸鹽之溶液。根 據電致色變元件不同光學特性,電致色變元件可應用作 為可調節室内陽光入射能量之智慧型窗戶(Smart win- 095123922 表單編號A0101 第3頁/共24頁 0993097385-0 [0004]1327250 dows)、汽車的反強光照後鏡(Anti_dazzUng Rear view Mirrors) '車内的天窗(Sun R〇〇fs)、靜態圓案 看板或數字顯示器(Static display Devices)等等。 然而,上述傳統之電致色變元件具有反應時間太長、壽 命不長及化學特性不穩定的缺點。而電致色變層及電解 質層之間不穩定的化學反應是導致電致色變元件反應時 間太長的主要原因。 [0005] 以技術面來看,電致色變元件之光學特性變化是藉由在 第一透明導電基材及第二透明導電基材之間施予一預設 電位差,陽離子自電解質層年入電致色變層已產生一 ·'-:· ^ ' .: . 定化學反應》因此,注入電致色變厚之陽離子之數量及1327250 DESCRIPTION OF THE INVENTION [Technical Field] [0001] The present invention relates to an electrochromic element, and more particularly to a method of manufacturing an electrochromic element, wherein the electrochromic layer is composed of a plurality of layers The rice electrochromic unit is combined to provide a larger reaction surface area and a faster reaction speed in the optical electrochromic process. [Prior Art] [0002] [0003] The concept of electrochromism has been proposed in 1961, that is, when an applied potential is applied to an electrochromic material, its color changes. For example, when an electrochromic element is applied with a visible light, substantially the electrochromic element blocks light of a particular wavelength from penetrating, thereby preventing excessive light from passing through the electrochromic element, which can be used to adjust The amount of light incident at different wavelengths. A conventional electrochromic device comprises a first transparent conductive substrate, an electrochromic layer, an ion storage layer, an electrolyte layer and a second transparent conductive substrate. The electrolyte layer is disposed between the electrochromic layer and the ion storage layer, and the electrochromic layer is applied with a predetermined potential difference, and the electrochromic element achieves the desired optics by the above manner. characteristic. A typical first transparent conductive substrate and a second transparent conductive substrate are made of glass, but plastic materials are also used as transparent conductive substrates in some special applications. The electrochromic layer can be realized by an organic compound such as Viologen or Pyrodine, or by an inorganic compound such as an inorganic transition metal compound W0Q, M〇0. or. On the other hand, the ο 〇 Zb electrolyte layer may be a solution to which lithium chloride and a high gas salt have been added. According to the different optical characteristics of the electrochromic element, the electrochromic element can be applied as a smart window that can adjust the indoor solar incident energy (Smart win- 095123922 Form No. A0101 Page 3 / Total 24 Page 0993097385-0 [0004] 1327250 Dows, Anti_dazzUng Rear view Mirrors 'Sun R〇〇fs, static round kanban or digital display devices, etc. However, the above conventional electrochromic element has a drawback that the reaction time is too long, the life is not long, and the chemical characteristics are unstable. The unstable chemical reaction between the electrochromic layer and the electrolyte layer is the main reason for the reaction time of the electrochromic element being too long. [0005] Technically, the optical characteristic change of the electrochromic element is performed by applying a predetermined potential difference between the first transparent conductive substrate and the second transparent conductive substrate, and the cation is electrically charged from the electrolyte layer. The color-changing layer has produced a '-:· ^ ' . . . . "Chemical reaction", therefore, the amount of cations injected into the electrochromic thickening

: ....Λ+W 分布狀況決定了電致色變層之光學特性之费礼。有鑑於 此,有人提出一些方法來克服上遠之缺點,例如曰本專 利案於1 976年公開第51-23110號,其揭露一種具有複數 個網孔(mesh)之電致色變層,藉此增加電致色變層及電 解質層之間的反應表面面積,以加快反應速率。此外, 美國專利於2001年公開案辑y 301,〇38提出一種塗上二 氧化鈦(Titanium oxide, Ti〇2)之電致色變層,在電致 色變層上形成複數個孔洞,藉此增加反應表面面積。而 2003年日本學者Kazuyuki等人利用AA0多孔性模版以電 鍍方式將w〇3製備成多孔性結構,其具有高度規則排列之 多孔性氧化鶴,其孔徑約為38至65nm,藉此增加電致色 變程序之效率及效果。然而,當孔徑越小,而越難準確 地形成此孔徑,亦難大量製造《而且,為了形成小尺寸 的孔控,需要昂貴的機器設備,此大大地增加製作成本 095123922 表單編號A0101 第4頁/共24頁 0993097385-0 1327250 以及限制了電致色變元件應用領域。 [0006] 有鑑於習知技藝之各項問題,為了能夠兼顧解決之,本 發明人基於多年從事電致色變技術之研究開發與諸多實 務經驗,提出一種電致色變元件及其製造方法,以作為 改善上述缺點之實現方式與依據。 【發明内容】 [0007] 有鏗於此,本發明之目的就是在提供一種電致色變元件 之製造方法,其中電致色變元件之電致色變層係由複數 個奈米電致色變單元所組成,且將奈米電致色變單元結 合,藉此在一光學電致色變程序♦提供一較大之反應表 面積。 [0008] 此外,本發明更提出一種電致色變元件之製造方法,此 方法比上述有關電致色變元件之習知技藝更簡單且實質 上更有效率。 [0009] 再者,本發明更提出一種電致色變元件,當此電致色變 元件被施予一預設電位差時,其光學特性便隨之變化, 藉此以達成某特定應用,如用以減少一預設範圍内之波 長之電磁波之數量,以減少特定顏色之可見光之數量。 [0010] 此外,本發明更提出一種電致色變元件,其包含一具有 複數個奈米電致色變單元之電致色變層,奈米電致色變 單元以一預設方法配置,藉此在光學電致色變程序中提 供一較大之反應表面積。 [0011] 因此,為了達成上述之目的,本發明提供一種電致色變 元件之製造方法,其包含下列步驟: 095123922 表單編號A0101 第5頁/共24頁 0993097385-0 1327250 [0012] (a)於一透明導電基材上配置複數個奈米電致色變單元 ,其中些奈米電致色變單元係結合,於透明導電基材上 形成一電致色變層,藉此以定義出電致色變層之一反應 表面; [0013] (b)塗佈一電解質於電致色變層上; [0014] (c)電解此電解質,使電解質中之離子透過反應表面進 入電致色變層,藉此,以改變此電致色變層之光學特性 〇 [0015] 此外,本發明更提出一種電致色變元件,其包含一第一 透明導電基材、一第二透明.導電基材、一電致色變層及 電解質。電致色變層係配置於第一透明導電基材及第二 透明導電基材之間,其中電致色變層包含複數個奈米電 致色變單元,此些奈米電致色變單元係結合以形成電致 色變層之一反應表面。電解質係塗佈於電致色變層上, 其中,當透明導電基材被施予一預設電位差時,則此電 解質中之離子可透過反應表面進入電滋:色變層,以改變 電致色變層之光學特性。 [0016] 茲為使貴審查委員對本發明之技術特徵及所達到之功效 有更進一步之瞭解與認識,謹佐以較佳之實施例及配合 詳細之說明如後。 【實施方式】 [0017] 以下將參照相關圖式,說明依本發明較佳實施例之電致 色變元件及其製造方法,為使便於理解,下述實施例中 之相同元件係以相同之符號標示來說明。 095123922 表單編號A0101 第6頁/共24頁 0 1327250 [0018] 請參閱第1圖,其係為本發明之電致色變元件之製造方法 之較佳實施例之步驟流程圖。圖中,此方法包含下列步 驟: [0019] 步驟(a)於一透明導電基材上配置複數個奈米電致色變 單元,其中些奈米電致色變單元係結合,於透明導電基 材上形成一電蘇色變層,藉此以定義出電致色變層之一 反應表面; [0020] 步驟(b)塗佈一電解質於電致色變層上; [0021] 步驟(c)電解此電解質,使電解質中之離子透過反應表 面進入電致色變層,藉此,以改變此奈米電致色變層之 光學特性。 [0022] 上述步驟(b)更包含下列步驟: [0023] (b. 1)於透明導電基材之外圍塗佈一絕緣層,致使電致色 變層被包圍於絕緣層内,其中此絕緣層具有一電解質開 口,此電解質開口連接於電致色變層及透明導電基材之 # 外部; [0024] (b. 2)透過此電解質開口注入電解質於透明導電基材之 電致色變層上; [0025] (b. 3)使用一封裝材料封裝此電解質開口,以將電解質 包圍在電致色變層及絕緣層之間。 [0026] 此外,步驟(b)可進一步取代為下列步驟:(b. 1)於透 明導電基材上塗佈一絕緣層,致使電致色變層被包圍於 絕緣層内;(b. 2)將電解質塗敷於電致色變層上;以及 095123922 表單編號 A0101 第 7 頁/共 24 頁 0993097385-0 1327250 (b.3)將該電解質包圍在該電致色變層及該絕緣層之間 〇 [0027] 請參閱第2圖,其係為第一圖中所述之步驟(a)所包含之 步驟流程圖。圖中,此方法包含下列步驟: [0028] 步驟(a.1)將此些電致色變粉末配置於一氣室(gas chamber)之高溫區域,且將此透明導電基材配置於氣室 之低溫區域,其中氣室係於一預設壓力下充滿一負載氣 體(carrying gas); [0029] 步驟(a. 2)於一高溫中加熱此些電致色變粉末一預設期間 ,致使此些電致色變粉末揮發,於透.明導電基材上以一 交織方式(i nterweav i ng manner)長成此些奈米電致色 變單元,藉此形成電致色變層,其反應表面係為此些奈 米電致色變單元之外表面面積。 [0030] 根據上述較佳實施例,電致色變層係形成於透明導電基 材上,其中,電致色變層包含複數個奈杀電致色變單元 ,且奈米電致色變單元係結合以定義出此電致色變層之 反應表面。 [0031] 根據上述較佳實施例,透明導電基材可以玻璃或透明塑 膠材料來實施,如具有透明光學特性之複合材料。且此 透明導電基材較佳的是以結合姻錫氧化物(indium tin oxide, Ir^O/Sn)或摻雜紹之氧化鋅(aluminum doped zinc oxide, ZnO:Al)或錫錄氧化物(Tin Antimony oxide, Sn〇2:Sb) 或摻雜氟之氧化錫 (fluorine doped tin oxide, Sn〇2:F)之玻璃來實 095123922 表單編號A0101 第8頁/共24頁 1327250 現。 [0032] 再者,當逸明導電基材被施予一預設電位差時,則電解 質中之離子可透過此反應表面進入此電致色變層,以改 變秦米電致色變層之光學特性。當透明導電基材之透明’ 導電部被施予一預設電位差時,電解質之陽離子透過此 反應表面進入此電致色變層。藉由改變奈米電致色變單 元之光學特性,致使整體電致色變元件之光學特性亦隨 之改變以符合特定應用。例如特定波長之光可被電致色 變層阻擒。 [0033] 上述透明導電部較佳的是以氧化銦錫(indium doped tin oxide, . ITO)滅鍵於透明導電部基材上所組成、以 用於電解程序。值得一提的是,透明導電部係形成電致 色變層之一電極端,用以將電解質之離子注入電致色變 層。 [0034] 在上述之步驟(a. 2)中,負載氣體較佳的是一預設數量之 氬氣(argon gas)、氬氧混合氣或氮氣(nitrogen gas)。請參閱第3圖,其係為本發明之電致色變層之微視 圖。圖中,複數個奈米電致色變單元係以交織方式形成 以定義其反應表面。而電致色變粉末較佳的是鎢氧化物 (tungsten oxide)、銦氧化物(molybdenum oxide) 、飢氧化物(vanadium oxide)或其他過渡金屬氧化物 所組成之組群中選出之材料所組成。請注意,上述負載 氣體在電致色變元件之製造方法中並非是必須因素,但 是此負載氣體在步驟(a. 3)中可提高電致色變層之長成效 果。 095123922 表單編號A0101 第9頁/共24頁 0993097385-0 1327250 [0035] 上述步驟(a)可藉由一熔爐來實施。請參閱第5圖,熔爐 包含一中央氣室(central gas chamber)81、兩個封蓋 (seal ing caps)82 ' —真空幫浦裝置87、一溫度計84 、一流量計85及一氣體儲存器83。封蓋82係配置於中央 氣室81之兩端,用以維持中央氣室81之溫度,溫度計84 配置於中央氣室81,用以測量中央氣室81之溫度。真空 幫浦裝置87係透過封蓋82及流量計85連接中央氣室81, 真空幫浦裝置87根據一氣體閥門86使中央氣室81維持一 真空狀態。氣體儲存器83用以儲存一負載氣體,其透過 另一封蓋82連接中央氣室81以輸入負載氣體至中央氣室 81。根據上述較佳實施例,步驟(a)可藉由中央氣室81實 施以形成一電致色變層,而此電致色變層藉由自電解質 注入陽離子來改變其光學特性。藉由刻意地改變光學特 性可實現不同之應用。 [0036] 此外,此氣室具有一高溫區域及一低溫區域。高溫區域 用以放置電致色變粉末,而低溫區域用以放置透明導電 基材。中央氣室81係於預設壓力下充滿負載氣體,以製 造電致色變層。值得一提的是,步驟(a. 3)中所提到的高 溫係為一溫度範圍,其範圍隨著所使用的透明導電基材 、負載氣體之組合或所使用之電致色變粉末而有所調整 。電致色變粉末配置於中央氣室81之高溫區域,其溫度 在攝氏600度與攝氏1 000度之間。而透明導電基材放置在 中央氣室81之低溫區域,其溫度在攝氏150度與攝氏650 度之間。 [0037] 上述之電解質可由過氯酸鋰(LiCIO,)溶於碳酸丙烯酯 4 095123922 表單編號A0101 第10頁/共24頁 0993097385-0 1327250 (propylene carbonate)所組成或由過氣酸裡溶於碳酸 丙烯酯再混合聚甲基丙烯酸曱酯(PMMA)所組成。較佳的 是溶於碳酸丙烯酯中之過氣酸鋰或聚二丙烯胺-2-甲基丙 石夤酸(poly 2-acrylaraid〇-2-methyl propane sulfonic acid, PAMSA),此電解質之陽離子於上述步 驟(c)中注入電致色變層。此外,電解質通常為一濃縮之 酸(H2S〇4,HC1)、酸與甘油(gloycerol)之混合液、高 氣酸裡(lithium perchlorate)溶液、聚全氟亞烧基續 酸(poly perfluoroalkylene sulfonic acid, NAFION)或固態電解質,如氧化物或氟化物。氧化物可 為二氧化鍅、二氧化铪或五氧化二钽(Zr〇9、Hf〇94 Ta2〇5),而氟化物可為氟化鈣、氟化鎂或氟化鈽(CaF2、 MgF2*CeF2)。 [0038] 於上述之步驟(c)中,其更包含透過透明導電基材施予一 電位差,以電解此電解質,致使電解質之陽離子透過反 應表面注入電致色變層,以改變光學特性,如特定波段 之電磁波之穿透率。上述絕緣材料較佳的是以玻璃或塑 膠材料所製成,而封裝材料較佳的是黏膠劑,如環氧化 物(epoxy)或石夕樹脂(silicone)。 [0039] 請參閱第4圖,圖中,電致色變元件係配置成一視窗結構 。兩個透明導電基材用以將電致色變層夾在中間,當透 明導電基材被施予一電位差時,電解質之陽離子透過反 應表面注入電致色變層,藉此以改變電致色變元件之光 學特性。換句話說,電致色變層夾於兩個透明導電基材 之間,而電解質夾於兩個電致色變層或一個電致色變層 095123922 表單编號A0101 第11頁/共24頁 0993097385-0 1327250 和離子儲存層之間,因此當透明導電基材被施予一電位 差時,電解質之陽離子可透過反應表面注入電致色變層 〇 [0040] 請參閱第6圖,其繪示電致色變層之另一實施例。圖中, 一透明導電基材被一反射導電體所取代,以利用反射導 電體反射光線。 [0041] 從上述討論可得知,增加反應表面面積可實質上增強電 致色變層與電解質之間的反應成效,而且,無需複雜手 段便可實現一經濟地電致色變元元件製造方法。 · [0042] 換句話說,本發明亦提供一種電致色變元件,其包含一 第一透明導電基材、一第二透阱導電基材、一電致色變 層及一電解質。此電致色變層配置於第一透明導電基材 · 及第二透明導電基材之間,且包含複數個奈米電致色變 - 單元,其相互結合以定義此電致色變層之反應表面。電 解質係塗佈於電致色變層上,當第一透明導電基材及第 二透明導電基材被施予一預設電位差時,則電解質中之 赢 離子可透過反應表面進入電致色變層,以改變此電致色 變層之光學特性。而此電致色變粉末及電解質係與上述 相同,故不再贅述。電致色變元件可進一步包含一絕緣 層,絕緣層係形成於電致色變層上,以將電解質封裝在 電致色變層及絕緣層之間。 [0043] 已上所述僅為舉例性,而非為限制性者。任何未脫離本 發明之精神與範疇,而對其進行之等效修改或變更,均 應包含於後附之申請專利範圍中。 095123922 表單編號A0101 第12頁/共24頁 0993097385-0 1327250 【圖式簡單說明】 [0044] 第1圖係為本發明之電致色變元件之製造方法之較佳實施 例之步驟流程圖; 第2圖係為本發明之電致色變元件之電致色變層形成方法 之較佳實施例之步驟流程圖; 第3圖係為本發明之電致色變元件之電致色變層之微視圖 » 第4圖係為本發明之電致色變元件之較佳實施例之示意圖 9 • 第5圖係為本發明之電致色變熔爐之較佳實施例之示意圖 ;以及 第6圖係為本發明之電致色變元件之另一較佳實施例之示 意圖。 【主要元件符號說明】 [0045] a〜b :步驟流程; a. 1 ~ a. 3 :步驟流程; 81 :中央氣室; • 82 :封蓋; 83 :氣體儲存器; 84 :溫度計; 85 :流量計; 86 :氣體閥門;以及 87 :真空幫浦裝置。 0993097385-0 095123922 表單編號A0101 第13頁/共24頁: ....Λ+W The distribution condition determines the optical characteristics of the electrochromic layer. In view of this, some methods have been proposed to overcome the shortcomings of the present invention. For example, Japanese Patent Laid-Open No. 51-23110, which is incorporated herein by reference, discloses a electrochromic layer having a plurality of meshes. This increases the reaction surface area between the electrochromic layer and the electrolyte layer to accelerate the reaction rate. In addition, U.S. Patent No. 301, 2001, discloses a electrochromic layer coated with titanium oxide (Titanium oxide, Ti〇2) to form a plurality of holes in the electrochromic layer, thereby increasing Reaction surface area. In 2003, Japanese scholar Kazuyuki et al. used the AA0 porous stencil to prepare w多孔3 into a porous structure by electroplating, which has a highly regularly arranged porous oxidized crane with a pore diameter of about 38 to 65 nm, thereby increasing electrolysis. The efficiency and effect of the color change program. However, as the aperture is smaller, it is more difficult to accurately form the aperture, and it is difficult to manufacture it in large quantities. Moreover, in order to form a small-sized aperture control, expensive equipment is required, which greatly increases the manufacturing cost 095123922. Form No. A0101 Page 4 / Total 24 pages 0993097385-0 1327250 and limited application areas of electrochromic components. [0006] In view of various problems of the prior art, in order to be able to solve the problem, the inventors have proposed an electrochromic element and a manufacturing method thereof based on research and development of electrochromic technology and many practical experiences for many years. In order to improve the above shortcomings, the implementation and basis. SUMMARY OF THE INVENTION [0007] In view of the above, an object of the present invention is to provide a method for fabricating an electrochromic device, wherein the electrochromic layer of the electrochromic device is made up of a plurality of nanoelectronic colors. The variable unit is composed of, and the nano electrochromic unit is combined, thereby providing a large reaction surface area in an optical electrochromic program. Further, the present invention further provides a method of fabricating an electrochromic element which is simpler and substantially more efficient than the above-described conventional techniques for electrochromic elements. Furthermore, the present invention further provides an electrochromic device. When the electrochromic device is applied with a predetermined potential difference, its optical characteristics are changed accordingly, thereby achieving a specific application, such as The number of electromagnetic waves used to reduce the wavelength within a predetermined range to reduce the amount of visible light of a particular color. [0010] In addition, the present invention further provides an electrochromic element comprising an electrochromic layer having a plurality of nano electrochromic elements, wherein the nano electrochromic unit is configured by a predetermined method. Thereby a larger reaction surface area is provided in the optical electrochromic procedure. [0011] Therefore, in order to achieve the above object, the present invention provides a method of manufacturing an electrochromic element comprising the following steps: 095123922 Form No. A0101 Page 5 / Total 24 Page 0993097385-0 1327250 [0012] (a) Configuring a plurality of nano-electrical color-changing units on a transparent conductive substrate, wherein the plurality of nano-electrically-induced color-changing units are combined to form an electrochromic layer on the transparent conductive substrate, thereby defining electricity [0013] (b) coating an electrolyte on the electrochromic layer; (c) electrolyzing the electrolyte to cause ions in the electrolyte to pass through the reaction surface to enter electrochromic a layer, thereby changing the optical characteristics of the electrochromic layer 〇 [0015] In addition, the present invention further provides an electrochromic element comprising a first transparent conductive substrate, a second transparent conductive substrate Materials, an electrochromic layer and electrolytes. The electrochromic layer is disposed between the first transparent conductive substrate and the second transparent conductive substrate, wherein the electrochromic layer comprises a plurality of nano electrochromic units, and the nano electrochromic units The combination is combined to form a reaction surface of one of the electrochromic layers. The electrolyte is coated on the electrochromic layer, wherein when the transparent conductive substrate is applied with a predetermined potential difference, the ions in the electrolyte can pass through the reaction surface to enter the electrochromic: color change layer to change the electrolysis Optical properties of the color change layer. [0016] For a better understanding and understanding of the technical features and the efficacies of the present invention, the preferred embodiments and the detailed description are as follows. [Embodiment] Hereinafter, an electrochromic element according to a preferred embodiment of the present invention and a method of manufacturing the same will be described with reference to the accompanying drawings. For ease of understanding, the same elements in the following embodiments are identical. Symbols are indicated to illustrate. 095123922 Form No. A0101 Page 6 of 24 0 1327250 [0018] Referring to Figure 1, there is shown a flow chart of a preferred embodiment of a method of fabricating an electrochromic element of the present invention. In the figure, the method comprises the following steps: [0019] Step (a) disposing a plurality of nano-electrochromic units on a transparent conductive substrate, wherein some of the nano-electrochromic units are bonded to the transparent conductive group Forming a tin color change layer on the material to define a reaction surface of the electrochromic layer; [0020] step (b) coating an electrolyte on the electrochromic layer; [0021] step (c Electrolyzing the electrolyte to cause ions in the electrolyte to pass through the reaction surface into the electrochromic layer, thereby changing the optical properties of the nanoelectrochromic layer. [0022] The above step (b) further comprises the following steps: [b23] (b. 1) coating an insulating layer on the periphery of the transparent conductive substrate, such that the electrochromic layer is surrounded by the insulating layer, wherein the insulating layer The layer has an electrolyte opening connected to the exterior of the electrochromic layer and the transparent conductive substrate; [0024] (b. 2) injecting an electrolyte into the electrochromic layer of the transparent conductive substrate through the electrolyte opening [0025] (b. 3) The electrolyte opening is encapsulated with a potting material to surround the electrolyte between the electrochromic layer and the insulating layer. [0026] In addition, step (b) may be further replaced by the following steps: (b. 1) coating an insulating layer on the transparent conductive substrate, such that the electrochromic layer is surrounded by the insulating layer; (b. 2 Applying an electrolyte to the electrochromic layer; and 095123922 Form No. A0101, page 7 of 24, 0993097385-0 1327250 (b.3) surrounding the electrolyte in the electrochromic layer and the insulating layer 〇 [0027] Please refer to FIG. 2, which is a flow chart of the steps included in the step (a) described in the first figure. In the figure, the method comprises the following steps: [0028] Step (a.1) disposing the electrochromic powder in a high temperature region of a gas chamber, and disposing the transparent conductive substrate in the gas chamber a low temperature region, wherein the gas chamber is filled with a carrying gas at a predetermined pressure; [0029] step (a. 2) heating the electrochromic powder at a high temperature for a predetermined period, thereby causing The electrochromic powder is volatilized, and is formed into a nano-electrical color changing unit on a transparent conductive substrate in an interlaced manner, thereby forming an electrochromic layer, and the reaction thereof The surface is the outer surface area of the nano-induced color-changing unit. [0030] According to the above preferred embodiment, the electrochromic layer is formed on the transparent conductive substrate, wherein the electrochromic layer comprises a plurality of nano-electrochromic units, and the nano-electrical color changing unit The combination is used to define the reaction surface of the electrochromic layer. [0031] According to the above preferred embodiment, the transparent conductive substrate can be implemented with a glass or a transparent plastic material, such as a composite material having transparent optical properties. And the transparent conductive substrate is preferably an indium tin oxide (IrOO/Sn) or a doped zinc oxide (ZnO: Al) or a tin oxide ( Tin Antimony oxide, Sn〇2:Sb) or fluorine doped tin oxide (Strontium doped tin oxide, Sn〇2:F) glass 095123922 Form No. A0101 Page 8 of 24 1327250 Now. [0032] Furthermore, when the enameled conductive substrate is subjected to a predetermined potential difference, ions in the electrolyte can enter the electrochromic layer through the reaction surface to change the optical properties of the Qin electrochromic layer. characteristic. When the transparent 'conducting portion of the transparent conductive substrate is applied with a predetermined potential difference, the cation of the electrolyte penetrates the reactive surface into the electrochromic layer. By altering the optical properties of the nano-induced color change unit, the optical properties of the overall electrochromic element are also altered to suit the particular application. For example, light of a specific wavelength can be blocked by an electrochromic layer. [0033] Preferably, the transparent conductive portion is composed of indium doped tin oxide (ITO) bonded to the transparent conductive portion substrate for use in an electrolysis process. It is worth mentioning that the transparent conductive portion forms one of the electrode ends of the electrochromic layer for injecting ions of the electrolyte into the electrochromic layer. [0034] In the above step (a. 2), the load gas is preferably a predetermined amount of argon gas, argon gas mixture or nitrogen gas. Please refer to Fig. 3, which is a micro-view of the electrochromic layer of the present invention. In the figure, a plurality of nano-electrochromic cells are formed in an interlaced manner to define their reaction surfaces. The electrochromic powder is preferably composed of selected materials selected from the group consisting of tungsten oxide, molybdenum oxide, vanadium oxide or other transition metal oxides. . Note that the above-mentioned load gas is not an essential factor in the method of manufacturing the electrochromic element, but the load gas can improve the long-term effect of the electrochromic layer in the step (a. 3). 095123922 Form No. A0101 Page 9 of 24 0993097385-0 1327250 [0035] The above step (a) can be carried out by a furnace. Referring to Figure 5, the furnace includes a central gas chamber 81, two sealing s caps 82' - a vacuum pumping device 87, a thermometer 84, a flow meter 85, and a gas reservoir. 83. The cover 82 is disposed at both ends of the central air chamber 81 for maintaining the temperature of the central air chamber 81. The thermometer 84 is disposed in the central air chamber 81 for measuring the temperature of the central air chamber 81. The vacuum pump unit 87 is connected to the central air chamber 81 through a cover 82 and a flow meter 85. The vacuum pump unit 87 maintains the central air chamber 81 in a vacuum state in accordance with a gas valve 86. The gas reservoir 83 is used to store a load gas which is connected to the central plenum 81 through another cover 82 to input the load gas to the central plenum 81. According to the preferred embodiment described above, step (a) can be carried out by central plenum 81 to form an electrochromic layer which changes its optical properties by injecting cations from the electrolyte. Different applications can be achieved by deliberately changing the optical properties. [0036] In addition, the gas chamber has a high temperature region and a low temperature region. The high temperature area is used to place the electrochromic powder, and the low temperature area is used to place the transparent conductive substrate. The central air chamber 81 is filled with a load gas at a preset pressure to produce an electrochromic layer. It is worth mentioning that the high temperature mentioned in the step (a. 3) is a temperature range ranging from the transparent conductive substrate used, the combination of the load gases or the electrochromic powder used. Some adjustments. The electrochromic powder is disposed in a high temperature region of the central gas chamber 81 at a temperature between 600 degrees Celsius and 1 000 degrees Celsius. The transparent conductive substrate is placed in a low temperature region of the central gas chamber 81 at a temperature between 150 degrees Celsius and 650 degrees Celsius. [0037] The above electrolyte may be composed of lithium perchlorate (LiCIO,) dissolved in propylene carbonate 4 095123922 Form No. A0101 Page 10 / Total 24 pages 0993097385-0 1327250 (propylene carbonate) or dissolved in peroxyacid The propylene carbonate is further mixed with polymethyl methacrylate (PMMA). Preferred is lithium peroxylate or poly-2-acrylaraid〇-2-methyl propane sulfonic acid (PAMSA) dissolved in propylene carbonate, the cation of the electrolyte An electrochromic layer is implanted in the above step (c). In addition, the electrolyte is usually a concentrated acid (H2S〇4, HCl), a mixture of acid and glycerol, a lithium perchlorate solution, or a polyperfluoroalkylene sulfonic acid. , NAFION) or a solid electrolyte such as an oxide or fluoride. The oxide may be ceria, ceria or bismuth pentoxide (Zr〇9, Hf〇94 Ta2〇5), and the fluoride may be calcium fluoride, magnesium fluoride or barium fluoride (CaF2, MgF2*) CeF2). [0038] In the above step (c), the method further comprises: applying a potential difference through the transparent conductive substrate to electrolyze the electrolyte, so that the cation of the electrolyte is injected into the electrochromic layer through the reaction surface to change optical properties, such as The penetration rate of electromagnetic waves in a specific band. The above insulating material is preferably made of a glass or a plastic material, and the encapsulating material is preferably an adhesive such as epoxy or silicone. [0039] Referring to FIG. 4, the electrochromic element is configured as a window structure. Two transparent conductive substrates are used to sandwich the electrochromic layer. When the transparent conductive substrate is subjected to a potential difference, the cation of the electrolyte is injected into the electrochromic layer through the reaction surface, thereby changing the electrochromic color. The optical properties of the variable components. In other words, the electrochromic layer is sandwiched between two transparent conductive substrates, and the electrolyte is sandwiched between two electrochromic layers or an electrochromic layer 095123922. Form No. A0101 Page 11 of 24 0993097385-0 1327250 and the ion storage layer, so when the transparent conductive substrate is applied with a potential difference, the cation of the electrolyte can be injected into the electrochromic layer through the reaction surface [0040] Please refer to Fig. 6, which is shown Another embodiment of an electrochromic layer. In the figure, a transparent conductive substrate is replaced by a reflective conductor to reflect light by means of a reflective conductor. [0041] As can be seen from the above discussion, increasing the reaction surface area can substantially enhance the reaction between the electrochromic layer and the electrolyte, and can realize an economical electrochromic element manufacturing method without complicated means. . [0042] In other words, the present invention also provides an electrochromic element comprising a first transparent conductive substrate, a second well conductive substrate, an electrochromic layer, and an electrolyte. The electrochromic layer is disposed between the first transparent conductive substrate and the second transparent conductive substrate, and includes a plurality of nano electrochromic-units, which are combined with each other to define the electrochromic layer Reaction surface. The electrolyte is coated on the electrochromic layer. When the first transparent conductive substrate and the second transparent conductive substrate are subjected to a predetermined potential difference, the winning ions in the electrolyte can pass through the reaction surface to enter the electrochromic change. a layer to change the optical properties of the electrochromic layer. The electrochromic powder and the electrolyte are the same as described above, and therefore will not be described again. The electrochromic element may further comprise an insulating layer formed on the electrochromic layer to encapsulate the electrolyte between the electrochromic layer and the insulating layer. [0043] The above description is by way of example only and not as a limitation. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims. 095123922 Form No. A0101 Page 12 of 24 0993097385-0 1327250 [Simplified Schematic] [0044] FIG. 1 is a flow chart showing the steps of a preferred embodiment of the method for manufacturing an electrochromic element of the present invention; 2 is a flow chart showing the steps of a preferred embodiment of the method for forming an electrochromic layer of the electrochromic device of the present invention; and FIG. 3 is an electrochromic layer of the electrochromic device of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 4 is a schematic view of a preferred embodiment of an electrochromic device of the present invention. FIG. 5 is a schematic view of a preferred embodiment of an electrochromic melting furnace of the present invention; The drawings are schematic views of another preferred embodiment of the electrochromic device of the present invention. [Description of main component symbols] [0045] a~b: step flow; a. 1 ~ a. 3: step flow; 81: central air chamber; • 82: cover; 83: gas reservoir; 84: thermometer; : flow meter; 86: gas valve; and 87: vacuum pump device. 0993097385-0 095123922 Form No. A0101 Page 13 of 24

Claims (1)

午月曰修(更)正本 七、申晴專利範圍: 1 · 種用於製造_電致色變亓杜令 . 牛之方法,包含下列步驟: ;透月導電基材上配置複數個奈米電致色變單元, 其中《奈米電致色變單元係結合,於該透明導電基材上 形成一電致色變層,以定義出該電致色變層之一反應表面 > (b)塗佈—電解質於該電致色變層上; (C)電解該電解f,使該電解質中之離子透過該反應表面 進入該電致色變層,藉此,以改變該電致色變層之光學特 性。 2 .如申請專利範圍第1項所述之方法,其中(a)步驟更包含 下列步驟: (a· 1)將一電致色變粉末配置於一氣室(gas chamber)之 高溫區域,且將該透明導電基材配置於該氣室之低溫區域 ,其中該氣室係於一預設壓力下充滿—負舞氣體; (a.2)於一高溫中加熱該電致色變粉束心預設期間,致使 該電致色變粉末揮發,以於該透明導電基材上一交織方式 (interweaving manner)長成(growing)該些奈米電致 色變單元’藉此,以形成該電致色變層,其反應表面係為 該些奈米電致色變單元之外表面面積。 3 .如申請專利範圍第2項所述之方法,其中(b)步驟更包含 下列步驟: (b. 1)於該透明導電基材上塗佈一絕緣層,致使該電致色 變層被包圍於該絕緣層内,其中該絕緣層具有一電解質開 口,該電解質開口連接該電致色變層及該透明導電基材之 095123922 表單編號A0101 第14頁/共24頁 0993097385-0 1327250 外部; (b. 2)透過該電解質開口注入該電解質於該電致色變層上 :以及 (b. 3 )封裝該電解質開口,以將該電解質包圍在該電致色 變層及該絕緣層之間。 4 .如申請專利範圍第2項所述之方法,其中(b)步驟更包含 下列步驟: (b. 1)於該透明導電基材上塗佈一絕緣層,致使該電致色 變層被包圍於該絕緣層内; (b. 2)將該電解質塗敷於該電致色變層上;以及 (b. 3)將該電解質包圍在該電致色變層及該絕緣層之間。 5 .如申請專利範圍第2項所述之方法,其中該電致色變粉末 係由自鎢氧化物(tungsten oxide)、銦氧化物 (molybdenum oxide)、鈒氧化物(vanadium oxide)及 其他過渡金屬氧化物所組成之組群中選出之材料所組成。 6 .如申請專利範圍第3項所述之方法,其中該電致色變粉末 係由自鎢氧化物、鉬氧化物、釩氧化物及其他過渡金屬氧 化物所組成之組群中選出之材料所組成。 7.如申請專利範圍第4項所述之方法,其中該電致色變粉末 係由自鎢氧化物、鉬氧化物、釩氧化物及其他過渡金屬氧 化物所組成之組群中選出之材料所組成。 8 .如申請專利範圍第1項所述之方法,其中該電解質係由過 氣酸裡(LiCIO,)溶於碳酸丙稀酯(propy lene 4 carbonate)所組成,或由過氣酸經(LiCl〇4)溶於碳酸丙 烯酯再混合聚曱基丙烯酸曱酯(PMMA)所組成。 9.如申請專利範圍第6項所述之方法,其中該電解質係由過 095123922 表單編號A0101 第15頁/共24頁 0993097385-0 1327250 氯酸鐘(LiCl〇4)溶於碳酸丙烯酯(pr〇pyiene carbonate)所組成,或由過氣酸鋰(Licl〇p溶於碳酸丙 稀酷再混合聚甲基丙烯酸甲酯(PMMA)所組成。 I 0 .如申請專利範圍第7項所述之方法,其中該電解質係由過 氯酸鐘(LiCl〇4)溶於碳酸丙烯酯(pr〇pyiene carbonate)所組成,或由過氯酸鋰(Licl〇4)溶於碳酸丙 烯酯再混合聚甲基丙烯酸甲酯(PMMA)所組成。 II . 一種電致色變元件,其包含: 一第一透明導電基材; 一第二透明導電基材; · 一電致色變層,係配置於該第一透明導電基材及該第二透 明導電基材之間,其中該電^色變層·包含複數個奈米電致 色變單元,該些奈米電致色變單元係結合以形成該電致色 變層之一反應表面;以及 一電解質,係塗佈於該電致色變層上; 其中,當該第一透明導電基材友該第土透明導電基材被施 予一預設電位差時,則該電無寶j中之離子可透過該反應表 面進入該電致色變層,以士變砝電致色變層之光學特性。 隹 12 ·如申請專利範圍第1丨項所述之電致色變元件,其中該電致 色變層係以下列步驟進行製造: (a· 1)將一電致色變粉末配置於一氣室之高溫區域,且將 該第一透明導電基材及該第二透明導電基材配置於該氣室 之低溫區域,其中該氣室係於一預設壓力下充滿一負載氣 體; (a.2)於一高溫中加熱該電致色變粉末一預設期間,致使 s亥電致色變粉末揮發,以於該第一透明導電基材及該第二 095123922 0993097385-0 表單編號A0101 第16頁/共24頁 1327250 透明導電基材上以一交織方式長成該些奈米電致色變單元 ,藉此,以形成該電致色變層,該反應表面係為該些奈米 電致色變單元之外表面區域。 13 ·如申請專利範圍第項所述之電致色變元件,其中該電致 色變粉末係由自鎢氧化物、鉬氧化物、釩氧化物、鈦氧化 物(titanium oxide)、鈮氧化物(niobium oxide)、 鈽氧化物(cerium oxide)、鈷氧化物(c〇balt oxide) 、鈕氧化物(tantalum oxide)、鉻氧化物(chromium oxide)、猛氧化物(manganese oxide)、鐵氧化物 (iron oxide)、釕氧化物(ruthenium oxide)、錢氧 化物(rhodium oxide)及銥氧化物(iridium oxide)所 組成之組群中選出之材料所組成。 14 ·如申請專利範圍第11項所述之電致色變元件,其中該電解 質係由過氣酸鐘(LiC 10)4溶於碳酸丙烯醋(propylene carbonate)所組成,或由過氣酸鋰(LiCl〇4)溶於碳酸丙 烯酯再混合聚甲基丙烯酸甲酯(PMMA)所組成。 15 .如申凊專利祀圍第12項所述之電致色變元件,其中該電解 質係由過氣酸链(LiClQ4)溶於礙酸丙稀醋(pr〇pyiene carbonate)所組成,或由過氣酸鋰(LiCl〇4)溶於碳酸丙 烯酯再混合聚曱基丙烯酸甲酯(PMMA)所組成。 16 .如申請專利範圍第11項所述之電致色變元件,其中該電致 色變元件更包含一絕緣層,將該電解質封裝在該電致色變 層及該絕緣層之間。 17 095123922 如申請專利範圍第12項所述之電致色變元件,其中該電致 色變元件更包含一絕緣層,該絕緣層係形成於該電致色變 層上,以將該電解質封裝在該電致色變層及該絕緣層之間 表單編號A0101 第丨7頁/共24頁 叫的丨 1327250 095123922 表單編號A0101 第18頁/共24頁 0993097385-0Noon repair (more) original seven, Shen Qing patent range: 1 · a variety of methods used in manufacturing _ electrochromic 亓 令 令 . 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛 牛a color changing unit, wherein "nano electrochromic unit is combined to form an electrochromic layer on the transparent conductive substrate to define a reaction surface of the electrochromic layer" (b) coating a cloth-electrolyte on the electrochromic layer; (C) electrolyzing the electrolysis f such that ions in the electrolyte penetrate the reaction surface into the electrochromic layer, thereby changing the electrochromic layer Optical properties. 2. The method of claim 1, wherein the step (a) further comprises the steps of: (a·1) disposing an electrochromic powder in a high temperature region of a gas chamber, and The transparent conductive substrate is disposed in a low temperature region of the gas chamber, wherein the gas chamber is filled with a negative pressure under a predetermined pressure; (a.2) heating the electrochromic powder core at a high temperature During the setting period, the electrochromic powder is caused to volatilize to grow the nano electrochromic unit in an interweaving manner on the transparent conductive substrate to thereby form the electro The color change layer has a reaction surface which is the outer surface area of the nano-electrochromic cells. 3. The method of claim 2, wherein the step (b) further comprises the step of: (b. 1) coating an insulating layer on the transparent conductive substrate such that the electrochromic layer is Enclosed in the insulating layer, wherein the insulating layer has an electrolyte opening, the electrolyte opening is connected to the electrochromic layer and the transparent conductive substrate of 095123922 Form No. A0101 Page 14 / Total 24 Page 0993097385-0 1327250 External; (b. 2) injecting the electrolyte onto the electrochromic layer through the electrolyte opening: and (b.3) encapsulating the electrolyte opening to surround the electrolyte between the electrochromic layer and the insulating layer . 4. The method of claim 2, wherein the step (b) further comprises the step of: (b. 1) coating an insulating layer on the transparent conductive substrate such that the electrochromic layer is Surrounding the insulating layer; (b. 2) applying the electrolyte to the electrochromic layer; and (b.3) surrounding the electrolyte between the electrochromic layer and the insulating layer. 5. The method of claim 2, wherein the electrochromic powder is derived from a tungsten oxide, a molybdenum oxide, a vanadium oxide, and the like. A material selected from the group consisting of metal oxides. 6. The method of claim 3, wherein the electrochromic powder is a material selected from the group consisting of tungsten oxide, molybdenum oxide, vanadium oxide, and other transition metal oxides. Composed of. 7. The method of claim 4, wherein the electrochromic powder is a material selected from the group consisting of tungsten oxide, molybdenum oxide, vanadium oxide, and other transition metal oxides. Composed of. 8. The method of claim 1, wherein the electrolyte consists of propic acid (LiCIO,) dissolved in propy lene 4 carbonate or by peroxyacid (LiCl) 〇 4) Dissolved in propylene carbonate and then mixed with decyl methacrylate (PMMA). 9. The method of claim 6, wherein the electrolyte is dissolved in propylene carbonate by 095123922 Form No. A0101 Page 15 / Page 24 0993097385-0 1327250 Chloric acid clock (LiCl〇4)组成pyiene carbonate), or consists of lithium percarbonate (Licl〇p is dissolved in propylene carbonate and remixed polymethyl methacrylate (PMMA). I 0. As described in claim 7 The method, wherein the electrolyte is composed of perchloric acid clock (LiCl〇4) dissolved in propylene carbonate (pr〇pyiene carbonate), or lithium perchlorate (Licl〇4) is dissolved in propylene carbonate and mixed with polymethylation Composition of methyl acrylate (PMMA) II. An electrochromic element comprising: a first transparent conductive substrate; a second transparent conductive substrate; · an electrochromic layer, configured Between the first transparent conductive substrate and the second transparent conductive substrate, wherein the electrochromic layer comprises a plurality of nano electrochromic cells, and the nano electrochromic cells are combined to form the a reaction surface of one of the electrochromic layers; and an electrolyte, a coating On the electrochromic layer; wherein when the first transparent conductive substrate is applied to the first transparent conductive substrate by a predetermined potential difference, the ions in the electroless j can pass through the reaction surface Entering the electrochromic layer to change the optical properties of the electrochromic layer. The electrochromic element according to the first aspect of the invention, wherein the electrochromic layer is below The steps are as follows: (a·1) disposing an electrochromic powder in a high temperature region of a gas chamber, and disposing the first transparent conductive substrate and the second transparent conductive substrate in a low temperature region of the gas chamber Wherein the gas chamber is filled with a load of gas at a predetermined pressure; (a.2) heating the electrochromic powder at a high temperature for a predetermined period of time, causing the sigma-induced color-changing powder to volatilize The first transparent conductive substrate and the second 095123922 0993097385-0 Form No. A0101 Page 16 / 24 pages 1327250 The transparent conductive substrate is grown into the nano-electrical color changing unit in an interlaced manner, whereby To form the electrochromic layer, the reaction surface is the nano The electrochromic element according to the above aspect of the invention, wherein the electrochromic powder is oxidized from tungsten oxide, molybdenum oxide, vanadium oxide, titanium Titanium oxide, niobium oxide, cerium oxide, c〇balt oxide, tantalum oxide, chromium oxide, violent oxidation A material selected from the group consisting of manganese oxide, iron oxide, ruthenium oxide, rhodium oxide, and iridium oxide. The electrochromic element according to claim 11, wherein the electrolyte is composed of a peroxy acid clock (LiC 10) 4 dissolved in propylene carbonate or lithium percarbonate. (LiCl〇4) is dissolved in propylene carbonate and mixed with polymethyl methacrylate (PMMA). The electrochromic element according to claim 12, wherein the electrolyte is composed of a peroxy acid chain (LiClQ4) dissolved in pr〇pyiene carbonate, or Lithium percarbonate (LiCl〇4) is dissolved in propylene carbonate and then mixed with polymethyl methacrylate (PMMA). The electrochromic element according to claim 11, wherein the electrochromic element further comprises an insulating layer encapsulating the electrolyte between the electrochromic layer and the insulating layer. The invention relates to an electrochromic element according to claim 12, wherein the electrochromic element further comprises an insulating layer formed on the electrochromic layer to encapsulate the electrolyte. Between the electrochromic layer and the insulating layer Form No. A0101 Page 7 of 24 丨 1327250 095123922 Form No. A0101 Page 18 / Total 24 Page 0993097385-0
TW095123922A 2006-06-30 2006-06-30 Electrochromic structure and manufacture method thereof TWI327250B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW095123922A TWI327250B (en) 2006-06-30 2006-06-30 Electrochromic structure and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095123922A TWI327250B (en) 2006-06-30 2006-06-30 Electrochromic structure and manufacture method thereof

Publications (2)

Publication Number Publication Date
TW200801759A TW200801759A (en) 2008-01-01
TWI327250B true TWI327250B (en) 2010-07-11

Family

ID=44765186

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095123922A TWI327250B (en) 2006-06-30 2006-06-30 Electrochromic structure and manufacture method thereof

Country Status (1)

Country Link
TW (1) TWI327250B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI386746B (en) * 2008-12-16 2013-02-21 Univ Cheng Shiu Electrochromic element and its making method
CN102191526B (en) * 2010-03-19 2013-07-10 盛贸科技股份有限公司 Preparation method of optical device
TW201222117A (en) 2010-11-26 2012-06-01 J Touch Corp Touch-controlled electrochromic device
CN112327555A (en) * 2020-11-20 2021-02-05 浙江工业大学 Electrochromic device, preparation method thereof and application of electrochromic device in intelligent window

Also Published As

Publication number Publication date
TW200801759A (en) 2008-01-01

Similar Documents

Publication Publication Date Title
Huang et al. Electrochromic materials based on ions insertion and extraction
JP7548815B2 (en) Photolysis of metal oxides for electrochromic devices.
US9778534B2 (en) Chromatic systems
JP4866100B2 (en) Electrochromic device and manufacturing method thereof
Ma et al. Smart sunglasses based on electrochromic polymers
Arash et al. Electrically activated UV-A filters based on electrochromic MoO3–x
Dong et al. Bifunctional MoO3–WO3/Ag/MoO3–WO3 films for efficient ITO–free electrochromic devices
Qiu et al. Electrochromism of nanocrystal-in-glass tungsten oxide thin films under various conduction cations
US8031389B2 (en) Reflection-controllable electrochromic device using a base metal as a transparent conductor
Zhang et al. Dual-band electrochromic devices with a transparent conductive capacitive charge-balancing anode
CN108254989B (en) All-solid-state electrochromic window, solid-state electrochromic mirror and preparation method of all-solid-state electrochromic window and solid-state electrochromic mirror
Wang et al. A Facile Strategy To Construct Au@ V x O2 x+ 1 Nanoflowers as a Multicolor Electrochromic Material for Adaptive Camouflage
EP3411868B1 (en) An electrochromic system and method for controlling photochromic darkening
Wu et al. Extraordinarily stable aqueous electrochromic battery based on Li4Ti5O12 and hybrid Al3+/Zn2+ electrolyte
Leftheriotis et al. “Partly covered” photoelectrochromic devices with enhanced coloration speed and efficiency
CN102736342A (en) Electrochromic device
CN203732850U (en) Specular-reflection electrochromism device
TWI327250B (en) Electrochromic structure and manufacture method thereof
Wang et al. Pseudocapacitive porous amorphous vanadium pentoxide with enhanced multicolored electrochromism
Götz et al. Switchable photocurrent generation in an ultrathin resonant cavity solar cell
Goei et al. Nd–Nb Co-doped SnO2/α-WO3 electrochromic materials: enhanced stability and switching properties
JP2017509813A (en) Active building windows
Xu et al. The Progress and Outlook of Multivalent‐Ion‐Based Electrochromism
Wang et al. Amorphous mixed-vanadium-tungsten oxide films as optically passive ion storage materials for solid-state near-infrared electrochromic devices
Pham et al. Long-term stability electrochromic electrodes based on porous tungsten trioxide and nickel oxide films via a facile triple pulse electrodeposition

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees