TWI326104B - Method and apparatus for generating a precursor for a semiconductor processing system - Google Patents

Method and apparatus for generating a precursor for a semiconductor processing system Download PDF

Info

Publication number
TWI326104B
TWI326104B TW93114980A TW93114980A TWI326104B TW I326104 B TWI326104 B TW I326104B TW 93114980 A TW93114980 A TW 93114980A TW 93114980 A TW93114980 A TW 93114980A TW I326104 B TWI326104 B TW I326104B
Authority
TW
Taiwan
Prior art keywords
gas
precursor material
group
airflow
zone
Prior art date
Application number
TW93114980A
Other languages
Chinese (zh)
Other versions
TW200504802A (en
Inventor
Ling Chen
Vincent W Ku
Hua Chung
Christophe Marcadal
Seshadri Ganguli
Jenny Lin
Dien Yeh Wu
Alan Ouye
Mei Chang
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/447,255 external-priority patent/US6905541B2/en
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200504802A publication Critical patent/TW200504802A/en
Application granted granted Critical
Publication of TWI326104B publication Critical patent/TWI326104B/en

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

1326104 六、發明說明: 【發明所屬之技術領域】 本發明係有關於沉積—阻障層在一半導體基材上。 【先前技術】 次微米及更小的特徵結構的可靠製造為下一世代半導 體兀件的極大型積體電路(VLSI)及超大型積體電路 (ULSI)的關鍵技術之—。然而,在vlsi及技術中 之内連線尺寸的變小已對於處理能力作出更大的要求。 此技術的核心所在之多層内連線結構需要對包括接點、 介層孔、接線及其它特徵結構(feature)在内的高深寬 比特徵結構加⑽麵處理。這些内連線特徵結構之可 靠的形成對於㈣及㈣成功及對於提高每一基材的 電路密度與品質的持續努力而言是非常地重要的。 當電路密度提高時’介層孔、接點及其它特徵結構的 寬度,以及介於它們之間的介電物質的寬度都會縮小到 次微米的尺度(如,小於約〇.2微米或更小),而在介電層 的厚度保持不薆下’該等特徵結構的深寬比,即深度除 以寬度’將會變大〇 4夕乂击 、 斗夕傳統的沉積處理在填滿深寬比 超過4 : 1的次微米結 疋有困難的,特別是對於深寬 比超過10: 1的特徵結構。 θ 再因此,目前有許多進行中的 努力是有關於形成無氣隙 …钱缝之具有向深寬比的次 3 微米特徵結構。 目剛,鋼及其合金已變成為次微米内連線技術的首選 金屬因為鋼具有比鋁低的電阻率(約1 7 # ω cm,相較於 18的約3.1 " Q _cm),及—較高的冑流載負能力及高很多 的電子遷移阻力。這些特性對於支援高集積度及高元件 速度時所遭遇到的電流密度而言是很重要的。又,銅具 有良好的導熱性且可以相當高的純度被獲得。 銅金屬化可用多種技術來達成。一種典型的方法包括 物理氣相沉積一阻障層於一特徵結構上,物理氣相沉積 銅種阳層於該阻障層上,然後電鍍一銅導電物質層於 該銅種晶層上用以填滿該特徵結構。最後,該等被沉積 的層及介電層被平坦化,如藉由化學機械研磨(cMp), 來界定一導電的内連線特徵結構。 然而,使用銅有一個問題’即鋼會擴散到矽,二氧化 石夕及其它介電材料中’而危及元件的完整。因此,保形 阻障層對於防止銅擴散而言變得愈來愈重要。氮化鈕已 被用來作為-轉材料用以防止銅擴散到底了的層中。 然而,使用在阻障層沉積中的化學物,如伍(二甲酿胺 组(PDMAT ; Ta[NH2(CH3)2]5)會包括雜質,其會造成在土製 造半導體元件時產生缺陷並降低良率。因此,對於能夠 從-高純度的前驅物沉積一阻障層的方法存在著需求。 1326104 【發明内容】 用於半導體 罐子其具有 具有一上區 本發明的實施例係有關於一種用來產生— 處理系統中之前驅物的設備。該設備包括— 一側壁,一頂部及一底部。該罐子界定出— 及一下區的内部空間。該設備進一步句括 _ .. ^ ^ 7巴栝一圍繞在該罐 子周圍的加熱器。該加熱器在該上區與下區之間產生一 溫度梯度。 【實施方式】 第1圖為一基材1 00的實施例的示意剖面圖,該基材 具有一介電層102及一被沉積在該介電層上的阻障層 104。根據該處理階段,該基材1〇〇可以是一矽半導體基 材’或其它已被形成在該基材上之物質層。該介電層1〇2 可以是氧化物、氧化矽、碳氧化矽、氟化矽、一多孔的 介電層或其它被形成圖案之適當的介電層,用以提供一 接點孔或介層孔102H其延伸至該基材1〇〇的一外露的表 面部分102T。為了清晰起見,基材1〇〇係指任何其上將 被實施薄膜處理的工件,及一基材結構15〇被用來表示 該基材100以及形成在該基材100上的其它物質層,如 介電層102。熟習此技藝者亦瞭解的是,本發明可被使 用在雙鑲嵌處理流程中。該阻障層丨〇4藉由原子層沉積 (ALD)而被形成在第ία圖的基材結構150上。最好是, 5 1326104 該阻障層包括一氮化钽層β 在一態樣中’一氮化鈕阻障層的原子層沉積包括依序 提供一含纽化合物及一含氮化合物至一處理室中。依序 提供一含μ化合物及一含氮化合物可獲得在該基材結構 150上被化學吸附作用之交替的一含鈕化合物與一含氮 化合物的單分子層(monolayer)。 第2A-2C圖顯示在一積體電路製造階段中,更明確地 是在一阻障層的形成階段中,在一舉例性的基材2〇0的 部分上被化學吸附作用之交替的一含钽化合物與一含氮 化合物的單分子層(m〇n〇layer)的另一實施例。在第2A 圖中’一含钽化合物的單分子層藉由將該含钽化合物205 的一個脈衝引入到一處理室中而被化學吸附至該基材 200 上。 該含鈕化合物205典型地包括钽原子210其具有一或 多個反應物種21 5。在一實施例中,該含钽化合物2〇5 為伍(二甲醯胺基)鈕(PDMAT ; Ta[NH2(CH3)2]5)。有數項 有利的理由使用PDMAT 。PDMAT相當穩定。此外, PDM AT具有一適當的蒸氣壓力,這讓它可被輕易地輸 送。詳言之,PDMAT可被製造成帶有低量的_化物。 PDMAT的鹵化物含量應以鹵化物含量少於i〇〇ppm的量 來製造。一般咸認’ 一帶有低鹵化物含量的有機金屬前 驅物是有利的,因為結合到阻障層中的鹵化物(如,氯) 6 1326104 會攻擊沉積在其上的銅層。 PDMAT在製造期間的熱分解會在PDMAT產品中製造 雜質’其被用來形成氮化組阻障層。該等雜質可包含諸 如 CH3NTa(N(CH3)2)3 及((CH3)2N)3Ta(NCH2CH3)的化合 物。此外,與濕氣的反應會在PDMAT產物中會形成鈕側 氧基醯胺(tantalum oxo amide)化合物。最好是,該等 组側氧基醯胺化合物可藉由昇華而從該PDMAT中被移 • . · . 除。例如,該等钽側氧基醯胺化合物在一起泡器中被移 除。該PDMAT產物最好是具有少於約5ppm的氣。此外, 鋰,鐵,氟,溴及碘的量應被最小化《最好是,雜質的 總量應小於約5ppm。 該含鈕化合物可以一氣體被提供或可在一載運氣體的 幫助下被提供。可被使用之載運氣體的例子包括,但不 侷限於,氦(He)、氬(Ar)'氮(n2)及氫(Η2)β 在該含鋁化合物的單分子層被化學吸附至基材2〇〇上 之後,過量的含鈕化合物可藉由導入一沖洗氣體至該處 理室中而從處理室中被移除。沖洗氣體的例子包括,但 不侷限於,氦(He)、氬(Ar)、氮(No、氫(η2)及其它氣體。 參照第2Β圖,在該處理室已被沖洗之後,一含氮化合 物225的脈衝被導入該處理室。該含氮化合物225可單 獨被提供或可在一載運氣體的幫助下被提供。該含氮化 合物225可包含具有—或多種反應物質235的氮原子 230。該含氮化合物最好是包括氨氣(Nh3) ^其它的含氮 化合物亦可被使用,其包括,但不侷限於,Nxiiy,其中 x及y為整數(如’肼(N2H4))、二甲基肼((ch3)2N2H2)、 第二丁基肼(C4H9N2H3)、苯基肼(C6H5N2h3)及其它肼衍生 物,一氮氣電漿源(如,N2、N2/H2、NH3或N2H4電漿), 偶氮異丁烷((CH3)6C2N2),疊氮乙烷(C2H5n3),及其 匕適當的氣體。如果有需要的話,可以一載送氣體來輸 送該含氮化合物。 一含氮化合物225的單分子層可被化學吸附作用至該 含鈕化合物205的單分子層上。在原子層沉積(ALD)期間 之該等在一表面上之前驅物的組成及結構並未被確實瞭 解。一般咸認,該被化學吸附作用之含氮化合物225該 含鈕化合物205的單分子層起反應,用以形成一氮化鈕 層。209該等反應物質215,235形成副產物24〇其藉由 真空系統從該基材表面被送走。 在該含氮化合物225的單分子層被化學吸附至該含鈕 化合物的單分子層上之後,任何過多的含氮化合物藉由 導入該沖洗氣體的另一脈衝即可從處理室中被移走。之 後’如第2C ®所示的’該含组化合物與含氮化合物被化 子吸附作用之乂替的單分子層(mQn(jlayer)的氮化組層沉 積程序可被重複,如果有需要的話,直到達到一所想要 的氮化鈕層厚度為止。 1326104 在第2A-2C圖中,該氮化鈕的構成被描述為以一在該 基材上之含组化合物的一單分子層的化學吸附作用作為 開始,其後接者一含氮化合物的單分子層。或者,該氮 化钽的構成被描述為以-在該基材上之含氮化合物的— 單分子層的化學吸附作用作為開始,其後接著一含钽化 合物的單分子層。又,在另—實施例中,在反應物氣體 的脈衝之間的一幫浦排空可被用來防止反應物氣體的混 合0 該含组化合物,該合氣/μ人1 氮化&物及該沖洗氣體的每一脈 衝的時間長度是變動的且與所 辨所便用的沉積室以及與其相 輕合的真空系統的體積容晋 谓各重有關。例如,(1)一氣體的低 至麼將會需要一較長的脈衝時 _時間,(2)—低氣體流率將需 要一較長的時將讓室壓力升高 Γ7·Μ•穩疋而要較長的脈衝時 間’(3) —大體積的室需要較Ε的拉Μ七成 罕乂長的時間來填滿且讓室穩定 亦需要較長的時間,因而雹 “ 需要較長的脈衝時間。相類似 地’介於每一脈衝之間的時 呷間亦疋變動的且與處理室以 及與其相柄合的真空系统的趙積容量有關。大截… 含"化合物或該含氮化合物的脈衝的持續時間應夠長而 足以將反應副產物及/或任 人饪仃留在戎氣理室內的 質移走。 大體上,對於含钽化合物 ^. . . Q *··、 .〇秒或更短及對於 3氮化合物而言約丨.0秒 更紐的脈衝時間典型地已足 1326104 夠將交替的單分子層化學吸附於一基材上。對於沖洗氣 體而S約1 .〇秒或更短的脈衝時間典型地已足夠移除反 應副產物以及任何留在該處理室内的殘留物, 一較長的脈衝時間可被用來確保該含钽化合物及該含氮 化合物的化學吸附作用,且可確保反應副產物的移除。 在原子層沉積期間,該基材可被保持在一被選定的含 钽化合物的熱分解溫度底下。將與本文中所述之含鈕化 * . ·· 合物一起使用之一舉例性的加熱器的溢度範圍在一小於 100托耳(t〇rr),更佳地為小於50托耳,的處理室壓力下 係介於約2(TC至約50(rc之間。當該含钽氣體為pDMAT 時’該加熱器溫度最好是介於約i 00。〇至約300。匸之間, 更佳的是介於175X:至約25CTC之間。在另一實施例中, 應被瞭解的是,其它的溫度亦可被使均。例如,一高於 該熱分解溫度的溫度亦可被使用。然而,該溫度應加以 選擇使得超過百分之五十的沉積活動為化學吸附處理。 在另一例子中,一高於熱分解溫度的溫度被使用,在該 溫度下於每一前驅物沉積期間的分解量被限制,使得其 生長模式將會與一原子層沉積的生長模式相類似。 藉由原子層沉積在一處理室中沉積一氮化鈕層的舉例 性的處理包括依序地在一介於約1〇〇^(^至1〇〇〇sccm, 最好是在約2〇〇Sccm至約500sccm,的流率下提供伍(二 曱醯胺基)钽(PDMAT)持續約丨〇秒或更少的時間及在 10 1326104 一介於約lOOsccm至l〇〇〇SCCm’最好是在約2〇〇sccm至 約500Sccm,的流率下提供沖洗氣體持續約i 〇秒或更少 的時間。該加熱器溫度最好是在室壓力介於約1〇至約 5.0托耳下被保持在約1〇〇。〇至約3〇〇它之間。此處理每 一循環都提供一厚度介於約〇·5埃至約1〇埃的氮化 組層。 第3圖為一處理系蜱320的一舉例性實施例的示意剖 面圖,該處理系統可被用來藉由依據本.發明的態樣之原 子層沉積來形成一或多層阻障層。當然,其它的處理系 統亦可被使用。 處理系統320大體上包括一處理室306其輕合至一氣 體輸送系統304。該處理室306可以是任何適當的處理 至,例如’可從設在美國加州Santa Clara市的Applied Materials公司購得者。舉例性的處理室包括pDS CENTURA®蝕刻室’ pr〇DUCER®化學氣相沉積室,及 ENDURA®物理氣相沉積室,等等。 該氣體輸送系統304大體上控制不同的處理氣體及鈍 氣被送至該處理室3 06時的流率及壓力。被送至該處理 至306的處理氣體及其它氣體的數量及種類大體上係根 據將在與該氣體輸送系統相麵合之該處理室306中實施 的處理來加以選擇。雖然為了簡化起見,一單一的氣體 輸送迴路被示於第3圖中的氣體輸送系統3〇4中,但應 11 1326104 被·瞭解的是,額外的氣體輸送迴路亦可被使用。 氣體輸送系統304大體上被耦合在一載運氣體源302 與該處理室306之間。該載運氣體源302可以是一本地 的或疋遠端的容器或一中央化的設施來源,其可供應 載運氣體給整個設施。該載運氣體源302典型地供應一 諸如氬’氮’氦或其它鈍態或非反應性氣體的載運氣體。 該氣體輸送系統304典型地包括一流量控制器310其 耗合在該載運氣體源3〇2與一處理氣體源罐子3〇〇之 間。該流量控制器3 10可以是一比例閥、調節閥、針閥、 調節器、質量流控制器或類此者》一種可被使用的流量 控制器310為可從設在美國加州的Monterey市的Sierra Instrument公司所購得者。 該來源罐子300典型地被耦合至且位在一第一閥312 及一第二閥3 14之間。在一實施例中,該第一及第二閥 312’314被耦令至該來源罐子3 〇〇且嵌設有斷開配件(未 不出)以便於閥312’ 314與該來源罐子3 00 —起從該氣 體輸送系統304上取下。一第三閥316被設置在該第二 閥314與該處理室306之間,用來防止在該來源罐子3〇〇 從該氣體輸送系統304上取下時污染物進入到該處理室 306 中。 第4A及4B圖顯示該來源罐子3〇〇的一實施例的剖面 圖。該來源罐子300大體上包含一小瓶子或其它具有一 12 1326104 外罩420之密封容器,其被設計來容納前驅物質414, 一處理氣體(或其它氣體)可經由對該前驅物質的昇華或 蒸發處理而獲得。某些可在該來源罐子300内經由一昇 華處理產生處理氣體之固態的前驅物質414包括二氟化 氙 '羰化鎳、六羰化鎢及伍(二甲醢胺基)鈕(PDMAT)等 等。某些可在該來源罐子300内經由一蒸發處理產生處 理氣體之固態的前驅物質414包括肆(二甲醯胺基)鈦 (TDMAT)、第三丁基亞胺基三(二乙醯胺基)鈕 (TBTDET),及伍(乙甲醯胺基)钽(pEMAT),等等。該外 罩430 —般是由對前驅物質414及其所產生的氣體為鈍 I、的物質製成,因此建構的材質會根據將被製造的氣體 而被改變。 外罩420可具有任何幾何形式。在第4A及4b圖所矛 的實施例t ’外罩420包含-圓筒形的側壁4()2及一肩 部二2其被一蓋子404所封閉。該蓋子404可藉由焊接, =合或其它方法被輕合至側壁402上。或者,介於側壁 402與蓋+ 404之間的結合具有設置在它們之間的一密 〇科,-塾圈,或類此者,用以防止來自於 =减罐子300的渗漏。或者,側壁4〇2可包含其它中 的歲何形式,例如,一中空的方形管。 子用^ 4Q8被設置成穿過該來源罐 谷許氣體流入及流出該來源罐子3〇〇。入口及出 13 1326104 口埠406,408可被設置成穿過該來源罐子3〇〇的蓋子 404及/或側壁402。入口及出口埠4〇6,408是可被密封 的用以在該來源罐子300從該氣體輸送系統3〇4上被取 下期間可讓該來源罐子300的内部與周圍的環境隔離開 來。在一實施例中,閥312, 314被密封地耦合至入口及 出口埠406 ’ 408用以在來源罐子3〇〇從該氣體輸送系統 304上被取下以進行前驅物質414的補充或來源罐3〇〇 的更換時(示於第3圖中)防止來自來源罐子3〇〇的滲 漏。匹配的斷開配件436A,436B可被耦合至閥312, 314 用以便於來源罐子300從該氣體輸送系統3〇4上取下及 更換。閥312,314典型地為球閥或其它正密封閥,其可 容許來源罐子300從該系統上被有效率地取下,同時可 將在填充,運輸,或耦合至該氣體輸送系統3〇4期間來 自於該來源罐子300的滲漏減至最小❶或者該來源罐 子300可經由-補充琿(未示出),像是—具有設置在該 來源罐子300的蓋子404上的VCR配件的小管子,來進 行補充。 該來源罐子3 00具有一内部體積438,其具有一上區 418及一下區434。該來源罐子3〇〇的下區434至少被填 充該前驅物質414。或者,一液體416可被添加至一固 體前驅物質4i4中以形成—漿體412。該前驅物質414、 液體416,或預混合的漿體412可藉由將該蓋子4〇4取 14 1326104 下或經由埠406,408之一者被導入到該來源罐子300 中。液體416被加以選擇使得液體為一不會與前驅物質 414起反應’前驅物質414不會溶解到該液體中,與前 驅物質比較起來該液體416具有一可忽視的蒸氣壓力, 及固體前驅物414(如六羰基化鎢)的蒸氣壓力對液體 416的蒸氣壓力的比大於1〇3。 與液體416混合的前驅物質414可被偶爾攪動用以讓 在該漿體412中的前驅物質414懸浮在液體416中。在 一實施例中,前驅物質414及液體416是被一磁性攪拌 器440攪動。該磁性攪拌器44〇包括一設置在該來源罐 子300的底部432底下的磁性馬達442及一磁性片 (pill)444其設置在該來源罐子3〇〇的下區434内。該磁 性馬達442的操作可將該磁性片444轉動於該來源罐子 3〇〇中’藉以混合漿體412。該磁性片444應具有一外塗 層’該外塗.層的材質為一不會與該前驅物質414、該液 體416或來源罐子300起反應的物質。適合的磁性混合 器可在市面上購得。適合的磁性混合器的一個例子為由 設在美國北卡羅萊那州Wilmington市的IKA® Works公 司所售之IKAMA® REO。或者,該漿體412可用其它方 式來攪動,如用一混合器,一起泡器,或類此者。 該液體416的攪動可導致液體416的液滴夾帶在該載 運氣體内並被载運朝向該處理室3 〇6。為了要防止這些 15 1326104 液體416的液滴到達處理室3〇6,一集油槽45〇可非必 要地被耦合至該來源罐子3〇〇的出口埠4〇8。該集油槽 450包括一本體452其包含複數個相互穿插的擋板扑4, 它們延伸超過該集油槽本體452的一中心線456且被彎 折至少稍微向下朝向該來源罐子300的角度。該等擋板 454追使流向該處理室3〇6的氣體流過環繞在擋板454 周圍之婉蜒的路徑。擋板454的表面積提供一曝露在該 流動的氣體下之大的表面積,使得搭載在該氣體中之油 滴可黏附在此大的表面積上。擋板454之向下的角度可 讓累積在該集油槽中的任何油滴向下流動並流回到該來 源罐子300中》 該來源罐子300包括至少一擋板41〇,其被設置在該 來源罐子300的上區418内。擋板410被設置在該入口 埠406與出口埠408之間,其可產生一延伸的平均流路 徑,藉以防止來自該入口埠406的載運氣體直接流至該 出口埠408。這具有增加該載運氣體在該來源罐子3〇〇 中的平均停留時間及提高該載運氣體所載運之前驅物氣 體破昇華或被蒸發的品質的效果。此外,該等擋板41〇 將載運氣體引導通過設置在該來源罐子3〇〇中之該前驅 物質414的整個曝露出來的表面,確保可重覆的氣體產 生特徵及該前驅物質414的有效消耗。 擋板410的數量,間隔及形狀可被選擇,用以將該來 16 1326104 源罐子300調整成可最佳地產生前驅物氣體。例如,一 較多數量的擋板410可被選取,用以施加較高的載運氣 體速度於該前驅物質414上,或擋板410的形狀可被建 構成能夠控制前驅物質414的消耗,以更有效率地使用 前驅物質。 擋板410可被裝附在側壁402或蓋子404上,或擋板 410可以是一預先製造的插入件,其被設計成可嵌設到 . · _ · * 該來源罐子300中。在一實施例中,被設置在來源罐子 300内的擋板410包含五個矩形的板子’其是用與側壁 402相同的材質製造的。參照第4B圖,擋板41〇被焊接 或用其它方式被固定到該側壁402上且彼此平行。擋板 410被相互交插地固定至該來源罐子3〇〇的相反側上, 藉以產生一蜿蜒的平均流路徑。又,當蓋子4〇4被放在 側壁402上時,擋板410係位在蓋子404上的入口埠406 與出口埠408之間且被設置成在擋板410與蓋子404之 間沒有空氣空間。擋板41〇額外地延伸至少部分地進入 到來源罐子300的下區434中,因而界定一延伸的平均 流路控’供載運氣體流經該上區4 1 8。 非必要地,一出口管子422可以被設置在該來源罐子 300的内部空間 438中。管子422的第一端424被耦合1326104 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a deposition-barrier layer on a semiconductor substrate. [Prior Art] The reliable fabrication of sub-micron and smaller features is the key technology for the very large integrated circuits (VLSI) and ultra-large integrated circuits (ULSI) of the next generation of semiconductor components. However, the smaller size of the interconnect within vlsi and technology has placed greater demands on processing power. The multi-layer interconnect structure at the heart of this technology requires (10) surface processing for high aspect ratio features including contacts, vias, wiring, and other features. The reliable formation of these interconnect features is very important for (4) and (iv) success and for ongoing efforts to increase the circuit density and quality of each substrate. As the circuit density increases, the width of the vias, contacts, and other features, as well as the width of the dielectric material between them, will shrink to sub-micron dimensions (eg, less than about 微米.2 microns or less). ), while the thickness of the dielectric layer remains intact, the aspect ratio of the features, ie the depth divided by the width, will become larger. The traditional deposition process of the sniper is filled with deep and wide. It is more difficult than submicron crusting of more than 4:1, especially for features with an aspect ratio of more than 10:1. θ Therefore, there are many ongoing efforts to create a sub-3 micron feature with an aspect ratio that is free of air gaps. As a result, steel and its alloys have become the metal of choice for sub-micron interconnect technology because steel has a lower resistivity than aluminum (about 17 7 ω cm, compared to about 3.1 " Q _cm for 18), and - Higher turbulence carrying capacity and much higher electron transfer resistance. These characteristics are important for the current density encountered in supporting high integration and high component speeds. Further, the copper has good thermal conductivity and can be obtained with a relatively high purity. Copper metallization can be achieved using a variety of techniques. A typical method includes physically vapor depositing a barrier layer on a feature structure, physically vapor depositing a copper seed layer on the barrier layer, and then plating a layer of a copper conductive material on the copper seed layer. Fill the feature structure. Finally, the deposited layers and dielectric layers are planarized, such as by chemical mechanical polishing (cMp), to define a conductive interconnect feature. However, the use of copper has a problem that steel will diffuse into the ruthenium, dioxide and other dielectric materials, jeopardizing the integrity of the component. Therefore, conformal barrier layers are becoming more and more important to prevent copper diffusion. The nitride button has been used as a -transfer material to prevent copper from diffusing into the underlying layer. However, chemicals used in the deposition of barrier layers, such as dimethylamine (PDMAT; Ta[NH2(CH3)2]5), may include impurities, which may cause defects in the fabrication of semiconductor components in the soil and The yield is lowered. Therefore, there is a need for a method capable of depositing a barrier layer from a high purity precursor. 1326104 [Invention] A semiconductor can having an upper region has an embodiment of the present invention. A device used to create a pre-existing device in a system. The device includes a side wall, a top portion and a bottom portion. The tank defines the interior space of the lower portion. The device further includes _ .. ^ ^ 7 bar A heater surrounding the can. The heater generates a temperature gradient between the upper and lower regions. [Embodiment] FIG. 1 is a schematic cross-sectional view of an embodiment of a substrate 100. The substrate has a dielectric layer 102 and a barrier layer 104 deposited on the dielectric layer. According to the processing stage, the substrate 1 can be a germanium semiconductor substrate or other has been formed thereon. a layer of material on the substrate. The electrical layer 1〇2 may be an oxide, hafnium oxide, tantalum carbon oxide, tantalum fluoride, a porous dielectric layer or other patterned dielectric layer to provide a contact hole or via. The hole 102H extends to an exposed surface portion 102T of the substrate 1. For the sake of clarity, the substrate 1 refers to any workpiece on which the film is to be processed, and a substrate structure 15 It is used to indicate the substrate 100 and other layers of material formed on the substrate 100, such as the dielectric layer 102. It is also apparent to those skilled in the art that the present invention can be used in a dual damascene process flow. The layer 4 is formed on the substrate structure 150 of the Figure by atomic layer deposition (ALD). Preferably, 5 1326104 the barrier layer comprises a tantalum nitride layer β in one aspect. The atomic layer deposition of the nitride button barrier layer comprises sequentially providing a germanium-containing compound and a nitrogen-containing compound into a processing chamber. A μ-containing compound and a nitrogen-containing compound are sequentially provided on the substrate structure 150. a single button compound and a nitrogen-containing compound that are chemically adsorbed The layer 2A-2C shows that in an integrated circuit fabrication stage, more specifically in the formation phase of a barrier layer, a portion of the substrate 2 〇 0 is chemically Another embodiment of the adsorption of an alternate monolayer containing a ruthenium compound and a nitrogen-containing compound. In Figure 2A, a monolayer of a ruthenium containing compound A pulse of ruthenium compound 205 is introduced into a processing chamber and chemically adsorbed onto the substrate 200. The button-containing compound 205 typically includes a ruthenium atom 210 having one or more reactive species 215. In one embodiment The ruthenium containing compound 〇5 is a dimethylamine (dimethylamino) button (PDMAT; Ta[NH2(CH3)2]5). There are several good reasons to use PDMAT. The PDMAT is quite stable. In addition, the PDM AT has an appropriate vapor pressure which allows it to be easily transported. In particular, PDMAT can be fabricated with a low amount of _ compound. The halide content of PDMAT should be made in an amount of less than i〇〇ppm of halide. It is generally advantageous to have an organometallic precursor with a low halide content because the halide (e.g., chlorine) 6 1326104 incorporated into the barrier layer attacks the copper layer deposited thereon. The thermal decomposition of PDMAT during fabrication creates impurities in PDMAT products that are used to form nitride layer barrier layers. These impurities may include compounds such as CH3NTa(N(CH3)2)3 and ((CH3)2N)3Ta(NCH2CH3). In addition, the reaction with moisture will form a tantalum oxo amide compound in the PDMAT product. Preferably, the group of pendant oxonium compounds can be removed from the PDMAT by sublimation. For example, the indole oxiranamine compounds are removed in a bubbler. Preferably, the PDMAT product has less than about 5 ppm gas. In addition, the amount of lithium, iron, fluorine, bromine and iodine should be minimized. Preferably, the total amount of impurities should be less than about 5 ppm. The button-containing compound can be supplied as a gas or can be supplied with the aid of a carrier gas. Examples of carrier gases that can be used include, but are not limited to, helium (He), argon (Ar) 'nitrogen (n2), and hydrogen (Η2) beta are chemically adsorbed to the substrate in the monolayer of the aluminum-containing compound. After 2 turns, excess button compound can be removed from the processing chamber by introducing a flushing gas into the processing chamber. Examples of flushing gases include, but are not limited to, helium (He), argon (Ar), nitrogen (No, hydrogen (η2), and other gases. Referring to Figure 2, after the processing chamber has been flushed, a nitrogen-containing A pulse of compound 225 is introduced into the processing chamber. The nitrogen-containing compound 225 may be provided separately or may be provided with the aid of a carrier gas. The nitrogen-containing compound 225 may comprise a nitrogen atom 230 having one or more reactive species 235. The nitrogen-containing compound preferably includes ammonia (Nh3) ^ other nitrogen-containing compounds may also be used, including, but not limited to, Nxiiy, wherein x and y are integers (eg '肼(N2H4)), two Methyl hydrazine ((ch3)2N2H2), second butyl hydrazine (C4H9N2H3), phenyl hydrazine (C6H5N2h3) and other hydrazine derivatives, a nitrogen plasma source (eg, N2, N2/H2, NH3 or N2H4 plasma) ), azo isobutane ((CH3)6C2N2), azide ethane (C2H5n3), and its appropriate gas. If necessary, a nitrogen-containing compound can be transported by a carrier gas. The monolayer of 225 can be chemisorbed to the single molecule of the button-containing compound 205 The composition and structure of the precursors on a surface during atomic layer deposition (ALD) are not well understood. Generally, the chemisorbed nitrogen-containing compound 225 contains the button compound 205. The monolayer acts to form a nitride button layer. 209 The reactants 215, 235 form a by-product 24 which is transported away from the surface of the substrate by a vacuum system. The monolayer of the nitrogen-containing compound 225 After being chemically adsorbed onto the monolayer of the button-containing compound, any excess nitrogen-containing compound can be removed from the processing chamber by another pulse introduced into the flushing gas. Thereafter, as shown in Section 2C® The nitriding layer deposition procedure of the mQn (jlayer) can be repeated, if necessary, until a desired nitrogen is reached. The thickness of the button layer is as follows: 1326104 In the 2A-2C diagram, the composition of the nitride button is described as starting with a chemisorption of a monolayer of the group-containing compound on the substrate, followed by Nitrogen The monolayer of the compound. Alternatively, the composition of the tantalum nitride is described as starting with the chemisorption of the monolayer of the nitrogen-containing compound on the substrate, followed by a single ruthenium-containing compound. Molecular layer. Further, in another embodiment, a pump evacuation between pulses of reactant gases can be used to prevent mixing of reactant gases. The group of compounds, the gas/μ human 1 nitrogen The length of time of each pulse of the & and the flushing gas is varied and is related to the volume of the deposition chamber to be used and the vacuum system to which it is lightly coupled. For example, (1) A low gas will require a longer pulse _ time, (2) - a low gas flow rate will take a longer time to increase the chamber pressure Γ 7 · Μ • steady and longer Pulse time '(3) - A large volume of chamber requires a relatively long time to fill up and it takes a long time to fill up and stabilize the chamber. It takes a long time and therefore requires a longer pulse time. Similarly, the time between each pulse varies and is related to the capacity of the processing chamber and the vacuum system of the shank. Large cuts... The duration of the pulse containing the compound or the nitrogen-containing compound should be long enough to remove the by-products of the reaction and/or any of the residues in the helium gas chamber. In general, the pulse time for a ruthenium containing compound ^. . . Q *··, .〇 second or shorter and for a nitrogen compound of about 丨.0 sec is typically sufficient for 1326104 to be an alternate single molecule. The layer is chemically adsorbed onto a substrate. For rinsing gases, a pulse time of about 1. leap seconds or less is typically sufficient to remove reaction by-products and any residue left in the processing chamber, a longer pulse time can be used to ensure the enthalpy The chemical adsorption of the compound and the nitrogen-containing compound ensures the removal of reaction by-products. The substrate can be maintained under the thermal decomposition temperature of the selected cerium-containing compound during atomic layer deposition. An exemplary heater for use with a buttoning compound described herein has an overflow range of less than 100 Torr, more preferably less than 50 Torr. The chamber pressure is between about 2 (TC to about 50 (rc. When the helium-containing gas is pDMAT), the heater temperature is preferably between about i 00. 〇 to about 300. More preferably, it is between 175X: and about 25 CTC. In another embodiment, it should be understood that other temperatures may be averaged. For example, a temperature higher than the thermal decomposition temperature may also be used. It is used. However, the temperature should be chosen such that more than fifty percent of the deposition activity is chemisorption. In another example, a temperature above the thermal decomposition temperature is used at which temperature is applied to each precursor. The amount of decomposition during deposition is limited such that its growth mode will be similar to that of an atomic layer deposition. An exemplary process for depositing a nitride button layer in a processing chamber by atomic layer deposition includes sequential The ground is between about 1 〇〇 ^ (^ to 1 〇〇〇 sccm, preferably about 2 〇〇 Sccm To a flow rate of about 500 sccm, provide a (diammonium) fluorene (PDMAT) for about a leap second or less and at 10 1326104 a between about lcsccm to l〇〇〇SCCm' is preferably at The flushing gas is supplied at a flow rate of from about 2 sccm to about 500 Sccm for a period of about i sec or less. The heater temperature is preferably maintained at a chamber pressure of from about 1 Torr to about 5.0 Torr. It is between about 1 〇〇 and about 3 。. This treatment provides a nitride layer having a thickness of about 〇 5 Å to about 1 Å per cycle. Figure 3 is a processing system. A schematic cross-sectional view of an exemplary embodiment of a crucible 320 that can be used to form one or more barrier layers by atomic layer deposition in accordance with aspects of the present invention. Of course, other processing systems can also The processing system 320 generally includes a processing chamber 306 that is coupled to a gas delivery system 304. The processing chamber 306 can be any suitable process, such as 'available from Applied Materials, Inc., Santa Clara, California, USA. The purchaser. The exemplary processing chamber includes the pDS CENTURA® etching chamber' pr〇DUCER® chemical vapor deposition chamber, and ENDURA® physical vapor deposition chamber, etc. The gas delivery system 304 generally controls the flow rate and pressure of different process gases and blunt gases being sent to the process chamber 306. The amount and type of process gas and other gases sent to process 306 are generally selected based on the process to be performed in the process chamber 306 that is aligned with the gas delivery system, although for simplicity A single gas delivery circuit is shown in gas delivery system 3〇4 in Figure 3, but it should be understood that 11 1326104 is also known that additional gas delivery circuits can be used. Gas delivery system 304 is generally coupled between a carrier gas source 302 and the processing chamber 306. The carrier gas source 302 can be a local or remote vessel or a centralized facility source that can supply the carrier gas to the entire facility. The carrier gas source 302 typically supplies a carrier gas such as argon nitrogen or other passive or non-reactive gases. The gas delivery system 304 typically includes a flow controller 310 that is interposed between the carrier gas source 3〇2 and a process gas source tank 3〇〇. The flow controller 3 10 can be a proportional valve, a regulating valve, a needle valve, a regulator, a mass flow controller, or the like. A flow controller 310 that can be used is available from Monterey, California. Purchased by Sierra Instrument. The source canister 300 is typically coupled to and positioned between a first valve 312 and a second valve 3 14 . In one embodiment, the first and second valves 312'314 are coupled to the source can 3 and are fitted with a disconnect fitting (not shown) to facilitate the valve 312' 314 and the source can 3 00 It is removed from the gas delivery system 304. A third valve 316 is disposed between the second valve 314 and the processing chamber 306 for preventing contaminants from entering the processing chamber 306 when the source can 3 is removed from the gas delivery system 304. . Figures 4A and 4B show cross-sectional views of an embodiment of the source can 3'. The source can 300 generally comprises a small vial or other sealed container having a 12 1326104 housing 420 that is designed to contain the precursor material 414, and a process gas (or other gas) can be treated via sublimation or evaporation of the precursor material. And get. Some of the precursor materials 414 which can generate a processing gas in the source tank 300 via a sublimation process include bismuth difluoride 'nickel carbonyl, tungsten hexahydrate and dimethyl dimethylamine button (PDMAT), etc. Wait. Some of the precursor materials 414 which can produce a process gas in the source tank 300 via an evaporation process include bismuth (dimethylamino) titanium (TDMAT), and a tributyl butyl amide (diethylammonium). ) button (TBTDET), Wo (Ethylamino) 钽 (pEMAT), and so on. The outer cover 430 is generally made of a substance that is blunt to the precursor substance 414 and the gas it produces, so that the material to be constructed is changed depending on the gas to be manufactured. Housing 420 can have any geometric form. The embodiment t' of the outer cover 420 of Figs. 4A and 4b includes a cylindrical side wall 4() 2 and a shoulder 2 which are closed by a cover 404. The cover 404 can be lightly joined to the side wall 402 by welding, bonding or other means. Alternatively, the bond between the side wall 402 and the cover + 404 has a shackle, a loop, or the like disposed therebetween to prevent leakage from the can 300. Alternatively, the side wall 4〇2 may comprise other forms of age, for example, a hollow square tube. The sub-use 4Q8 is arranged to flow into and out of the source tank through the source tank. Inlet and Out 13 1326104 Ports 406, 408 may be disposed through the cover 404 and/or sidewall 402 of the source can 3 . The inlet and outlet ports 〇4, 408 are sealable to isolate the interior of the source can 300 from the surrounding environment during removal of the source can 300 from the gas delivery system 3〇4. In one embodiment, valves 312, 314 are sealingly coupled to inlet and outlet ports 406' 408 for being removed from the gas delivery system 304 at the source canister 3 for replenishment of the precursor material 414 or source canister Leakage from the source tank 3〇〇 is prevented when the 3〇〇 is replaced (shown in Figure 3). Matched disconnect fittings 436A, 436B can be coupled to valves 312, 314 for facilitating removal and replacement of source canister 300 from the gas delivery system 3〇4. The valves 312, 314 are typically ball valves or other positive sealing valves that allow the source can 300 to be efficiently removed from the system while being filled, transported, or coupled to the gas delivery system 3〇4 The leakage from the source can 300 is minimized or the source can 300 can be via a supplemental cartridge (not shown), such as a small tube having a VCR fitting disposed on the lid 404 of the source can 300, Come and add. The source canister 300 has an interior volume 438 having an upper zone 418 and a lower zone 434. The lower zone 434 of the source canister 3 is at least filled with the precursor material 414. Alternatively, a liquid 416 can be added to a solid precursor material 4i4 to form a slurry 412. The precursor material 414, the liquid 416, or the premixed slurry 412 can be introduced into the source can 300 by taking the lid 4〇4 under 14 1326104 or via one of the crucibles 406, 408. The liquid 416 is selected such that the liquid does not react with the precursor material 414. The precursor material 414 does not dissolve into the liquid. The liquid 416 has a negligible vapor pressure compared to the precursor material, and the solid precursor 414 The ratio of the vapor pressure (e.g., tungsten hexacarbonyl) to the vapor pressure of the liquid 416 is greater than 1 Torr. The precursor material 414 mixed with the liquid 416 can be occasionally agitated to suspend the precursor material 414 in the slurry 412 in the liquid 416. In one embodiment, precursor material 414 and liquid 416 are agitated by a magnetic stirrer 440. The magnetic stirrer 44A includes a magnetic motor 442 disposed beneath the bottom 432 of the source can 300 and a magnetic plate 444 disposed within the lower region 434 of the source can 3 . The operation of the magnetic motor 442 can rotate the magnetic sheet 444 into the source can 3 to thereby mix the slurry 412. The magnetic sheet 444 should have an outer coating layer. The outer coating layer is made of a material that does not react with the precursor material 414, the liquid body 416 or the source tank 300. Suitable magnetic mixers are commercially available. An example of a suitable magnetic mixer is the IKAMA® REO sold by IKA® Works, Inc., located in Wilmington, North Carolina, USA. Alternatively, the slurry 412 can be agitated in other ways, such as with a mixer, a bubbler, or the like. The agitation of the liquid 416 can cause droplets of liquid 416 to be entrained within the carrier gas and carried toward the processing chamber 3 〇6. In order to prevent droplets of these 15 1326104 liquids 416 from reaching the process chamber 3〇6, an oil sump 45〇 may be optionally coupled to the outlet port 4〇8 of the source tank 3〇〇. The sump 450 includes a body 452 that includes a plurality of interpenetrating baffles 4 that extend beyond a centerline 456 of the sump body 452 and are bent at an angle that is at least slightly downward toward the source can 300. The baffles 454 chase the flow of gas to the processing chamber 3〇6 through a weir around the baffle 454. The surface area of the baffle 454 provides a large surface area exposed to the flowing gas so that the oil droplets carried in the gas can adhere to this large surface area. The downward angle of the baffle 454 allows any oil droplets accumulated in the sump to flow downwardly and back into the source can 300. The source can 300 includes at least one baffle 41, which is disposed The source tank 300 is in the upper zone 418. A baffle 410 is disposed between the inlet port 406 and the outlet port 408 to create an extended average flow path for preventing carrier gas from the inlet port 406 from flowing directly to the outlet port 408. This has the effect of increasing the average residence time of the carrier gas in the source tank 3 and increasing the quality of the precursor gas being sublimed or evaporated prior to transport of the carrier gas. In addition, the baffles 41 are directed to direct the carrier gas through the entire exposed surface of the precursor material 414 disposed in the source can 3 to ensure reproducible gas generation characteristics and effective consumption of the precursor material 414. . The number, spacing and shape of the baffles 410 can be selected to adjust the source 1 30042 source can 300 to optimally produce precursor gases. For example, a greater number of baffles 410 can be selected to apply a higher carrier gas velocity to the precursor material 414, or the shape of the baffle 410 can be configured to control the consumption of the precursor material 414 to Use precursor materials efficiently. The baffle 410 can be attached to the side wall 402 or cover 404, or the baffle 410 can be a pre-fabricated insert that is designed to be embedded in the source can 300. In one embodiment, the baffle 410 disposed within the source can 300 includes five rectangular plates 'which are fabricated from the same material as the side walls 402. Referring to Figure 4B, the baffles 41 are welded or otherwise secured to the side walls 402 and parallel to one another. The baffles 410 are interdigitated to each other on opposite sides of the source can 3 to create an average flow path. Also, when the cover 4〇4 is placed on the side wall 402, the baffle 410 is positioned between the inlet 埠 406 and the outlet 埠 408 on the cover 404 and is disposed such that there is no air space between the baffle 410 and the cover 404. . The baffle 41 is additionally extended at least partially into the lower region 434 of the source can 300, thereby defining an extended average flow path for the carrier gas to flow through the upper region 4 1 8 . Optionally, an outlet tube 422 can be disposed in the interior space 438 of the source can 300. The first end 424 of the tube 422 is coupled

止於該來源罐子300的上區418中。 418中。管子422將載運氣 17 1326104 體注入到該來源罐子300的上區418中靠近該前驅物質 414或該漿體412的位置處。 前驅物質414在一預定的溫度及壓力下產生一前驅物 氣體。從前驅物質414的蒸發或昇華的氣體在該來源罐 子3 00的上區418累積且被一從該入口埠406進入且從 出口埠408離開的一鈍態載運氣體掃出去並被載運至該 處理室306。在一實施例中,前驅物質414被一設置在 靠近側壁402處的一電阻式加熱器430加熱至一預定的 溫度。或者’前驅物質414可用其它的方式加熱,像是 藉由設置在該來源罐子300的上區418或下區434中的 匿式加熱器(未示出)’或藉由用—放在該載運氣體入口 淳406的上游的一加熱器(未示出)來預熱該載運氣體。 為了要讓在該漿體412上的均勻熱分佈最大化,液體416 及擒板410應是良好的熱導體。 依據本發明的另一實施例,複數個具有高導熱性之固 體珠子或顆粒810,像是氮化鋁或氮化硼,可被用來取 代液體416’如第8圖所示。與液體416比較起來,這 些固體顆粒810可被用來將更多的熱從罐子8〇〇的側壁 傳遞至前驅物質414。該等固體的顆粒810具有與液體 4 相同的特性,即,它們對前驅物質414是沒有反應 性的’是不可溶解的,與前驅物質比較起來,具有一可 被忽略的蒸氣壓力。因此,該等固體顆粒810被作成可 18 Ϊ326104 有效率地將熱傳從罐子800遞至罐子800的中央部分, 藉以導致在昇華或蒸發期間利用到更多的前驅物質。該 等固體的顆粒81G亦可在被沉積到該罐子_内之前被 去氣及清洗用以除污染物、水蒸氣及類此者。 在一舉例性的操作模式中,該來源罐子3〇〇的下區 至少部分地被填充六羰基化鎢與該擴散幫浦油的一混合 物,用以形成該漿體412 〇漿體412被保持在約5托耳 的壓力且被一位在靠近該來源罐子3〇〇的一電阻式加熱 器430加熱至範圍在約贼至約抓的溫度。^氣形' 式存在的載運氣體在約400sccm的流率下經由該入口埠 4〇6流入到該上區418β氬氣在經由出口埠4〇8離開該來 源罐子300之前係流動在由通過該等擋板41〇之該彎曲 的路徑所界定的一延伸的平均流路徑中,且有利地增長 氬氣在該來源罐子300的上區418中的平均停留時間。 在該來源罐子300中的此增加的停留時間可有利地提高 該被昇華的六羰基化鎢蒸氣在該來源罐子3〇〇内的飽和 程度。又,該通過諸擋板410的彎曲路徑有利地讓該前 驅物質414之所有外露的表面積都曝露在該載運氣流 中,使得該前驅物質4i4可被均句地消耗及前驅物氣體 可被均勻地產生。 第7圖顯示加熱前驅物質414的另—實施例。詳言之, 第7圖顯示一被一罐子加熱器730所包圍的罐子7〇〇的 19 1326104 剖面圖,該加熱器被建構成可在該罐子7〇〇的一下區々Μ 與該罐子700的—上區418之間產生一溫度梯度,其中 該下區434為最冷的區域,而該上區418則是最熱的區 域〇該溫度梯度的範圍是在約5t至約15。〇之間。因為 固體前驅物傾向於在該罐子7〇〇的最冷的區域處累積或 凝結’所以罐子加熱器73〇被建構成可確保固體的前驅 物質414將會在罐子雇的下區434處累積藉以提高 該固體前驅物質414舍在何處凝結的可預期性及固體的 前驅物質414的溫度的可預期性。該罐子加熱器73〇包 括-設置在該罐子加熱$ 73G内部的加熱元件75〇,使 得包括該上區428與下區434在内的整個罐子7〇〇被該 罐子加熱器730所加熱。靠近上區418的加熱元件750 可被建構成能夠產生比靠近下區434的加熱元件75〇更 多的熱,藉以讓該罐子加熱器730可在該下區434與該 上區418之間產生該溫度梯度。在一實施例中,該加熱 凡件750被建構成可讓在上區418的溫度為比在下區434 的溫度高約代至約15t。在另一實施例中,該加熱元 件750被建構成可讓在上區4丨8的溫度為約7〇乞,在下 區434的恤度約為6〇<>c且在罐子的側壁上的溫度約 為5 C該加熱元件750的功率在208VAC輸入下為約 600W。 該罐子加熱器730亦可包括一位在該罐子加熱器730 20 1326104 的底部上的冷卻板720,用來進一步確保該罐子700的 最冷區域為下區434,及藉以確保固體前驅物質414在 下區434凝結。該冷卻板720的形狀亦可以是環狀。又, 閥312,314,集油槽450,入口埠406及出口崞408可 用一電阻式加熱帶來加熱。因為上區418被建構成具有 一比下區434高的溫度,所以擋板410可被用來將熱從 上區418傳遞到下區434,藉以讓該罐子加熱器73〇能 夠保持所想要的溫度梯度。 第9圖顯示複數個從該罐子7〇〇的底部432延伸至上 區418的筒倉910的剖面圖。第10圖顯示複數個從該罐 子7〇〇的底部432延伸至上區418的筒倉910的頂視圖。 筒倉910被建構成可降低在該前驅物質414中的溫度梯 度’藉以將該前驅物質414内部的溫度保持大致均勻。 筒倉910可從該底部432延伸至略高於該前驅物質414 及液體416的上表面處。筒倉91〇可以是柱或鰭片的形 式。筒倉910是由一導熱材質製成的,如不銹鋼,鋁及 類此者。 第9圖進一步顯示一設在該來源罐子700的内部空間 43 8内的入口官子422。管子422的第一端424被耦合至 該來源罐子7GG的人口埠4G6且在其第二端似處終止 於該來源罐子700的上區418中。管子422將載運氣體 主入到該來源罐子7〇〇的上區418中的靠近該前驅物質 21 1326104 414或該漿體412的位置處。該第二端426進一步被設 計成將氣流導向側壁402,藉以防止一直接(線性的或直 線的)氣流通過罐子700的埠4〇6與4〇8之間,產生一延 伸的平均流路徑徑。 第5圖顯示一用來產生一處理氣體的罐子5〇〇的另一 實施例的剖面圖。該罐子5〇〇包括一側壁4〇2,一蓋子 4〇4及一底部432,它們圏圍出一内部空間428。蓋子4〇4 或側壁402中的至少一者包含一入口埠4〇6及一出口埠 408用來讓乱體進入及離開。該罐子5〇〇的内部空間‘μ 被分割成上區418及下區434。前驅物質414至少部分 地填充該下區434。該先驅物質414可以是固體,液體 或漿體,且被設計成可藉由昇華及/或蒸發來產生處理氣 體。 一管子502被設置在該罐子500的内部空間438中且 被没什成將該罐子500内的一氣流導引離開該前驅物質 414 ’用以有利地防止流出該管子502的氣體直接撞擊到 該先驅物質414並造成顆粒變成空氣傳播(airb〇rne)且被 載運通過該出口埠408並進入到該處理室3〇6中。該管 子502在其第一端5 04處被麵合至該入口埠406。管子 502從第一端5〇4延伸至一第二端526A,其被放置在該 上區418内的高於該前驅物質414上方的位置。該第二 端526A被設計成可將該氣流朝向側壁402導引,因而防 22 1326104 止一直接(線性的或直線的)氣流通過罐子500的埠406 與4 0 8之間,產生一延伸.的平均流路徑握。 在一實施例中,該管子502的第二端526A的出口 506 被相對於該罐子500的一中心轴508定向在一介於15度 至約90度的角度上。在另一實施例中,管子502具有 一 ”J”型的第二端526B其將離開該出口 506的氣流朝向 該罐子500的蓋子404導引。在另一實施例中,該管子 502具有一加了帽蓋的第二端526C其具有一插塞或帽蓋 510其將該管子502關閉起來。該加了帽蓋的第二端526C 具有至少一開孔528形成在該管子502靠近該帽蓋510 的侧上。離開該開孔528的氣體典型地被導引與該中 心軸508正交且遠離設置在該罐子5〇〇的下區434中的 前驅物質414。非必要地,至少一上文所述的擋板41〇(以 虛線示出)可被設置在該罐子500内且與上述實施例的管 子502並排被使用。 在一舉例性的操作中,該罐子5〇〇的下區434至少部 分地被填充了六戴基化鶴與擴散幫浦油的混合物用以形 成聚體412。漿體412被保持在約5托耳的壓力且被一 位在靠近該罐子500的-電阻式加熱器43。加熱至範圍 在約40°C至約50t:的溫度。以盡灰立,』+ 从里•軋形式存在的載運氣體 在約2〇Osccm的流率下經由兮λ Α 由該入口埠406及管子502流 入到該上區418。該管子502的铕 2的第二端526Α將該載運氣 23 1326104 流導引至-遠離該出口# 4〇8之延件的平均流路徑中, 且有利地增長氬氣在該罐子5 〇〇的上區418中的平均停 留時間並防止载運氣流接朝向該前驅物質4u用以將顆 粒的產生減到最少。在該罐子500中的此增加的停留時 間可有利地提高該被昇華的六羰基化鎢蒸氣在該罐子 5〇〇内的飽和程度,同時降低顆粒產生以改善產品良率 並降低下游的污染。 第6圖顯示一用來產生一處理氣體的罐子6〇()的另一 實施例的剖面圖。該罐子6〇〇包括一側壁4〇2,一蓋子 4〇4及一底部432,它們圈圍出一内部空間428。蓋子4〇4 或側壁402中的至少一者包含一入口埠4〇6及一出口埠 408用來讓亂體進入及離開。入口埠及出口埠406,408 被耦合至嵌設有匹配的斷開配件43 6A,43 的閥312, 314,用以方便罐子6〇〇從該氣體輸送系統3〇4上取下。 非必要地,一集油槽450被辆合在該出口埠4〇8與該閥 314之間’用以補捉出現在流到該處理室3〇6的氣體中 之任何油粒子。 該罐子600的内部空間438被分割成上區418及下區 434。前驅物質414及一液體416至少部分地填充該下區 434。一管子602被設置在該罐子6〇〇的内部空間438中 且被設計成可將該罐子600内的一第一氣流ρ 1導引離開 該前驅物質與液體混合物’並導引一第二氣流F2通過該 24 1326104 混合物。氣流F1比氣流F2要大許多。氣流F2被建構成 如一起泡器般作用,其大到足以攪動該前驅物質與液體 混合物,但不足以造成前驅物質414或液體416的顆粒 或液滴變成空氣傳播。因此’此實施例有利地攪動該前 驅物質與液體混合物,同時將導因於流出該管子5〇2的 氣體直接撞擊到該前驅物質414造成顆粒變成空氣傳播 (airborne)且被载運通過該出口埠408並進入到該處理室 306中減至最少。 管子602在其第一端604處被耗合至該入口埠406 » 管子602從第一端6〇4延伸至一第二端606,其位在該 罐子600的下區434内的該前驅物質與液體混合物中。 該管子602具有一開孔608其被設置在該罐子6〇〇的上 區418中且將該第一氣流F1朝向該罐子600的一側壁 402導引。該管子602具有一束縮部610其被設置在該 罐子600的上區418中之位在該開孔6〇8底下的地方。 該束縮部6 10用來減少第一氣流F2流向該管子6〇2的第 二端606及進入到漿體412中,藉由調整該束縮部的量, 第一及第二氣流F卜F2的相對流率就可以被調節。此調 節至少有兩個目的。第一個,該第二氣流F2可被最小化 用以提供剛好足夠的攪動來保持該前驅物質414在該液 體416中的懸浮或混合,同時將顆粒的產生及該處理室 306的潛在污染減到最少。第二,該第一氣流η可被調 25 1326104 節用以保持必要的總流體體積’用以提供被需要之從該 月'J驅物質414被昇華的及/或被蒸發的數量至該處理室 306 〇 非必要地,至少一上述的擋板41〇可被設置在該罐子 600中且與上述實施例的管子602並排被使用。 雖然以上所述係有關於本發明的較佳實施例但本發 明之其它及進一步的實施例亦可在不偏離本發明的基本 範圍下被完成,而本發明的範圍是由下面的申請專利範 圍來界定的。 【圖式簡單說明】 本發明之一更為特定的描述可藉由參照顯示於附圖中 之實施例而被作成,使得本發明之上述特徵,優點及目 地可被詳地地瞭解。然而,應注意的是,附圖中所示者 為本發明之典型的實施例,因此不應被認為是本發明範 圍的限制,因為本發明可以有其它等效的實施例。 第1圖為一藉由原子層沉積(ALD)而被形成在一基材 上之阻障層的實施例的示意剖面圖; 第2A-2C圖顯示在一舉例性的基材部分上被化學吸附 作用之父替的一含组化合物與一含氮化合物的單分子層 (monolayer) 〇 第3圖為一處理系統的舉例性實施例的示意剖面圖, 26 1326104 該系統可被用來藉由原子層沉積形成一或多層阻障層。 第4A圖為一氣體產生罐的剖面側視圖。 第4B圖為第4A圖的氣體產生罐的剖面頂視圖。 第5圖為-氣體產生罐的另一實施例的剖面圖。 第6圖為一氣體產生罐的另一實施例的剖面圖。 第7圖顯示-罐子的剖面圖,其被—依據本發明的一 個實施例之罐子加熱器所包P。 第8圖顯示一罐子的剖面圖,其包含複數個依據本發泰 明的一個實施例之固體顆粒。 第9圖顯不依據本發明的一實施例之從罐子的底部延 伸至上部的複數個筒倉(sil〇)的剖面圖。 丁的底部 延伸至上部的複數個筒倉(sil〇)的頂視圖。 · 【主要元件符號說明】 F1 第一氣流 F2 第二氣流 100 基材 102 介電層 102H 接點孔或界層 孔 102T曝露的表面部分 104 阻障層 150 基材結構 200 基材 205 含纽化合物 209 氮化鈕層 210 钽原子 215 反應物質”a” 225 含氮化合物 230 氮原子 235 反應物質”b,, 第10圖顯示依據本發明的一實施例之從 27 1326104 240 副產品 300 處理氣體來源i 302 載運氣體源 304 氣體輸送系統 306 處理室 310 流量控制器 312 第一閥 314 第二閥 316 第三閥 320 處理系統 402 側壁 404 蓋子 406 入σ埠 408 出口埠 410 擋板 412 漿體 414 前驅物質 416 液體 418 上區 420 外罩 422 管子 424 第一端 426 第二端 430 電阻式加熱器 432 底部 434 下區 43 6A,43 6B 匹g己的斷開配件 438 内部空間 440 磁性攪拌器 442 磁性馬達 444 磁性片 450 集油槽 452 本體 454 交插的擋板 456 中心線 500 罐子 502 管子 504 第一端 506 出口 508 中心轴 510 插塞或帽蓋 526A 第二端 526Β “J”型第二端 1326104 526C 加蓋的第二端 528 開孔 600 罐子 602 管子 604 第一端 606 第二端 608 .開孔 610 束縮部 700 罐子 720 冷卻板 730 罐子加熱器 750 加熱元件 800 罐子 810 固體顆粒 910 筒倉The upper zone 418 of the source canister 300 terminates. 418. Tube 422 injects carrier gas 17 1326104 into the upper zone 418 of the source can 300 adjacent the precursor material 414 or the slurry 412. The precursor material 414 produces a precursor gas at a predetermined temperature and pressure. The vaporized or sublimated gas from the precursor material 414 accumulates in the upper zone 418 of the source tank 300 and is swept out by a passive carrier gas entering from the inlet port 406 and exiting the outlet port 408 and being carried to the process. Room 306. In one embodiment, the precursor material 414 is heated to a predetermined temperature by a resistive heater 430 disposed adjacent the sidewall 402. Alternatively, the precursor material 414 may be heated in other manners, such as by a hidden heater (not shown) disposed in the upper zone 418 or the lower zone 434 of the source can 300 or by using - A heater (not shown) upstream of the gas inlet port 406 preheats the carrier gas. In order to maximize uniform heat distribution across the slurry 412, the liquid 416 and the raft 410 should be good thermal conductors. In accordance with another embodiment of the present invention, a plurality of solid beads or particles 810 having a high thermal conductivity, such as aluminum nitride or boron nitride, can be used to replace the liquid 416' as shown in FIG. These solid particles 810 can be used to transfer more heat from the sidewalls of the can 8 to the precursor material 414 as compared to the liquid 416. The solid particles 810 have the same characteristics as the liquid 4, i.e., they are insoluble to the precursor 414, and have a negligible vapor pressure as compared to the precursor. Thus, the solid particles 810 are made to efficiently transfer heat from the can 800 to the central portion of the can 800, thereby causing more precursor material to be utilized during sublimation or evaporation. The solid particles 81G can also be degassed and cleaned to remove contaminants, water vapor, and the like before being deposited into the can. In an exemplary mode of operation, the lower region of the source can 3 is at least partially filled with a mixture of tungsten hexacarbonyl and the diffusion pump oil to form the slurry 412. The slurry 412 is retained. At a pressure of about 5 Torr and heated by a resistance heater 430 near the source can 3 to a temperature ranging from about thief to about scratching. The gas present in the form of "gas" flows through the inlet port 4〇6 to the upper zone at a flow rate of about 400 sccm. The argon gas flows before passing the source can 300 through the outlet port 4〇8. An extended average flow path defined by the curved path of the baffle 41 is, and advantageously, an average residence time of argon in the upper zone 418 of the source can 300 is increased. This increased residence time in the source tank 300 can advantageously increase the degree of saturation of the sublimed tungsten hexacarbonyl vapor within the source tank. Moreover, the curved path through the baffles 410 advantageously exposes all exposed surface areas of the precursor material 414 to the carrier gas stream such that the precursor material 4i4 can be uniformly consumed and the precursor gas can be uniformly produce. Figure 7 shows an alternative embodiment of heating the precursor material 414. In detail, Figure 7 shows a cross-sectional view of a 19 1326104 of a can 7 surrounded by a can heater 730 which is constructed to be in the lower region of the can 7 and the can 700 A temperature gradient is created between the upper regions 418, wherein the lower region 434 is the coldest region and the upper region 418 is the hottest region. The temperature gradient ranges from about 5t to about 15. Between 〇. Since the solid precursor tends to accumulate or condense at the coldest region of the tank 7', the can heater 73 is constructed to ensure that the solid precursor material 414 will accumulate in the lower zone 434 where the can is employed. The predictability of where the solid precursor material 414 condenses and the predictability of the temperature of the solid precursor material 414 are increased. The can heater 73 includes a heating element 75A disposed inside the can heated $73G so that the entire can 7 including the upper zone 428 and the lower zone 434 is heated by the can heater 730. The heating element 750 adjacent the upper zone 418 can be configured to generate more heat than the heating element 75〇 near the lower zone 434, thereby allowing the can heater 730 to be created between the lower zone 434 and the upper zone 418. This temperature gradient. In one embodiment, the heating element 750 is constructed such that the temperature in the upper zone 418 is greater than the temperature in the lower zone 434 by about 15 seconds. In another embodiment, the heating element 750 is constructed such that the temperature in the upper zone 4丨8 is about 7 〇乞 and the lower zone 434 is about 6 〇<>> and on the side wall of the can The upper temperature is about 5 C. The power of the heating element 750 is about 600 W at 208 VAC input. The can heater 730 can also include a cooling plate 720 on the bottom of the can heater 730 20 1326104 to further ensure that the coldest zone of the can 700 is the lower zone 434 and thereby ensure that the solid precursor material 414 is under Zone 434 is condensed. The shape of the cooling plate 720 may also be annular. Further, valves 312, 314, oil sump 450, inlet port 406 and outlet port 408 can be heated by a resistive heating belt. Because the upper zone 418 is constructed to have a higher temperature than the lower zone 434, the baffle 410 can be used to transfer heat from the upper zone 418 to the lower zone 434, thereby allowing the can heater 73 to remain as desired. Temperature gradient. Figure 9 shows a cross-sectional view of a plurality of silos 910 extending from the bottom 432 of the can 7 to the upper region 418. Figure 10 shows a top view of a plurality of silos 910 extending from the bottom 432 of the can 7 to the upper zone 418. The silo 910 is constructed to reduce the temperature gradient in the precursor material 414 by which the temperature inside the precursor material 414 is maintained substantially uniform. Silo 910 can extend from the bottom 432 to slightly above the upper surface of the precursor material 414 and liquid 416. The silo 91 can be in the form of a post or fin. The silo 910 is made of a thermally conductive material such as stainless steel, aluminum and the like. Figure 9 further shows an entrance official 422 disposed within the interior space 43 8 of the source can 700. The first end 424 of the tube 422 is coupled to the population 埠 4G6 of the source can 7GG and terminates in the upper region 418 of the source can 700 at its second end. Tube 422 carries the carrier gas into the upper zone 418 of the source canister 7 near the precursor material 21 1326104 414 or the slurry 412. The second end 426 is further configured to direct airflow to the side wall 402 to prevent a direct (linear or linear) flow of air between the 埠4〇6 and 4〇8 of the can 700, resulting in an extended average flow path diameter. . Figure 5 shows a cross-sectional view of another embodiment of a can 5 for producing a process gas. The can 5 includes a side wall 4〇2, a cover 4〇4 and a bottom 432 which enclose an interior space 428. At least one of the cover 4〇4 or the side wall 402 includes an inlet port 4〇6 and an outlet port 408 for allowing the mess to enter and exit. The inner space 'μ of the can 5' is divided into an upper area 418 and a lower area 434. The precursor material 414 at least partially fills the lower region 434. The precursor material 414 can be a solid, a liquid or a slurry and is designed to produce a process gas by sublimation and/or evaporation. A tube 502 is disposed in the interior space 438 of the can 500 and is not directed to direct a flow of gas within the can 500 away from the precursor substance 414' to advantageously prevent gas exiting the tube 502 from directly impinging on the The precursor material 414 causes the particles to become airborne and is carried through the outlet port 408 and into the processing chamber 3〇6. The tube 502 is faceted to the inlet port 406 at its first end 504. The tube 502 extends from the first end 5〇4 to a second end 526A that is placed in the upper region 418 above the precursor material 414. The second end 526A is designed to direct the airflow toward the side wall 402 such that a direct (linear or linear) airflow is prevented from passing between the 埠406 and 408 of the can 500, creating an extension. The average flow path is gripped. In one embodiment, the outlet 506 of the second end 526A of the tube 502 is oriented at an angle of between 15 degrees and about 90 degrees relative to a central axis 508 of the can 500. In another embodiment, the tube 502 has a second end 526B of a "J" shape that directs airflow exiting the outlet 506 toward the cover 404 of the can 500. In another embodiment, the tube 502 has a capped second end 526C having a plug or cap 510 that closes the tube 502. The capped second end 526C has at least one opening 528 formed on the side of the tube 502 adjacent the cap 510. The gas exiting the opening 528 is typically directed orthogonal to the central axis 508 and away from the precursor material 414 disposed in the lower region 434 of the can 5 . Optionally, at least one of the above described baffles 41 (shown in phantom) can be disposed within the can 500 and used side by side with the tube 502 of the above-described embodiment. In an exemplary operation, the lower region 434 of the can 5 is at least partially filled with a mixture of a hexahydrogenated crane and a diffusion pump oil to form a polymer 412. The slurry 412 is maintained at a pressure of about 5 Torr and is placed in a resistance heater 43 adjacent to the can 500. Heat to a temperature ranging from about 40 ° C to about 50 t:. The carrier gas present in the form of the ruthenium is transferred from the inlet enthalpy 406 and the tube 502 to the upper zone 418 via a 兮λ Α at a flow rate of about 2 〇 Osccm. The second end 526 of the bore 2 of the tube 502 directs the flow of the carrier gas 23 1326104 to an average flow path of the extension away from the outlet #4〇8, and advantageously grows argon in the tank 5 The average residence time in the upper zone 418 prevents the carrier gas stream from being directed toward the precursor material 4u to minimize particle generation. This increased residence time in the can 500 advantageously increases the saturation of the sublimated tungsten hexacarbonyl vapor within the can 5 while reducing particle generation to improve product yield and reduce downstream contamination. Figure 6 shows a cross-sectional view of another embodiment of a can 6 () for producing a process gas. The can 6 〇〇 includes a side wall 4〇2, a cover 4〇4 and a bottom 432 which enclose an interior space 428. At least one of the cover 4〇4 or the side wall 402 includes an inlet port 4〇6 and an outlet port 408 for allowing the mess to enter and exit. The inlet and outlet ports 406, 408 are coupled to valves 312, 314 that are fitted with matching disconnect fittings 43 6A, 43 for facilitating removal of the canister 6 from the gas delivery system 3〇4. Optionally, an sump 450 is fitted between the outlet 〇4〇8 and the valve 314 to capture any oil particles present in the gas flowing into the processing chamber 3〇6. The inner space 438 of the can 600 is divided into an upper zone 418 and a lower zone 434. Precursor material 414 and a liquid 416 at least partially fill the lower region 434. A tube 602 is disposed in the interior 438 of the can 6 and is designed to direct a first gas stream ρ 1 within the can 600 away from the precursor and liquid mixture and direct a second gas stream F2 passes through the 24 1326104 mixture. The air flow F1 is much larger than the air flow F2. The gas stream F2 is constructed to act as a bubbler, large enough to agitate the precursor material to the liquid mixture, but insufficient to cause the particles or droplets of the precursor material 414 or liquid 416 to become airborne. Thus, this embodiment advantageously agitates the precursor material to the liquid mixture while simultaneously impinging the gas flowing out of the tube 5〇2 directly into the precursor material 414 causing the particles to become airborne and carried through the outlet. The 埠 408 is entered into the processing chamber 306 to be minimized. The tube 602 is consuming at its first end 604 to the inlet port 406 » The tube 602 extends from the first end 6〇4 to a second end 606, the precursor material located in the lower region 434 of the can 600 In a mixture with liquid. The tube 602 has an opening 608 that is disposed in the upper region 418 of the can 6 and guides the first airflow F1 toward a side wall 402 of the can 600. The tube 602 has a constriction 610 that is disposed in the upper region 418 of the can 600 at a position below the opening 6?8. The constricted portion 6 10 is configured to reduce the flow of the first airflow F2 to the second end 606 of the tube 6〇2 and into the slurry 412. By adjusting the amount of the constriction, the first and second airflows The relative flow rate of F2 can be adjusted. This adjustment has at least two purposes. First, the second gas stream F2 can be minimized to provide just enough agitation to maintain suspension or mixing of the precursor material 414 in the liquid 416 while reducing particle generation and potential contamination of the processing chamber 306. To the least. Second, the first gas stream η can be adjusted to 25 1326104 sections to maintain the necessary total fluid volume 'to provide the desired amount of sublimated and/or evaporated from the month 'J drive material 414 to the process chamber. 306 〇 Optionally, at least one of the above-described baffles 41 can be disposed in the can 600 and used side by side with the tube 602 of the above embodiment. While the above is a preferred embodiment of the present invention, other and further embodiments of the present invention can be carried out without departing from the basic scope of the present invention, and the scope of the present invention is determined by the following claims. To define. BRIEF DESCRIPTION OF THE DRAWINGS The above-described features, advantages and objects of the present invention will become more apparent from the detailed description of the appended claims. It is to be understood, however, that the invention is not limited by the scope of the invention Figure 1 is a schematic cross-sectional view of an embodiment of a barrier layer formed on a substrate by atomic layer deposition (ALD); Figure 2A-2C shows an chemistry on an exemplary substrate portion A monolayer containing a group of compounds and a nitrogen-containing compound for adsorption. FIG. 3 is a schematic cross-sectional view of an exemplary embodiment of a processing system, 26 1326104. The system can be used by Atomic layer deposition forms one or more barrier layers. Figure 4A is a cross-sectional side view of a gas generating can. Figure 4B is a cross-sectional top view of the gas generating can of Figure 4A. Fig. 5 is a cross-sectional view showing another embodiment of the gas generating tank. Figure 6 is a cross-sectional view of another embodiment of a gas generating can. Fig. 7 shows a cross-sectional view of a can, which is packaged by a can heater according to an embodiment of the present invention. Figure 8 shows a cross-sectional view of a can containing a plurality of solid particles in accordance with one embodiment of the present invention. Figure 9 is a cross-sectional view showing a plurality of silos extending from the bottom of the can to the upper portion in accordance with an embodiment of the present invention. The top of the silo extends to the top of the silo. · [Main component symbol description] F1 first airflow F2 second airflow 100 substrate 102 dielectric layer 102H contact hole or boundary layer hole 102T exposed surface portion 104 barrier layer 150 substrate structure 200 substrate 205 containing compound 209 nitride button layer 210 germanium atom 215 reaction material "a" 225 nitrogen-containing compound 230 nitrogen atom 235 reaction material "b," Figure 10 shows a process gas source from 27 1326104 240 by-product 300 in accordance with an embodiment of the present invention. 302 Carrier Gas Source 304 Gas Delivery System 306 Process Chamber 310 Flow Controller 312 First Valve 314 Second Valve 316 Third Valve 320 Processing System 402 Sidewall 404 Cover 406 σ 埠 408 Exit 410 Baffle 412 Slurry 414 Precursor 416 Liquid 418 Upper Zone 420 Cover 422 Tube 424 First End 426 Second End 430 Resistive Heater 432 Bottom 434 Lower Zone 43 6A, 43 6B Disconnected Fitting 438 Internal Space 440 Magnetic Stirrer 442 Magnetic Motor 444 Magnetic sheet 450 oil collecting tank 452 body 454 interlaced baffle 456 center line 500 tank 502 tube 504 first end 506 Port 508 central shaft 510 plug or cap 526A second end 526 Β "J" type second end 1326104 526C capped second end 528 opening 600 can 602 tube 604 first end 606 second end 608. opening 610 Retraction 700 Can 720 Cooling plate 730 Can heater 750 Heating element 800 Can 810 Solid particles 910 Silo

2929

Claims (1)

1326104 七、申請專利範圍: 1. -種帛充在一基材上的一或多個特徵結才冓(⑹㈣ 的方法,包含: 該阻障層是由雜質含量 沉積一阻障層於該基材上 胺基)鈕 小於約5 ppm的純化之伍(二甲醯 (pentakis(dimethylamido)tantalum )所形成 沉積一種晶層於該阻障層上方;及 沉積一導電層於該種晶層上方。 2.如申請專利範園第丨項所述之方法其更包含將伍 (二甲酿胺基)组昇華’以移除至少一部分的鈕側氧基醯 胺(tantalum oxo amides),並形成純化的伍(二甲醯胺基) 钽。 3.如申請專利範圍第!項所述之方法,其中該導電層包 含銅。 4·如申請專利範圍第1項所述之方法,其中該阻障層是 藉由原子層沉積所形成的》 5.如申請專利範圍第1項所述之方法,其中該些雜質是 選自於由氣、鋰、鐵、氟、溴、碘及其之組合所組成的 組群。 30 1326104 6.如申請專利範圍第1項所述之方法,其中從純化的伍 (二甲醯胺基)鈕沉積的一阻障層所得到的一導電層其具 有的缺陷相較於形成在從一未純化的伍(二甲醯胺基)钽 所形成之一阻障層上方的一導電層之缺陷要來得少。1326104 VII. Patent application scope: 1. A method for filling one or more characteristic enthalpy on a substrate ((6)(4), comprising: the barrier layer is deposited with a barrier layer on the base by impurity content The amine-based button is less than about 5 ppm of purified pentakis (dimethylamido tantalum) formed by depositing a seed layer over the barrier layer; and depositing a conductive layer over the seed layer. 2. The method of claim 2, further comprising sublimating the group to remove at least a portion of tantalum oxo amides and forming a purification. 3. The method of claim 2, wherein the conductive layer comprises copper. The method of claim 1, wherein the barrier is The layer is formed by atomic layer deposition. 5. The method of claim 1, wherein the impurities are selected from the group consisting of gas, lithium, iron, fluorine, bromine, iodine, and combinations thereof. Group consisting of 30 1326104 6. If the scope of patent application is 1 The method wherein a conductive layer obtained from a barrier layer deposited by the purified dimethylamine button has a defect compared to that formed from an unpurified dimethylamine The defect of a conductive layer above one of the barrier layers formed by the ruthenium is less. 7. 一種沉積一氮化钽阻障層於一基材上的方法,包含 將一純化的伍(二甲醯胺基)钽引入到其中設置有_ 基材的一處理室中,用以在該基材上形成一含鈕層,】 純化的伍(二甲醯胺基)钽之雜質含量A 。里芍约5 ppm或更 低;及 將一含氣化合物引入到該處理室中,用以在該基材 上形成一含氮層。 8.如申請專利範圍冑7項所述之方法,纟中該基材之溫 度係介於約20°C至約50(TC之間。7. A method of depositing a tantalum nitride barrier layer on a substrate, comprising introducing a purified bismuth (dimethylamino) hydrazine into a processing chamber in which a substrate is provided for A button layer is formed on the substrate, and the impurity content A of the purified bis(dimethylamino) hydrazine is determined. The crucible is about 5 ppm or less; and a gas-containing compound is introduced into the processing chamber to form a nitrogen-containing layer on the substrate. 8. The method of claim 7, wherein the substrate has a temperature between about 20 ° C and about 50 (TC). 9.如申請專利範圍第7項所述之方法,其中該處理室的 壓力約為托耳(torr)或更小。 10.如申請專鄉圍第7項所述之方法,其中該些㈣是 選自於基本上由氣、鋰、鐵'氟'溴、碘及其之組合所 組成的組群。 31 1326104 11. 如申請專利範圍第7項所述之方法,其中該含氣化合 物包含氨氣。 12. 如申請專利範圍第7項所述之方法,其中該含氮化合 物係選自於由氨、肼、二甲基肼、第三丁基肼、苯基耕、 2,2-偶氮異丁烧(2,2-azois〇butane )、疊氣乙烧 (ethylazide )、其衍生物,及其級合所組成的組群。 13. 如申請專利範圍第7項所述之方法,其中該阻障層是 藉由原子層沉積所形成的。 ’其中該基材的溫 14.如申請專利範圍第7項所述之方法 度係選定為可讓50%或以上的阻障層沉積是由化學吸附 作用(chemisorption)來達成的溫度。9. The method of claim 7, wherein the pressure in the processing chamber is about torr or less. 10. The method of claim 7, wherein the (four) is selected from the group consisting essentially of gas, lithium, iron 'fluorine' bromine, iodine, and combinations thereof. The method of claim 7, wherein the gas-containing compound comprises ammonia gas. 12. The method of claim 7, wherein the nitrogen-containing compound is selected from the group consisting of ammonia, hydrazine, dimethyl hydrazine, tert-butyl hydrazine, phenyl tillage, 2,2-azo A group consisting of 2,2-azois〇butane, ethylazide, its derivatives, and its cascades. 13. The method of claim 7, wherein the barrier layer is formed by atomic layer deposition. Wherein the temperature of the substrate is as described in claim 7, the method selected to allow 50% or more of the barrier layer deposition to be a temperature achieved by chemisorption. (一甲酿胺基)组在引入到該處理室之 前係先被昇華。 法,其更包含在該基 部分的伍(二甲醯胺 16.如申請專利範圍第7項所述之方法 材上形成該含组層之時,去除至少—1 基)組。 其雜質含量在約5 17. —種純化的伍(二曱醯胺基)鈕, PPm或更低。 32 1326104 18. 如申請專利範圍第17項所述之純化的伍(二甲醯胺 基)组’其中該雜質是選自於由鈕側氧基醯胺、氯 '鐘、 鐵、氟、溴、蛾及其之組合所組成的組群。 19. 如申請專利範圍第ι8項所述之純化的伍(二甲酿胺 基)鉬,其中該純化的伍(二甲醯胺基)鉅係經昇華以降低 其中之鈕側氧基醯胺的濃度。 2〇. —種用來產生可用於一半導體處理系統的一前驅物 的設備,包含: 一罐子,其具有一側壁、一頂部及一底部,其中該 罐子界定出一具有一上區及一下區的内部空間; 一圍繞該罐子的加熱器,其中該加熱器在該上區與 該下區之間產生一溫度梯度;以及 一冷卻板,設置在靠近該罐子的該底部處。 21,如申請專利範圍第20項所述之設備,其中該罐子包 含—熱傳遞介質,該熱傳遞介質將該上區連接至該下區。 22·如申請專利範圍第21項所述之設備,其中該熱傳遞 "質為從該頂部延伸至該下區的至少一擋板。 23·如申請專利範圍第20項所述之設備,其更包含至少 33 1326104 一筒倉(silo )’該筒倉從該罐子的該底部延伸至該上區β 24. 如申請專利範圍第23項所述之設備’其中該至少一 筒倉是一柱(post )及一鰭片(fin )中的至少一者。 25. 如申請專利範圍第20項所述之設備,其更包含: 一前驅物質’其至少部分地填充該罐子的該下區; 及 複數個與該前驅物質相混合之固體顆粒,其中該些 固體顆粒不會與該前驅物質產生反應,且具有一相對於 該則驅物質而為可忽略的蒸氣壓力,且不會溶解在該前 驅物質中,並且係配置以可傳遞來自該罐子之該側壁的 熱0 26. 如申凊專利範圍第25項所述之設備,其更包含: 一前驅物質,其至少部分地填充該罐子的該下區; 及 至J 一筒倉,其從該罐子的該底部延伸至該上區。 27. 如申請專利範圍第26項所述之設備,其中該至少一 筒倉係配置以降低在該前驅物質中的溫度梯度。 28. 種用來產生可用於一半導體處理系統的一前驅物 的設備,包含: 34 1326104 罐子’其界定出一具有一上區及一下區的内部空 間; ^ .剐魏物質,其矣少部分地填充該罐子的該下區; 及 , 氣淹入口管,係適於以一遠離該前驅物質的方向 而將一栽邃氣體注入該罐子中。 •甲請專利範圍第28項所述之設備,其中該氣流入 口管係適於產生一進入該罐子之該上區中的一非線性氣 流。 .如申請專利範圍第29項所述之設備,其中該非線性 氣流係適於在該罐子的該上區中產生一提高的氣體飽和 程度。 - 31. 如申請專利範圍第28項所述之設備,其中該氣流入 口管從該罐子的該上區延伸至該罐子的該下區。 32. 如申請專利範園第31項所述之設備,其中該氣流入 口管係適於提供一第一氣流至該罐子的該上區中。 33. 如申請專利範圍第32項所述之設備,其中該氣流入 〇管係適於提供一第二氣流至該罐子的該下區中。 35 申凊專利乾圍第3 1項所述之設備,其中該氣流入 口管包含一束縮部(restrieti〇n)。 35·:申請專利範圍第34項所述之設備,其中該氣流入 s包含至少一開口位在該束縮部之前的位置。 36.如申請專利範圍第35項所述之設備,其中該開口係 適於提供一非線性氣流至該罐子的該上區中。 3 7.如申請專利範圍第33項所述之設備,其中流至該下 區的該第二氣流係適於保持該前驅物質的一懸浮體 (suspension ) ° 38. 如申請專利範圍第33項所述.之設備,其中該第二氣 流係適於保持一總氣流體積。 39. —種用來產生可用於一處理系統的氣體之方法,包 含: 知:供設置在一罐子的一下區的一前驅物質; 將一載運氣體由一入口埠沿著一延伸平均路徑 (extended mean path )通過該罐子的一上區而至一出口 埠’其中該延伸平均路徑係由複數個擋板所產生,該些 撞板係預先製造並垂直設置在該罐子的該上區中;以及 加熱該前驅物質以產生一處理氣體。 36 1.326104 4〇:如申請專利範圍第39項所述之方法,其中該些撞板 係5又置在該罐子的該入口埠與該出口埠之間。 41. 如申請專利範圍第39項所述之方法,其更包括捕獲 爽帶在該處理氣體中的微粒物質之步驟。 42. 如申請專利範圍第39項所述之方法,其中該加熱之 步驟更包括使該前驅物質昇華。 43. 如申請專利範圍第39項所述之方法,其中該前驅物 質係選自於由肆(二甲醯胺基)鈦(TDMat)、第三丁基亞 胺基三(二乙醯胺基)鈕(TBTDET)及伍(乙甲醯胺基)鈕 (PEMAT)所組成之組群。 44.如申請專利範圍第39項 為定位在該罐子的頂部之一 所述之方法,其中該些擋板 預先製造的插入件。 ’其中該些擋板 子的頂部。 45.如申請專利範圍第39項所述之方法 係設置在該罐子的頂部上並垂直於該罐 37The (I-A) group was sublimed before being introduced into the treatment chamber. The method further comprises a group of the base portion (dimethylamine 16. The at least one group is removed when the group is formed on the method described in claim 7). The impurity content is about 5 17. The purified bis(diamine) button, PPm or lower. 32 1326104 18. The purified chloroformamide group of claim 17 wherein the impurity is selected from the group consisting of oxonium, chlorine, clock, iron, fluorine, bromine a group consisting of moths and combinations thereof. 19. The purified methane (dimethylamino) molybdenum according to the scope of claim 1, wherein the purified dimethyl dimethylamine is sublimed to reduce the oxonamine concentration. 2. Apparatus for producing a precursor for use in a semiconductor processing system, comprising: a can having a sidewall, a top, and a bottom, wherein the can defines an upper region and a lower region An internal space; a heater surrounding the can, wherein the heater generates a temperature gradient between the upper zone and the lower zone; and a cooling plate disposed adjacent the bottom of the can. The apparatus of claim 20, wherein the can comprises a heat transfer medium that connects the upper zone to the lower zone. The apparatus of claim 21, wherein the heat transfer " quality is at least one baffle extending from the top to the lower zone. The apparatus of claim 20, further comprising at least 33 1326104 a silo that extends from the bottom of the can to the upper zone β 24. As claimed in claim 23 The apparatus of the item wherein the at least one silo is at least one of a post and a fin. 25. The apparatus of claim 20, further comprising: a precursor material that at least partially fills the lower region of the can; and a plurality of solid particles mixed with the precursor material, wherein the The solid particles do not react with the precursor material and have a negligible vapor pressure relative to the precursor material and are not dissolved in the precursor material and are configured to transfer the sidewall from the canister The apparatus of claim 25, further comprising: a precursor material that at least partially fills the lower region of the can; and a cartridge that is from the can The bottom extends to the upper zone. 27. The apparatus of claim 26, wherein the at least one silo is configured to reduce a temperature gradient in the precursor material. 28. Apparatus for producing a precursor useful in a semiconductor processing system, comprising: 34 1326104 a can' defining an interior space having an upper zone and a lower zone; ^. Filling the lower region of the can; and, the gas flooding inlet pipe, is adapted to inject a helium gas into the can in a direction away from the precursor material. The apparatus of claim 28, wherein the airflow inlet conduit is adapted to generate a non-linear airflow into the upper region of the canister. The apparatus of claim 29, wherein the non-linear airflow is adapted to produce an increased degree of gas saturation in the upper region of the can. The apparatus of claim 28, wherein the airflow inlet pipe extends from the upper zone of the can to the lower zone of the can. 32. The apparatus of claim 31, wherein the airflow inlet conduit is adapted to provide a first airflow into the upper region of the canister. 33. The apparatus of claim 32, wherein the airflow intrusion is adapted to provide a second airflow into the lower zone of the can. 35. The apparatus of claim 31, wherein the airflow inlet tube comprises a bundle of constrictions. 35: The apparatus of claim 34, wherein the airflow into s comprises at least one opening position before the bundle. 36. The apparatus of claim 35, wherein the opening is adapted to provide a non-linear airflow into the upper region of the can. 3. The apparatus of claim 33, wherein the second airflow to the lower zone is adapted to maintain a suspension of the precursor material. 38. As claimed in claim 33 The apparatus of the above, wherein the second air flow is adapted to maintain a total airflow volume. 39. A method for producing a gas that can be used in a processing system, comprising: knowing: a precursor material disposed in a lower zone of a can; placing a carrier gas along an extended mean path (extended) Mean path ) passing through an upper region of the can to an outlet 埠 ' wherein the extended average path is generated by a plurality of baffles pre-fabricated and disposed vertically in the upper region of the can; The precursor material is heated to produce a process gas. 36. The method of claim 39, wherein the striker system 5 is further disposed between the inlet port and the outlet port of the can. 41. The method of claim 39, further comprising the step of capturing particulate matter in the process gas. 42. The method of claim 39, wherein the step of heating further comprises sublimating the precursor material. 43. The method of claim 39, wherein the precursor is selected from the group consisting of ruthenium (dimethylamino) titanium (TDMat), and a third butyl imino group (diethylammonium). ) A group consisting of a button (TBTDET) and a button (PEMAT). 44. The method of claim 39, wherein the one of the tops of the can is positioned, wherein the baffles are prefabricated inserts. 'The top of these baffles. 45. The method of claim 39, wherein the method is disposed on top of the can and perpendicular to the canister.
TW93114980A 2003-05-27 2004-05-26 Method and apparatus for generating a precursor for a semiconductor processing system TWI326104B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/447,255 US6905541B2 (en) 2002-07-17 2003-05-27 Method and apparatus of generating PDMAT precursor
US47747803P 2003-06-05 2003-06-05

Publications (2)

Publication Number Publication Date
TW200504802A TW200504802A (en) 2005-02-01
TWI326104B true TWI326104B (en) 2010-06-11

Family

ID=44688865

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93114980A TWI326104B (en) 2003-05-27 2004-05-26 Method and apparatus for generating a precursor for a semiconductor processing system

Country Status (2)

Country Link
JP (1) JP5583078B2 (en)
TW (1) TWI326104B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8741062B2 (en) * 2008-04-22 2014-06-03 Picosun Oy Apparatus and methods for deposition reactors
CN110885970B (en) * 2018-09-11 2024-06-21 北京北方华创微电子装备有限公司 Pressure stabilizing and purifying device for solid precursor vapor and ALD deposition equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132300U (en) * 1991-05-27 1992-12-07 京セラ株式会社 Liquefied gas vaporizer
JPH05251348A (en) * 1992-03-05 1993-09-28 Mitsubishi Electric Corp Bubbler and gas supply apparatus
JP2000252269A (en) * 1992-09-21 2000-09-14 Mitsubishi Electric Corp Equipment and method for liquid vaporization
JP3335492B2 (en) * 1994-12-28 2002-10-15 三菱電機株式会社 Thin film deposition equipment
US6265311B1 (en) * 1999-04-27 2001-07-24 Tokyo Electron Limited PECVD of TaN films from tantalum halide precursors
JP4615859B2 (en) * 2001-10-26 2011-01-19 アプライド マテリアルズ インコーポレイテッド Gas delivery device for atomic layer deposition

Also Published As

Publication number Publication date
JP2011176369A (en) 2011-09-08
JP5583078B2 (en) 2014-09-03
TW200504802A (en) 2005-02-01

Similar Documents

Publication Publication Date Title
US8062422B2 (en) Method and apparatus for generating a precursor for a semiconductor processing system
JP5342110B2 (en) Source canister containing precursor and method for filling features using the same
US7524374B2 (en) Method and apparatus for generating a precursor for a semiconductor processing system
US6265311B1 (en) PECVD of TaN films from tantalum halide precursors
EP1192292B1 (en) Plasma treatment of thermal cvd tan films from tantalum halide precursors
TWI615497B (en) Metal amide deposition precursors and their stabilization with an inert ampoule liner
US6410433B1 (en) Thermal CVD of TaN films from tantalum halide precursors
US7438949B2 (en) Ruthenium containing layer deposition method
TW202212610A (en) Vapor deposition of molybdenum using a bis(alkyl-arene) molybdenum precursor
EP1192293B1 (en) CVD OF INTEGRATED Ta AND TaNx FILMS FROM TANTALUM HALIDE PRECURSORS
JPS62142770A (en) Tungsten silicide film and method for deposition to said film
TWI326104B (en) Method and apparatus for generating a precursor for a semiconductor processing system
JP2000299296A (en) Copper metal wiring forming method of semiconductor device
TW573045B (en) PECVD of Ta films from tantalum halide precursors
TW593733B (en) CVD TaN plug formation from tantalum halide precursors

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent