TWI324778B - Memory, bit-line pre-charge circuit and bit-line pre-charge method - Google Patents

Memory, bit-line pre-charge circuit and bit-line pre-charge method Download PDF

Info

Publication number
TWI324778B
TWI324778B TW97106522A TW97106522A TWI324778B TW I324778 B TWI324778 B TW I324778B TW 97106522 A TW97106522 A TW 97106522A TW 97106522 A TW97106522 A TW 97106522A TW I324778 B TWI324778 B TW I324778B
Authority
TW
Taiwan
Prior art keywords
transistor
electrically connected
source
voltage
gate
Prior art date
Application number
TW97106522A
Other languages
Chinese (zh)
Other versions
TW200937442A (en
Inventor
Jer Hau Hsu
Fu Nian Liang
Yufe Feng Lin
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW97106522A priority Critical patent/TWI324778B/en
Publication of TW200937442A publication Critical patent/TW200937442A/en
Application granted granted Critical
Publication of TWI324778B publication Critical patent/TWI324778B/en

Links

Landscapes

  • Read Only Memory (AREA)

Description

1324778 九、發明說明: 【發明所屬之技術領域】 本案係關於一種記憶裝置、位元線預充電電路及 位元線預充電方法,特別是關於一種應用於記憶胞 (memory ceu)之位元線電壓(bit line voltage)的記憶裝 置、位元線預充電電路及位元線預充電方法。 【先前技術】1324778 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a memory device, a bit line precharge circuit and a bit line precharge method, and more particularly to a bit line applied to a memory cell (memory ceu) A memory device for a bit line voltage, a bit line precharge circuit, and a bit line precharge method. [Prior Art]

請參閱第1圖,其為一種習用之記憶體陣列中的 檢測概念方案與預充電電路的電路圖,在圖中僅顯示 記憶體陣列之多個記憶胞中的其中一個記憶胞之控制 電路。 在第1圖中,檢測概念方案1〇主要是由反相器 101以及記憶胞102所構成’箝位電晶體MCL的一第 一端經由負載103連接於電壓源VDD、一第二端連接 於反相器101的輸入端以及位元線、控制端則連接於 反相器101的輸出端。記憶胞102受控於字元線電壓 VWL。圖中所示的電容CBL是指位元線電 端之間的電容效應,但其在電路結構令 際的電容。 壓VBL與接地 並未存在一實 隹檢測概念方案 容CBL的電容值會變得报大,而 =因】 壓VBL至-預定值(例如1ό伏特’升位元i 測概念方案10本身的操作,亜/若是僅僅依3 定地將提升位元線電壓Vbi f艮長的時間才)Please refer to Fig. 1, which is a circuit diagram of a detection concept and a precharge circuit in a conventional memory array. Only the control circuit of one of the plurality of memory cells of the memory array is shown. In Fig. 1, the detection concept 1 is mainly composed of the inverter 101 and the memory cell 102. A first end of the clamp transistor MCL is connected to the voltage source VDD via the load 103, and a second end is connected to The input terminal of the inverter 101 and the bit line and the control terminal are connected to the output terminal of the inverter 101. Memory cell 102 is controlled by word line voltage VWL. The capacitor CBL shown in the figure refers to the capacitance effect between the bit line terminals, but its capacitance in the circuit structure. The voltage VBL and the ground do not exist in a real detection concept. The capacitance value of the CBL will become large, and the voltage VBL will be reduced to a predetermined value (for example, the operation of the 1 volt volt 'element bit' concept solution 10 itself. , 亜 / If only according to 3 will increase the bit line voltage Vbi f 艮 long time)

L至該預定值,難以IL to the predetermined value, it is difficult to I

7 用上的需求。 為了改善這個缺點,習用技術係在檢測概念方案 10增加一額外的預充電路徑11,利用額外的預充電路 徑11在預充電階段的前期提升預充電速度,使得位元 線電壓vBL能夠更快地到達該預定值。 然而,用來控制額外的預充電路徑11的延遲電路 12會受到電源、溫度以及製程邊界(process corner)的 諸多影響,因此在精確控制上具有很大的困難;亦 即,想要精確地控制額外的預充電路徑11的啟動、操 作與關閉具有很大的困難度。 職是之故,申請人鑑於先前技術中所產生之缺 失,經過悉心試驗與研究,並一本鍥而不捨之精神, 終構思出本案「記憶裝置、位元線預充電電路及位元 線預充電方法」,以下為本案之簡要說明。 【發明内容】 本案的目的在於提出一種記憶裝置、位元線預充 電電路及位元線預充電方法,藉此提升位元線的預充 電速度,並且能夠及早關閉額外的預充電路徑,以便 產生足夠的電壓餘裕(voltage margin)而防止過度充電 (overcharge) ° 本案一方面提出一種記憶裝置,包括:一記憶胞; 一箝位電晶體,具有一第一端、一第二端及一控制端, 該第二端輕合於該記憶胞;一第一反相器,具有一輸 入端及一輸出端,該輸入端電性連接於該箝位電晶體 1324778 的該第二端,該輸出端電性連接於該箝位電晶體的該 控制端;一位元線,電性連接於該箝位電晶體的該第 二端以及該第一反向器的該輸入端,該位元線上具有 一位元線電壓;一預充電路徑,電性連接於該箝位電 晶體的該第一端,其連接節點處具有一檢測電壓;以 及一偵測控制器,電性連接於該箝位電晶體的該第一 端以及該預充電路徑,該偵測控制器是用以偵測該檢 測電壓,並當該檢測電壓位於一第一低位準時開啟該 預充電路徑以提升該位元線電壓,且當該檢測電壓位 於一第一高位準時關閉該預充電路徑。 本案另一方面提出一種位元線預充電電路,包括: 一箝位電晶體,具有一第一端、一第二端及一控制端; 一位元線,電性連接於該箝位電晶體的該第二端,該 位元線上具有一位元線電壓;一電流源電路,連接於 該箝位電晶體的該第一端,其連接節點處具有一檢測 電壓;以及一偵測控制器,電性連接於該箝位電晶體 的該第一端以及該電流源電路,該偵測控制器是用以 偵測該檢測電壓,並當該檢測電壓位於一第一低位準 時致能該電流源電路以提升該位元線電壓,且當該檢 測電壓位於一第一高位準時禁能該電流源電路。 本案再一方面提出一種位元線預充電方法,係應 用於一記憶體陣列的複數條位元線,其中各該位元線 耦合於一箝位電晶體,該箝位電晶體具有一第一端、 一第二端及一控制端,各該第一端上具有一具有一檢 測電壓,各該第二端電性連接於該位元線,且該位元 \ S ) 9 1324778 線上具有一位元線電壓,該位元線預充電方法包括下 列步驟:偵測該檢測電壓;當該檢測電壓位於一低位 準時,對該箝位電晶體預充電以提升該位元線電壓; 以及當該檢測電壓位於一高位準時,停止對該箝位電 晶體預充電。 本案得藉由下列圖式及詳細說明,俾得更深入之 了解: 【實施方式】 請參閱為了改善前述問題,本案提出一種記憶裝 置,係在第1圖中包括了箝位電晶體MCL、反相器101 以及位元線的檢測概念方案10之外,再額外設置一預 充電路徑以及一偵測控制器。 請參閱第2圖,其為本案所提出之記憶裝置一較 佳實施例的電路圖。在第2圖中,檢測概念方案10的 電路結構與第1圖完全相同,而記憶裝置2除了檢測 概念方案10之外,還包括了 一預充電路徑21以及一 偵測控制器22。 以下說明檢測概念方案10、預充電路徑21以及 偵測控制器22等三者之間的操作,而該操作是基於構 成箝位電晶體MCL之NMOS電晶體的汲極上的一檢 測電壓Vsa以及位元線上的一位元線電壓VBL。也就 是說,將預充電路徑21以及偵測控制器22同時電性 連接於構成箝位電晶體MCL之NMOS電晶體的汲 極,便可以利用偵測控制器22來偵測檢測電壓Vsa。 (S ) 10 1324778 當檢測電壓Vsa位於低位準時,偵測控制器22便開啟 預充電路徑21以提升位元線電壓VBL,而當檢測電壓 . Vsa位於高位準時,偵測控制器22便關閉預充電路徑 21 〇 • 藉由預充電路徑21以及偵測控制器22,便可以 提升位元線的預充電速度,並且還可以精確地在預充 電電壓Vsa近似於位元線電壓Vbl時即關閉預充電路 徑21,其優點為能夠防止過度充電,但卻不會受到電 _ 源、溫度以及製程邊界的影響。 在第2圖的較佳實施例中’是使用一電流源電路 來作為預充電路徑21。如第2圖所示,電流源電路是 由三個PMOS電晶體P1〜P3以及一個參考電流源Ir^ 所構成,PMOS電晶體P1與pM0S電晶體p2的源極 皆電性連接於高電壓源VDD、閘極則彼此電性連接, PMOS電晶體P2的汲極電性連接於本身的閘極以及參 考電流源iREF的輸入端,參考電流源Iref的輸出端則 • 電性連接於低電壓源。PMOS電晶體P3的源極電性連 接於PMOS電晶體P1的汲極、閘極接收來自偵測控制 器22的一控制電壓vct卜汲極則電性連接於構成箝位 電晶體MCL之NMOS電晶體的汲極。 需要注意的是’ PMOS電晶體P1之長寬比(aspect7 use the requirements. In order to improve this disadvantage, the conventional technique adds an additional pre-charging path 11 in the detection concept scheme 10, and utilizes an additional pre-charging path 11 to increase the pre-charging speed in the early stage of the pre-charging phase, so that the bit line voltage vBL can be faster. The predetermined value is reached. However, the delay circuit 12 for controlling the additional pre-charging path 11 is subject to many influences of power supply, temperature, and process corners, and thus has great difficulty in precise control; that is, it is intended to be accurately controlled. The startup, operation and shutdown of the additional pre-charging path 11 is highly difficult. For the sake of his position, the applicant has conceived the memory device, the bit line pre-charging circuit and the bit line pre-charging method in the light of the lack of the prior art, after careful testing and research, and a perseverance spirit. The following is a brief description of the case. SUMMARY OF THE INVENTION The purpose of the present invention is to provide a memory device, a bit line pre-charging circuit, and a bit line pre-charging method, thereby increasing the pre-charging speed of the bit line, and being able to turn off an additional pre-charging path early to generate Sufficient voltage margin to prevent overcharge. In this aspect, a memory device is provided, including: a memory cell; a clamp transistor having a first end, a second end, and a control end The second end is lightly coupled to the memory cell; a first inverter having an input end and an output end electrically connected to the second end of the clamp transistor 1324778, the output end Electrically connected to the control end of the clamp transistor; a bit line electrically connected to the second end of the clamp transistor and the input end of the first inverter, the bit line having a first line voltage; a pre-charging path electrically connected to the first end of the clamp transistor, having a detection voltage at the connection node; and a detection controller electrically connected to the clamp current Crystal The first end and the pre-charging path, the detecting controller is configured to detect the detecting voltage, and when the detecting voltage is at a first low level, turn on the pre-charging path to increase the bit line voltage, and when The pre-charging path is turned off when the detection voltage is at a first high level. Another aspect of the present invention provides a bit line precharge circuit, comprising: a clamp transistor having a first end, a second end, and a control end; a bit line electrically connected to the clamp transistor The second end of the bit line has a bit line voltage; a current source circuit is connected to the first end of the clamp transistor, has a detection voltage at the connection node; and a detection controller Electrically connected to the first end of the clamp transistor and the current source circuit, the detection controller is configured to detect the detection voltage, and enable the current when the detection voltage is at a first low level The source circuit boosts the bit line voltage and disables the current source circuit when the sense voltage is at a first high level. In another aspect, the present invention provides a bit line pre-charging method, which is applied to a plurality of bit lines of a memory array, wherein each bit line is coupled to a clamp transistor, and the clamp transistor has a first a second end and a control end, each of the first ends has a detection voltage, each of the second ends is electrically connected to the bit line, and the bit \ S ) 9 1324778 has a line a bit line voltage, the bit line pre-charging method comprising the steps of: detecting the detection voltage; pre-charging the clamping transistor to increase the bit line voltage when the detection voltage is at a low level; When the detection voltage is at a high level, the pre-charging of the clamp transistor is stopped. In this case, we can get a deeper understanding by the following diagrams and detailed explanations: [Embodiment] Please refer to the memory device in order to improve the above problem. The figure includes the clamp transistor MCL and the reverse in the first figure. In addition to the phase detector 101 and the bit line detection concept 10, a pre-charging path and a detection controller are additionally provided. Please refer to Fig. 2, which is a circuit diagram of a preferred embodiment of the memory device proposed in the present invention. In Fig. 2, the circuit configuration of the detection concept 10 is identical to that of Fig. 1, and the memory device 2 includes a precharge path 21 and a detection controller 22 in addition to the concept solution 10. The following describes the operation between the detection concept scheme 10, the precharge path 21, and the detection controller 22, and the operation is based on a detection voltage Vsa and a bit on the drain of the NMOS transistor constituting the clamp transistor MCL. One element line voltage VBL on the meta line. In other words, the detection controller 22 can be used to detect the detection voltage Vsa by electrically connecting the pre-charging path 21 and the detection controller 22 to the anode of the NMOS transistor constituting the clamp transistor MCL. (S) 10 1324778 When the detection voltage Vsa is at the low level, the detection controller 22 turns on the pre-charging path 21 to raise the bit line voltage VBL, and when the detection voltage Vsa is at the high level, the detection controller 22 turns off the pre- Charging path 21 藉• By pre-charging path 21 and detecting controller 22, the pre-charging speed of the bit line can be increased, and the pre-charging voltage Vsa can be accurately turned off when the pre-charging voltage Vsa is approximated to the bit line voltage Vbl. The charging path 21 has the advantage of preventing overcharging but is not affected by the power source, temperature, and process boundaries. In the preferred embodiment of Fig. 2, a current source circuit is used as the precharge path 21. As shown in FIG. 2, the current source circuit is composed of three PMOS transistors P1 to P3 and a reference current source Ir^, and the sources of the PMOS transistor P1 and the pM0S transistor p2 are electrically connected to the high voltage source. The VDD and the gate are electrically connected to each other. The drain of the PMOS transistor P2 is electrically connected to its own gate and the input terminal of the reference current source iREF, and the output of the reference current source Iref is electrically connected to the low voltage source. . The source of the PMOS transistor P3 is electrically connected to the drain of the PMOS transistor P1, and the gate receives a control voltage vct from the detection controller 22, and is electrically connected to the NMOS electrode constituting the clamp transistor MCL. The bungee of the crystal. Note that the aspect ratio of the PMOS transistor P1 (aspect

ratio)是PMOS電晶體P2之長寬比的]y[倍,而PMOS 電晶體PI、PMOS電晶體P2以及參考電流源IREF又 共同構成了一電流鏡;因此,作為預充電路徑21的電 流源電路便可以將Μ倍的參考電流iREF提供給箝位電 11 1324778 晶體MCL。The ratio is y [times] of the aspect ratio of the PMOS transistor P2, and the PMOS transistor PI, the PMOS transistor P2, and the reference current source IREF together constitute a current mirror; therefore, as the current source of the precharge path 21. The circuit can supply a Μ times reference current iREF to the clamped electrical 11 1324778 crystal MCL.

另一方面’偵測控制器22是由pM〇s電晶體P4、 NMOS電晶體N2、緩衝器dET以及二個反相器1〇4 與105所構成。PMOS電晶體p4的源極電性連接於高 電壓源、閘極受控於一致能信號pRE_EN,NM〇s電 晶體N2的汲極電性連接於pM〇s電晶體p4的汲極、 閘極電性連接於緩衝器DET的輸出端、源極則電性連 接於低電壓源。反相器104與105彼此顛倒電性連接, DET的輸入端則電性連接於構成箝位電晶體mcl之 NMOS電晶體的〉及極。 請參閱第3圖,其為第2圖之記憶褒置在不同的 記憶胞電流下的控制電壓Vctl、預充電電壓Vsa及位 元線電壓皿之波料序圖。以下僅利用記憶胞電流 Icell為ΙΟιιΑ並同時參考第2圖來作說明,當記憶胞 電流Icell分別為15UA與20uA時情況亦類似“ 1. 0ns〜20nsOn the other hand, the detection controller 22 is composed of a pM 〇s transistor P4, an NMOS transistor N2, a buffer dET, and two inverters 〇4 and 105. The source of the PMOS transistor p4 is electrically connected to the high voltage source, the gate is controlled by the uniform energy signal pRE_EN, and the drain of the NM〇s transistor N2 is electrically connected to the drain and gate of the pM〇s transistor p4. The output terminal and the source of the buffer DET are electrically connected to the low voltage source. The inverters 104 and 105 are electrically connected to each other in reverse, and the input terminal of the DET is electrically connected to the > and the NMOS transistors constituting the clamp transistor mcl. Please refer to Fig. 3, which is a wave sequence diagram of the control voltage Vctl, the precharge voltage Vsa and the bit line voltage of the memory device of Fig. 2 under different memory currents. The following only uses the memory cell current Icell for ΙΟιιΑ and also refers to Figure 2 for illustration. When the memory cell current Icell is 15UA and 20uA, respectively, the situation is similar. 1. 1. 0ns~20ns

當位元線電壓VBL由低位準開料高時,檢測電 壓V s a由高位準降低,經由偵測控制器2 2的轉換,控 制電壓Vctl亦降為低位準,此時預充電路徑^ PMOS電晶體^通’預充電路徑21提供“的參When the bit line voltage VBL is high by the low level, the detection voltage V sa is lowered from the high level, and the control voltage Vctl is also lowered to the low level by the detection of the detection controller 2 2, and the precharge path is PMOS. Crystal ^ pass 'precharge path 21 provides "parameters

考電流Iref給箝位電晶體MCL以提升其預充電速产。 2. 20ns 附近 'X 而當位元線電壓VBL的上升趨緩時’由於籍位電 晶體MCL的放大作用,檢測電壓Vsa會以更快产 升至高位準,經由偵測控制器22的、、又 2的轉換,控制電壓 < S ) 12 1324778The current Iref is applied to the clamp transistor MCL to increase its precharge yield. 2. When 20 ns is near 'X and when the rise of the bit line voltage VBL is slowed down', due to the amplification of the home transistor MCL, the detection voltage Vsa will rise to a higher level with a faster rate, via the detection controller 22, , 2 conversions, control voltage < S ) 12 1324778

Vctl亦升為高位準,此時預充電路徑21的PMOS電晶 體P3斷開,預充電路徑21便停止提供Μ倍的參考電 流 Iref 給箝位電晶體MCL。 ‘ 3. 20ns〜50ns 雖然Μ倍的參考電流Iref大於記憶胞電流’但位 元線電壓VBL並未上升至足夠偵測到預充電路徑21已 關閉的位準,因此位元線電壓VBL需要一段較長的時 間來趨向穩定。 以下利用第4圖來說明這一段長時間的形成原 因。請參閱第4圖,其為在第2圖之箝位電晶體的閘 極電壓VCl與源極電壓VBL的變化下、Μ倍的參考電 流Iref負載線與記憶胞電流Icell貪載線的不意圖。 由第4圖可以看出,為了要對位元線充電,因此 預充電路徑21所提供的Μ倍的參考電流Iref必須大 於記憶胞電流Icell。此外,由於箝位電晶體MCL的閘 極與源極間電壓Vgs為固定,因此當位元線電壓Vbl 上升時,閘極電壓VCL便下降。很明顯的,在偵測階 段的位元線電壓VBL為圖中的a點,而在預充電路徑 關閉時的位元線電壓VBL則為圖中的b點,a、b二點 之間的電壓差即為前述預充電路徑21關閉後的位元 線電壓VBL需要一段較長的時間來趨向穩定的原因。 為了盡量縮短這一段時間,本案提出了二種方法 與電路結構來解決。 第一種方法是提升記憶胞電流Icell;亦即,盡量Vctl also rises to a high level. At this time, the PMOS transistor P3 of the precharge path 21 is turned off, and the precharge path 21 stops supplying the reference current Iref to the clamp transistor MCL. ' 3. 20ns~50ns Although the reference current Iref is greater than the memory cell current' but the bit line voltage VBL does not rise enough to detect the level at which the precharge path 21 is turned off, the bit line voltage VBL requires a segment. It will take a long time to stabilize. The reason for this long period of formation is illustrated by Figure 4 below. Please refer to FIG. 4, which is a schematic diagram of the reference current Iref load line and the memory cell current Icell of the clamp cell under the variation of the gate voltage VCl and the source voltage VBL of the clamp transistor of FIG. . As can be seen from Fig. 4, in order to charge the bit line, the 参考 times reference current Iref provided by the precharge path 21 must be greater than the memory cell current Icell. Further, since the gate-source voltage Vgs of the clamp transistor MCL is fixed, when the bit line voltage Vbl rises, the gate voltage VCL falls. Obviously, the bit line voltage VBL in the detection phase is the point a in the figure, and the bit line voltage VBL when the precharge path is off is the point b in the figure, between the two points a and b. The voltage difference is the reason why the bit line voltage VBL after the aforementioned pre-charging path 21 is turned off requires a long period of time to stabilize. In order to minimize this period of time, the case proposes two methods and circuit structure to solve. The first method is to increase the memory current Icell; that is, try to

13 1324778 讓第4圖中的記憶胞電流負載線提升至與Μ倍的參考 電流Iref負載線彼此趨近’使付a、b二點盡可能罪近’ 便能夠縮短這一段時間。為了達成這個目的,本案所 採用的方法為增加箝位電晶體MCL的通道寬度 (channel width) ° 請參閱第5圖,其為本案所提出之具有第一補償 電路之記憶裝置的電路圖,第5圖的記憶裝置5與第 2圖的記憶裝置2之差別僅在於,在構成箝位電晶體 MCL之NMOS電晶體的三端之間設置了一個第一補 償電路51,來增加箝位電晶體MCL的通道寬度,藉 此提升記憶胞電流Icell。 第一補償電路51包括了 NMOS電晶體N3與 PMOS電晶體P5.。NMOS電晶體N3的汲極電性連接 於箝位電晶體MCL的汲極、閘極電性連接於箝位電晶 體MCL的閘極。PMOS電晶體P5的源極電性連接於 NMOS電晶體N3的源極、閘.極受控於控制電壓Vet卜 汲極電性連接於箝位電晶體MCL的源極。此外,NMOS 電晶體N3之寬長比是箝位電晶體MCL之寬長比的 M-1 倍。 請參閱第6圖,其為在第5圖之記憶胞的閘極電 壓VCL與位元線電壓VBL的變化下、補償後之Μ倍的 參考電流IrEf負載線與記憶胞電流Icell負載線的不意 圖。由圖中可看出,藉由第一補償電路51的配置,便 可以提升記憶胞電流Icell,在最佳狀況下可以讓第4 圖中的記憶胞電流負載線與Μ倍的參考電流IREF負載 14 1324778 線互相重合’使得a、b二點亦互相重合,以消除該段 時間。 第二種方法是改變位元線電壓VBL與閘極電壓 ^ Vcl之間的關係;亦即’盡量讓第4圖中的閘極電廢 - V〇L與位元線電壓Vbl的變化線之斜率增加,使得a、 b二點盡可能靠近,便能夠縮短這一段時間。為了達 成這個目的,本案所採用的方法為增強第一反相器1〇1 的驅動能力(driving ability)以改變其轉換函數(transfer function) ° _ 請參閱第7圖’其為本案所提出之具有第二補償 電路之記憶裝置的電路圖,第7圖的記憶裝置7與第 2圖的記憶裝置2之差別僅在於,在反相器1〇1的輸 入端與輸出端之間設置了一個第二補償電路71,來增 強第一反相器1〇1的驅動能力,以改變其轉換函數。 第二補償電路71包括了 PMOS電晶體?6與1>]\408 電晶體P7。PM0S電晶體P6的汲極電性連接於高電 壓源VDD、閘極受控制於控制電聲Vctl。PM0S電晶 • 體P7的源極電性連接於PMOS電晶體P6的汲極、閘 極電性連接於第一反相器101的輸入端、汲極電性連 接於第一反相器的輸出端。 請參閱第8圖’其為在第7圖之箝位電晶體MCL 的閘極電壓vcl與位元線電壓vBl的變化下、補償後 之IV[倍的參考電流Iref負載線與記憶胞電流Icell負 載線的示意圖。由圖中可看出,藉由第二補償電路71 的配置’便可以增強第一反相器1〇1的驅動能力並改 15 變其轉換函數’在最佳狀況下可以讓第4圖中的閘極 電壓yCL與位元線電壓Vbl的變化線之斜率增加(如圖 中所由變化線S換成變化線R),使得a、b二點 盡可能靠近,以縮短該段時間。 ,請參閱第9圖,其為第2圖之記憶裝置在配置了 補償電路後、在不同的記憶胞電流下的控制電壓13 1324778 The memory cell current load line in Figure 4 is raised to a point closer to the reference current Iref load line of 'Μ, so that paying a and b two points as close as possible' can shorten this period of time. In order to achieve this goal, the method used in this case is to increase the channel width of the clamp transistor MCL. Please refer to FIG. 5, which is a circuit diagram of the memory device with the first compensation circuit proposed in the present invention. The memory device 5 of the figure differs from the memory device 2 of FIG. 2 only in that a first compensation circuit 51 is provided between the three ends of the NMOS transistor constituting the clamp transistor MCL to increase the clamp transistor MCL. The channel width, thereby increasing the memory current Icell. The first compensation circuit 51 includes an NMOS transistor N3 and a PMOS transistor P5. The drain of the NMOS transistor N3 is electrically connected to the drain of the clamp transistor MCL, and the gate is electrically connected to the gate of the clamped transistor MCL. The source of the PMOS transistor P5 is electrically connected to the source of the NMOS transistor N3, and the gate is controlled by the control voltage Vet. The gate is electrically connected to the source of the clamp transistor MCL. Further, the aspect ratio of the NMOS transistor N3 is M-1 times the aspect ratio of the clamp transistor MCL. Please refer to FIG. 6 , which is the reference current IrEf load line and the memory cell current Icell load line which are twice the compensation after the change of the gate voltage VCL and the bit line voltage VBL of the memory cell in FIG. 5 . intention. As can be seen from the figure, the memory cell current Icell can be increased by the configuration of the first compensation circuit 51, and the memory cell current load line and the 参考 times reference current IREF load in FIG. 4 can be obtained under optimal conditions. 14 1324778 Lines coincide with each other' so that the two points a and b also coincide with each other to eliminate the time. The second method is to change the relationship between the bit line voltage VBL and the gate voltage ^Vcl; that is, 'try to make the gate of the fourth figure electrically waste - V 〇 L and the bit line voltage Vbl change line The slope is increased so that the two points a and b are as close as possible, and this period of time can be shortened. In order to achieve this, the method used in this case is to enhance the driving ability of the first inverter 1〇1 to change its transfer function ° _ See Figure 7 A circuit diagram of a memory device having a second compensation circuit, the memory device 7 of FIG. 7 differs from the memory device 2 of FIG. 2 only in that a first portion is provided between the input terminal and the output terminal of the inverter 1〇1. The second compensation circuit 71 is operative to enhance the driving ability of the first inverter 1〇1 to change its conversion function. The second compensation circuit 71 includes a PMOS transistor? 6 and 1>]\408 Transistor P7. The drain of the PM0S transistor P6 is electrically connected to the high voltage source VDD, and the gate is controlled to control the electroacoustic Vctl. The source of the PM0S transistor is electrically connected to the drain of the PMOS transistor P6, the gate is electrically connected to the input end of the first inverter 101, and the gate of the gate is electrically connected to the output of the first inverter. end. Please refer to FIG. 8 'which is the change of the gate voltage vcl and the bit line voltage vBl of the clamp transistor MCL in FIG. 7 and the compensated IV [times of the reference current Iref load line and the memory cell current Icell Schematic diagram of the load line. As can be seen from the figure, by the configuration of the second compensation circuit 71, the driving capability of the first inverter 1〇1 can be enhanced and the conversion function can be changed 15 in the best case. The slope of the change line of the gate voltage yCL and the bit line voltage Vbl is increased (as changed from the change line S to the change line R in the figure), so that the two points a and b are as close as possible to shorten the time. Please refer to FIG. 9 , which is the control voltage of the memory device of FIG. 2 under different memory currents after the compensation circuit is configured.

Vet卜檢測電壓Vsa及位元線電壓乂肌之波形時序圖。 比,第9 @與第3圖後可以看出,利用本案所提出的 補償方法與電路,確實可以改善預充電路徑21關閉後 的位元線電壓VBL需要—段較長時間來趨向穩定的問 題。 綜上所述,本案主要是利用一預充電路徑盥一偵 測控制H在預充電階段的前騎升記憶朗預充電速 度,可以快速且穩定地對位元線預充電,亦可適時停 止以防止過度充電。此外’本#還提出補償電路與方 法,能夠改善預充電路徑關閉後的位元線電壓需要一 段較長時間來趨向穩定的問題。 本案得由熟悉本技藝之人士任㈣思而為諸般修 飾,然皆不脫如附申請專利範圍所欲保護者。 ^ 叫4778 【圖式簡單說明】 • 第1圖.種習用之記憶體呼列中的檢測概念方 / 茱與預充電電路的電路圖。 - 第2圖:本案所提出之記憶裝置一較佳實施例的 電路圖》 第3圖.第2圖之記憶裝置在不同的記憶胞電流 下的控制電壓Vct卜檢測電壓Vsa及位元線電壓I 之波形時序圖。 • 第4圖:在第2圖之箝位電晶體MCL的閘極電壓 VcL與源極電麼Vbl的變化下、Μ倍的參考電流Iref 負载線與記憶胞電流Icell負载線的示意圖。 第5圖··本案所提出之具有第一補償電路之記憶 裝置的電路圖。 “ 第6圖:在第5圖之箝位電晶體MCL的閘極電壓 VCL=位元線電壓Vbl的變化下、補償後之M倍的參 考電流iref負载線與記憶胞電流Icell負載線的示音 圖。 第7圖:本案所提出之具有第二補償電路之記憶 裝置的電路圖。 第8圖··在第7圖之箝位電晶體撾(:^的閘極電壓 VCL與源極電壓VBL的變化下、補償後之M倍的參考 電流Iref負载線與記憶胞電流IceU負載線的示意圖。 第9圖:第2圖之記憶裝置在配置了補償電路 後、在不同的記憶胞電流下的控制電壓Vetl、檢測電 壓Vsa及位元線電壓vBL之波形時序圖。 17 1324778Waveform timing diagram of Vet Bu detection voltage Vsa and bit line voltage diaphragm. Compared with the 9th and 3rd figures, it can be seen that with the compensation method and circuit proposed in the present case, it is indeed possible to improve the bit line voltage VBL after the pre-charging path 21 is turned off, which requires a long period of time to stabilize. . In summary, the present case mainly utilizes a pre-charging path 侦测-detection control H in the pre-charging stage before riding the memory pre-charging speed, can quickly and stably pre-charge the bit line, or stop at the appropriate time Prevent overcharging. In addition, 'this # also proposes a compensation circuit and method, which can improve the problem that the bit line voltage after the pre-charging path is turned off requires a long period of time to stabilize. This case can be modified by people who are familiar with the art, and they are all modified as if they were protected by the scope of the patent application. ^ Call 4778 [Simple description of the diagram] • Figure 1. Circuit diagram of the detection concept in the memory call list / 茱 and precharge circuit. - Figure 2: Circuit diagram of a preferred embodiment of the memory device proposed in the present invention. Fig. 3 is a control voltage Vct of the memory device under different memory cell currents, and a detection voltage Vsa and a bit line voltage I. Waveform timing diagram. • Fig. 4: Schematic diagram of the reference current Iref load line and the memory cell current Icell load line at the gate voltage VcL of the clamp transistor MCL and the change of the source voltage Vbl in Fig. 2. Fig. 5 is a circuit diagram of a memory device having a first compensation circuit as proposed in the present invention. "Fig. 6: The change of the reference current iref load line and the memory cell current Icell load line of M times after the compensation of the gate voltage VCL of the clamp transistor MCL in FIG. 5 = the bit line voltage Vbl Figure 7. Circuit diagram of the memory device with the second compensation circuit proposed in this case. Fig. 8 · The gate voltage VCL and the source voltage VBL of the clamp transistor in Fig. 7 Schematic diagram of the reference current Iref load line and the memory cell current IceU load line after the compensation, M times after compensation. Fig. 9: The memory device of Fig. 2 after the compensation circuit is configured, under different memory currents Waveform timing diagram of control voltage Vetl, detection voltage Vsa, and bit line voltage vBL. 17 1324778

VBE位元線電壓 Vex閘極電壓 v WL字元線電塵 Vctl控制電壓 Vsa檢測電壓 19VBE bit line voltage Vex gate voltage v WL word line electric dust Vctl control voltage Vsa detection voltage 19

Claims (1)

1324778 十、申請專利範圍: 1. 一種記憶裝置,包括: 一記憶胞; 一箝位電晶體,具有一第一端、一第二端及一控 制端,該第二端耦合於該記憶胞; 一第一反相器,具有一輸入端及一輸出端,該輸 入端電性連接於該箝位電晶體的該第二端,該輪出端 電性連接於該箝位電晶體的該控制端; 一位元線,電性連接於該箝位電晶體的該第二端 以及該第一反向器的該輸入端,該位元線上具有一位 元線電壓; 一預充電路徑,電性連接於該箝位電晶體的該第 一端,其連接節點處具有一檢測電壓;以及 一偵測控制器,電性連接於該箝位電晶體的該第 一端以及該預充電路徑,該偵測控制器是用以偵測該 檢測電壓,並當該檢測電壓位於一第一低位準時開啟 該預充電路徑以提升該位元線電壓,且當該檢測電壓 位於一第一高位準時關閉該預充電路徑。 2. 如申請專利範圍第1項之記憶裝置,其中該箝位電 晶體的該第一端更經由一負載而電性連接於一高電壓 源,且該箝位電晶體的該第二端更經由該記憶胞而電 性連接於一低電壓源。 3. 如申請專利範圍第1項之記憶裝置,其中該箝位電 晶體為一第一 NMOS電晶體,該箝位電晶體的該第一 端為一〉及極’該粉位電晶體的該控制端為一閘極,該 s 20 1324778 箱位電晶體的該第二端為· 源極。 4. 如申請專利範圍第1項之記憶裝置,其中該預充電 路徑為一電流源電路。 5. 如申請專利範圍第4項之記憶裝置,其中該電流源 電路包括: 一第一 PMOS電晶體,具有一源極、一閘極及一 汲極,該源極電性連接於一高電壓源,該第一 PMOS 電晶體具有一第一寬長比(aspect ratio); 一第二PMOS電晶體,具有一源極、一閘極及一 汲極,該源極電性連接於該高電壓源,該閘極電性連 接於本身的該汲極以及該第一 PMOS電晶體的該閘 極,該第二PMOS電晶體具有一第二寬長比,且該第 一寬長比為該第二寬長比的Μ倍; 一第三PMOS電晶體,具有一源極、一閘極及一 汲極,該源極電性連接於該第一 PMOS電晶體的該汲 極,該閘極電性連接於該偵測控制器,該閘極上具有 一控制電壓,該汲極電性連接於該箝位電晶體的該第 一端;以及 一參考電流源,具有一輸入端及一輸出端,該輸 入端電性連接於該第二PMOS電晶體的該汲極,該輸 出端電性連接於一低電壓源,該參考電流源用以提供 一參考電流; 其中,當該控制電壓位於一第二低位準時,該第 三PMOS電晶體斷開以關閉該預充電路徑,而當該控 制電壓位於一第二高位準時,該第三PMOS電晶體導1324778 X. Patent application scope: 1. A memory device comprising: a memory cell; a clamp transistor having a first end, a second end and a control end, the second end being coupled to the memory cell; a first inverter having an input end and an output end electrically connected to the second end of the clamp transistor, the turn output being electrically connected to the control of the clamp transistor a first line electrically connected to the second end of the clamp transistor and the input end of the first inverter, the bit line having a bit line voltage; a precharge path, Connected to the first end of the clamp transistor, having a detection voltage at the connection node; and a detection controller electrically connected to the first end of the clamp transistor and the precharge path, The detection controller is configured to detect the detection voltage, and turn on the pre-charging path to increase the bit line voltage when the detection voltage is at a first low level, and turn off when the detection voltage is at a first high level. The pre-charge path. 2. The memory device of claim 1, wherein the first end of the clamp transistor is electrically connected to a high voltage source via a load, and the second end of the clamp transistor is further It is electrically connected to a low voltage source via the memory cell. 3. The memory device of claim 1, wherein the clamping transistor is a first NMOS transistor, the first end of the clamping transistor is a > and a pole of the powder transistor The control terminal is a gate, and the second end of the s 20 1324778 box transistor is a source. 4. The memory device of claim 1, wherein the pre-charging path is a current source circuit. 5. The memory device of claim 4, wherein the current source circuit comprises: a first PMOS transistor having a source, a gate and a drain, the source being electrically connected to a high voltage a first PMOS transistor having a first aspect ratio; a second PMOS transistor having a source, a gate and a drain, the source being electrically connected to the high voltage a source, the gate is electrically connected to the drain of the first PMOS transistor and the gate of the first PMOS transistor, the second PMOS transistor has a second aspect ratio, and the first aspect ratio is the first a third PMOS transistor having a source, a gate and a drain, the source being electrically connected to the drain of the first PMOS transistor, the gate being electrically Connected to the detection controller, the gate has a control voltage, the drain is electrically connected to the first end of the clamp transistor; and a reference current source has an input end and an output end. The input end is electrically connected to the drain of the second PMOS transistor, and the output end is electrically connected to a low voltage source, the reference current source is configured to provide a reference current; wherein, when the control voltage is at a second low level, the third PMOS transistor is turned off to turn off the precharge path, and when the control voltage is at a The second high level is on time, the third PMOS transistor leads 21 1324778 通以開啟該預充電路徑,藉以提供Μ倍的該參考電流 至該1¾位電晶體。 6. 如申請專利範圍第5項之記憶裝置,其中該偵測控 制器包括: 一第四PMOS電晶體,具有一源極、一閘極及一 汲極,該源極電性連接於一高電壓源,該閘極受控於 一致能信號; 一第二NMOS電晶體,具有一汲極、一閘極及一 源極,該汲極電性連接於該第四PMOS電晶體的該汲 極,該源極電性連接於一低電壓源; 一緩衝器,具有一輸入端及一輸出端,該輸入端 電性連接於該箝位電晶體的該第一端,該輸出端電性 連接於該第二NMOS電晶體的該Ff〗極; 一第二反相器,具有一輸入端及一輸出端,該輸 入端電性連接於該第四PMOS電晶體的該汲極以及該 第二NMOS電晶體的該汲極,該輸出端電性連接於該 電流源電路;以及 一第三反相器,具有一輸入端及一輸出端,該輸 入端電性連接於該電流源電路以及該第二反相器的該 輸出端,該輸出端電性連接於該第二反相器的該輸入 端、該第四PMOS電晶體的該汲極以及該第二NMOS 電晶體的該〉及極。 7. 如申請專利範圍第6項之記憶裝置,該箝位電晶體 的該控制端更電性連接於一第一補償電路,用以增加 該箝位電晶體的通道寬度(channel width),使得該箝位 C S ) 22 1324778 電晶體的該控制端與該第二端之間的一電壓在該預充 電路徑被開啟與關閉時皆相同。 8. 如申請專利範圍第7項之記憶裝置,其中該第—補 償電路包括: 一第三NMOS電晶體,具有1汲極、一閘極及— 源極,該汲極電性連接於該箝位電晶體的該第一端, 該閘極電性連接於該箝位電晶體的該控制端,該第三 NMOS電晶體具有一第三寬長比;以及 一第五PMOS電晶體,具有一源極、一閘極及一 汲極,該源極電性連接於該第三NMOS電晶體的該源 極’該閘極受控於該控制電壓,該汲極電性連接於該 位元線; 其中,該第二寬長比為該轮位電晶體之寬長比的 M-1 倍。 9. 如申請專利範圍第6項之記憶裝置,該箝位電晶體 的該控制端更電性連接於一第二補償電路,用以增強 該第一反相器的一驅動能力(driving ability)並改變該 第一反相器的一轉換函數(transfer function),使得該位 元線電壓在該預充電路徑被開啟與關閉時皆相同。 10. 如申請專利範圍第9項之記憶裝置,其中該第二補 償電路包括: 一第六PM0S電晶體,具有一源極、一閘極及一 汲極,該源極電性連接於一高電壓源,該閘極受控於 該控制電壓;以及 一第七PMOS電晶體’具有一源極、一閘極及一 23 1324778 汲極,該源極電性連接於該第六PMOS電晶體的該汲 極,該閘極電性連接於該第一反相器的該輸入端,該 汲極電性連接於該第一反相器的該輸出端以及該箝位 電晶體的該控制端。 11. 一種位元線預充電電路,包括: 一箝位電晶體,具有一第一端、一第二端及一控 制端; 一位元線,電性連接於該箝位電晶體的該第二 端,該位元線上具有一位元線電壓; 一電流源電路,連接於該箝位電晶體的該第一 端,其連接節點處具有一檢測電壓;以及 一偵測控制器,電性連接於該箝位電晶體的該第 一端以及該電流源電路,該偵測控制器是用以偵測該 檢測電壓,並當該檢測電壓位於一第一低位準時致能 該電流源電路以提升該位元線電壓,且當該檢測電壓 位於一第一高位準時禁能該電流源電路。 12. 如申請專利範圍第11項之位年線預充電電路,其 中該箝位電晶體為一第一 NMOS電晶體,該箝位電晶 體的該第一端為一汲極端。 13. 如申請專利範圍第11項之位元線預充電電路,其 中該電流源電路包括: 一第一 PMOS電晶體,具有一源極、一閘極及一 汲極,該源極電性連接於一高電壓源,該第一 PMOS 電晶體具有一第一寬長比; 一第二PMOS電晶體,具有一源極、一閘極及一 24 1324778 汲極,該源極電性連接於該高電壓源,該閘極連接於 本身的該汲極以及該第一 PMOS電晶體的該閘極,該 第二PMOS電晶體具有一第二寬長比,且該第一寬長 比為該第二寬長比的Μ倍; 一第三PMOS電晶體,具有一源極、一閘極及一 汲極,該源極電性連接於該第一 PMOS電晶體的該汲 極,該閘極電性連接於該偵測控制器,該閘極上具有 一控制電壓,該汲極電性連接於該箝位電晶體的該第 一端;以及 一參考電流源,具有一輸入端及一輸出端,該輸 入端電性連接於該第二PMOS電晶體的該汲極,該輸 出端電性連接於一低電壓源,該參考電流源用以提供 一參考電流; 其中,當該控制電壓位於一第二低位準時,該第 三PMOS電晶體斷開以禁能該電流源電路,而當該控 制電壓位於一第二高位準時,該第三PMOS電晶體導 通以致能該電流源電路,藉以提供Μ倍的該參考電流 至該箝位電晶體。 14.如申請專利範圍第13項之位元線預充電電路,其 中該偵測控制器包括: 一第四PMOS電晶體,具有一源極、一閘極及一 汲極,該源極電性連接於一高電壓源,該閘極受控於 一致能信號; 一第二NMOS電晶體,具有一汲極、一閘極及一 源極,該〉及極電性連接於該第四PMOS電晶體的該〉及 25 1324778 極,該源極電性連接於一低電壓源; 一緩衝器,具有一輸入端及一輸出端,該輸入端 電性連接於該箝位電晶體的該第一端,該輸出端電性 連接於該第二NMOS電晶體的該閘極; 一第二反相器’具有一輸入端及一輸出端,該輸 入端電性連接於該第四PMOS電晶體的該汲極以及該 第二NMOS電晶體的該汲極,該輸出端電性連接於該 電流源電路;以及 一第三反相器,具有一輸入端及一輸出端,該輸 入端電性連接於該電流源電路以及該第二反相器的該 輸出端,該輸出端電性連接於該第二反相器的該輸入 端、該第四PMOS電晶體的該汲極以及該第二NMOS 電晶體的該〉 及極。 15. —種位元線預充電方法,係應用於一記憶體陣列的 複數條位元線,其中各該位元線耦合於一箝位電晶 體,該箝位電晶體具有一第一端、一第二端及一控制 端,各該第一端上具有一具有一檢測電壓,各該第二 端電性連接於該位元線,且該位元線上具有一位元線 電壓,該位元線預充電方法包括下列步驟: 偵測該檢測電壓; 當該檢測電壓位於一低位準時,對該箝位電晶體 預充電以提升該位元線電壓;以及 當該檢測電壓位於一高位準時,停止對該箝位電 晶體預充電。 16. 如申請專利範圍第15項之位元線預充電方法,更21 1324778 turns on the precharge path to provide a multiple of this reference current to the 13⁄4 bit transistor. 6. The memory device of claim 5, wherein the detection controller comprises: a fourth PMOS transistor having a source, a gate and a drain, the source being electrically connected to a high a voltage source, the gate is controlled by a uniform energy signal; a second NMOS transistor having a drain, a gate and a source electrically connected to the drain of the fourth PMOS transistor The source is electrically connected to a low voltage source; a buffer has an input end and an output end, the input end is electrically connected to the first end of the clamp transistor, and the output end is electrically connected The second inverter has an input end and an output end electrically connected to the drain of the fourth PMOS transistor and the second a drain of the NMOS transistor, the output terminal is electrically connected to the current source circuit; and a third inverter having an input end and an output end, the input end is electrically connected to the current source circuit and the The output end of the second inverter, the output end is electrically connected to the second inverting The input terminal of the device, the drain of the fourth PMOS transistor, and the > pole of the second NMOS transistor. 7. The memory device of claim 6, wherein the control terminal of the clamp transistor is electrically connected to a first compensation circuit for increasing a channel width of the clamp transistor. The clamp CS) 22 1324778 A voltage between the control terminal and the second terminal of the transistor is the same when the pre-charge path is turned on and off. 8. The memory device of claim 7, wherein the first compensation circuit comprises: a third NMOS transistor having a drain, a gate, and a source, the gate being electrically connected to the clamp The first end of the bit transistor is electrically connected to the control end of the clamp transistor, the third NMOS transistor has a third width to length ratio; and a fifth PMOS transistor has a a source, a gate and a drain, the source being electrically connected to the source of the third NMOS transistor. The gate is controlled by the control voltage, and the gate is electrically connected to the bit line Wherein the second aspect ratio is M-1 times the aspect ratio of the wheel transistor. 9. The memory device of claim 6, wherein the control terminal of the clamp transistor is electrically connected to a second compensation circuit for enhancing a driving ability of the first inverter. And changing a transfer function of the first inverter such that the bit line voltage is the same when the pre-charge path is turned on and off. 10. The memory device of claim 9, wherein the second compensation circuit comprises: a sixth PMOS transistor having a source, a gate and a drain, the source being electrically connected to a high a voltage source, the gate is controlled by the control voltage; and a seventh PMOS transistor has a source, a gate and a 23 1324778 drain, the source is electrically connected to the sixth PMOS transistor The gate is electrically connected to the input end of the first inverter, and the drain is electrically connected to the output end of the first inverter and the control end of the clamp transistor. 11. A bit line precharge circuit, comprising: a clamp transistor having a first end, a second end, and a control end; a bit line electrically connected to the first portion of the clamp transistor a two-terminal, the bit line has a bit line voltage; a current source circuit connected to the first end of the clamp transistor, having a detection voltage at the connection node; and a detection controller, electrical Connected to the first end of the clamp transistor and the current source circuit, the detection controller is configured to detect the detection voltage, and enable the current source circuit when the detection voltage is at a first low level The bit line voltage is boosted, and the current source circuit is disabled when the sense voltage is at a first high level. 12. The annual line pre-charging circuit of claim 11, wherein the clamping transistor is a first NMOS transistor, and the first end of the clamping transistor is a terminal. 13. The bit line pre-charging circuit of claim 11, wherein the current source circuit comprises: a first PMOS transistor having a source, a gate and a drain, the source being electrically connected The first PMOS transistor has a first aspect ratio; the second PMOS transistor has a source, a gate and a 24 1324778 drain, the source is electrically connected to the a high voltage source, the gate is connected to the drain of the first PMOS transistor and the gate of the first PMOS transistor, the second PMOS transistor has a second aspect ratio, and the first aspect ratio is the first a third PMOS transistor having a source, a gate and a drain, the source being electrically connected to the drain of the first PMOS transistor, the gate being electrically Connected to the detection controller, the gate has a control voltage, the drain is electrically connected to the first end of the clamp transistor; and a reference current source has an input end and an output end. The input end is electrically connected to the drain of the second PMOS transistor, and the output is electrically connected Connected to a low voltage source, the reference current source is used to provide a reference current; wherein, when the control voltage is at a second low level, the third PMOS transistor is turned off to disable the current source circuit, and when When the control voltage is at a second high level, the third PMOS transistor is turned on to enable the current source circuit to provide a multiple of the reference current to the clamp transistor. 14. The bit line precharge circuit of claim 13, wherein the detection controller comprises: a fourth PMOS transistor having a source, a gate and a drain, the source being electrically Connected to a high voltage source, the gate is controlled by a uniform energy signal; a second NMOS transistor having a drain, a gate and a source, and the pole is electrically connected to the fourth PMOS The source is electrically connected to a low voltage source; the buffer has an input end and an output end electrically connected to the first end of the clamp transistor The output end is electrically connected to the gate of the second NMOS transistor; the second inverter ' has an input end and an output end electrically connected to the fourth PMOS transistor The drain and the drain of the second NMOS transistor, the output terminal is electrically connected to the current source circuit; and a third inverter has an input end and an output end, the input end is electrically connected At the current source circuit and the output of the second inverter, the output The input terminal is electrically connected to the second inverter, the fourth PMOS transistor and the drain> and the second electrode of the NMOS transistor. 15. A bit line pre-charging method applied to a plurality of bit lines of a memory array, wherein each bit line is coupled to a clamp transistor, the clamp transistor having a first end, a second end and a control end, each of the first ends has a detection voltage, each of the second ends is electrically connected to the bit line, and the bit line has a bit line voltage, the bit The method for pre-charging the power line includes the following steps: detecting the detection voltage; pre-charging the clamp transistor to raise the bit line voltage when the detection voltage is at a low level; and when the detection voltage is at a high level, Stop precharging the clamp transistor. 16. For the method of pre-charging the bit line of claim 15 of the patent scope, 26 1324778 包括一第一補償步驟:增加該箝位電晶體的通道寬 度,使得該箝位電晶體的該控制端與該第二端之間的 一電壓在對該箝位電晶體預充電時與停止對該箝位電 晶體預充電時皆相同。 17.如申請專利範圍第15項之位衣線預充電方法,更 包括一第二補償步驟:於該箝位電晶體的該控制端與 該第二端之間連接一反相器,並增強該反相器的一驅 動能力且改變該反相器的一轉換函數,使得該位元線 電壓在對該箝位電晶體預充電時與停止對該箝位電晶 體預充電時皆相同。26 1324778 includes a first compensation step of increasing a channel width of the clamp transistor such that a voltage between the control terminal and the second terminal of the clamp transistor is precharged to the clamp transistor The same is true when the pre-charging of the clamp transistor is stopped. 17. The method of pre-charging a garment line according to claim 15 further comprising a second compensation step of: connecting an inverter between the control end and the second end of the clamp transistor, and enhancing The driving capability of the inverter changes a conversion function of the inverter such that the bit line voltage is the same when pre-charging the clamping transistor and stopping pre-charging the clamping transistor.
TW97106522A 2008-02-25 2008-02-25 Memory, bit-line pre-charge circuit and bit-line pre-charge method TWI324778B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97106522A TWI324778B (en) 2008-02-25 2008-02-25 Memory, bit-line pre-charge circuit and bit-line pre-charge method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97106522A TWI324778B (en) 2008-02-25 2008-02-25 Memory, bit-line pre-charge circuit and bit-line pre-charge method

Publications (2)

Publication Number Publication Date
TW200937442A TW200937442A (en) 2009-09-01
TWI324778B true TWI324778B (en) 2010-05-11

Family

ID=44867066

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97106522A TWI324778B (en) 2008-02-25 2008-02-25 Memory, bit-line pre-charge circuit and bit-line pre-charge method

Country Status (1)

Country Link
TW (1) TWI324778B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107851451A (en) * 2015-09-11 2018-03-27 东芝存储器株式会社 Resistive-switching memory

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195319B (en) * 2017-05-23 2020-05-01 上海华虹宏力半导体制造有限公司 Sensitive amplifier circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107851451A (en) * 2015-09-11 2018-03-27 东芝存储器株式会社 Resistive-switching memory
CN107851451B (en) * 2015-09-11 2021-11-30 东芝存储器株式会社 Resistive random access memory

Also Published As

Publication number Publication date
TW200937442A (en) 2009-09-01

Similar Documents

Publication Publication Date Title
US8947924B2 (en) Data readout circuit of phase change memory
TWI261260B (en) Sensing circuit for flash memory device operating at low power supply voltage
US7586802B2 (en) Memory, bit-line pre-charge circuit and bit-line pre-charge method
TWI380315B (en) Sense amplifier and data sensing method thereof
CN107464581A (en) Sensitive amplifier circuit
CN101383182B (en) Semiconductor storage device
TW201029014A (en) Semiconductor memory device implementing full-VDD bit line precharge scheme using bit line sense amplifier
US9621112B2 (en) Sense amplifier
US9269420B2 (en) Semiconductor memory device and sense amplifier control method thereof
TWI324778B (en) Memory, bit-line pre-charge circuit and bit-line pre-charge method
JPH1116354A (en) Semiconductor memory device
JP3380823B2 (en) Semiconductor storage device
US9947385B1 (en) Data sense amplification circuit and semiconductor memory device including the same
US8687447B2 (en) Semiconductor memory apparatus and test method using the same
JP2015204128A (en) memory timing circuit
TW200423128A (en) Over-driven read method and device of ferroelectric memory
US20130176802A1 (en) Semiconductor memory device
US9620235B2 (en) Self-timer for sense amplifier in memory device
JP2003173692A (en) Bootstrap circuit
TW200845004A (en) Signal sensing circuit and semiconductor memory device using the same
CN102013268A (en) Bit line adjusting method and unit as well as sensitive amplifier
KR100253305B1 (en) Control method of semiconductor memory cell
US20130208544A1 (en) Flash memory with read tracking clock and method thereof
US8189415B2 (en) Sensing amplifier applied to at least a memory cell, memory device, and enhancement method for boosting the sensing amplifier thereof
WO2024031814A1 (en) Sense amplifier, control method, and semiconductor memory